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Abstract

We investigate the high-dimensional properties of robust regression estima-
tors in the presence of heavy-tailed contamination of both the covariates and
response functions. In particular, we provide a sharp asymptotic characteri-
sation of M-estimators trained on a family of elliptical covariate and noise
data distributions including cases where second and higher moments do not
exist. We show that, despite being consistent, the Huber loss with optimally
tuned location parameter δ is suboptimal in the high-dimensional regime
in the presence of heavy-tailed noise, highlighting the necessity of further
regularisation to achieve optimal performance. This result also uncovers the
existence of a curious transition in δ as a function of the sample complexity
and contamination. Moreover, we derive the decay rates for the excess risk
of ridge regression. We show that, while it is both optimal and universal
for noise distributions with finite second moment, its decay rate can be
considerably faster when the covariates’ second moment does not exist.
Finally, we show that our formulas readily generalise to a richer family of
models and data distributions, such as generalised linear estimation with
arbitrary convex regularisation trained on mixture models.

1 Introduction

Consider the classical statistical problem of estimating a vector β⋆ ∈ Rd from n i.i.d. pairs
of observations D := {(xi, yi) ∈ Rd+1 : i ∈ [n]} from a linear model:

yi = β⊺
⋆xi + ηi, (1a)

where xi ∈ Rd are the covariates and ηi ∈ R is the label noise, which we assume to be a
random quantity with zero mean and independent of the covariates. This manuscript is
concerned with the characterisation of the following class of (regularised) M-estimators:

β̂λ := arg min
β∈Rd

n∑
i=1

ρ(yi − β⊺xi) + λ

2 ∥β∥2
2, λ ∈ R+ := [0,+∞), (1b)

with ρ : R → R+ a convex objective function. A popular particular example is least-squares
regression, where ρ(t) = t2/2 and λ = 0: in this case, β̂λ is the maximum likelihood estimator
for β⋆ if ηi ∼ N(0, 1). It is well-known, however, that the least-squares estimator suffers
in the presence of outliers in the data (Huber, 1973). Indeed, the fact that the gradient of
the loss ρ′(t) = t is unbounded implies that an outlier can have an arbitrary influence over
the solution of Eq. 1b. Tailoring the objective ρ to be insensitive (i.e., robust) to outliers
in the training data D is a classical statistical problem (Huber, 2004; Hampel et al., 2011;
Rousseeuw and Leroy, 2005; Maronna et al., 2019). In his seminal work, Huber (1964) has
shown that judiciously trimming the squared loss

ρδ(t) =
{

t2/2 if |t| < δ

δ|t| − δ2/2 otherwise (2)
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ϱ(σ) p(x) = Eσ[N(x; 0, σ2)] kth moment exists if

Inverse-Gamma 2ba exp(−b/σ2)
Γ(a)σ2a+1

(2b)aΓ(a+1/2)√
πΓ(a)(2b+x2)a+1/2 k < 2a

for a = b = 1/2 1
π

1
1+x2 (Cauchy) none

for 2a = 2b = n
Γ( n+1

2 )√
πnΓ(n/2)

(
1+ x2

n

)− n+1
2 (Student-t) k < n

for a = 1 + b → +∞ 1√
2π

e− x2
2 (Gaussian) all

Pareto 2aθ(σ−1)
σ2a+1

a2aγ(a+1/2,1/2x2)√
π|x|2a+1 k < 2a

for a → +∞ 1√
2π

e− x2
2 (Gaussian) all

Table 1: Concrete examples of distributions p(x) = Eσ[N(x; 0, σ2)] for different densities ϱ of
σ. Here γ(a, x) is the lower incomplete Gamma function. Note that relevant distributions,
such as the Cauchy and the Student’s t-distribution, appear as special cases. The last column
shows the values of the parameters of ϱ for which the kth moment of the distribution is
finite.

for δ ≥ 0 provides a convenient solution to this problem while preserving the convexity of
the task in Eq. 1b. Indeed, besides enjoying standard statistical guarantees in the classical
limit of n → ∞, such as consistency and asymptotic normality (Huber, 1973; van der Vaart,
2000), the so-called Huber loss has been shown to be optimal in different regards. For
instance, Huber (1964) has shown it achieves minimax asymptotic variance under symmetric
contamination of the normal distribution. It also has the smallest asymptotic variance
among losses with bounded sensitivity to outliers, as it can formalised by Hampel’s influence
function (Hampel, 1974). However, while these guarantees are fit for a classical statistical
regime where data is abundant (n ≫ d), they fall short in modern tasks where the number
of features can be comparable to the quantity of data (n ≈ d). Investigating the properties
of estimators in the proportional high-dimensional regime where n, d → ∞ at fixed sample
complexity α = n/d has been a major endeavor in the statistical literature in the past decade,
where it has been shown that standard guarantees for the maximum likelihood estimator,
such as unbiasedness (Javanmard and Montanari, 2018; Sur and Candès, 2019; 2020; Bellec
et al., 2022; Zhao et al., 2022) and calibration (Bai et al., 2021; Clarté et al., 2023a;b) break
down in this regime. However, the majority of these works have focused in the case of
sub-Gaussian features and bounded noise variance. Our goal in this manuscript is to go
beyond this assumption by providing a high-dimensional characterisation of M-estimators
for a family of heavy-tailed distributions for both the covariates and noise distributions.

Heavy-tailed data — In the following, we consider a family of covariate distributions
parametrised as:

xi = σizi, zi ∼ N(0, 1/dId) σi ∼ ϱ, (3)

where for each i ∈ [n], σi ∈ R∗
+ := (0,+∞) is an independent random variable with

probability density ϱ supported on the positive real line. This class of covariates appeared
under different contexts in physics (Beck, 2003), statistics (El Karoui, 2018; Adomaityte
et al., 2023) and signal processing (Wainwright and Simoncelli, 1999) where it has been
shown that by judiciously choosing ϱ yields a large family of power-law tailed distributions
for x, see Table 1 for concrete examples. In particular, we are interested in investigating the
impact of heavy-tail contamination of both the covariates and responses, and the sensitivity
of M-estimators of the type in Eq. 1b to them. More concretely, in the following we consider
the Huber ϵ-contamination model for the covariates by assuming

p(x) = E[N(x; 0, σ
2/dId)] with σ ∼ ϱ = (1 − ϵc)δσ,1 + ϵcϱ0, ϵc ∈ [0, 1], (4)

where ϱ0 is a density over R∗
+. The distribution p(x) belongs therefore to the family defined

by Eq. 3: the quantity ϵc measures, therefore, the contamination of a pure Gaussian covariate
distribution (recovered for ϵc = 0) with a possibly heavy-tailed law. Moreover, our results
can be extended to the case of mixtures, i.e., the case of the covariates grouped in K different
clouds. This generalisation is introduced and briefly discussed in Section 4.
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Main contributions — The key contributions in this manuscript are:

• We provide an asymptotic characterisation of the statistics of the M-estimator β̂λ defined
by Eqs. 1 with heavy-tailed covariates and general label noise distributions in the proportional
high-dimensional regime.
• Further, we provide a similar high-dimensional characterisation for the performance of
the optimal Bayesian estimator in this problem. These two results follow from an extension
of the replica method for generalised linear estimation to covariate distributions in the family
of Eq. 3, and hold for a broader mixture data model which we discuss in Section 4.
• Leveraging the characterisation above, we investigate the impact of heavy-tailed covariate
and response contamination on the performance of M-estimators, including, for the first
time for this model, analytic control of infinite-variance covariates. In particular, our result
highlights the necessity of regularising the Huber loss in the high-dimensional regime to
achieve optimal performance, as we show that it can be suboptimal in the presence of
heavy-tailed response contamination even when the location parameter is optimally tuned, at
odds with the optimality results of Huber (1964) and Hampel (1974) in the classical regime
where n ≫ d.
• We show that, despite the strong impact of heavy-tailed contamination in the high-
dimensional regime where n/d = Θ(1), the error decay rates ∥β̂ − β⋆∥2 = Θ(n−1/2) of
optimally regularised Huber and least-squares regression are optimal provided the second
moment of both the covariates and the noise are bounded. In contrast, we show that when
the covariates’ second moment doesn’t exist (but under the assumption of a finite second
moment for the noise), the rates explicitly depend on the tail behavior of the covariates’
distribution.

Related works — Robust regression is a classical topic in statistics, with several books
dedicated to the subject (Huber, 2004; Hampel et al., 2011; Rousseeuw and Leroy, 2005;
Maronna et al., 2019). In contrast to the classical regime, literature on robust regression
in the high-dimensional regime remains relatively scarce. Early works in this direction
provided a characterisation of M-estimators in the proportional limit of n, d → ∞ with fixed
α = n/d for Gaussian (El Karoui et al., 2013; El Karoui, 2013; Donoho and Montanari, 2016)
and sub-Gaussian (El Karoui, 2013) designs with bounded noise variance. In particular,
it was shown that in this regime the maximum likelihood estimator is not necessarily the
optimal choice of objective ρ (El Karoui, 2013). De-biasing and confidence intervals for
high-dimensional M-estimation on Gaussian covariates were discussed by Bellec et al. (2022);
Bellec (2023). A novel de-biasing framework for covariates with possibly heavy-tailed and
asymmetric distributions was recently introduced by Li and Sur (2023). The family of
distributions defined in Eq. 3 has previously appeared under different names and literatures,
such as superstatistics in the context of statistical physics (Beck, 2003), elliptical distributions
in the context of statistics (Couillet et al., 2015; El Karoui, 2018; Adomaityte et al., 2023)
and Gaussian scale mixture in the context of signal processing (Wainwright and Simoncelli,
1999). It has been studied in the context of high-dimensional robust covariance estimation
by Couillet et al. (2015; 2016). El Karoui (2018) considered (unregularised) robust regression
for elliptically distributed covariates under boundedness conditions on the moments. Our
work differs in many directions: (a) we relax the assumption of bounded moments and
extend the analysis to the more general case of a mixture of elliptical distributions; (b) we
derive the asymptotic performance of the Bayes optimal estimator for this family; (c) we
consider a generic convex penalty; (d) we investigate the impact of Huber ϵ-contamination.
More recently, Vilucchio et al. (2023) studied the model Eq. 1a under a Gaussian design
and a double Gaussian noise model for outliers in the proportional high-dimensional regime,
showing that estimators of the type in Eq. 1b can fail to be consistent. Beyond (sub-)Gaussian
designs, high-dimensional upper bounds on the regressor mean-squared error were obtained
under different settings (Hsu and Sabato, 2016; Lugosi and Mendelson, 2019), including
heavy-tailed noise (Sun et al., 2020) and heavy-tailed covariate contamination (Sasai, 2022;
Pensia et al., 2021). Heavy-tailed covariates have also been studied in the context of kernel
ridge regression in (Tomasini et al., 2022).
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2 High-dimensional asymptotics

