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Abstract

Bayesian optimisation (BO) is widely used to op-
timise stochastic black box functions. While most
BO approaches focus on optimising conditional ex-
pectations, many applications require risk-averse
strategies and alternative criteria accounting for
the distribution tails need to be considered. In
this paper, we propose new variational models for
Bayesian quantile and expectile regression that are
well-suited for heteroscedastic noise settings. Our
models consist of two latent Gaussian processes
accounting respectively for the conditional quan-
tile (or expectile) and the scale parameter of an
asymmetric likelihood functions. Furthermore, we
propose two BO strategies based on max-value
entropy search and Thompson sampling, that are
tailored to such models and that can accommo-
date large batches of points. Contrary to existing
BO approaches for risk-averse optimisation, our
strategies can directly optimise for the quantile and
expectile, without requiring replicating observa-
tions or assuming a parametric form for the noise.
As illustrated in the experimental section, the pro-
posed approach clearly outperforms the state of the
art in the heteroscedastic, non-Gaussian case.

1 INTRODUCTION

Let Ψ : X × Ω → R be an unknown function,
where X ⊂ [0, 1]D and Ω denotes a probability space
representing some uncontrolled variables. For any fixed
x ∈ X , Yx = Ψ(x, ·) is a random variable of distribu-
tion Px. We assume here a classical black-box optimisation
framework: Ψ is available only through (costly) pointwise
evaluations of Yx. Typical examples may include stochas-
tic simulators in physics or biology (see Skullerud [1968]
for simulations of ion motion and Székely Jr and Burrage

[2014] for simulations of heterogeneous natural systems),
but Ψ can also represent the performance of a machine learn-
ing algorithm according to some hyperparameters (see [see
Bergstra et al., 2011, for instance]. In the latter case, the
randomness can come from the use of minibatching in the
training procedure, the choice of a stochastic optimiser or
the randomness in the initialisation of the optimiser.

Let g(x) = ρ(Px) be the objective function we want to
maximise, where ρ is a real-valued functional defined on
probability measures. The canonical choice for ρ is the ex-
pectation, which is sensible when the exposition to extreme
values is not a significant aspect of the decision. However,
in a large variety of fields such as agronomy, medicine or
finance, decision makers have an incentive to protect them-
selves against extreme events since they may lead to severe
consequences. To take these rare events into account, one
should consider alternative choices for ρ that can capture
the behaviour of the tails of Px, such as the quantile [Ros-
tek, 2010], conditional value-at-risk (CVaR, see Rockafellar
et al. [2000]) or expectile [Bellini and Di Bernardino, 2017].
In this paper we focus our interest on the modelling and
optimisation of quantiles and expectiles.

Given an estimate of g based on available data, global op-
timisation algorithms define a policy that finds a trade-off
between exploration and intensification. More precisely, the
algorithm has to explore the input space in order to avoid
getting trapped in a local optimum, but it also has to con-
centrate its budget on input regions identified as having a
high potential. The latter results in accurate estimates of g
in the region of interest and allows the algorithm to return
an optimal input value with high precision.

In the context of Bayesian optimisation (BO), such trade-
offs have been initially studied by Mockus et al. [1978] and
Jones et al. [1998] in a noise-free setting. Their framework
has latter been extended to optimisation of the conditional
expectation of a stochastic black box [see e.g. Frazier et al.,
2009, Srinivas et al., 2009, Picheny et al., 2013]. Recently,
strategies optimising risk measures have been proposed, In
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particular, Cakmak et al. [2020], Nguyen et al. [2021b,a]
proposed new algorithms to optimise for the quantile and
CVaR, but for a different use case where the space Ω is
actually controllable and quantitative (e.g., ω is a random
parameter of the black-box with a Gaussian distribution).
This use case generally facilitates BO, as modelling can be
performed over Ψ over the joint X × Ω space (g being
then inferred from Ψ), for which observations are directly
available.

When Ω is not controllable, one solution is to assume a
parametric distribution (e.g. Gaussian) for Yx, and infer
its mean and variance as a function of x (g being then ob-
tained from the inferred distribution of Yx): see e.g. Kersting
et al. [2007], Lázaro-Gredilla and Titsias [2011], Saul et al.
[2016], Binois et al. [2018]. However, as we show in our
experimental section, such an approach will fail when the
choice of the distribution of Yx is inappropriate. An alter-
native is to replicate observations (i.e. at a fixed x value)
to compute local empirical estimates of g, then model g di-
rectly from this set of observations. Browne et al. [2016] and
Makarova et al. [2021] proposed BO algorithms to optimise
quantiles and CVaRs following this principle. However, our
experiments also show that intensively repeating observa-
tions dramatically hinders the efficiency of BO.

