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Abstract

A fine-grained account of functional selectivity in the cortex is essential for under-
standing how visual information is processed and represented in the brain. Classical
studies using designed experiments have identified multiple category-selective re-
gions; however, these approaches rely on preconceived hypotheses about categories.
Subsequent data-driven discovery methods have sought to address this limitation
but are often limited by simple, typically linear encoding models. We propose an in
silico approach for data-driven discovery of novel category-selectivity hypotheses
based on an encoder—decoder transformer model. The architecture incorporates
a brain-region to image-feature cross-attention mechanism, enabling nonlinear
mappings between high-dimensional deep network features and semantic patterns
encoded in the brain activity. We further introduce a method to characterize the
selectivity of individual parcels by leveraging diffusion-based image generative
models and large-scale datasets to synthesize and select images that maximally
activate each parcel. Our approach reveals regions with complex, compositional
selectivity involving diverse semantic concepts, which we validate in silico both
within and across subjects. Using a brain encoder as a “digital twin” offers a pow-
erful, data-driven framework for generating and testing hypotheses about visual
selectivity in the human brain—hypotheses that can guide future fMRI experiments.
Our code is available at: https://kriegeskorte-lab.github.io/in-silico-mapping/.

1 Introduction

Over the past few decades, researchers have extensively studied the visual hierarchy in the brain, from
early cortical areas that encode low-level features to higher-level regions that represent categorical
information. Neuroimaging experiments, especially studies using functional magnetic resonance
imaging (fMRI), have revealed specialized cortical regions for faces, places, words, bodies, and
food [48, [35] 15 163 [15) 8 121} 20} l61 1651 134} 38}, |69} 154]. However, visual perception is more
nuanced than this short list of categories. It remains unknown what additional visual concepts have
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dedicated regions that enable humans to make sense of the complex world. Common mapping
methods depend on experimenter-curated concepts, and empirically-driven alternatives require more
data and expensive fMRI experiments. For example, one could present a subject with a large set of
images and then label the selectivity of each cortical parcel by the images that elicit the strongest
mean parcel response. As the stimulus set grows, however, the cost of data acquisition (operating
the scanner, paying subjects, bonuses)—at least with current fMRI technology and experimental
paradigms—may prove prohibitive. We propose methods that rely on the state-of-the-art encoding
models to generalize to concepts beyond the stimuli for which fMRI responses have been measured.
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Figure 1: Brain encoder architecture and images predicted to maximally activate selected
parcels outside the visual cortex. (a) Brain encoder architecture. (b) Cross-attention for parcel
fMRI prediction. (¢) A brain encoder ranks ImageNet images by how much each image would
activate a parcel. Images from two sample parcels, four images from a single subject are shown. (d)
Images from two sample parcels, one image from each of the four subjects is shown for each parcel.
All images are curated from the top 25, see AppendixlEfor the parcel locations and full collage.

Our encoding model leverages recent advances in Al and large-scale neural datasets to serve as
a “digital twin,” upon which we perform extensive in silico experimentation [27} to generate
hypotheses of complex categorical selectivity beyond the visual cortex. The encoding model enables
us to predict the neural activity of image sets far larger and more diverse than the limited number
of images shown to the participant during fMRI, effectively expanding the search space for optimal
visual stimuli. In addition, the encoding model is fully observable and differentiable, enabling
interpretability queries using attention maps and gradient-based analyses, such as diffusion-based
models that use gradients to find stimuli that elicit high activity [46].

Through experimentation with large image datasets on our model, we generated hypotheses for the
selectivity of many parcels outside the visual area, as well as optimal sets of images that maximally
activate the parcels. These hypotheses can be tested in targeted future fMRI experiments by showing
only the sets of optimal stimuli, accelerating data collection and experiment iteration, and lowering



the cost of data acquisition. We demonstrate that our pipeline using brain encoders can test concepts
that were not explicitly shown to the subject in the scanner, effectively enriching the diversity and
size of the fMRI training set.

Key contributions of our work:

1. Massive scale: applying in silico mapping on millions of images (ImageNet, BrainDIVE)
with a transformer-based brain encoder, enabling discovery of parcel selectivity for concepts
never shown in training. To the best of our knowledge, no other study has been done on this
scale.

2. Mapping of the whole brain: expanding beyond visual cortex and revealing human-specific
semantic selectivity.

3. Inssilico verification: our pipeline verifies selectivity hypotheses in silico with rigorous
tests that evaluate how well a label can predict ground-truth activation on a held-out set
within and across subjects.

4. New fMRI experimental paradigm: as datasets grow and encoding models improve, our
pipeline offers a way to leverage these advances to accelerate and improve the accuracy of
whole-brain mapping.

2 Related Work

Semantic mapping. Our work builds upon a growing body of computational modeling and machine
learning research that investigates how semantic information is represented in the higher visual cortex
[42]. Some approaches leverage large image datasets to build decoders [[19, 22,66} 36,162, 74, [14} 144]
or models for generating optimal stimuli [13} 46, 45| 28| 58| 47]], while others use cross-domain (e.g.
vision-language) mapping [33} 132} 137, 9,150, 51} 155! 164, [30]]. These studies face a key challenge of
dataset size, since the collection of neural data is often expensive and time-consuming. Our work
seeks to address this constraint by using encoders trained on large-scale datasets to perform in silico
mapping. This allows us to expand the set of concepts that can be probed, beyond those stimuli
shown to the subjects.

Brain encoding models. Highlighting its importance, several community-driven efforts have sought
to benchmark models predicting brain responses [60, 68| 26]]. With the release of increasingly large
neural datasets each year, researchers have introduced novel architectures and methodologies to
improve the accuracy of brain encoding model, including leveraging multiple datasets and pretrained
networks [12,43} 73, 11} 721157, 24} 1411167, [7]]. While our paper uses a cutting-edge encoding model
[3]], our pipeline is ultimately encoder-agnostic, and can use any encoder that is image-computable.
As researchers build better brain encoders, we expect that the space of hypotheses our pipeline could
generate and their accuracy will only grow.

Brain-optimized stimuli. Previous studies have introduced encoding model-based stimulus selec-
tion and empirically validated the superstimuli in non-human primates and mice [[10} 71,156} 23]]. In
this work, we extend this general approach of stimulus optimization for studying neural populations
to the fMRI domain, revealing high-level human-specific selectivity beyond the visual cortex.

3 Methods

Our goal is to map the visual selectivity of parcels across the whole brain. First, we train a brain
encoder to predict fMRI responses from natural scene images. Then we select visually responsive
and robust parcels for experimentation to determine categorical selectivity.

3.1 Parcellation Strategy

We partitioned the 327,684 cortical vertices across the whole brain into 1,000 functional parcels using
the Schaefer resting-state functional connectivity parcellation (see Figure|2)) [59].