In this section, we discuss our two main theoretical results: the high-dimensional asymptotic
characterisation of the M-estimator defined in Eq. 1b and the corresponding Bayes-optimal
error. In fact, the results in this section hold under the following slightly more general
assumptions.
Assumption 2.1 (Data). The covariates xi ∈ Rd, i ∈ [n] are independently drawn from
the family of “superstatistical” distributions xi ∼ p(x) := E[N(x; 0, σ2/dId)], where the
expectation is over σ with generic distribution density ϱ supported on the positive real line
R∗

+ := (0,+∞). For each i ∈ [n], the corresponding response yi ∈ Y is drawn from a
conditional law P0 on Y:

yi ∼ P0(·|β⊺
⋆xi), (5)

with target weights β⋆ ∈ Rd having finite normalised norm β2
⋆ := limd→∞ 1/d∥β⋆∥2

2.

Note that the model in Eq. 1a corresponds to the choice P0(y|τ) = pη(η − τ).
Assumption 2.2 (Predictor). We consider the hypothesis class of generalised linear predic-
tors H = {fβ(x) := f(β⊺x),β ∈ Rd}, where f : R → Y is a generic activation function, and
the weights β ∈ Rd are obtained by minimising the following empirical risk:

β̂λ := arg min
β∈Rd

n∑
i=1

ρ (yi − β⊺xi) + λ

2 ∥β∥2
2, λ ∈ R+, (6)

for a convex objective function ρ : R → R+.
Assumption 2.3 (Proportional regime). We consider the proportional high-dimensional
regime where both n, d → ∞ at a fixed ratio α := n/d, known as the sample complexity.

In particular, note that Assumption 2.1 covers the additive noise model in Eq. 1a, and that
the standard robust regression setting is given by taking f(β⊺x) = β⊺x. In Appendix A
and Appendix B we derive the following result.
Result 2.4 (High-dimensional asymptotics). Let φ : Y ×R → R denote a test function, and
define the following generalisation and training statistics:

Eg(β̂) = E(y,x)
[
φ(y, β̂⊺

λx)
]
, Et(β̂) := 1

n

n∑
i=1

φ(yi, β̂
⊺
λxi). (7)

Then, under Assumptions 2.1–2.3 we have:

Eg(β̂) P−−−−−→
n,d→∞

εg(α, λ, β2
⋆), Et(β̂) P−−−−−→

n,d→∞
εt(α, λ, β2

⋆), (8)

explicitly given by:

εt(α, λ, β2
⋆) =

∫
Y

dy Eσ,ζ

[
Z0

(
y, mσ√

q ζ, σ
2β2

⋆ − σ2m2

q

)
φ
(
y, σ

√
qζ + vσ2f

)]
,

εg(α, λ, β2
⋆) =

∫
Y

dy
∫

dη
∫

dτ P0 (y|τ)Eσ

[
N
(

( τ
η ); 0, σ2

(
β2

⋆ m
m q

))]
φ(y, η).

(9)

where ξ ∼ N(0, Id), ζ ∼ N(0, 1) are independent Gaussian variables. Similarly, the mean-
squared error on the estimator is given by:

εest(α,λ,β2
⋆):= lim

n,d→+∞

1
d
ED

[
∥β̂λ−β⋆∥2

2
]
=β2

⋆−2m+q α→+∞−−−−−→β−2
⋆ lim

α→+∞
(m−β2

⋆)2. (10)

Moreover, the angle between the estimator β̂λ and β⋆ is given by

limn,d→+∞ ED[angle(β̂λ,β⋆)] = 1
π arccos

(
m

β⋆
√

q

)
α→+∞−−−−−→ 0. (11)

In the expressions above we have introduced the order parameters v, q, and m. These
quantities are found by solving the following set of self-consistent fixed-point equations:

q = m̂2β2
⋆+q̂

(λ+v̂)2

m = β2
⋆m̂

λ+v̂

v = 1
λ+v̂

q̂ = α
∫
Y

dy Eσ,ζ

[
σ2Z0

(
y, mσ√

q ζ, σ
2β2

⋆ − σ2m2

q

)
f2
]
,

v̂ = −α
∫
Y

dy Eσ,ζ

[
σ2Z0

(
y, mσ√

q ζ, σ
2β2

⋆ − σ2m2

q

)
∂ωf

]
,

m̂ = α
∫
Y

dy Eσ,ζ

[
σ2∂µZ0

(
y, mσ√

q ζ, σ
2β2

⋆ − σ2m2

q

)
f
]
,

(12a)
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where the auxiliary function Z0 and proximal operator f are defined by:
Z0(y, µ, v) := Ez[P0(y|µ+

√
vz)],

f := arg minu

[
σ2vu2

2 + ρ
(
y − ω − σ2vu

)]
∈ R, ω = σ

√
qζ.

(12b)

Result 2.4 reduces the high-dimensional optimisation problem defined by Eq. 2.2 to a self-
consistent equation on the parameters q̂, q, m̂,m, v̂, v ∈ R. Despite being cumbersome, this
low-dimensional problem can be efficiently solved numerically. Note that our result for εest
implies that the estimator β̂λ is consistent if and only if limα→+∞ m = β2

⋆ . An interesting
particular case, in which the convergence rates to zero of εest can be derived explicitly, is the
case of square loss, ρ(t) = 1

2 t
2. In Appendix B.1 it is shown the following.

Result 2.5 (Square loss rates). Consider the linear model in Eq. 1a with covariates as in
Eq. 3. Assume that E[ηi] = 0, σ̂2

0 := E[η2
i ] ∈ R∗

+. Let us also assume that in Eq. 3 we have
ϱ(σ) ∼ 1

σ2a+1 for σ ≫ 1 with a > 0. Then, the ridge estimator β̂λ minimising Eq. 1b with
ρ(t) = 1

2 t
2 is consistent and

εest =
α≫1


σ̂2

0
σ2

0α
+o
( 1

α

)
if a>1, with σ2

0 :=E[σ2]= lim
x→+∞

x(1−xSσ2(x)),
σ̂2

0
σ̃2

0αlnα
+o
( 1

αlnα

)
if a=1, with σ̃2

0= lim
x→+∞

x
lnx (1−xSσ2(x)),

σ̂2
0

(σ̃2
0α)1/a

+o
( 1

α1/a

)
if a∈(0,1), with σ̃2

0= lim
x→+∞

xa(1−xSσ2(x)),

(13)

where Sσ2(x) := E
[ 1

x+σ2

]
is the Stieltjes transform of the measure of σ2. Finally, the

asymptotic test and training error will depend on the noise distribution through its second
moment only.

By definition, the mean-squared error εest of the M-estimator in Eq. 10 is lower-bounded by
the minimum mean-squared error achieved by the Bayes-optimal estimator β̂, which is given
by the expectation over the Bayesian posterior β̂ = E[β|D]. Our second main contribution
in this manuscript, derived in Appendix A.2, is to provide a sharp asymptotic formula for
the minimum mean-squared error under the assumption that β⋆ ∼ N(x; 0, β2

⋆Id).
Result 2.6 (Bayes optimal error). Consider the minimum mean-squared error for the data
model defined by 2.1 with β⋆ ∼ N(x; 0, β2

⋆Id):
EBO := min

β∈Rd

1
dE[∥β⋆ − β∥2

2] = 1
dE[∥β⋆ − β̂∥2

2]. (14)

Then, in the high-dimensional limit defined by Assumption 2.3:

EBO
P−−−−−→

n,d→∞
εBO = β2

⋆ − q, (15)

where q is given by the solution of the following self-consistent equations:

q̂ = α
∫
Y

dy Eσ,ζ

[
σ2Z0(y, µ, V ) (∂µ lnZ0(y, µ, V ))2

∣∣∣ µ=σ
√qζ

V =σ2(β2
⋆−q)

]
, q = β4

⋆ q̂
1+β2

⋆ q̂ (16)

with ζ ∼ N(0, 1) and Z0 given in Eq. 12b.