Hence, our approach is based on the following principles: a)
we model the risk g directly from noisy observations Yx of
the black box; b) our model does not assume any parametric
distribution of Yx; c) our algorithm does not require observa-
tion replicates. As quantile optimisation takes substantially
more data points that standard BO and as BO incurs a sig-
nificant computational overhead per step, we focus further
on the most likely use-case for quantile BO is in the large
batch setting, i.e. where large data volumes can be observed
in a relatively small number of optimisation steps.

Contributions The contributions of this paper are the fol-
lowing: 1) We propose a new model based on two latent
Gaussian Processes (GPs) to estimate quantiles or expectiles
that is tailored to heteroscedastic noise. 2) We use sparse
posterior and variational inference to support potentially
large datasets. 3) We propose a new Bayesian algorithm
suited to optimise conditional quantiles or expectiles in
a data efficient manner. Two batch-sequential acquisition
strategies are designed to find a good trade-off between ex-
ploration and intensification. 4) The ability of our algorithm
to optimise quantiles is illustrated on multiple test problems.

2 BAYESIAN METAMODELS OF RISK
MEASURES

For a given input point x, the quantile of order τ ∈ (0, 1) of
Yx can be defined as

g(x) = qτ (x) = argmin
q∈R

E
[
lτ (Yx − q)

]
, (1)

where lτ is the pinball loss [Koenker and Bassett Jr, 1978]:

lτ (ξ) = (τ − 1(ξ<0))ξ, ξ ∈ R. (2)

Despite its wide popularity (in particular due to its inter-
pretability), quantiles have some important shortcomings,
including not being a coherent measure of risk [Artzner
et al., 1999]. As an alternative, Newey and Powell [1987]
introduced the expectile as the minimiser of an asymmetric
quadratic loss:

eτ (x) = argmin
q∈R

E
[
leτ (Yx − q)

]
, (3)

leτ (ξ) = |τ − 1(ξ<0)|ξ2, ξ ∈ R. (4)

Contrary to quantiles, expectiles depend on the entire dis-
tribution and are a coherent measure of risk. Their main
drawback is their lack of interpretability [see Waltrup et al.,
2015, for a discussion].

We detail in the next section how these losses can be used to
get an estimate of the objective function g(x) using a dataset
Dn =

(
(x1, y1) · · · , (xn, yn)

)
= (Xn,Yn) that does not

necessarily require replicates of observations at the same
input location.

2.1 QUANTILE AND EXPECTILE METAMODEL

Different metamodels have been proposed to estimate a
quantile function, such as artificial neural networks [Cannon,
2011], random forest [Meinshausen, 2006] or nonparametric
estimation in reproducing kernel Hilbert spaces [Takeuchi
et al., 2006]. While the literature on expectile regression is
less extended, neural network [Jiang et al., 2017] or SVM-
like approaches [Farooq and Steinwart, 2017] have been
developed as well. All the approaches cited above defined
an estimator of g as the function that minimises (optionally
with a regularisation term)

Re[g] =
1

n

n∑
i=1

l
(
yi − g(xi)

)
, (5)

with l = lτ for the quantile estimation and l = leτ for the
expectile. Intuitively, minimising (5) is equivalent (asymp-
totically) to minimising (1) or (3).

These approaches however share a common drawback: they
do not capture the uncertainty associated with each pre-
diction. This is a significant problem in our setting since
quantifying this uncertainty is of paramount importance to
define the exploration/intensification trade-off. This limita-
tion can be overcome by using a probabilistic model such
as

y = g(x) + ϵ(x),

where g is either an unknown parametric function [Yu and
Moyeed, 2001] or a Gaussian process [Boukouvalas et al.,



2012, Abeywardana and Ramos, 2015], and where the dis-
tribution of ϵ depends on the quantity to be estimated. For
modelling a quantile, ϵ should follow an asymmetric Laplace
distribution:

pϵ
(
e
)
=

τ(1− τ)

σ
exp

(
− lτ (e)

σ

)
.