Figure 2: Schaefer-1000 parcellation

3.2 Brain Encoder Architecture

Extending the work of Adeli et al. [2]], our brain encoder predicts vertex-wise fMRI activity across
the whole brain from an input image (see Figure[Th). An image encoder backbone (see Section[4.2)
first extracts patch embeddings from the image. A transformer decoder uses parcel-specific, learnable
queries to attend to relevant patch embeddings via cross-attention. The decoder consists of a single
transformer layer with cross-attention followed by a feedforward projection (see Figure[Tp for cross-
attention). Each output decoder token is linearly mapped to predict the fMRI responses for vertices
in the corresponding parcel, and predictions from all output tokens are aggregated to obtain a whole-
brain prediction. Parcel queries, the transformer decoder, and linear mappings are optimized using
Adam [39]] to minimize the mean squared error between the predicted and actual fMRI responses.
All other layers, including the backbone, are frozen. Separate models are trained for each subject.

To improve prediction accuracy, we ensemble multiple instances of the brain encoder. For each
subject, we trained two random seeds with features from four different DINOv2 backbone layers (the
Oth, 2nd, 4th, and 6th layers from the last). To predict a vertex, we take the weighted average across
model predictions, scaled by softmax weights from validation set accuracy for each model on that
vertex.

3.3 Parcel selection process for further experimentation

Not all regions in the brain are visually responsive, so we selected parcels for further experimentation
that satisfy three criteria: (1) Location: Fewer than 10% of parcel vertices overlap with the labeled
area, since we are most interested in parcels beyond the visual cortex. (2) Visual responsiveness:
The average noise ceiling must be in the top 25% of parcels that satisfy (1). (3) Model prediction
accuracy: The average prediction accuracy must be in the top 25% of parcels that satisfy (1).

Since the data quality varies slightly across subjects, we used percentiles rather than numerical cutoffs.
The selection process for parcels in subject 1’s left hemisphere is shown in Figure[ST]in Appendix[A.3]
Cutoffs are determined separately for each hemisphere to maintain comparable parcel counts.

Among the 500 Schaefer parcels in each hemisphere for every subject, 409 + 6 parcels satisfy
condition (1). After filtering out parcels with low mean noise ceiling or low mean model prediction
accuracy, 179 &£ 12 parcels per subject are chosen for further experimentation.

3.4 Superstimulus Generation Process

We choose images that maximally activate (mean z-scored beta values) a parcel of interest using three
different methods:

1. Natural Scenes Dataset (NSD) Ground Truth Images: Images from the held-out NSD
test split, ranked based on ground truth data.

2. Diffusion-generated superstimuli: BrainDIVE [46]] uses a generative backbone guided
by gradients from a brain encoder to generate images that can maximally activate specified
brain parcels. We generated 400 images per parcel and reranked them with the brain encoder.

3. Encoder-selected ImageNet superstimuli: ImageNet images that maximally activate
the parcel, according to the encoder.



4 Experiments

4.1 Setup

We used the NSD [4]], the largest fMRI dataset to date, with 7T fMRI responses from 8 subjects who
each viewed up to 10,000 distinct natural scenes. Each image is presented up to three times, and our
model is trained on the neural response averaged over the presentations. We report results for subjects
who completed all NSD scan sessions (1, 2, 5, and 7), though we observed comparable results
in all subjects. fMRI responses were preprocessed according to [4]. The resulting beta estimates
were centered to zero mean and scaled to unit variance before training and experiments. ROI labels
were obtained from NSD. V1-hV4 ROIs are derived from a pRF experiment; body-, face-, place-,
word-selective ROIs are derived from a fLoc experiment [4].

4.2 Brain encoder results

Model prediction accuracy. Figure [3]shows the performance of the ensemble model with DINOv2
(ViT-B) backbone and the transformer cross-attention mapping function for subject 1 projected onto
the cortical surface using Pycortex [23]. As expected, the model performs well on predicting the
activity in the visual cortex (the area in the center of the flatmap), but also on several regions beyond
the typical visual pathways.

Figure 3: Brain encoder prediction accuracy. Pearson correlation between model predictions and
ground truth data for subject 1 on the held-out test set.

Model comparison. We evaluate several encoding models with different backbones and mapping
functions to find the most suitable model for whole-brain voxel-wise prediction. The Algonauts 2023
challenge [26] leaderboard showed that transformer-based backbones generally outperformed other
model families such as convolutional networks (CNNs) at predicting fMRI activity. Therefore, we
focused on evaluating features from several transformer backbones paired with either transformer
attention-based mapping to neural data [2]] or a parameter-matched model that linearly maps the CLS
token to vertex values. For each architecture, we used an ensemble of 16 models for each subject (4
feature backbone layers x 2 hemispheres x 2 random seeds). We compared the encoding accuracy,
which is Pearson’s correlation on the held-out set corrected for noise ceilings (see [4] Methods, Noise
ceiling estimation).

Table 1: Brain encoder encoding accuracy using different architectures

Architecture S1 S2 S5 S7  Backbone + Mapping fn size (M)
DINOvV2 (ViT-B) + Linear 0.33 0.34 0.39 0.33 ~ 87 + 252

CLIP vision + Transf. 044 041 046 043 ~ 304 + 258
RADIOV2.5-H + Transf. 026 035 034 030 ~ 652 + 258

DINOV2 (ViT-G w/reg)

+ Transf. 045 043 048 045 ~ 1136 + 258

DINOV2 (ViT-B) + Transf. 045 0.43 0.48 043 ~ 87 + 258

Across the subjects that completed all NSD scan sessions (Table [T)), the transformer models with
the DINOvV2 backbone [53] outperform the other non-DINOvV2 backbones. The two DINOv2
backbones perform similarly, which is consistent with past work [1]] that showed diminishing or
worse performance for DINOv2 models larger than the base (ViT-B). The transformer-based encoder



significantly outperformed the linear baseline, leveraging the attention mechanism to flexibly route
information [2, 6} [56]]. Figure [ plots the difference in prediction accuracy (Pearson’s correlation)
between the two.

Figure [ plots the difference in prediction accuracy between DINOv2 and CLIP vision. While
DINOv2 performs far better in the visual cortex, they perform similarly in many regions outside
the visual area. For the rest of the paper, we performed our experiments on the brain encoder with
DINOV2 (ViT-B) + Transformer, since it offered the best overall speed-performance tradeoff.

@ y . (b)

Figure 4: (a) DINOv2 Transformer vs. Linear head-to-head comparison. Difference in prediction
accuracy for subject 1 between DINOv2 (ViT-B) with transformer vs. linear mapping functions (> 0
or red means transformer is better). (b) DINOv2 vs. CLIP head-to-head comparison. Difference
in prediction accuracy for subject 1 between DINOv2 (ViT-B) and CLIP vision (> 0 or red means
DINOV2 is better).