Similarly to Result 2.4, Result 2.6 reduces the problem of estimating the Bayes optimal error
from the computationally intractable evaluation of the high-dimensional posterior marginals
to a simple two-dimensional set of self-consistent equations on the variables q̂, q ∈ R.
A detailed derivation of both Results 2.4 & 2.6 is provided in Appendix A using the replica
method. Despite being non-rigorous, Results 2.4 & 2.6 provide a natural extension of
rigorous results in the established literature of high-dimensional asymptotics for generalised
linear estimation on Gaussian covariates to the elliptical family defined in Assumption 2.1
(El Karoui, 2013; Donoho and Montanari, 2016; Thrampoulidis et al., 2018; Barbier et al.,
2019; Loureiro et al., 2022). Indeed, by taking ϱ(σ) = δσ,σ̄ for some σ̄ ∈ R∗

+, Result 2.4
reduces to the rigorous formulas proven by Thrampoulidis et al. (2018), and Result 2.6
reduces to the rigorous formulas proven by Barbier et al. (2019). Nevertheless, as we will
see in the next section, they produce an excellent agreement with moderately finite-size
simulations, across different choices of penalty ρ and covariate distribution, including cases
in which the variance is infinite, see Fig. 2 for instance.
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3 Discussion

In this section, we investigate the consequences of Results 2.4 – 2.6 in the context of robust
regression with heavy-tail contamination as in Eq. 4 within the model in Eq. 1a. Our
theoretical results are given for any noise distribution pη, but, to exemplify our findings, we
will focus on the case of heavy-tailed contamination of standard Gaussian noise, in a form
similar to Eq. 4:

pη(η) = E[N(η; 0, σ2)], with σ ∼ ϱ̂ = (1 − ϵn)δσ,1 + ϵnϱ̂0, ϵn ∈ [0, 1]. (17)

As in the case of covariates, ϵn measures the level of contamination of the purely Gaussian
noise. For concreteness, in most of the plots, we take β⋆ ∼ N(0, β2

⋆Id) and use for ϱ0 and
ϱ̂0 one of the distributions in Table 1, which provide convenient parametric families of
distributions where the existence of moments is easily tunable.

3.1 Label contamination

10-6 10-5 10-4 10-3 10-2 10-1 100 101

δ

10-1

100

ε e
st

=
1 d
‖β
−
β
‖2

α= 1.5

α= 10

Figure 1: Value of εest obtained us-
ing a regularised Huber at given λ =
10−3 as a function of δ for different
values of α. Here the contamination
level is ϵn = 0.5.

We start by discussing the impact of response con-
tamination in high-dimensional robust regression.
Since the Gaussian assumption for the noise label
is widespread in statistics, we will focus our discus-
sion on an ϵ-contamination of the standard normal
distribution using, for pη, an expression as in Eq. 17,
by adopting a proper ϱ̂0 that generates fat tails. We
recall the reader that when the loss function is the
negative log-likelihood of the noise − log pη, strong
guarantees hold for the M-estimator in the classical
limit n ≫ d. In particular, the estimator is unbiased
and asymptotically normal, with estimation error
(defining the variance) ∥β⋆ − β̂λ∥2

2 = Θ(n−1) (van der
Vaart, 2000). Since the square loss corresponds to the
negative log-likelihood of standard Gaussian noise, in
the absence of contamination ϵn = 0 the square loss
attains an optimal rate as n → ∞. We discuss the
insights provided by our exact high-dimensional characterisation in high dimensions, i.e.,
when n = Θ(d), assuming contaminated labels as in Eq. 17. On the other hand, we assume
for now purely Gaussian covariates, i.e., ϵc = 0 in Eq. 4.

The importance of regularisation — Fig. 2 illustrates two distinct scenarios, i.e.,
contamination of the labels with an infinite-variance noise (top), so that E[η2] = +∞,
and contamination with a finite-variance noise (bottom), so that E[η2] = 1. While in the
former case, the performance degrades as a function of the contamination, counter-intuitively,
it improves when the contamination variance is bounded. As expected, in the absence
of contamination ϵn = 0, optimally regularised ridge regression achieves the minimum
mean-squared error for this model. Indeed, in this case, the square loss is not only the
maximum likelihood estimator but also coincides with the Bayes-optimal estimator, since
from a Bayesian perspective the ℓ2 penalty corresponds to the optimal Bayesian prior when
optimally tuned. As contamination is introduced (ϵn > 0), this is no longer the case, and
indeed, in the E[η2] < +∞ scenario, optimally regularised ridge regression is observed to be
suboptimal. More surprising, perhaps, is that, at small values of the regularisation λ, the
Huber loss in Eq. 2 with optimally chosen location parameter δ⋆ is also suboptimal in the
high-dimensional regime n = Θ(d). This is to be contrasted with the well-known optimality
results in the classical regime n ≫ d, which are recovered at α → ∞. Interestingly, at small
but finite λ, the improvement of performance for the Huber loss with α coincides with a
sharp transition of the optimal location parameter δ∗ from O(λ) to O(1) at a given value
of α: at fixed (λ, α), the value of εest develops indeed two minima as a function of δ, one
in δ = O(λ) and another in δ = O(1), whose relative depth changes with α, exhibiting an
inversion in favour of the O(1) minimum at large α, see Fig. 1. For λ → 0, the minimum
in δ = O(λ) disappears. This phenomenology is observed for various choices of ϱ̂0, but
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Figure 2: Response contamination of Gaussian covariates as a function of the sample
complexity α = n/d for different noise contamination levels ϵn ∈ [0, 1] as in Eq. 17. Here we
adopt ϱ̂0(σ) ∝ σ−2a−1 exp

(
−bσ−2) for the noise contamination, see Table 1. The theoretical

predictions are compared with the results of numerical experiments (dots) obtained averaging
over 20 instances with d = 103. (Left) Purely Gaussian noise (ϵn = 0). (Top). Case b = 1 and
a = 4/5 < 1, implying E[η2] = +∞. The performance degrades as the contamination level ϵn
is increased. Optimally regularised Huber (red) achieves near-optimal Bayesian performance
(solid), while by fixing the regularisation, the Huber has suboptimal performances (purple).
(Bottom). Case a = 1+b = 1+1/10, corresponding to E[η2] = 1. The performance uniformly
improves as the contamination ϵn grows. Optimally regularised Huber (red) achieves the
optimal Bayesian performance (solid), while both Huber with untuned regularisation (purple)
and optimally regularised ridge (blue) are suboptimal.

it also persists in other settings, as we mention later in the text. In general, adding a ℓ2
regularisation and cross-validating significantly improve the performance of the Huber loss,
bringing it very close to Bayes optimality at all contamination levels. Our results highlight
the necessity of properly regularising robust estimators in order to achieve optimality in the
high-dimensional regime. In particular, optimally regularising Huber is crucial to achieve
near-Bayes-optimal performances in the case of infinite-variance label noise.
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Figure 3: Estimation error εest
as in Eq. 10 at large-α us-
ing regularised optimal Huber
loss (solid lines). The covari-
ates are Gaussian, whereas the
label noise is obtained as in
Eq. 17 with ϱ(σ) ∼ σ−2a−1, a >
0. The results are compared
with the Bayes-optimal perfor-
mance (squares). The dotted
line shows a scaling of α−1.

Convergence rates — In Fig. 3 we consider the case
of full contamination ϵn = 1 of the labels with both finite-
and infinite-variance noise in the large-α regime: this corre-
sponds to the classical limit n ≫ d. In particular, we focus
on the regularised Huber loss, whose location parameter
and regularisation strength have been optimised to reach
the minimum test error. A fatter tail in the noise hurts
performance in terms of the estimation error εest, but does
not affect its α−1 scaling, which remains universal even
when E[η2] = +∞ and is also observed in the Bayes optimal
lower bound. We will see below that this will not be the
case if a contamination of the covariates is considered.

3.2 Covariate contamination
in the presence of heavy-tailed label noise

We now move to discuss the impact of covariates’ con-
tamination, focusing on the case in which covariates are
generated with a density as in Eq. 4 with ϵc > 0. On top
of this, we assume a non-Gaussian label noise with finite
variance, E[η2] = 1: note that, as discussed above, in this
setting regularised ridge regression is not optimal.
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Figure 4: (Left) Estimation error as a function of sample complexity α. Dots correspond
to the average error of 50 numerical experiments in dimension d = 103. Covariates are
contaminated as in Eq 4 using for ϱ an inverse-Gamma with b = a − 1 = 1/10. (Right)
Estimation error εest as in Eq. 10 at large-α obtained from our theory for the square loss
(dashed line), regularised optimal Huber loss (solid line) and Bayes-optimal performance given
by Result 2.6 (squares). The covariates’ noise is Pareto-distributed to have ϱ(σ) ∼ σ−2a−1

with a > 0, and the label noise is Gaussian. White dots correspond to numerical experiments
in dimension d = 50. The black dotted line shows a scaling of α−1.

Fig. 4 (left) shows that as the contamination level of the covariates ϵc grows, the performance
is negatively affected for all metrics. The phenomenology is similar to the one observed
for response contamination. While optimally regularised square loss performs the worst
amongst the considered losses, an optimally δ-tuned Huber loss, ridge-regularised with
small, fixed strength λ, performs halfway between the square and the Bayes-optimal bound,
approaching the latter as α grows. As observed in the previous section, the improvement in
the δ-tuned Huber loss occurs, for small but non-zero λ, with a sharp jump in the optimal δ∗

parameter from a value O(λ) to a value O(1) as α increases, reflected in a kink in the curve
of εest as function of α. Finally, an optimally (δ, λ)-tuned regularised Huber loss achieves
Bayes-optimal performance. The phenomenology is therefore analogous to the one described
in section 3.1.

Convergence rates — As we show in Result 2.5, if the statistician adopts the square loss
(hence choosing ρ(t) = t2/2) in the study of power-law tailed covariates, the estimation error
rate might depend on the tail, under the assumption that the second moment of the noise is
finite. In particular, Result 2.4 implies that, in this case, the estimation error rate depends
only on the covariates’ second moment. As a consequence the rate εest ∼ n−1 is universal as
long as the second moment of the covariates exists. Curiously, if the second moment does
not exist, the estimation error decays faster, depending explicitly on the tail exponent of the
distribution. Remarkably, this suggests that the presence of very fat tails in the covariates
can actually improve the classical convergence rates of M-estimation when n → ∞. Indeed,
despite not having a closed form expression for the rates under different other penalties, we
have numerically verified that the convergence rates reported in Result 2.4 are Bayes-optimal
and are also attained optimally tuned and regularised Huber loss in different scenarios. This
is illustrated in Fig. 4 (right), which clearly shows the dependence on the tail exponent of
the covariate distribution when the latter has no finite second moment.