For approximating an expectile, one may use the asymmetric
Gaussian distribution:

pϵ(e) = C(τ, σ) exp

(
−

leτ (e)
)

2σ2

)
, (6)

with C(τ, σ) =

√
2τ(1− τ)

σ
√
π(
√
τ +

√
1− τ)

.

In both cases, the associated likelihood is given by

p
(
Yn|g

)
=

n∏
i=1

pϵ(yi − g(xi)). (7)

As this likelihood is a monotonic transformation of the em-
pirical risk associated to the pinball or asymmetric quadratic
loss (5), their minimisers coincide.

Although the Bayesian quantile model presented above is
well known, the Bayesian expectile model we just intro-
duced is new to the best of our knowledge. It is worth noting
that the non-conjugancy between the prior on g and the
likelihood functions implies that the posterior distribution
of g given the data is not available in closed form. To over-
come this, Boukouvalas et al. [2012] use expectation prop-
agation whereas Abeywardana and Ramos [2015] favours
variational inference. The latter appears to be one of the
most competitive approaches on the benchmark presented
in Torossian et al. [2019] so we will embrace the variational
inference framework in the remainder of the paper.

One limitation of the aforementioned methods is that they
can result in overconfident predictions in heteroscedastic
settings, as illustrated in Figure 1. The main reason is that
they only use a single parameter σ to capture the spread for
the likelihood function, which amounts to enforcing that
the noise amplitude does not change over the input space.
We believe this can be a severe limitation in the context of
quantile optimisation since the fluctuation of the quantile
value over the input space is likely to be dictated by the
noise distribution itself not being stationary.

To overcome this issue, we propose to build quantile and ex-
pectile models where the spread of the asymmetric Laplace
and Gaussian likelihoods varies across the input space. For
both distributions, this additional flexibility can be achieved
by redefining σ in equations 7 and 6 as a function of the
input parameters. Intuitively, a small value of σ(x) means
that there is a high penalty for having an estimate of g(x)
that is far away from the data, whereas a large value of σ(x)
means that this penalty is limited and thus leads to more

regularity in the model predictions. In practice, we choose a
Gaussian prior for g and a log-Gaussian prior for σ,

g(x) ∼ GP
(
µg(x), k

g
θ(x, x

′)
)
, (8)

log σ(x) ∼ GP
(
µσ(x), k

σ
θ (x, x

′)
)
. (9)

GPs are very popular surrogate models in BO due to their
flexibility at modelling smooth functions. Smooth objective
functions also have smooth quantiles and so GPs are also
a natural choice when modelling quantiles. The choice of
a log GP prior for σ is simply to ensure that the Laplace
variance takes only positive values. Our quantile model can
be compared to the Heteroscedastic GP model introduced
by Saul et al. [2016], but with a different likelihood function
so that the posterior mode corresponds to a quantile or an
expectile.

2.2 INFERENCE PROCEDURE

Although in most situations one can obtain a reasonable
estimate of a mean value using only a handful of samples,
inferring low or high order quantiles or expectiles tends to
require a much larger number of observations, since they
require information associated to the tails of the distribu-
tion. The inference procedure for the proposed probabilis-
tic model must thus be able to cope with relatively large
datasets, with the number of observations likely in the order
of a few hundreds to a million data points.

A well established method that supports both large datasets
and non-conjugate likelihoods is the Sparse Variational GP
framework [SVGP, Titsias, 2009, Hensman et al., 2013].
We briefly expose here the basic principles behind SVGP,
and defer the interested reader to the reference above or the
recent tutorial of Leibfried et al. [2020] for more details.

The SVGP framework consists in approximating the in-
tractable or computationally expensive posterior distribution
p(g, σ|Yn) by a distribution p(g, σ|g(Z)=ug, σ(Z)=uσ),
where Z ∈ XN and ug, uσ are N -dimensional random
variables:

ug ∼ N (ug|µg, Sg) and uσ ∼ N (uσ|µσ, Sσ).

The parameters Z, µg, Sg, µσ, Sσ, are referred to as
the variational parameters. The Z’s are often called induc-
ing points. Intuitively, ug are random variables that act as
pseudo-observations at the locations Z. Those locations are
either pre-determined (taken e.g. as a random subset of the
data or as the centroids returned by a k-means algorithm) or
optimised.