4.3 Sanity check on known regions

We first validate our paradigm by replicating the well-documented category selectivity of ventral
pathway categorical areas. We show the results for a sample parcel from the labeled area, one which
significantly overlaps with aTL-faces (47.6% of the vertices in the parcel overlap with aTL-faces).
As shown in Figure [5} the images maximally activating the parcel overlapping with aTL-faces
prominently feature faces, which agrees with previous work on the selectivity of this area [63]. In
Appendix we reproduce the selectivity of body-, place-, and word-selective areas. In Appendix
[A.4 we show that stimuli generated by BrainDIVE reproduce the fine-to-coarse visual hierarchy
progressing from V1-V4 to FFA.

4.4 Extension to unlabeled areas

We now extend our analyses to parcels beyond the visual cortex. We show images selected by the
encoder to maximally activate each parcel for qualitative evaluation, then verify that our labels indeed
explain parcel activations using formal statistical tests.

Labeling unlabeled parcels. We apply the same image-selection method to generate selectivity
hypotheses for unlabeled parcels. Figure [Tk displays ImageNet images predicted by the encoder to
maximally activate two unlabeled subject-specific parcels: one appears to depict skateboarding, the
other a child eating food. Full results, including parcel location and the corresponding NSD and
BrainDIVE images, are shown in Figures [S5|and [S6| (Appendix [A.7). Many parcels with selectivity
that appeared to be consistent and complex were found across the whole brain, suggesting that there
exist regions in the brain that respond to more complex concepts than the basic categories labeled in
visual cortex.

Evaluating our labels. Our sanity checks demonstrated that our brain encoder retrieves images that
align with the category selectivity of the labeled parcels. However, since the parcels we are interested
in are outside the visual area and therefore unlabeled, we would like to quantitatively show that the
images selected by our encoder faithfully reflect underlying neural selectivity.

We conducted two tests against the NSD test set—the only held-out fMRI data not used during
training. If the selected images (hereafter “labels”) genuinely reflect parcel selectivity, other images
with greater semantic similarity to the label should result in higher parcel activation. Prior studies
have shown that categorical selectivity is not binary but graded across diverse stimuli [12,49]. For
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Figure 5: Verifying the selectivity of aTL-faces. (a) The location of the parcel. The inflated cortical
surface (ventral view), with the left hemisphere on the left. (b) Held-out NSD images that maximally
activate the parcel (based on ground-truth fMRI). (¢) BrainDIVE generated and re-ranked images
optimized for the parcel. (d) Maximally-activating images from ImageNet according to the encoder.
(e) Distribution of predicted parcel activation for all of ImageNet images compared to images in (c).

example, fMRI responses to 1,705 object and action categories revealed that brain-response similarity
strongly correlates with semantic similarity [33]]. Accordingly, we expect a parcel’s mean activity to
scale with how semantically close an image is to that parcel’s preferred concept, as defined by our
encoder’s maximally activating examples.

In each test, we compared two predictors: (1) labels derived from our encoder, and (2) a baseline
that forms its hypothesis from each parcel’s most activating NSD-training images, selected using
their measured responses. This baseline mirrors conventional fMRI studies that rely solely on stimuli
shown in the scanner. If our encoder performs better than the baseline training set, it shows we can
use brain encoders to discover novel concepts not explicitly shown to the subject.

For Test 1, we asked whether semantic similarity to a label predicted the activation rank order of
NSD test images better than chance. Our pipeline represents a label as the mean CLIP embedding
of the top 32 ImageNet or BrainDIVE images (both shown separately); the baseline uses the top 32
NSD-training images. Appendix [A.10]details the procedure. Table [2]reports the number of parcels
for which each label significantly outperforms a random ranking. To ensure that the results reflect an
expansion of the stimulus space and not merely dense sampling near peak activation, Appendix [A.16]
reports the same results with a varying number of top images used to create the label. Each parcel
whose model-derived label outperforms the null is deemed successfully labeled. Across tests, the
encoder-selected stimuli generally outperformed the baseline, labeling a greater number of parcels.

Table 2: Fraction of parcels whose model-derived label predicts parcel activation rankings significantly
better than chance (p < 0.05, FDR corrected)

Model type S1 S2 S5 S7
NSD train 150/181 163/192  136/175  155/196

Our encoder w/ImageNet 139/181  167/192  130/175  150/196
Our encoder w/BrainDIVE ~ 135/181 170/192 139/175 156/196




For Test 2, we compare Spearman’s rank correlations between the ground-truth activation ordering and
each model’s predicted ordering, quantifying which model’s selectivity hypothesis best explains parcel
activations. Table [3]summarizes these coefficients across all parcels. A head-to-head comparison
between our encoder and the baseline appears in Table 8] (Appendix [A.T3).

Table 3: Spearman’s p (mean + std) between the model-predicted and ground-truth activation
rankings on the NSD test set, averaged across parcels.

Model type S1 S2 S5 S7

Null 0.000 + 0.045 0.000£0.045 0.000£0.045 0.000£0.045
NSD train 0.162 + 0.098 0.164 + 0.091 0.150 4+ 0.094 0.148 4+ 0.086
Our encoder w/INet 0.168 &= 0.106 0.163 & 0.082 0.142 4+ 0.092 0.133 +0.075
Our encoder w/BD 0.163+£0.121 0.190 +0.099 0.154 & 0.094 0.133 +0.083

Notes. INet = ImageNet. BD = BrainDIVE.

The rank ordering derived from the encoder-selected stimuli generally outperforms the baseline
ordering based on the NSD test set. To contextualize the rank correlation magnitude, we report in
Appendix [A.T5|the results for known parcels in the visual area as a benchmark for what constitutes
meaningful selectivity. The average rank correlation is in the range of areas like PPA and RSC—both
widely studied and accepted in the literature. Because these encoder-driven selectivity hypotheses
better explain activation patterns in the NSD test images, our results indicate that the brain-encoder
pipeline can generate finer-grained categorical hypotheses than those afforded by the stimuli actually
shown to the subject in the scanner.

Choosing parcels for future fMRI experimentation. For an fMRI study aimed at uncovering
the selectivity of parcels outside visual cortex, an experimenter may be interested in parcels whose
activity can be well explained by a semantic label. To prioritize such parcels, we define a metric that
ranks the quality of the hypotheses generated by our pipeline. In Figure[6] we plot the proportion of
top 32 maximally-activating images successfully retrieved against the number of images retrieved by
the pipeline. The top five parcels per subject (ranked by area under the curve) are highlighted.

NSD test Imagenet Retrieval Rate
Subject 1 Subject 2 Subject 5 Subject 7

Retrieval Rate

— LHa80

5 o 9
Number of Retrieved Images Number of Retrieved Images Number of Retrieved Images Number of Retrieved Images

Figure 6: Retrieval accuracy of parcel labels. Using the concept vector as the label for each parcel,
we retrieve a varying number of images from the test set based on cosine similarity, and calculate
the fraction of overlap with 32 maximally-activating NSD test images (i.e. recall, on the y-axis).
Curves that rise quickly and plateau high indicate concept vectors whose semantics closely match the
parcel’s true selectivity.

From an experimenter’s perspective, the parcels shown in Figure [fl may be promising targets for
follow-up fMRI studies, since semantic labels seem to capture the parcel selectivity exceptionally
well. Our pipeline identifies images whose semantic representations appear to maximally activate
these parcels—at least insofar as this can be evaluated with the modest NSD test set.