4 Generalised linear estimation on an elliptical mixture

We conclude our work by stating the most general form of our exact high-dimensional
asymptotic result, valid for an arbitrary mixture of K elliptical distributions, that we call
elliptical mixture model (EMM). To be more precise, let us consider the following general
Assumptions:
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Assumption 4.1 (EMM Data). In the dataset D := {(yi,xi)}i∈[n], the covariates xi ∈ Rd,
i ∈ [n] are independently drawn from the mixture xi ∼ p(x) :=

∑K
c=1 pcEσc [N(x; µc, σ2

c/dId)],
where, for each c ∈ [K], d∥µc∥2

2 = Θ1/d(1), pc ∈ [0, 1] and the expectation is over σc ∼ ϱc,
generic distribution density supported on R∗

+. Moreover,
∑K

c=1 pc = 1. For each xi, i ∈ [n],
the corresponding response yi ∈ Y is drawn from a conditional law P0(y|β⊺

⋆xi) on Y, with
target weights β⋆ ∈ Rd having finite normalised norm β2

⋆ := limd→∞ 1/d∥β⋆∥2
2.

Assumption 4.2 (Predictor). We consider the hypothesis class of generalised linear predic-
tors H = {fβ(x) := f(β⊺x),β ∈ Rd}, where f : R → Y is a generic activation function, and
the weights β ∈ Rd are obtained by minimising the following empirical risk:

β̂λ := arg min
β∈Rd

n∑
i=1

ℓ (yi,β
⊺xi) + λr(β), λ ∈ R+, (18)

for a convex loss function ℓ : Y ×R → R+ and a convex regularisation function r : R → R+.

Under the further Assumption 2.3, in Appendix A it is shown that the following holds.
Result 4.3 (High-dimensional asymptotics for the EMM). Let us consider the independent
random variables ξ ∼ N(0, Id), and z, ζ ∼ N(0, 1). In the proportional asymptotic regime, the
training and test error defined in Eq. 7 and associated with the M -estimator of the problem
in Eq. 18 have a limit in probability as in Eq. 8, with

εt(α,λ,β2
⋆)=

∑
cpc

∫
Y

dyEσc,ζ

[
Z0

(
y,µ⊺

c β⋆+ σcm√
q ζ,σ

2
cβ

2
⋆− σ2

c m2

q

)
φ
(
y,σc

√
qζ+vσ2

cfc

)]
,

εg(α,λ,β2
⋆)=

∑
cpc

∫
Y

dy
∫

dη
∫

dτP0(y|τ)Eσc

[
N
(

(τ
η);
(

µ⊺
c β⋆
tc

)
,σ2

c

(
β2

⋆ m
m q

))]
φ(y,η).

(19)

In particular, the estimation error is given by
εest := limd→+∞

1
dED

[
∥β̂λ − β⋆∥2

2
]

= β2
⋆ − 2m+ q (20)

The required set of order parameters and proximals can be found by self-consistently solving
the equations below

v= 1
d
√

q̂
Eξ[g⊺ξ],

q= 1
dEξ[∥g∥2

2],
m= 1

dEξ[g⊺β⋆],
tc=Eξ[g⊺µc],

q̂c=αpc

∫
Y

dyEσc,ζ

[
σ2

cZ0

(
y,µ⊺

c β⋆+ σcm√
q ζ,σ

2
cβ

2
⋆− σ2

c m2

q

)
f2

c

]
,

v̂=−α
∑

cpc

∫
Y

dyEσc,ζ

[
σ2

cZ0

(
y,µ⊺

c β⋆+ σcm√
q ζ,σ

2
cβ

2
⋆− σ2

c m2

q

)
∂ωfc

]
,

m̂c=αpc

∫
Y

dyEσc,ζ

[
σ2

c∂µZ0

(
y,µ⊺

c β⋆+ σcm√
q ζ,σ

2
cβ

2
⋆− σ2

c m2

q

)
fc

]
,

t̂c=αpc

∫
Y

dyEσc,ζ

[
Z0

(
y,µ⊺

c β⋆+ σcm√
q ζ,σ

2
cβ

2
⋆− σ2

c m2

q

)
fc

]
,

(21a)

where, as before, Z0(y, µ, V ) := Ez[P0(y|µ+
√
V z)] and

g := arg minβ

(
v̂∥β∥2

2
2 −

∑
c β⊺(m̂cβ⋆ + dt̂cµc) −

∑
c

√
q̂cξ⊺β + λr(β)

)
∈ Rd,

fc := arg minu

[
vu2σ2

c

2 + ℓ
(
y, tc + σc

√
qζ + σ2

cvu
)]

∈ R.
(21b)

The previous set of equations covers a wide range of distributions and possibly any power-law
tail decay. The generality of this setting relies on the fact that any distribution can be
approximated by a possibly uncountable superposition of Gaussians (Nestoridis et al., 2011;
Alspach and Sorenson, 1972; Ghosh and Ramamoorthi, 2006). Moreover, in Appendices B &
B.1 the following universality result, generalising results of Gerace et al. (2022) and Pesce
et al. (2023) in the Gaussian setting, is given.
Result 4.4 (Universality for uncorrelated target). Assume that, for all c ∈ [K],
limd→+∞ µ⊺

c β⋆ = 0 and that the labels are generated according to the model in Eq. 1a,
the noise η having even distribution and zero mean. Then, if the loss ℓ is even, the asymp-
totic training and generalisation errors are the same as if the covariates had distribution
p(x) = E[N(x; 0, σ/dId)] with σ ∼

∑K
c=1 pcϱc. Furthermore, if ℓ(y, t) = 1

2 (y − t)2 and
r(x) = 1

2 ∥x∥2
2, under the assumption that E[η2] < +∞, then the training loss is

limλ→0+
1

2n

∑n
i=1(yi − β⊺

λxi)2 d→+∞−−−−−−−−→
α=n/d=Θ(1)

E[η2]
2
(
1 − 1

α

)
+ , (x)+ := xθ(x), (22)

for any distribution of the random variables σc.
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Supplementary Information
A Replica derivation of the fixed-point equations

In this Appendix, we will derive the fixed point equations for the order parameters following
the analysis by Loureiro et al. (2021); Pesce et al. (2023); Adomaityte et al. (2023) in the most
general setting discussed in Result 4.3: the case in Result 2.4 is obtained by fixing K = 1
and µ1 ≡ 0 below, and by assuming a ridge regularisation. The dataset D := {(xi, yi)}i∈[n]
consists of n independent datapoints xi ∈ Rd each associated to a label yi ∈ Y. The elements
of the dataset are independently generated by using a law P (x, y) which we assume can be put
in the form of a superstatistical mixture model (SMM) involving K clusters C = {1, . . . ,K},

P (x, y) ≡ P0(y|β⊺
⋆x)

∑
c∈C

pcEσc
[N (x; µc, σ

2
c/dId)] , (23)

and P0(•|τ) is the distribution of the scalar label y produced via the “teacher” β⋆. In the
following, we assume that β2

⋆ = 1/d∥β⋆∥2
2 = Θ(1). In the equation above, ∀c ∈ C, pc ∈ [0, 1]

and µc ∈ Rd with ∥µc∥2
2 = Θ(1/d). It is assumed that

∑
c pc = 1. The expectation is

intended over σc, a positive random variable with density ϱc. We will perform our regression
task searching for a set of weights β̂λ, that will allow us to construct an estimator via a
certain classifier f : R → Y:

x 7→ f(β̂⊺
λx) = y, (24)

which will provide us with our prediction for a datapoint x. The weights will be chosen by
minimising an empirical risk function in the form

R(β) ≡
n∑

ν=1
ℓ (yi,β

⊺xi) + λr(β), (25)

i.e., they are given by
β̂λ := arg min

β∈Rd
R(β). (26)

We will assume that ℓ is a convex loss function with respect to its second argument, and r
is a strictly convex regularisation function: the parameter λ ≥ 0 will tune the strength of
the regularisation. Note that this setting is slightly more general than the one given in the
main text. The starting point is to reformulate the problem as an optimisation problem by
introducing a Gibbs measure over the parameters β depending on a positive parameter β,

µβ(β) ∝ e−βR(β) = e−βr(β)︸ ︷︷ ︸
Pw

n∏
i=1

exp [−βℓ (yi,β
⊺xi)]︸ ︷︷ ︸

Pℓ

, (27)

so that, in the β → +∞ limit, the Gibbs measure concentrates on β̂λ. The functions Py and
Pw can be interpreted as (unnormalised) likelihood and prior distribution respectively. Our
analysis will go through the computation of the average free energy density associated with
such Gibbs measure in a specific proportional limit, i.e.,

fβ := − lim
n,d→+∞

n/d=α

ED

[
lnZβ

dβ

]
= lim

n,d→+∞
n/d=α

lim
s→0

1 − ED[Zs
β]

sdβ
, (28)

where ED[•] is the average over the training dataset, and we have introduced the partition
function

Zβ :=
∫

e−βR(β) dβ. (29)

A.1 Replica approach.