The variational parameters can be optimised jointly with the
model parameters (e.g. mean function coefficients or kernel
hyperparameters) such that Kullback-Leibler divergence
between the approximate and the true posterior is as small
as possible. In practice, this is achieved by maximising the
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Figure 1: GP quantile model from Abeywardana and Ramos [2015] (left) and ours (right) on data with high heteroscedasticity.
The left model cannot compromise between very small observation variances around x = 4 and very large variances (x ≤ 2),
largely overfits on half of the domain and returns overconfident confidence intervals. In contrast, our model captures both
the low and high variance regions, while returning well-calibrated confidence intervals.

Evidence Lower Bound (ELBO):

n∑
i=1

∫
log p

(
yi|gi, σi

)
p̃(gi)p̃(σi)dgidσi

− kl
(
p̃(uq)||p(uq)

)
− kl

(
p̃(uσ)||p(uσ)

)
,

where p̃(gi) and p̃(σi) are shorthands for the variational
posterior distributions at xi:

p̃(gi) =

∫
p(g(xi)|g(Z) = ug)p(ug)dug

= N (gi|Kxi,ugK
−1
ug,ug

µg,Kxi,xi +Qg),

where Qg = Kxi,ugK
−1
ug,ug

(Sg −Kug,ug )K
−1
ug,ug

Kug,xi .

To optimise the ELBO in practice, Hensman et al. [2013]
proposed a numerical solution allowing for mini-batching
and the use of stochastic gradient descent algorithms such
as Adam [Kingma and Ba, 2014]1.

3 BAYESIAN OPTIMISATION

Classical BO algorithms work as follow. Firstly, a posterior
distribution on g is inferred from an initial set of experi-
ments Dn (typically obtained using a space-filling design).
Then the next input point to evaluate is chosen as the max-
imiser of an acquisition function αn : X → R, computed
using the posterior of our surrogate model(s). The objective
function is sampled at the chosen input and the posterior
on g is updated. These steps are repeated until the bud-
get is exhausted. The efficiency of such strategies depends
on how informative the posterior distribution of g is but

1first order optimizers such as Adam are particularly relevant
for the quantile as that can handle the non-differentiability of the
objective function due to the non-differentiability of the pinball
loss at the origin.

also on the exploration/exploitation trade-off provided by
the acquisition function. Many acquisition functions have
been designed to control this trade off, among them the
Expected improvement [EI, Jones et al., 1998], upper confi-
dence bound [UCB, Srinivas et al., 2009], knowledge gra-
dient [KG, Frazier et al., 2009] and Entropy search [ES,
Hennig and Schuler, 2012].

In the case of quantiles and expectiles, adding points one
at a time is impractical since many points are typically
necessary to induce a significant change in the posterior
for g. Hence, we focus here on batch-BO strategies, for
which the acquisition recommends a batch of B > 1 points
instead of a single one. The above-mentioned acquisition
functions have been extended to handle batches: see for
instance Marmin et al. [2015] for EI, [Wu and Frazier, 2016]
for KG, or Desautels et al. [2014] for UCB. However, none
of these approaches actually fit our settings for two main
reasons. Firstly, most parallel acquisitions ( like those based
on EI or KG) make use of explicit update equations for the
GP moments and assume access to a Gaussian posterior for
observations, neither of which are available for our quantile
(or expectile) model. For example, expected improvement
assumes that we see noisy observations of the object that
we wish to predict the improvement of. This is not the case
in the quantile optimisation setting, as our observations
are not noisy realisations of the quantile. Secondly, most
existing batch acquisitions are designed for small batches
(say, B ≤ 5) and become numerically intractable for the
larger batches (say, B > 50) that provide the data volumes
necessary for optimising quantiles and expectiles.

We now propose the first acquisition functions that can be
applied to our quantile GP surrogate model, one based on
Thompson sampling and one on max-value entropy search.



3.1 THOMPSON SAMPLING

Thompson sampling (TS) is becoming increasingly popular
in BO, in particular because of its embarrassingly parallel na-
ture allowing full scalability with the batch size [Hernández-
Lobato et al., 2017, Kandasamy et al., 2018, Vakili et al.,
2021].

Given the posterior on g, an intuitive approach is to sample
Ψ(x, .) according to the probability that x is the location of
the maximum of g. Despite this distribution usually being
intractable, one may achieve the same result by sampling
from the posterior of g and then selecting the input that
corresponds to the maximiser of the sample. Such approach
directly extends to batches of inputs, by drawing several
samples and selecting all the maximisers.