4.5 Mapping Cross-subject Selectivity

We now explore the selectivity of a parcel outside visual cortex (Figure[7h) by examining ImageNet
images that the encoder predicts will maximally activate it. From the top 9 images per subject,
we display 3 from each participant who completed all NSD scanning sessions. These maximally-
activating images lie substantially outside the parcel’s activation distribution for the remainder of



ImageNet (Figure[7c). The selected images consistently depict hands manipulating tools—such as
writing instruments or cooking utensils (see full collages in Appendix [A.9). When asked to identify a
common theme among the top 25 ImageNet images, ChatGPT likewise highlights hands with objects.
Recent work has reported tool-use representations in nearby cortical regions [16]].
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Figure 7: (a) Parcel location. (b) Selected from the 9 images in ImageNet that maximally activate the
parcel of interest, across subjects 1, 2, 5, and 7. ChatGPT 4o generated labels for top-25 ImageNet
images, shown on the right (see Appendix [AT8] for details). (¢) A comparison of the activation
magnitude of the parcel from all ImageNet images and the top 9 images, with 95% confidence
intervals.

Evaluating our labels. We qualitatively showed that our pipeline can uncover a parcel exhibiting
consistent semantic selectivity across subjects. We now seek to quantitatively verify these hypotheses
on ground-truth data. We ran statistical test similar to that in Section[d.4] with two key differences
because we are evaluating selectivity across subjects.

1. Combining across subjects: For each parcel, we form the optimal image set by combining
the top-32 maximally-activating images chosen by encoder models trained on the other three
subjects.

2. Retrieval set: Because each subject’s NSD training set contains distinct images, the ranking
retrieval is performed on that subject’s own NSD training set.

We again compare the selectivity hypotheses generated by our brain-encoder pipeline with the NSD-
training-set baseline (described in the within-subject statistical tests). Table 4| reports the results of
this modified test (cf. Table[2); additional details are provided in Appendix

Table 4: Fraction of parcels shared across subjects whose model-derived label predicts parcel
activation rankings significantly better than chance (p < 0.05, FDR corrected)

Model type S1 S2 S5 S7
NSD train 37/49  44/49  40/49 40/49

Our encoder w/ImageNet ~ 38/49 45/49 42/49 39/49
Our encoder w/BrainDIVE ~ 37/49  40/49  38/49  38/49




Comparing the number of parcels for which each hypothesized label ranks NSD-training images
better than chance, our pipeline generally outperforms the NSD-train baseline. These findings indicate
that for parcels with high visual responsiveness shared across subjects, our pipeline can generate
better hypotheses that describe the shared selectivity.

Table 3] presents results from the same statistical test used in Table 3] reporting the average Spearman
rank correlations for each model across parcels. A head-to-head comparison appears in Table []

(Appendix|A.13), and Figure[S8| (Appendix [A.14) highlights the most promising cross-subject parcels
for future fMRI experiments.

Table 5: Spearman’s p (mean =+ std) between the model-predicted (from all subjects other than
heldout) and ground-truth activation rankings on the NSD training set, averaged across parcels.

Model type S1 S2 S5 S7

Null 0.000+0.011 0.000+0.011 0.000+£0.011 0.000+£0.011
NSD train 0.068 +0.068  0.094 +0.065  0.090 + 0.074 0.091 +0.070
Our encoder w/INet  0.072+£0.071  0.105 +0.073 0.105 £+ 0.078 0.093 + 0.075
Our encoder w/BD  0.078 4 0.077 0.103+£0.087 0.106 + 0.091 0.089 £ 0.079

Notes. INet = ImageNet. BD = BrainDIVE.

5 Discussion

Leveraging recent advances in Al and the availability of large-scale datasets, we introduce a data-
driven paradigm for discovering parcel selectivity beyond visual cortex, paving the way toward
systematic whole-brain labeling of higher-order visual representations. In particular, our transformer-
based encoder, with its cross-attention mechanism and nonlinear mappings, routes visual information
more effectively for parcels in and outside classical visual areas.

Limitations. Although we predict images that should maximally activate a parcel, we have not
yet validated these “superstimuli” in new fMRI experiments. On a held-out NSD split we show that
our semantic labels predict parcel activations well, but whether the synthesized superstimuli elicit
even stronger responses remains unknown. Moreover, because the encoder was trained solely on
NSD [4], it may inherit dataset biases. For example, one parcel in subject 2’s left hemisphere appears
zebra-selective (Figure[ST0} Appendix[A.19), however, this could be due to the over-representation
of giraffe and zebra images in the dataset. We did not quantify how such biases affect our results;
future work should train on multiple datasets to address this concern.

More fundamentally, category selectivity is limited as a theoretical construct for understanding brain
computation. We hope our approach will help the field go beyond the technical limitations of prior
work and help reveal the fundamental limits of understanding brain computation through the lens of
category selectivity.

Optimizing future fMRI experiments. Our framework paves the way for future fMRI studies
that mitigate the effect of small datasets and experimenter bias in image selection by demonstrating
the promise of in silico mapping to superstimuli. These superstimuli can then be tested in follow-up
scans to verify the selectivity of newly discovered areas. By letting the encoder drive hypothesis
generation, researchers can discover optimal stimuli empirically—even for concepts never presented
in the scanner—maximizing data-collection efficiency. Because our encoder architecture is modality-
agnostic, the same semantic-mapping approach could be extended to multi-modal backbones, enabling
superstimuli generation across sensory domains.
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A Technical Appendices and Supplementary Material

A.1 Social impacts

In this work, we present a method for in silico mapping of semantic selectivity across cortical parcels
in the whole brain. For cognitive neuroscience, our approach deepens the field’s understanding
of visual processing well beyond classical visual cortex. Clinically, deviations from normative
whole-brain semantic maps may act as early biomarkers for neurological and neurodegenerative dis-
orders. Furthermore, these detailed semantic atlases lay foundational groundwork for next-generation
brain—computer interfaces, where fine-grained category-level decoding could translate a user’s in-
tended concepts—rather than low-level motor signals—into control commands for communication or
assistive devices.
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A.2 Reproducing selectivity for known areas

We show superstimuli from parcels overlapping with body-, place-, and word-selective areas in order
to show that our pipeline can reproduce the known selectivity.
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A.3 Parcel selection process

Subject 1 left hemisphere parcel selection

(a) Qualifying parcels by noise ceiling (b) Qualifying parcels by prediction accuracy (C) Selected parcels by noise ceiling and prediction accuracy
24+ — cutoff 24 g - cutoff 0.7{ @ HNonselected -
® Selected -
- p
21 T 0.6 ~—- Noise ceiling 7
g y
3 > .
18+ e
o ']
151 .