In our replica approach, we need to evaluate

ED[Zs
β] =

s∏
a=1

∫
dβaPw(βa)

(
E(x,y)

[
s∏

a=1
Pℓ(y|x⊺βa)

])n

. (30)
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Let us take the inner average introducing a new set of local fields ηa and τ ,

E(x,y)

[
s∏

a=1
Pℓ(y

∣∣∣x⊺βa)
]

=
∑

c

pcEσc

[∫
Y

dy
∫
Rd

dxP0(y|x⊺β⋆)N(x;µc,σ
2
c/dId)

s∏
a=1

Pℓ(y|x⊺βa)
]

=
∑

c

pcEσc

[∫
dη

∫
dτ
∫
Y

dyP0(y|τ)
s∏

a=1
Pℓ(y|ηa)N

(
(τ
η);
(

µ⊺
c β⋆

µ⊺
c βa

)
,
σ2

c

d

(
dβ2

⋆ β⊺
⋆ βb

β⊺
⋆ βa βa⊺βb

))]
. (31)

We can write then

ED[Zs
β] =

s∏
a=1

∫
dβaPw(βa)×(∑

c

pcEσc

[∫
dη

∫
dτ
∫
Y

dyP0(y|τ)
s∏

a=1
Pℓ(y|ηa)N

(
(τ
η);
(

µ⊺
c β⋆

µ⊺
c βa

)
,
σ2

c

d

(
dβ2

⋆ β⊺
⋆ βb

β⊺
⋆ βa βa⊺βb

))])n

=
∏

c

∏
a≤b

∫∫
DQabDQ̂

ab

(∏
a

∫
DMaDM̂a

)(∏
a

∫
dta dt̂a

)
e−dβΦ(s)

. (32)

In the equation above we introduced the order parameters

Qab
c = σ2

c

d
βa⊺βb ∈ R, a, b = 1, . . . , s, (33)

Ma
c = σ2

c

d
β⊺

⋆βa ∈ R, a = 1, . . . , s, (34)

tac = µ⊺
c βa ∈ R, a = 1, . . . , s, (35)

whilst the integration is over all possible order parameters, Qab
c and ma

c to be intended as
functions of σc. In the equation, we have also denoted the replicated free-energy

βΦ(s)(Q,M , Q̂,M̂) =
∑

c

∑
a

Eσc [M̂a
c M

a
c ] +

∑
c

∑
a≤b

Eσc [Q̂ab
c Q

ab
c ] + 1

d

∑
c,a

t̂ac t
a
c

−1
d

ln
s∏

a=1

∫
Pw(βa)dβa

∏
c

exp

∑
a≤b

Eσc
[σ2

c Q̂
ab
c ]βa⊺βb+

∑
a

Eσc
[σ2

cM̂
a
c ]βa⊺β⋆+

∑
a

t̂ac βa⊺µc


− α ln

∑
c

pcEσc

[∫
dη

∫
dτ
∫
Y

dy P0 (y|τ)
s∏

a=1
Pℓ (y|ηa) N

(
( τ

η );
(

t0
c

ta
c

)(
σ2

c β2
⋆ Mb

c

Ma
c Qab

c

))]
, (36)

where, for the sake of brevity, t0c := µ⊺
c β⋆. At this point, the free energy fβ should be

computed functionally extremisizing with respect to all the order parameters by virtue of
the Laplace approximation,

fβ = lim
s→0

Extr
M ,M̂ ,t

Q,Q̂,t̂

Φ(s)(Q,M , Q̂,M̂ , t, t̂)
s

. (37)

Replica symmetric ansatz. Before taking the s → 0 limit we make the replica symmetric
assumptions

Qaa
c =

{
Rc, a = b

Qc a ̸= b

Ma
c = Mc

tac = tc

Q̂aa
c =

{
− 1

2 R̂c, a = b

Q̂c a ̸= b

M̂a
c = M̂c ∀a
t̂ac = t̂c ∀a

(38)

If we denote Vc := Rc −Qc we obtain, after some work we obtain
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ln
∑

c

pcEσc

[∫
dη

∫
dτ
∫
Y

dy P0 (y|τ)
s∏

a=1
Pℓ (y|ηa) N

(
( τ

η );
(

t0
c

tc1s

)
,
(

σ2
c β2

⋆ Mc1⊺
s

Mc1s Qc1s×s

))]

=s
∑

c

pcEσc,ζ

[∫
Y

dyZ0

(
y,t0c+Mcζ√

Qc
,σ2

cβ
2
⋆−M2

c

Qc

)
lnZℓ

(
y,tc+

√
Qcζ,Vc

)]
+o(s), (39)

with ζ ∼ N(0, 1) is normally distributed and we have introduced the function

Z•(y, µ, V ) :=
∫ dτP•(y|τ)√

2πV
e− (τ−µ)2

2V , • ∈ {0, ℓ}. (40)

On the other hand, denoted by V̂c = R̂c + Q̂c, and introducing q̂c := Eσc
[σ2

c Q̂c], v̂c :=
Eσc

[σ2
c V̂c], and m̂c := Eσc

[σ2
cM̂c]

1
d

ln
s∏

a=1

∫ Pw(βa)dβa
∏

c

e− v̂c
2 ∥βa∥2

2+βa⊺(m̂cβ⋆+t̂cµc)
∏
b,c

e 1
2 q̂cβa⊺βb

=

= s

d
Eξln

[∫
Pw(β)dβ

∏
c

exp
(

− v̂c∥β∥2
2

2 +β⊺(m̂cβ⋆+t̂cµc)+
√
q̂cξ⊺β

)]
+o(s). (41)

In the expression above we have introduced ξ ∼ N(0, Id). Therefore, the (replicated) replica
symmetric free-energy is given by

lim
s→0

β

s
Φ(s)

RS=1
d

∑
c

t̂ctc+
∑

c

M̂cMc+

∑
cEσc

[
V̂cQc−Q̂cVc−V̂cVc

]
2 −αβΨℓ(M,Q,V )−βΨw(m̂,q̂,v̂)

(42)
where we have defined two contributions

Ψℓ(M,Q,V ):= 1
β

∑
c

pcEσc,ζ

[∫
Y

dyZ0

(
y,t0c+Mcζ√

Qc
,σ2

cβ
2
⋆−M2

c

Qc

)
lnZℓ

(
y,tc+

√
Qcζ,Vc

)]
,

Ψw(m̂,q̂,v̂):= 1
βd

Eξln
[∫

Pw(β)dβ
∏

c

exp
(

− v̂c∥β∥2
2

2 +β⊺(m̂cβ⋆+t̂cµc

)
+
√
q̂cξ⊺β

)]
.

(43)

Note that we have separated the contribution coming from the chosen loss (the so-called
channel part Ψℓ) from the contribution depending on the regularisation (the prior part Ψw).
To write down the saddle-point equations in the β → +∞ limit, let us first rescale our order
parameters as M̂c 7→ βM̂c, t̂c 7→ dβt̂c, Q̂c 7→ β2Q̂c, V̂c 7→ βV̂c and Vc 7→ β−1Vc. Also, for
future convenience, let us rescale Qc 7→ σ2

cqc, Mc 7→ σ2
cmc, Vc 7→ σ2

cvc. For β → +∞ the
channel part is

Ψℓ(m, q, v, t) =

=−
∑

c

pcEσc,ζ

[∫
Y

dyZ0

(
y,t0c+σcmζ√

qc
,σ2

cβ
2
⋆−σ2

cm
2
c

qc

)( (hc−tc−σc
√
qcζ)2

2σ2
cvc

+ℓ(y,hc)
)]
. (44)

where we have written Ψℓ of a Moreau envelope, i.e., in terms of a proximal

hc := arg min
u

[
(u− ωc)2

2σ2
cvc

+ ℓ(y, u)
]

with ωc = tc + σc
√
qcζ. (45)

A similar expression can be obtained for Ψw. Introducing the proximal

g = arg min
β

(
∥β∥2

2
∑

c v̂c

2 − β⊺
∑

c

(
m̂cβ⋆ + dt̂cµc

)
− ξ⊺β

∑
c

√
q̂c + λr(β)

)
∈ Rd (46)

We can rewrite the prior contribution Ψw as

Ψw(m̂, q̂, v̂, t̂) = −1
d
Eξ

[
∥g∥2

2
2
∑

c

v̂c − g⊺
∑

c

(
m̂cβ⋆ + t̂cµc

)
− ξ⊺g

∑
c

√
q̂c + λr(g)

]
(47)

15



Under review as a conference paper at ICLR 2024

The parallelism between the two contributions is evident, aside from the different dimen-
sionality of the involved objects. The replica symmetric free energy in the β → +∞ limit is
computed by extremising with respect to the introduced order parameters,

fRS=Extr
[∑

c

Eσc [σ2
cM̂cmc]+1

2
∑

c

Eσc

[
σ2

c

(
V̂cqc−Q̂cvc

)]
+
∑

c

tct̂c

−αΨℓ(m, q, v, t) − Ψw(m̂, q̂, v̂, t̂)
]
. (48)

To do so, we have to write down a set of saddle-point equations and solve them.

Saddle-point equations. The saddle-point equations are derived straightforwardly from
the obtained free energy functionally extremising with respect to all parameters. It is easily
seen that vc, qc and mc are independent from σc, and that it is possible to reduce the number
of variables by introducing v̂ =

∑
c v̂c, so that we can write

vc = Eξ[g⊺ξ]
d
√
q̂c

, (49a)

q = Eξ[∥g∥2
2]

d
, (49b)

m = Eξ [g⊺β⋆]
d

, (49c)

tc = Eξ [g⊺µc] . (49d)

and the remaining equations can be rewritten as

q̂c=αpc

∫
Y

dyEσc,ζ

[
σ2

cZ0

(
y,t0c+σcm√

q
ζ,σ2

cβ
2
⋆−σ2

cm
2

q

)
f2

c

]
, (50a)

v̂=−α
∑

c

pc

∫
Y

dyEσc,ζ

[
σ2

cZ0

(
y,t0c+σcm√

q
ζ,σ2

cβ
2
⋆−σ2

cm
2

q

)
∂ωfc

]
, (50b)

m̂c=αpc

∫
Y

dyEσc,ζ

[
σ2

c∂µZ0

(
y,t0c+σcm√

q
ζ,σ2

cβ
2
⋆−σ2

cm
2

q

)
fc

]
, (50c)

t̂c=αpc

∫
Y

dyEσc,ζ

[
Z0

(
y,t0c+σcm√

q
ζ,σ2

cβ
2
⋆−σ2

cm
2

q

)
fc

]
(50d)

with

fc := arg min
u

[
σ2

cvcu
2

2 + ℓ(y, ωc + σ2
cvcu)

]
, ωc = tc + σc

√
qζ,

g = arg min
β

(
∥β∥2

2v̂

2 − β⊺
∑

c

(
m̂cβ⋆ + dt̂cµc

)
− ξ⊺β

∑
c

√
q̂c + λr(β)

)
.