The main drawback of GP-based TS is the cost of sampling,
which can only be done exactly at a finite number of input
locations and with cubic cost in the number of locations. An
alternative is to rely on a finite rank approximation of the
kernel, but this has been found to have an undesirable effect
known as variance starvation [Wang et al., 2018].

Wilson et al. [2020] showed that pairing sparse GP models
with the so-called decoupled sampling formulation avoids
the variance starvation issue. Vakili et al. [2021] then demon-
strated that such an approach delivered excellent empirical
performance on high noise, large budget, large batch sce-
narios, while enjoying the same theoretical guarantees as
the vanilla TS approach. Here, we build upon Vakili et al.
[2021], and apply their algorithm to the variational posterior
of g to obtain draws directly from the quantile or expectile
model. The posterior over σ, which controls the observation
noise, is not used during the TS algorithm.

The procedure for generating quantile samples from the vari-
ational posterior of g can be summarised as follows: First,
a continuous sample from the prior of g is generated us-
ing Random Fourier Features (see supplementary material).
Second we sample from the inducing variables ug. Third,
we compute the mean function m(x) of a GPR model that
interpolates the dataset {Z, ug − s(Z)}. Finally, the poste-
rior sample is obtained by correcting the prior samples with
the mean function v(x) = s(x) +m(x).

3.2 INFORMATION-THEORETIC QUANTILE
OPTIMISATION WITH GIBBON

Another particularly intuitive search strategy for BO is to
choose the evaluations that will maximally reduce the un-
certainty in the minimiser of the objective, an approach
known as max-value entropy search [MES, Wang and
Jegelka, 2017]. For quantile optimisation, MES corresponds
to reducing uncertainty in the maximal quantile value
g∗ = maxx∈X g(x). Following the arguments of Wang
and Jegelka [2017], a meaningful measure of uncertainty

reduction in this context is taken as the gain in mutual infor-
mation between a set of candidate evaluations and g∗ [see
Cover and Thomas, 2012, for an introduction to information
theory]. Principled information-theoretic optimisation then
corresponds to finding batches of B input points {xi}Bi=1

that maximise

αn({xi}Bi=1) = MI(g∗; {yxi}Bi=1|Dn), (10)

where yxi are not-yet-observed evaluations of the batch that
are estimated with the GP surrogate model.

Although calculating the acquisition function (10) is chal-
lenging, there exist effective approximation strategies for
GP models with conjugate likelihoods [Moss et al., 2020b,
Takeno et al., 2020]. In the remaining of this section we
show that the approach used in General-purpose Informa-
tion Based Bayesian-OptimisatioN [GIBBON, Moss et al.,
2021] can be adapted to support asymmetric Laplace or
Gaussian likelihood so that information-theoretic acquisi-
tion functions can be used for our quantile and expectile
models.

Following the derivations of Moss et al. [2021], the applica-
tion of three well-known information-theoretic inequalities
provides the following lower-bound for the mutual informa-
tion (10):

MI(g∗; {yxi
}Bi=1|Dn) ≥ H({yxi

}Bi=1|Dn)

− 1

2

B∑
i=1

Eg∗|Dn
[log(2πeVar(yxi

|g∗,Dn))] , (11)

where H(A) = −EA [log p(A)] denotes differential entropy.
Although calculating the expectation in the second term of
(11) is intractable (i.e. no closed-form expression exists
for p(g∗|Dn)), we follow another approximation common
among information-theoretic acquisition functions and ap-
proximate the integral using Monte-Carlo over a set of M
sampled maximum values. In particular, we use the Gum-
bel sampler proposed by Wang and Jegelka [2017], which
provides a cheap set of samples Mn = {g∗1 , .., g∗M} from
p(g∗|Dn).

When calculating the original GIBBON acquisition func-
tion, all the terms in the lower bound (11) are tractable,
i.e. the conjugancy of their Gaussian likelihood means that
H({yxi}Bi=1|Dn) is just the differential entropy of a mul-
tivariate Gaussian which, alongside each Var(yxi

|g∗,Dn),
has a closed-form expression (See Moss et al. [2021] for
details). Consequently, this lower bound itself is used as a
closed-form approximation to the mutual information. How-
ever, in our quantile setting, we no longer have expressions
for the first term of (11) — the joint differential entropy of
B-dimensional variable with a complex correlation structure
given by our two latent GPs.