Parcel mean model
o
o

0.2 0.3 0.4 05

0.2 03 0.4 0.5 X 0.0 0.1
Parcel mean model prediction accuracy

Parcel mean noise ceiling (normalized)

0.2 0.3 0.4 0.5 0.6 0.7
Parcel mean noise ceiling (normalized)

Figure S1: Selecting parcels outside visual cortex for experimentation. Parcels outside the visual
area that have sufficiently high mean (a) noise ceiling and (b) model prediction accuracy are chosen
for further experimentation. (c) Selected parcels by mean noise ceiling and model prediction accuracy.
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A.4 Reproducing known visual hierarchy properties

We optimized 32 superstimuli (16 per hemisphere) that maximally activate parcels in V1, V2, and
V4 using the BrainDIVE framework. We additionally include results on FFA as a representative
IT-cortex ROI.

Generated superstimuli for early visual areas reproduce the classic fine-to-coarse hierarchy: V1
stimuli appear as cluttered scenes filled with dense, repetitive texture; V2 images add composite color
patches and rudimentary objects; V4 stimuli reveal smoother, recognizable object forms; and FFA
images almost exclusively depict close-up faces, often with clear emotional expressions.

To quantify hierarchical properties, we examined whether the spatial-frequency content of our stimuli
mirrors classical physiological findings (e.g., [31 [18]). We computed the radial average power
spectrum for each image [[70] and calculated the proportion of spectral power above 10%, 20%, and
30% of the maximum spatial frequency. At every threshold the high-frequency energy ratio decreases
monotonically from V1 > V2 > V4 > FFA, indicating that the images that best drive higher-level
areas (FFA) contain proportionally less fine-scale texture and relatively more coarse, low-frequency
structure.

Table 6: High-frequency energy ratio across ROIs at different thresholds, subject 1.

Threshold ROI  High-frequency energy ratio

0.1 Vi 0.006547
V2 0.004160

V4 0.002500

FFA 0.001347

0.2 V1 0.001838
V2 0.000944

V4 0.000699

FFA 0.000299

0.3 Vi 0.000762
V2 0.000339

V4 0.000285

FFA 0.000104

Below we include superstimuli optimized for each of the above ROIs to visualize the image frequency
differences.
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(c) V4 (d) FFA-1

Figure S2: BrainDIVE stimuli optimized for parcels across the visual hierarchy, subject 1.
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A.5 Analyzing ROI queries to map parcel connectivity

Taking advantage of our transformer-based approach, we map the connections between visual
area parcels by examining the representational similarity of learned ROI queries, each of which
corresponds to a single parcel. For both functional connectivity and ROI query similarity, we first take
the full 1000 parcel x 1000 parcel matrix, then mask out the labeled area, and finally average across
the top three parcels that overlap with each labeled area. (Thus, not every entry on the diagonal is 1.)
High cosine similarity between ROI queries (queries averaged across ensemble models) suggests that
two parcels are highly connected, as both attend to similar content in an image.

This similarity matrix for the visual areas closely replicates the functional connectivity matrix from the
Schaefer parcellation (derived from resting-state correlated responses) [40]]; the Pearson correlation
between the upper triangle of the two matrices is ~ 0.5.

Below we report the functional connectivity and ROI query cosine similarity matrices for subject 1.
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Figure S3: Functional connectivity matrix vs ROI query similarity, subject 1.
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A.6 Attention maps

While one can easily make guesses about parcel selectivity simply by looking at the prominent feature

of the image, we can examine the attention scores from cross-attention (Figure[Ip) to interpret the

selectivity of any parcel. The attention maps are visualized in Figure [S4]for the images from Figure[3]
Natural Scenes Dataset Natural Scenes Dataset Generated

Generated Imaaenet Imaaenet

Figure S4: Attention maps for aTL-faces and mfs-words. Yellow areas represent the highest
attention weights and purple represents the lowest. Held-out NSD images are selected based on
ground-truth parcel activation, but attention maps are from the encoder since no ground-truth attention
maps exist. See FigureElfor the original images.

As expected, the areas with highest attention weights for the aTL-faces parcel primarily overlap
with faces, while the attention weights for the mfs-words parcel overlap with words (when present).
Compared to previous work using a similar encoder model [3], our attention maps appear to follow the
expected stimuli considerably less closely, possibly because our parcel boundaries were determined a
priori and don’t align well with the boundaries of the actual labeled area.
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A.7 Parcel locations and BrainDIVE/NSD images accompanying Figure/[l]

(a) Parcel location in cortical

map

(c) Held-out NSD that maximally (d) BrainDIVE generated images (e) Maximally-activating Ima-
activate the parcel. optimized for the parcel. geNet images.

Figure S5: Skateboarding parcel location and full collages, subject 1.
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(a) Parcel location in cortical (b) Parcel location on inflated
flatmap. map

(c) Held-out NSD that maximally (d) BrainDIVE generated images (e) Maximally-activating Ima-
activate the parcel. optimized for the parcel. geNet images.

Figure S6: Child eating parcel location and full collages, subject 1.
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A.8 Labeling top subject-specific parcels

For each of the parcels shown in Figure [f] we show the top ImageNet images and the caption
generated by GPT-4o (see Appendix [A.T8]for prompt details).

ImageNet . ImageNet .
Parcel top 4 Caption Parcel top 4 Caption
Sports, Tennis Sports, Team
S1LH211 K ’ S5 RH 476 sports, Outdoor
Soccer L
activities
Soccer, Tennis Extreme sports,
S1 RH 373 S orts, ’ S5 LH 239 Skateboarding,
P BMX biking
Sports. Tennis Interior Design,
S1LH 238 pores, : S5 LH 367 Home Decor,
Soccer .
Kitchen
S1 RH 456 Bablles, Children, S5 RH 391 Socc;r, Ice hockey,
Family Tennis
Family, Parentin Kitchen,
S1 LH 496 Ly, rarenting, S5LH 167 Appliances,
Children .
Cabinets
% Food storage, Tennis, Baseball
S2LH 480 =~ Office supplies, S7 RH 474 ’ ?
= . . Sports
Kitchen appliances
$2 RH 391 Gymnastlcs,. S7RH 477 Tennis, Baseball,
“E Dance, Tennis Sports
g. Tennis, Sports, Baseball
S2LHS500 g Gymnastics, S7 LH 496 ports, ’
Tennis
E & Baseball
E “I’: Social Gatherings,
S2 LH 496 J Educa.tlon and S7 LH 497 Base?ball, Pitching,
Learning, Sports Batting
and Recreation
mn*’ <y Interior Design, -ﬁ N
S2 LH 365 Living Spaces, S7RH 317 Bascball, Pitching,

m

Furniture

Batting

Table 7: Maximally parcel-activating images (predicted) for unlabeled parcels.
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A.9 Full collages for cross-subject tools parcel

(b) Subject 2

z gﬁ

(c) Subject 5 (d) Subject 7

Figure S7: Top 25 maximally parcel-activating ImageNet images (based on encoder predictions) for
the cross-subject parcel in Figurem

A.10 Statistical tests for subject-specific parcel evaluation

Here, we explain the details of the statistical tests performed in[d.4]

The underlying assumption in cognitive neuroscience is that for some parcels, there exists some
category of visual stimuli that maximally activates the parcel.