(51)

To obtain the replica symmetric free energy, therefore, the given set of equations has to
be solved, and the result is then plugged in Eq. 48. The obtained saddle-point equations
correspond to the ones given in the Result 4.3.

Training and test errors. Let us show how to use the previous result to estimate the
training loss and the generalisation error. Let us start from estimating

εℓ := lim
n→+∞

1
n

n∑
i=1

ℓ(yi, β̂
⊺
λxi). (52)

The best way to proceed is to observe that

εℓ=− lim
β→+∞

∂β(βΨℓ)=
∑

c

pc

∫
Y

dyEσc,ζ

[
Z0

(
y,t0c+σcm√

q
ζ,σ2

cβ
2
⋆−σ2

cm
2

q

)
ℓ(y,hc)

]
. (53)
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This concentration result holds for a generic function φ : Y ×R → R, so that more generally,
under Assumption 2.3,

1
n

n∑
i=1

φ(yi,β̂
⊺
λxi)

P−−−−−−→
n,d→+∞

∑
c

pc

∫
Y

dyEσc,ζ

[
Z0

(
y,t0c+σcm√

q
ζ,σ2

cβ
2
⋆−σ2

cm
2

q

)
φ(y,hc)

]
. (54)

The expressions above hold in general, but, as anticipated, important simplifications can
occur in the set of saddle-point equations Eq. 50 and Eq. 49 depending on the choice of
the loss ℓ and of the regularization function r. The population’s expectation (e.g., in the
computation of the test error) of a performance function φ : Y ×R → R is given instead by

εg := lim
n→+∞

E(y,x)

[
φ(y, β̂⊺

λx)
]
, (55)

where the expectation has to be taken on a newly sampled datapoint (y,x) ̸∈ D. This
expression can be rewritten as

Ey|x

[∫
dηφ(y, η)Ex

[
δ
(
η − β̂

⊺
λx
)]]

P−−−−−−→
n,d→+∞

∫
dη
∫

dτ
∫
Y

dy P0 (y|τ)φ(y, η)
∑

c

pcEσc

[
N
(

( τ
η );
(

t0
c

tc

)
, σ2

c

(
β2

⋆ m
m q

))]
. (56)

This can be easily computed numerically once the order parameters are given. Finally,
another relevant quantity for our investigations is the estimation mean-squared error

εest := lim
d→+∞

1
d
ED

[
∥β̂λ − β⋆∥2

2
]

= β2
⋆ − 2m+ q. (57)

A.2 Bayes-optimal estimator for K = 1

A derivation similar to the one discussed above can be repeated to obtain information on
the statistical properties of the Bayes optimal estimator presented in Result 2.6. Given a
dataset D of observation, we have that

P (β|D) = P (β)P (D|β)
Z(D) = P (β)

Z(D)

n∏
i=1

P0(yi|β⊺xi) (58)

where P (β) is the prior on the teacher that we assume to be Gaussian, P (β) = N(β; 0, β2
⋆Id),

and

Z(D):=
∫

dβP (β)
n∏

i=1
P0(yi|β⊺xi)=

1
(2π)n/2

∫
dβexp

(
−∥β∥2

2
2β2

⋆

+
n∑

i=1
lnP0(yi|β⊺xi)

)
. (59)

The calculation of Z(D) gives access in particular to the free entropy ϕ(D) := limn
1
n lnZ(D).

The computation of ϕ, which has an information-theoretical interpretation as mutual infor-
mation, provides us the statistics of β according to the true posterior P (β|D). By assuming
a concentration in the large n limit, the calculation is performed on ED[lnZ(D)]. Using the
replica trick as before, the calculation can be repeated almost identically. For the sake of
simplicity, we focus on the case in which only one cluster is present, centered in the origin. It
is found that the statistics of a Bayes optimal estimator can be characterised therefore by an
order parameter q satisfying a self-consistent equation not different from the one presented
above (we will use below a different font to stress that we are currently analysing the Bayes
optimal setting)

q̂ = α

∫
Y

dy Eσ,ζ

[
σ2Z0(y, µ, V ) (∂µ lnZ0(y, µ, V ))2

∣∣∣ µ=σ
√qζ

V =σ2(β2
⋆−q)

]
, q = β4

⋆ q̂
1 + β2

⋆ q̂ . (60)

with Z0(y, µ, V ) := Ez[P0(y|µ+
√
V z)] with z ∼ N(0, 1). We can then compute the Bayes

optimal estimation error for the Bayes optimal estimator β̂BO = Eβ|D[β] as

εBO = lim
d→+∞

1
d

∥β⋆ − β̂BO∥2
2 = β2

⋆ − q. (61)
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B Asymptotic results for ridge-regularised losses

Let us fix now r(x) = 1
2 ∥x∥2

2. In this case, the computation of Ψw can be performed explicitly
via a Gaussian integration, and the saddle-point equations can take a more compact form
that is particularly suitable for a numerical solution. In particular, the prior proximal is
found as

g =
∑

c

(
m̂cβ⋆ + dt̂cµc

)
+
∑

c

√
q̂cξ

λ+ v̂
(62)

so that the prior saddle-point equations obtained from Ψw become

q= 1
d

(∑
c

m̂cβ⋆+dt̂µc

λ+v̂

)2
+
(∑

c

√
qc

λ+v̂

)2

m=
∑

c
(β2

⋆m̂c+t0
c t̂c)

λ+v̂

vc= 1
λ+v̂

∑
c′

√
q̂c′
q̂c

tc=
∑

c′(t̂c′ µc′c+t0
cm̂c′)

λ+v̂ ,

q̂c=αpc

∫
Y

dyEσc,ζ

[
σ2

cZ0f
2
c

]
,

v̂=−α
∑

cpc

∫
Y

dyEσc,ζ

[
σ2

cZ0∂ωfc

]
,

m̂c=αpc

∫
Y

dyEσc,ζ

[
σ2

c∂µZ0fc

]
,

t̂c=αpc

∫
Y

dyEσc,ζ [Z0fc]

(63)

We have used the shorthand notation Z0 ≡ Z0

(
y, t0c + σcm√

q ζ, σ
2
cβ

2
⋆ − σ2

c m2

q

)
and µcc′ :=

dµ⊺
c′µc.

Regression on one cloud: consistency In the special case in which |C| = 1 and the
cloud is centered in the origin, we have t1 = t̂1 = 0 and, dropping the subscript referring to
the cluster,

q = β2
⋆m̂

2 + q̂

(λ+ v̂)2

m = β2
⋆m̂

λ+ v̂

v = 1
λ+ v̂

,

q̂ = α
∫
Y

dy Eσ,ζ

[
σ2Z0

(
y, σm√

q ζ, σ
2β2

⋆ − σ2m2

q

)
f2
]
,

v̂ = −α
∫
Y

dy Eσ,ζ

[
σ2 Z0

(
y, σm√

q ζ, σ
2β2

⋆ − σ2m2

q

)
∂ωf

]
,

m̂ = α
∫
Y

dy Eσ,ζ

[
σ2 ∂µZ0

(
y, σm√

q ζ, σ
2β2

⋆ − σ2m2

q

)
f
]
,

(64)

where as usual f := arg minu

[
σ2vu2

2 + ℓ(y, ω + σ2vu)
]

and ω = σ
√
qζ. Let us now perform

the rescaling v 7→ αv, q̂ 7→ αq̂, m̂ 7→ αm̂, and v̂ 7→ αv̂, where v = O(1), v̂ = O(1), m̂ = O(1),
q̂ = O(1). Then, under these assumptions, in the α → +∞ limit

q = β2
⋆m̂

2

v̂2

m = β2
⋆m̂

v̂

v = 1
v̂
,

q̂ =
∫
Y

dy Eσ,ζ

[
σ2Z0

(
y, σm√

q ζ, σ
2β2

⋆ − σ2m2

q

)
f2
]
,

v̂ = −
∫
Y

dy Eσ,ζ

[
σ2 Z0

(
y, σm√

q ζ, σ
2β2

⋆ − σ2m2

q

)
∂ωf

]
,

m̂ =
∫
Y

dy Eσ,ζ

[
σ2 ∂µZ0

(
y, σm√

q ζ, σ
2β2

⋆ − σ2m2

q

)
f
]
,

(65)

Moreover, in the large α limit, f = −∂ηℓ(y, η)|η=σ
√

qζ . It follows that, independently from
the adopted loss, the angle π−1 arccos m

β⋆
√

q between the estimator β̂λ and the teacher β⋆

goes to zero as α → +∞. In this limit, it is easily found that εest → β−2
⋆ (m− β2

⋆)2, hence
the estimator is consistent if m → β2

⋆ .

Uncorrelated teachers: universality To study the universality properties in the ridge
setting, let us introduce two possible new assumptions.
Assumption B.1. For all c ∈ [K], limd→+∞ t0c = 0.