To build an information-theoretic acquisition function suit-
able for our quantile model, we must apply an additional



approximation. In particular, by using a moment-matching
approximation, we can replace the intractable joint differ-
ential entropy with the differential entropy of a multivariate
Gaussian of the same covariance, leading to our proposed
Quantile GIBBON (Q-GIBBON) acquisition function;

αQ-GIBBON
n =

1

2
log |C| − 1

2M

∑
g∗∈Mn

B∑
i=1

log Vi(g
∗),

(12)

where |C| is the determinant of the B × B predictive
covariance matrix with elements Ci,j = Cov(yxi

, yxj
)

and V (g∗) denotes the conditional variances, Vi(g
∗) =

Var(yxi
|g∗,Dn). Crucially, all the terms of Q-GIBBON

have closed-form expressions (see supplementary material
for a derivation of C and V from our quantile GP).

Although applying an additional moment-matching approxi-
mation means that Q-GIBBON is no longer a lower bound
on the true mutual information, we found that it provides
very efficient optimisation (see Section 4). In fact, we tried
much more expensive but unbiased Monte-Carlo approx-
imations which did not result in noticeable difference in
performance.

In practice, directly searching for the set of B points that
maximise αQ-GIBBON

n is a very challenging task, due to the
dimensionality (B×D) and multimodality of the acquisition
function. However, the Q-GIBBON formulation makes it
particularly well-suited for a greedy approach, where we
first optimise Q-GIBBON for B = 1, then optimise for
B = 2 while fixing the first point to the previously found
value, etc. until B points are found. Note that, just like with
the standard GIBBON acquisition function, the diversity
between the elements in batches is provided by a repulsion
term (i.e. the first term of (12)) that depends only on the
correlation of the points in the batch. This is in contrast
to other greedy batch methods like the Kriging Believer
of Ginsbourger et al. [2010] or the one-shot knowledge
gradient Balandat et al. [2019] which are unsuitable for the
large batch setting as they require updates to their surrogate
model’s posterior as we add each new batch element.

4 EXPERIMENTS

We now evaluate our proposed model and acquisition func-
tions on a set of synthetic tasks and two real-world opti-
misation problems. All that follows could equivalently be
applied to expectiles, experiments are focused on quantile
optimisation to streamline the exposition.

4.1 ALGORITHM BASELINES

To our knowledge, there is no other existing BO algorithm
dedicated to optimising quantiles in our considered setting.

The most similar algorithms are those of Cakmak et al.
[2020] and Makarova et al. [2021]. However, Cakmak et al.
[2020] requires precise control over the noise generation
process, while Makarova et al. [2021] seek to find solutions
with low levels of observation noise but do not provide a
method for optimising a specific quantile level.

We can, however, apply standard BO methods to perform
quantile optimisation if direct observations of the quantiles
are available. This is achievable by using repeated obser-
vations, which allows computing a (pointwise) empirical
quantile. As direct observations are available, a standard GP
Regression model (GPR) can be used to provide a posterior
on g [Plumlee and Tuo, 2014]. One can also bootstrap the
repeated observations to obtain variance estimates of the em-
pirical quantiles, to improve further the model by accounting
for varying observation noise. Next, a BO procedure can be
defined based on any classical acquisition function. Here we
choose the vanilla EI. With this strategy, each batch consists
of a single point in the input space, repeated a number of
times. In the following we denote this baseline GPR-EI.

Our second baseline is based on the model of Saul et al.
[2016]. This model has a classic approach to heteroscedas-
tic noise [see similar approaches e.g. in Kersting et al.,
2007, Lázaro-Gredilla and Titsias, 2011, Binois et al., 2018],
where one (latent) GP is used to represent the mean of the
observations, and another GP to represent the log of the
noise variance, assuming that the noise is Gaussian. This
model uses the same variational framework as our quantile
model. With this model, estimation is focused on the mean
and variance of the observations, and the quantile predic-
tion is obtained using the Gaussian quantiles. We used this
model with Thompson sampling, allowing batch acquisi-
tions without repetitions. In the following we denote this
baseline HetGP.

4.2 IMPLEMENTATION

All models are built using the gpflux library [Dutordoir
et al., 2021], and our BO procedure uses trieste [Berke-
ley et al., 2022]. All models use a Matern 5/2 kernel, and all
acquisition functions (or GP samples in the case of TS) are
optimised using a multi-start BFGS scheme.