Our goal is to assess whether the semantic content of the images our encoder identifies as highly
activating aligns with the semantic content of NSD test images that actually elicit high ground-truth
activations in that parcel. We ask whether a single “concept vector” derived from our encoder for
a given parcel predicts parcel-activation rank order in the NSD test set more accurately than the
baseline model.

We computed two concept vectors per parcel: one based on the top 32 maximally-activating ImageNet
or BrainDIVE images predicted by our encoder, and one based on the top 32 maximally-activating
NSD training images. We embedded each set of the images into CLIP space and then averaged the
CLIP vectors to obtain a parcel-specific "concept vector" that reflects predicted parcel categorical
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selectivity. We then embedded each NSD test image into CLIP space, and ranked images by cosine
similarity to the concept vector (encoder-derived or baseline). Since we expect that higher semantic
similarity to the “concept vector” will correspond to higher parcel activation, we quantified alignment
with the empirical activation ordering using Spearman’s rank correlation between concept-vector
similarity rank and ground-truth fMRI activity rank.

In Table @ for each parcel, we compared the rank correlation coefficient with a null distribution,
bootstrapped with 10,000 random rankings of the NSD test images. We separate the results into most
activating stimuli predicted by the model from BrainDIVE and ImageNet, as well as stimuli from the
NSD training set (baseline).

A.11 Statistical tests for cross-subject parcel evaluation

For a given parcel and dataset, we generated a selectivity hypothesis by averaging the CLIP vectors
corresponding to the top 32 images according to the brain encoder, then used that CLIP vector to rank
the NSD training images using cosine similarity. We calculate Spearman rank correlation between
that ranking and the ranking determined by ground truth parcel activation, and compare this to a null
distribution of correlation coefficients, which consists of 10,000 draws of random rankings.

Note that there are a fewer number of total parcels measured here since each subject has different
parcels selected for experimentation (see Section [3.3)), so cross-subject selectivity can only be tested
for parcels selected for experimentation with every subject.

A.12 Cosine similarity analysis of labels for cross-subject parcels

To demonstrate cross-subject consistency in semantic selectivity, we also compared directly the
concept vectors generated by the encoder. Concept vectors generated for the same parcel, when
analyzed across subjects, tend to be more similar (0.784 + 0.069 for BrainDIVE) than the parcels
coming from around the target parcel (0.710 + 0.115 for BrainDIVE). Absolute cosine similarities
are high because these parcels are selective for high-level visual concepts that share similar features,
but our method can adjudicate between them using targeted stimulus generation.

29



A.13 Head-to-head encoder model versus NSD train baseline

Table [§] expands upon the results shown in table [2] reporting the fraction of parcels for which
the encoder-selected stimuli outperforms the NSD train baseline in Spearman’s rank correlation
coefficient, evaluated within the same subject.

Table 8: Head to head comparison between our model and NSD train baseline: number of parcels
where model rank correlation coefficient beats NSD train, evaluated within the same subject.

Comparison type S1 S2 S5 S7

Our encoder w/ImageNet > NSD train: 93/181 94/192  89/175 62/196
Our encoder w/BrainDIVE > NSD train:  95/181 123/192 100/175 76/196

Table[9)expands upon results in Table[d] reporting the number of parcels for which the rank correlation
coefficient from the specified model is greater than that from the baseline model, when three subjects
are used to predict a held-out subject.

Table 9: Head to head comparison between our model and NSD train baseline: number of parcels
where model rank correlation coefficient beats NSD train, evaluated with all subjects used to predict
one held out.

Comparison type S1 S2 S5 S7

Our encoder w/ImageNet > NSD train: 30/49 35/49 36/49 27/49
Our encoder w/BrainDIVE > NSD train:  29/49 24/49 30/49 22/49

A.14 Choosing parcels shared across subjects for future fMRI experimentation
In Figure[S8] we report similar results as in Figure[6] except for top parcels shared across subjects.

NSD Train Imagenet Retrieval Rate
Subject 1 predicted by 2/5/7 Subject 2 predicted by 1/5/7 Subject 5 predicted by 1/2/7 Subject 7 predicted by 1/2/5

/
/
/
/
/
/ /
/ /
/ /
/ /
/ 04 /
— 363 RH 477
[ w217 o RH3a3
7 L RH237 L,/ — w363

S RH338 | 02 L RH 195
% F v a6 7, 5

Retrieval Rate

- null -
00] Z=====2mm - B Y e = 95% CI

P T R R R PR PR PR ) % 2 2 2 2 2o B Jm b % 2 2 22 2 o bt b ) P TR P
Number of Retrieved Images Number of Retrieved Images Number of Retrieved Images Number of Retrieved Images

Figure S8: See caption from Figure@for description. Each parcel shown is shared across subjects and
the encoder train on three subjects is used to predict the selectivity of that same parcel on a held-out
subject.
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A.15 Interpreting statistical test results by comparing to known visual areas

To quantify what rank correlation magnitude constitutes meaningful selectivity, we report the rank
correlation the model achieves on known visual areas as a benchmark. Parcels with known high-
level selectivity (EBA, FFA, FBA) tend to exhibit very high correlations, while parcels with known
lower-level selectivity (V1-V4) tend to exhibit low correlations. The average Spearman’s p from our
concept vectors are in the range of areas like PPA and RSC.

Using CLIP as our metric allows us to capture high-level features that can explain semantic selectivity.
Given that fMRI studies tend to rely on experimenter-curated topics, the CLIP space is a move toward
a data-driven approach, but ultimately any metric can be substituted.

Figure S9: Spearman’s p, actual vs. predicted activation ordering for subject 1. Top: high-level areas.
Bottom: low-level areas.

(a) High-level areas

Region ImageNet BrainDIVE
Unlabeled parcel mean (ours) 0.168 £0.106 0.163 4+ 0.121
EBA 0.432 0.501
FFA-1 0.217 0.243
FFA-2 0.373 0.412
FBA-2 0.373 0.401
lateral 0.323 0.339
PPA 0.166 0.128
RSC 0.170 0.162
aTL-faces 0.120 0.138
mTL-words 0.164 0.199

(b) Low-level areas

Region ImageNet BrainDIVE
Unlabeled parcel mean (ours) 0.168 £0.106 0.163 4 0.121
Vid 0.010 0.027
Viv 0.024 0.036
vad -0.032 -0.035
V2v -0.030 -0.002
V3d -0.004 -0.018
V3v 0.007 0.009
hV4 0.047 0.067
early -0.025 -0.014

Note that since we’re using the Schaefer-1000 parcellation, for each visual area, we average the rank
correlation value across the top 3 Schaefer parcels with greatest overlap with that visual area.
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A.16 Varying top images used for statistical test

To confirm that the superior performance of ImageNet and BrainDIVE superstimuli stems from a
broader diversity of concepts present—and not sampling near peak activation—we varied the top-K
image threshold used to define the concept vector. We report K = 16, 8,4, 2, 1 versions for tables 2}

Bl @ and[5}

Table 10: Fraction of parcels whose model-derived label predicts parcel activation rankings sig-
nificantly better than chance (p < 0.05, FDR corrected), varying number of top images for label
generation.