This assumption holds, for example, by assuming the centroids µc ∼ N(0, 1/dId). It expresses
in general the fact that the teacher β⋆ is completely uncorrelated from the different centroids
µc.
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Assumption B.2. The following symmetry properties hold

P0(y|τ) = P0(−y| − τ), ℓ(y, η) = ℓ(−y,−η). (66)

Under Assumption B.1 and Assumption B.2, tc = t̂c = 0 ∀c is a saddle-point solution of
the equations 63. Indeed, if t̂c = 0 the prior equation implies tc = 0. On the other hand,
if tc = 0, t̂c = 0 for parity reason (Pesce et al., 2023). We recover therefore in our setting
the mean universality discussed by Pesce et al. (2023) in the Gaussian setting: the learning
task is mean-independent and equivalent to one on c clouds all centered in the origin, i.e., a
problem obtained assuming x ∼

∑
c pcEσc

[N(0, σc/dId)]. Note that in the Gaussian setting
(i.e., assuming ρc(σ) = δ(σ − σ̄c) for some fixed σ̄c for each c ∈ [C]) Pesce et al. (2023) also
observed that in the limit λ → 0+, covariance universality holds in the Gaussian case: εg

and εℓ are independent on the covariance of the clouds. This fact does not extend to the
case in which the distribution of σc is not atomic (not even in the case in which σc are all
identically distributed), as it has been verified by Adomaityte et al. (2023).

B.1 Square loss

If we consider a square loss ℓ(y, η) = 1
2 (y − η)2, then an explicit formula for the proximal

can be found, namely
fc = y − ωc

1 + vcσ2
c

, ωc = tc + σc
√
qζ, (67)

so that the second set of saddle-point equations Eq. 50 can be made even more explicit. Let
us assume, that labels are generated according to the linear model in Eq. 1a, where the noise
term ηi has E[ηi] = 0 and σ̂2

0 := E[η2
i ] < +∞. In this setting, the channel equations can be

written as

q̂c = αpcσ̂
2
0Eσc

[
σ2

c

(1 + vcσ2
c )2

]
+ αpcEσc

[(
σ2

c

1 + vcσ2
c

)2]
(β2

⋆ − 2m+ q + (t0c − tc)2), (68a)

v̂ = α
∑

c

pcEσc

[
σ2

c

1 + vcσ2
c

]
, (68b)

m̂c = αpcEσc

[
σ2

c

1 + vcσ2
c

]
(68c)

t̂c = αpc(t0c − tc)Eσc

[
1

1 + vcσ2
c

]
. (68d)

In this setting the generalisation error becomes

εg := lim
d→+∞

E
[(
y − β̂

⊺
λx
)2
]

= σ̂2
0 +

∑
c

pc(t0c − tc)2 + (β2
⋆ − 2m+ q)

∑
c

pcEσc
[σ2

c ], (69)

which is finite if and only if Eσc
[σ2

c ] < +∞ for all c. Note that the dependence on ϱ̂ is
through its second moment only. Observe that the possible power-law behavior of the noise
on the label does not influence the generalisation performances, that only depends on the
noise variance σ̂2

0 . The training loss, on the other hand, is

εℓ := lim
d→+∞

1
2n

n∑
i=1

(
yi − β̂

⊺
λxi

)2 d→+∞−−−−−→ σ̂2
0

2
∑

c

pcEσc

[
1

(1 + vcσ2
c )2

]
+

+
∑

c

pc

2

[
Eσc

[
1

(1+vcσ2
c )2

]
(t0c−tc)2+Eσc

[
σ2

c

(1+vcσ2
c )2

]
(β2

⋆−2m+q)
]
. (70)

Strong universality of εℓ for λ → 0+ We will show now that, under the Assumption
B.1 (Assumption B.2 is satisfied in the setting under consideration), the strong universality
of the training loss observed by Pesce et al. (2023) is preserved. Let us put ourselves in the
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case of a single cluster centered in the origin (an assumption that is not restrictive, as shown
above). In this case, let us introduce

Sv := Eσ

[
1

1 + vσ2

]
(71)

which can be interpreted in terms of the Stieljes transform of the random variable σ2. The
saddle-point equations are

q̂=−ασ̂2
0∂vSv+α(1−Sv+v∂vSv)β

2
⋆−2m+q
v2 ,

v̂=α1−Sv

v
,

m̂=α1−Sv

v
,

q=m̂2β2
⋆+q̂

(λ+v̂)2

m=β2
⋆m̂

λ+v̂

v= 1
λ+v̂ .

(72)

The training loss can be written as

εℓ = − σ̂2
0∂vSv

2 − (β2
⋆ − 2m+ q)∂vSv

2 . (73)

In the limit λ → 0,

x := β2
⋆ − 2m+ q

v
= (1 − Sv + v∂vSv)x− v∂vSvσ̂

2
0

1 − Sv
⇒ x = σ̂2

0 (74)

so that εℓ = 1
2Svσ̂

2
0 . The quantity Sv can be extracted from the equation for v, as it has to

satisfy, in the zero regularisation limit, α(1 −Sv) = 1 ⇒ Sv = 1 − 1
α which is a valid solution

for α > 1 only. As a result, we obtain a universal formula for the training loss

εℓ = σ̂2
0

2

(
1 − 1

α

)
+
, where (x)+ := xθ(x). (75)

Note that the formula above is valid for any distribution of σ, including distributions with
no second moment.

Generalisation error rate — We conclude this section by extracting the generalisation
error rate for n → +∞ and large but fixed d, i.e., for α → +∞. For simplicity, let us focus,
once again, on the case K = 1 and µ1 = 0, corresponding to the fixed-point equations given
in Eq. 72. Let us assume that σ̂2

0 < +∞ and that σ2
0 := E[σ2] < +∞. From Eq. 72 v satisfies

the equation α(1 − Sv) = 1 − λv: as Sv ∈ [0, 1] and v > 0, then for α → +∞ we must have
Sv → 1 and v → 0, so that for α → +∞, Sv = 1 − 1

α +O(α−1). In this limit, therefore, by
direct inspection of the fixed-point equations, q → β2

⋆ and m → β2
⋆ so that εest → 0 and the

estimator β̂λ is unbiased.
In the hypothesis that σ2

0 is finite (i.e., ϱ(σ) ∼ σ−2a−1 with a > 1 for σ ≫ 1), then, for small
v, as Sv ≃ 1 − vσ2

0 + o(v), it is found that

q = β2
⋆ + σ̂2

0 − 2β2
⋆λ

σ2
0

1
α

+o
(

1
α

)
, m = β2

⋆ −λβ2
⋆

σ2
0

1
α

+o
(

1
α

)
, v = 1

σ2
0α

+o
(

1
α

)
, (76)

which, together with our general formulas for εest, imply εest ∼ α−1 for large α.
On the other hand, let us consider the case in which ϱ(σ) ∼ σ−2a−1 for σ ≫ 1, with 0 < a < 1.
In this case, σ2

0 = +∞ and Sv has an expansion in the form Sv = 1 − σ̃2
0v

a +O(v) for some
finite positive quantity σ̃2

0 . Such asymptotic implies that v ≃ (σ̃2
0α)−1/a for α ≫ 1. By

replacing this in the fixed point equations, it is found that m = β2
⋆ − λβ2

⋆(σ̃2
0α)−1/a + o(1/α)

and q = β2
⋆ + [σ̂2

0 − 2λβ2
⋆ ](σ̃2

0α)−1/a + o(1/α), so that in the end εest ∼ α−1/a.
The a = 1 case is marginal, as Sv ≃ 1 + σ̃2

0v log v for α ≫ 1 for some positive constant σ̃2
0 .

Therefore v = (σ̃2
0α lnα)−1. By consequence, for α ≫ 1 m ≃ β2

⋆ − λβ2
⋆(σ̃2

0α lnα)−1 and
q ≃ β2

⋆ +
[
σ̂2

0 − 2λβ2
⋆

]
(σ̃2

0α lnα)−1, so that εest ∼ (α lnα)−1.
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B.2 Huber loss and robust regression in the presence of fat tails

B.2.1 A model for the study of robustness

A toy model for the study of robustness has been introduced recently by Vilucchio et al.
(2023). Here we will consider a more general setting to include the possibility of having fat
tails. We consider the case of one cloud only, K = 1, so that P (x) = Eσ[N(x; 0, σ2/dId)],
and P0(y|τ) = Eσ̂[N(y; η̂τ, σ̂2)], where the expectation is taken over the joint distribution ϱ̂
for the pair (η̂, σ̂) of (possibly correlated) random variables. Vilucchio et al. (2023) adopted,
in particular, the distribution ϱ̂(η̂, σ̂) = ϵδη̂,η̂outδσ̂,σ̂out + (1 − ϵ)δη,1δσ̂,σ̂in for ϵ ∈ [0, 1], with
(η̂out, σ̂out) referring to “outlier labels”, and (1, σ̂in) referring to “inlier labels”. The general
fixed-point equations can be adapted to this case quite easily. We assume, once again, a
ridge regularisation. Here we comment on the fact that in this case, it can be interesting to
consider, beyond the ERM estimator β̂λ and the Bayes-optimal estimator β̂BO, the estimator
that minimises the (posterior-averaged) mean-squared test error

β̂g,BO = arg min
β

Eβ̂|D

[
E(y,x)|β̂

[
(y − β⊺x)2

]]
= E[η̂]β̂BO. (77)

In the expression above, E(y,x)|β̂ expresses the fact that the pair (y,x) has been generated
with a teacher vector β̂, sampled by the posterior. Using the results on the Bayes optimal
estimator, it is simple to derive the errors obtained by using β̂g,BO. Under the assumptions
that σ2

0 := E[σ2] < +∞ and σ̂2
0 := E[σ̂2],

εg,BO := E(y,x)

[(
y − x⊺βg,BO

)2
]

= σ2
0
(
β2

⋆E[η̂2] − E[η̂]2q
)

+ σ̂2
0 ,

where q is provided by Eq. 60. As in the pure Gaussian case, by imposing the ansatz
q = β2

⋆ − 1
αq0 + Θ(α−2), and consequently q̂ = αq̂0 + Θ(1) for large α, we can obtain

1
q0

= q̂0 =
∫
Y

dy Eσ,ζ

[
σ2P0(y|ω) (∂ω lnP0(y|ω))2

∣∣∣
ω=σβ⋆ζ

]
. (78)

In the α → +∞ limit, then, q → ρ and εest,BO := limd→+∞
1
dED[∥β̂g,BO − β∥2

2] = q0
α +

Θ(α−2) → 0. On the other hand, εg,BO = σ̂2
0 + σ2

0β
2
⋆Var[η̂] − σ2

0q0
α + Θ(α−2).