Our quantile model requires a design choice for the induc-
ing points placement. We follow the findings of Vakili et al.
[2021] and reinitialise their placement for each model fit
using the centroids of a k-means procedure on the data
points. This tends to concentrate the inducing points near
the optimal areas as more data is collected by BO and offer
a better local expressivity in those areas. Our implementa-
tion of decoupled Thompson sampling uses 1, 000 random
Fourier features (see supplementary material for detailed
expressions). To sample minimum values for Q-GIBBON
we use the Gumbel sampler of Wang and Jegelka [2017]
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Figure 2: Examples of marginal distributions for one GLD-
based problem at three different locations of the input space.
The vertical lines show the 95% quantiles.

with 10, 000×D random initial points.

4.3 SYNTHETIC PROBLEMS

Problem description We generated a set of synthetic
problems based on the Generalised Lambda Distribution
[GLD, Freimer et al., 1988], a highly flexible four-parameter
probability distribution function designed to approximate
several well-known parametric distributions. The four pa-
rameters define the location, scale, left and right shape of
the distribution, respectively. By varying the value of each
parameter as a function of x, one can create a black-box
with high noise, heteroscedasticity and non-Gaussianity:

Yx ∼ GLD(λ1(x), . . . , λ4(x))). (13)

To generate a large set of problems with varying dimension-
ality while controlling the multimodality of the problem
at hand, we used GP random draws for the λi’s. See sup-
plementary material for a full description. Figure 2 shows
examples of marginal distributions (for different x values)
for one such problem.

We consider two input space dimensions: D = 3 and 6 and
two quantile levels, τ = 0.75 and 0.95. We use as an ini-
tial budget 50D observations2, uniformly distributed across
the input space and a total budget of 250D observations,
acquired in batches of either B = 10 or 50 points. Each
strategy is run on 50 different problems. We report here the
simple regret in Figure 3, averaged over the 50 problems,
with confidence intervals.

Results In almost all cases, our approaches largely outper-
form the two baselines, the exception being on the simpler
problem (small dimension and batch size) for which the
GPR baseline is comparable to TS (GIBBON being sub-
stantially better for the 0.75 quantile). The HetGP approach
sometimes deliver good early performance (e.g. dimension
6, batch 10, 75% quantile), beating the GPR baseline but
not our quantile approaches. However, its performance is
considerably hindered by the normality assumption of the

2this number is relatively large to allow initialising GPR-EI
with several distinct input points, each with B repetitions.

noise (as would any approach assuming a parametric dis-
tribution). This is particularly visible during later iterations
when the optimum is more precisely identified, the model
wrongly assumes that the noise is Gaussian and we often
see the regret increasing. Comparing acquisition strategies,
GIBBON clearly outperforms TS for D = 3. In dimension
6, both approaches are roughly comparable.

4.4 LUNAR LANDER

Problem description The Lunar Lander problem is a pop-
ular benchmark for noisy BO [Moss et al., 2020a, Eriksson
et al., 2019]. In this well-known reinforcement learning
task, we must control three engines (left, main and right) to
successfully land a rocket. The learning environment and a
hard-coded PID controller is provided in the OpenAI gym.3

We seek to optimise 6 thresholds present in the description
of the controller to provide the largest expected reward:
finding those thresholds defines the BO task. Our RL en-
vironment is exactly as provided by OpenAI. We lose 0.3
points per second of fuel use and 100 if we crash. We gain
10 points each time a leg makes contact with the ground,
100 points for any successful landing, and 200 points for
a successful landing in the specified landing zone. Each
individual run of the environment allows the testing of a
controller on a specific random seed.

This problem is particularly well-suited for a quantile ap-
proach, since reward is stochastic, highly non-Gaussian, and
the landing problem is a clear case for which one would
want guarantees against risk. Moreover, as certain configura-
tions of the lunar lander lead to much less stable behaviour
and a greater range of outcomes, this problem requires het-
eroscedastic models.

Results For this problem, we ran each algorithm 10 times
(starting from different initial conditions), with batches of
B = 25 points, 300 initial observations and 1, 500 in total.
We aim to maximise respectively the 2% and 10% quantile
of the reward. Due to the high cost of calculating the true
quantiles of the lunar lander experiment (i.e. they must be
calculated empirically across a large collection of runs), we
only report the reward quantile obtained after half and all the
iterations (see Table 1) and only run one of our two proposed
acquisition functions. We choose TS over GIBBON as our
synthetic GLD experiments suggest that TS outperforms
Q-GIBBON on problems with larger (i.e. 6) dimensions.