Model type S1 S2 S5 S7
k=64
NSD train 134/181 156/192 134/175 154/196

Our encoder w/ImageNet ~ 139/181 166/192 134/175 149/196
Our encoder w/BrainDIVE  128/181 168/192 140/175 152/196

k=32

NSD train 150/181 163/192 136/175 155/196
Our encoder w/ImageNet ~ 139/181 167/192 130/175 150/196
Our encoder w/BrainDIVE ~ 135/181 170/192 139/175 156/196

k=16

NSD train 154/181 169/192 137/175 157/196
Our encoder w/ImageNet ~ 138/181 166/192 134/175 151/196
Our encoder w/BrainDIVE ~ 139/181  171/192 136/175 152/196

k=8

NSD train 144/181 160/192 131/175 149/196
Our encoder w/ImageNet ~ 138/181 162/192 134/175 153/196
Our encoder w/BrainDIVE ~ 135/181  168/192 136/175 153/196

k=4

NSD train 134/181 146/192 122/175 140/196
Our encoder w/ImageNet ~ 138/181 164/192 129/175 148/196
Our encoder w/BrainDIVE ~ 140/181  166/192 142/175 151/196

k=2

NSD train 131/181 125/192 109/175 110/196
Our encoder w/ImageNet ~ 134/181 154/192 122/175 143/196
Our encoder w/BrainDIVE ~ 141/181 171/192 136/175 136/196

k=1

NSD train 114/181 120/192  92/175  86/196
Our encoder w/ImageNet ~ 133/181 145/192 113/175 130/196
Our encoder w/BrainDIVE ~ 137/181  162/192 119/175 131/196
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Table 11: Average parcel-level correlations (mean =+ std) between model-derived labels and parcel
activation rankings, varying number of top images for label generation.

Model type S1 S2 S5 S7

k=64

NSD train 0.145£0.098 0.1563 £0.088 0.141£0.096 0.142 +£0.085
Our encoder w/ImageNet 0.167 £0.106 0.163 £0.082 0.143+0.092 0.133 £0.075
Our encoder w/BrainDIVE ~ 0.154 +£0.119  0.187+£0.099 0.153 £0.095 0.131 +0.084
k=32

NSD train 0.162 £ 0.098 0.164 +0.091 0.150 £0.094 0.148 +0.086
Our encoder w/ImageNet 0.168 £0.106 0.163 £0.082 0.142+0.092 0.133 £0.075
Our encoder w/BrainDIVE  0.163 +0.121  0.190 £ 0.099 0.154 +£0.094 0.133 £ 0.083
k=16

NSD train 0.167£0.096 0.170£0.093 0.149+0.096 0.148 + 0.087
Our encoder w/ImageNet 0.169 £0.106 0.162£0.082 0.142+0.091 0.131 £0.075
Our encoder w/BrainDIVE  0.168 +0.120  0.190 £ 0.099 0.155 £ 0.092 0.134 £ 0.082
k=8

NSD train 0.160 £0.103 0.164 £0.094 0.140+£0.100 0.139 + 0.091
Our encoder w/ImageNet 0.168 £0.107 0.159£0.081 0.142+0.092 0.128 £0.073
Our encoder w/BrainDIVE  0.167 £ 0.121  0.188 £ 0.099 0.155 £ 0.092 0.133 £ 0.082
k=4

NSD train 0.151 £0.112 0.147+£0.099 0.128 £0.097 0.124 + 0.091
Our encoder w/ImageNet 0.165£0.108 0.155+£0.082 0.140£0.091 0.124+£0.073
Our encoder w/BrainDIVE ~ 0.165 £ 0.120 0.184 £0.098 0.151 £0.092 0.131 + 0.080
k=2

NSD train 0.134 £0.114 0.127£0.106 0.110£0.104 0.106 £ 0.092
Our encoder w/ImageNet 0.158 £0.107 0.147+0.082 0.135£0.090 0.118 £0.071
Our encoder w/BrainDIVE ~ 0.160 £ 0.117 0.176 £0.094 0.149£0.090 0.127 £+ 0.080
k=1

NSD train 0.121 £0.120 0.109£0.100 0.088 +0.105 0.087 % 0.090
Our encoder w/ImageNet 0.148 +0.101 0.136 £0.084 0.125+0.091 0.112+0.075
Our encoder w/BrainDIVE  0.148 £ 0.115 0.165 +£0.093 0.140 £0.092 0.119 £ 0.082
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Table 12: Fraction of parcels shared across subjects whose model-derived label predicts parcel
activation rankings significantly better than chance (p < 0.05, FDR corrected), varying number of
top images for label generation.

Model type S1 S2 S5 S7
k=64
NSD train 37/49  44/49  40/49  40/49

Our encoder w/ImageNet 38/49  45/49  42/49  39/49
Our encoder w/BrainDIVE ~ 34/49  40/49  37/49  38/49

k=32

NSD train 37/49  44/49  40/49 40/49
Our encoder w/ImageNet 38/49  45/49  42/49  39/49
Our encoder w/BrainDIVE ~ 37/49  40/49  38/49  38/49

k=16

NSD train 37/49  42/49  40/49  40/49
Our encoder w/ImageNet 38/49 46/49 42/49  39/49
Our encoder w/BrainDIVE ~ 37/49  40/49  38/49  38/49

k=8

NSD train 36/49  40/49  41/49  40/49
Our encoder w/ImageNet 37/49  45/49 43/49  39/49
Our encoder w/BrainDIVE ~ 37/49  40/49  38/49  39/49

k=4

NSD train 40/49 41/49  40/49  38/49
Our encoder w/ImageNet 38/49  44/49  42/49  40/49
Our encoder w/BrainDIVE ~ 37/49  40/49  39/49 41/49

k=2

NSD train 40/49 40/49  40/49  40/49
Our encoder w/ImageNet 38/49  45/49  42/49  38/49
Our encoder w/BrainDIVE ~ 37/49  43/49  39/49  40/49

k=1

NSD train 37/49  35/49  38/49  40/49
Our encoder w/ImageNet 37/49  44/49  42/49  37/49
Our encoder w/BrainDIVE ~ 39/49  40/49  40/49  40/49
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Table 13: Average parcel-level correlations (mean = std) between model-derived labels and parcel
activation rankings, varying number of top images for label generation.