B.2.2 Huber loss and its application

The Huber loss is a strongly convex loss depending on a tunable parameter δ ≥ 0 and is
defined as

ℓδ(y, η) =
{

(y−η)2

2 if |y − η| < δ

δ|y − η| − δ2

2 otherwise.
(79)

This loss is widely adopted in robust regression as it is less sensitive to outliers than the
most commonly adopted square loss, and is associated with the following expression for the
proximal

hc=ωc+ (y−ωc)vcσ
2
c

max(δ−1|y−ωc|,1+vcσ2
c )⇔fc= y−ωc

max(δ−1|y−ωc|,1+vcσ2
c ) , ωc=tc+σc

√
qζ. (80)

The prior equations are therefore the usual in Eq. 64. The channel equations are instead

m̂ = αE
[
σ2η̂ erf χ
1 + vσ2

]
(81a)

q̂ = αE

[
σ2ψ erf χ

(1 + vσ2)2 + σ2δ2(1 − erf χ) −
√

2ψ
π

σ2δ e−χ2

1 + vσ2

]
(81b)

v̂ = αE
[
σ2 erf χ
1 + vσ2

]
. (81c)
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where the expectation is over all random variables involved in the expressions (namely, σ, σ̂,
and η̂) and we used the short-hand notation

ψ := σ̂2 + σ2(η̂2β2
⋆ − 2η̂m+ q), χ := δ(1 + vσ2)√

2ψ
(82)

Note that we recover the expressions obtained for the square loss for δ → +∞.
With the usual notation convention σ̂2

0 := E[σ̂2] and σ2
0 := E[σ2], the estimation error is

given by the general formula in Eq. 57, whereas the generalisation error is

εg := E
[
(y − β̂

⊺
λx)2

]
= σ̂2

0 + (β2
⋆E[η̂2] − 2E[η̂]m+ q)σ2

0 , (83)

εg being finite if σ2 < +∞, σ̂2
0 < +∞ and E[η̂] < +∞. We aim now at extrapolating the

large-α behavior of such errors and at studying the consistency of β̂λ with respect to the
Bayes optimal estimators discussed in Section A.2. To do so, we rescale m̂ 7→ αm̂, v̂ 7→ αv̂,
v 7→ α−1v and q̂ 7→ αq̂. We also assume that λ 7→ λ+ αλ′ (the role of λ′ ̸= 0 will be clear in
the following). The set of fixed point equations become, for α → +∞

m̂ = E
[
σ2η̂ erf χ̄

]
q̂ = E

[
σ2ψ erf χ̄+ σ2δ2(1 − erf χ̄) −

√
2ψ
π
σ2δ e−χ̄2

]
v̂ = E

[
σ2 erf χ̄

]
.

q = β2
⋆m̂

2

(λ′ + v̂)2

m = β2
⋆m̂

λ′ + v̂

v = 1
λ′ + v̂

, χ̄ := δ√
2ψ

.

(84)

In this limit, as β2
⋆q = m2, ψ = σ̂2

0 + σ2
0

β2
⋆
(m− β2

⋆ η̂)2, so that

εest = (m− β2
⋆)2

β2
⋆

, εg = σ̂2
0 + σ2E[(m− η̂β2

⋆)2]
β2

⋆

. (85)

It is possible to choose λ′ so that limα→+∞ εg = limα→+∞ εBO
g , i.e.,

σ̂2
0 + σ2

0
E[(m− η̂β2

⋆)2]
β2

⋆

= σ̂2
0 + σ2

0β
2
⋆Var[η̂] ⇒ m = β2

⋆E[η̂]. (86)

We can try to satisfy this condition by tuning properly λ′, under the constraint that λ′ ≥ 0.
We can write in particular

λ′ = m̂

E[η̂] − v̂ = E[σ2η̂ erf χ̄] − E[η̂]E[σ2 erf χ̄]
E[η̂] ≥ 0 ⇒ E[σ2(η̂ − E[η̂]) erf χ̄] ≥ 0 (87)

to be computed with

χ̄ ≡ δ√
2ψg

, ψg = σ̂2
0 + σ2

0β
2
⋆(E[η̂] − η̂)2. (88)

Note that the condition is always satisfied in the case of the square loss (i.e., for δ → +∞ ⇔
χ̄ → 1).

Consistency of the estimator. The consistency of the estimator can be imposed by
properly tuning λ, by requiring that limα→+∞ εest = 0, i.e., m = β2

⋆ in this limit. In the
same spirit as above, this implies a condition on λ′ given by

λ′ = m̂− v̂ = E[σ2η̂ erf χ̄] − E[σ2 erf χ̄] ≥ 0 ⇒ E[σ2(η̂ − 1) erf χ̄] ≥ 0 (89)
to be computed with

χ̄ ≡ δ√
2ψest

, ψest = σ̂2
0 + σ2

0β
2
⋆(1 − η̂)2. (90)

When imposing the equality, the conditions above provide the values of δ (if any) for a
consistent estimator if λ = Θ(1) in the α → +∞ limit.
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Figure 5: Gaussian covariates fully-contaminated by heavy-tailed noise with distribution
pη(η) = Eσ[N(x; 0, σ2)], where parameters of various ϱ(σ) are varied: inverse-gamma (see
Table. 1, left) and Pareto (right). (Top) Estimation error εest as a function of the sample
complexity α = n/d for optimally regularised ridge regression (black), Huber with optimal
location parameter and optimal regularisation (orange) and Bayes-optimal performance
(crosses). (Center.) Value of the optimal regularisation parameter λ⋆ for the Huber loss.
(Bottom.) Value of the optimal location parameter δ⋆ for the Huber loss. Both optimal
values are displayed by varying the scale parameter a controlling the tails of the noise
distribution. Dots indicate numerical simulations averaged over 20 seeds with d = 103.

C Further numerical results

C.1 Further results for the case of heavy-tailed noise

In this Appendix, we add some details about the case of ϵ-contamination in the labels,
as in Eq. 17, for different ϱ0 generating the contaminating noise. Figure 5 compares the
performance of various losses for different fully-contaminated (ϵn = 1) label noise distributions,
obtained picking for ϱ0(σ) taken to be inverse-Gamma as in Table 1 with a = b+ 1 > 1 (left)
or Pareto (right). In all cases, the chosen parametrisations enforce unit variance for the noise,
E[η2] = 1. Taking the limit a → ∞ in the inverse-Gamma or in the Pareto distributions
results in recovering the Gaussian distribution for label noise. In our experiments, we observe
the same phenomenology as in Fig. 2 (bottom) for all these densities which generate different
noise label distributions. As long as the label noise variance is kept the same, optimally
tuned regularised Huber loss performs the task better with heavier tails, in terms of the
estimation Eq. 10. As in the cases discussed in the main text, optimally regularised Huber
achieves Bayes-optimal performance.

D Rebuttal plots

This Appendix provides additional experiments requested by the reviewers.

D.1 Least Absolute Deviation estimator

We consider the LAD estimator corresponding to taking the ℓ1 loss ℓ1(y, η) = |y − η| in
Eq. 1b. Note this also corresponding to taking the location parameter δ of the Huber loss in
Eq. 2 to zero.
Fig. 6 compares the optimally regularised LAD estimator with with the following estimators:
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Figure 6: Response contamination including results for the LAD estimator, exactly on the
same setting as Fig. 2. (Left) Infinite variance contamination. (Right) Finite variance
contamination. Dots are experiments with dimensionality d = 103, averaged over 20 runs.

• Optimally regularised ridge regression.
• Unregularised Huber with optimally chosen location parameter δ.
• Optimally regularised Huber with optimally chosen location parameter δ

We consider three contamination cases ϵ ∈ {0, 0.5, 1}, with both infinite and finite covariate
variance. As it can be seen in Fig. 6, the LAD estimator performs similarly or worst to the
other estimators in all cases considered.

D.2 Reviewer Fbsx’s algorithm

In this Appendix, we numerically compare the performance the performance of Reviewer
Fbsx’s algorithm to standard ridge and Huber regression. The suggested algorithm consists
of the following steps.

1. Given the training data D = {(xi, yi)i∈[n] ∈ Rd+1}, we uniformly sample a subset of
size n/2, inducing a random partition of the training data D = D1 ∪ D2.

2. From subset D1 (wlog), we empirically estimate the median norm η of the covariates
xi.

3. From subset D2, we select only covariates which have norm smaller than η, i.e., we
extract D3 = {(xi, yi) ∈ D2 : ∥x∥2 ≤ η}.

4. Finally, we perform empirical risk minimisation Eq. 1b with either squared or Huber
loss on D3.

Figure 7 numerically compares the performance of Reviewer Fbsx’s algorithm to standard
ridge and Huber regression on the full data set. We consider covariate contamination in the
presence of heavy-tailed response noise. The suggested algorithm performs worse than all
measures of performance for both the contaminated ϵc = 0.5 (green) and fully-contaminated
ϵc = 1 (black) cases. This is true for both the square and Huber losses, using the optimal
parameters obtained from our analysis on the full samples.
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Figure 7: Comparison of the estimation error for vanilla empirical risk minimisation and
Reviewer Fbsx’s thresholding algorithm. Covariate contamination with data whose variance
is distributed as inverse-gamma variance with shape a = 1.1 and scale b = 0.1, in the presence
of heavy-tailed response noise with variance distribution as inverse-gamma with parameters
a = 2, b = 1.
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