Model type S1 S2 S5 S7

k=64

NSD train 0.066 £0.068 0.092£0.065 0.091+£0.073 0.090 £ 0.069
Our encoder w/ImageNet 0.072£0.072 0.105+£0.074 0.105+£0.078 0.093 £ 0.076
Our encoder w/BrainDIVE ~ 0.075 £ 0.076  0.102 £0.087 0.102 £0.090 0.087 & 0.080
k=32

NSD train 0.068 £ 0.068 0.094 +0.065 0.090 £0.074 0.091 + 0.070
Our encoder w/ImageNet 0.072+0.071 0.105£0.073 0.105+0.078 0.093 £0.075
Our encoder w/BrainDIVE  0.078 £ 0.077 0.103 £ 0.087 0.106 £ 0.091 0.089 £ 0.079
k=16

NSD train 0.068 £ 0.067 0.093 +£0.066 0.089+0.072 0.090 £ 0.069
Our encoder w/ImageNet 0.073+£0.070 0.1056£0.073 0.107+£0.079 0.091 £ 0.076
Our encoder w/BrainDIVE ~ 0.081 +0.078 0.103 +0.087 0.106 4+ 0.093  0.090 £ 0.080
k=8

NSD train 0.070 £0.067 0.095+0.064 0.088 +0.072 0.088 + 0.067
Our encoder w/ImageNet 0.071 £0.070 0.104 £0.074 0.105+0.077 0.091 £0.075
Our encoder w/BrainDIVE  0.083 +0.077 0.102 £ 0.086 0.106 £+ 0.093  0.093 £ 0.079
k=4

NSD train 0.068 £0.065 0.093 £0.068 0.090 £0.072 0.086 + 0.071
Our encoder w/ImageNet 0.071 £0.070 0.106 £0.075 0.104 £0.075 0.092 £ 0.076
Our encoder w/BrainDIVE  0.083 +0.078 0.102 +£0.086 0.110 £ 0.093 0.093 £+ 0.079
k=2

NSD train 0.073 £0.068 0.093 £0.068 0.090 £ 0.076 0.082 £ 0.071
Our encoder w/ImageNet 0.070 £0.068 0.108 £ 0.073 0.102£0.073 0.088 +0.073
Our encoder w/BrainDIVE ~ 0.084 £ 0.079 0.103 £0.086 0.111 £0.087 0.094 + 0.081
k=1

NSD train 0.062 £0.069 0.079+£0.075 0.081 £0.076 0.078 £ 0.063
Our encoder w/ImageNet 0.068 £0.070 0.105+0.070 0.104 +£0.076 0.086 £ 0.076
Our encoder w/BrainDIVE  0.084 +0.080  0.099 4+ 0.090 0.109 £+ 0.087  0.090 £ 0.082
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A.17 Generating concept vectors using predicted activations

In the main text, we generated the baseline NSD train concept vector using the top maximally-
activating images based on measured responses of the training set. Here, we generate concept vectors
using top images based on predicted responses of the same training set—reproducing tables [2] [3] 4
and[5] Interestingly, the rankings generated by the model-predicted concept vector outperforms the
concept vector generated by measured responses, and even our model in some cases. We suspect
that using model-predicted responses may further reduce the noise compared to measured responses
and be responsible for the increase in performance. We did not include the model-predicted concept
vector performance in the main text since it’s not quite a baseline (since it relies on the encoding
model choice).

Table 14: Fraction of parcels whose model-derived label predicts parcel activation rankings signifi-
cantly better than chance (p < 0.05, FDR corrected)

Model type S1 S2 S5 S7

NSD train (ground truth) 150/181  163/192  136/175  155/196
NSD train (model-predicted) 169/181 176/192 156/175 168/196

Table 15: Spearman’s p (mean =+ std) between the model-predicted and ground-truth activation
rankings on the NSD test set, averaged across parcels.

Model type S1 S2 S5 S7

NSD train (ground truth) 0.162+£0.098  0.164£0.091  0.150 £ 0.094 0.148 £+ 0.086
NSD train (model-predicted) 0.191 4-0.092 0.187 +0.084 0.174 +£0.087 0.155 %+ 0.082

Notes. INet = ImageNet. BD = BrainDIVE.

Table 16: Fraction of parcels shared across subjects whose model-derived label predicts parcel
activation rankings significantly better than chance (p < 0.05, FDR corrected)

Model type S1 S2 S5 S7

NSD train (ground truth) 37/49  44/49  40/49 40/49
NSD train (model-predicted) 40/49 46/49 43/49 40/49

Table 17: Spearman’s p (mean =+ std) between the model-predicted (from all subjects other than
heldout) and ground-truth activation rankings on the NSD training set, averaged across parcels.

Model type S1 S2 S5 S7

NSD train (ground truth) 0.068 = 0.068  0.094 +£0.065  0.090 £ 0.074 0.091 £ 0.070
NSD train (model-predicted) 0.078 +0.074 0.110 +0.068 0.113 +0.081 0.101 4 0.074

Notes. INet = ImageNet. BD = BrainDIVE.

36



A.18 LLM prompts used

We used OpenAI’s GPT-4o0 [52] to caption the images selected by our model in order to obtain
a linguistic representation of the selectivity of a parcel. The captions in Figure [7] were generated
with ChatGPT 4o (04/06/2025) with a collage of top-25 encoder-ranked ImageNet images shown,
followed by the instruction “Describe a theme present in most of the images presented.” The captions
in Table[7| were generated by GPT-40 (05/12/2025, via the API) with the prompt “Give keywords for
the central concept or categories present in these images.”

A.19 NSD dataset quirks

Figure S10: Top 25 maximally parcel-activating ImageNet images (based on encoder predictions) for
a parcel in subject 2, left hemisphere.

Figure S11: Top 25 maximally parcel-activating NSD images (based on ground truth) for a parcel in
subject 2, left hemisphere.
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A.20 Compute used

We used CPU (AMD EPYC 7662), GPU (NVIDIA A40, L40), memory, and storage resources from
an internal cluster. Storage for the entire project totals roughly 10TB. Training the model used
roughly 3,000 GPU hours, 24,000 CPU core hours, and 32 GB per GPU hour. Running the remaining
experiments used roughly 20,000 GPU hours, 160,000 CPU core hours, and 32 GB per GPU hour.
The full project required more compute than these estimates due to failed experiments, experiments
not included in the paper, and model iteration.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract, we explain our approach and the results, include parcels of
which we labeled the selectivity and our statistical tests that verify our labels. The Section[3]
Methods explains the implementation details for our model. Section ] Experiments show
examples of parcels that we labeled and the results from the statistical tests that show our
labels do drive the activation of the parcels.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Section[3
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Information about the datasets, model architecture, and steps to perform
statistical tests are all contained in the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The supplementary zip file contains open access to the data and code with
sufficient documentation.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Training and test details can be found in the supplementary zip file containing
the code to reproduce the experiments.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars and p-values are reported in all tables. Details for implementation
of the statistical tests are found in the main text and appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Appendix [A.20]for estimates on computer resources used.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The research conforms in every respect with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The paper’s societal impacts are discussed in Appendix
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The paper cites any data and models used and respects the respective licenses.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Anonymized assets will be provided in the supplementary zip. Materials will
include documentation.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:

Justification: The core method in this research does not involve LLMs as any important,
original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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