Here, the HetGP approach completely fails at recommend-
ing good solutions, which can be explained by the strong
violation of Gaussianity of the noise. TS from our Quantile
GP substantially outperforms GPR-EI, achieving higher per-
formance with much lower variability, both at intermediate
and final steps.

3https://gym.openai.com/



Figure 3: The mean and 95% confidence intervals of regret on synthetic problems in dimension 3 (top) and 6 (bottom), for
two quantile levels (τ = 0.75, 0.95) and medium (B = 10, left) and large (B = 50, right) batch sizes.

750 obs 1500 obs

10% GPR-EI 94.6 (106.1) 159.5 (110.9)
HetGP -38.7 (17.5) -18.7 (4.2)

TS 204.3 (53.8) 255.2 (8.0)

2% GPR-EI: 141.8 (82.9) 187.4 (80.6)
HetGP -35.1 (31.9) -19.2 (25.2)

TS 193.8 (56.4) 238.9 (14.6)

Table 1: Mean and standard deviation over 10 runs for the
10% and 2% quantiles of the reward on the lunar lander
problem.

4.5 LASER TUNING

Problem Description For our final experiment, we test
our quantile optimisation in a real-world setting inspired by
the Free-Electron Laser (FEL) tuning example of McIntire
et al. [2016]. This is a challenging 16-dimensional optimisa-
tion task where we must configure the strengths of magnets
manipulating the shape of the FEL’s electron beam, seeking
to build a powerful and stable beam suitable for use in sci-
entific experiments. Due to the high levels of observation
noise in this problem and as stability of the resulting beam
is of critical importance for conducting reliable experiments,
it is clearly beneficial to encode a level of risk-adversity into

the optimisation. Therefore, there are clear advantages for
using quantile optimisation for FEL calibration.

As we do not have access to the FEL directly, we follow
McIntire et al. [2016] and use their 4, 074 observed X-ray
pulse energy measurements to build GP surrogates from
which we can simulate pulse energy at any new magnet
configuration. To simulate the effect of observation noise,
McIntire et al. [2016] add additional Gaussian perturbations
to the simulated values. However, we found that the noise in
this system was actually skew Gaussian and varied in scale
and skew across the search space. Consequently, we sim-
ulate observation noise from a skew Gaussian distribution
with location, scale and shape parameters also modelled
with additional GPs (i.e. a setup similar to our GLD ex-
amples). As many of the 4, 074 energy measurements are
evaluated at very similar input locations, rounding these in-
puts to four decimal places provides us with many repeated
evaluations, allowing the empirical estimation of each pa-
rameter of the skew Gaussian distribution at each of these
inputs. The location, scale and shape GPs are then deter-
mined to predict the parameters of the skew Gaussian noise
distributions for any candidate magnet configuration.

Results Figure 4 shows the performance of each algorithm
over 10 repetitions, seeking to maximise the 30% quantile



Figure 4: The mean and 95% confidence intervals of best 0.3 quantile found across 10 repetitions of the FEL tuning task.

of pulse energy. The models are initialised with 400 data
points randomly chosen from the full dataset, and a further
1,200 points are collected with BO in batches of 100 points.
Our algorithms based on quantile GP models substantially
outperform the replicate-based GPR baseline. In fact, by
using TS with a quantile GP, we are able to find solutions
very close to the optimal value (4.8). We hypothesise that the
relatively poor performance of our Q-GIBBON acquisition
function is due to the high dimension of this problem. The
Gumbel sampler used by Q-GIBBON for sampling minimal-
values is based on random sampling and so its performance
likely degrades as the input dimension increases. Since the
performance of information-theoretic BO is sensitive to
the quality of these samples [Moss et al., 2021], extending
information-theoretic BO to high dimensional problems like
FEL tuning remains an open question.

4.6 CONCLUDING COMMENTS

We have presented a new setting to estimate quantiles and ex-
pectiles of stochastic black box functions that is well suited
to heteroscedastic cases. We then used the proposed model
to create two BO algorithms designed for the optimisation
of conditional quantiles and expectiles without repetitions
in the experimental design. These algorithms outperform
the state of the art on several test problems with different
dimensions, quantile orders, budgets and batch sizes.

Overall, our experiments clearly show that the performance
gap between our approaches and the GPR-EI baseline in-
creases with the batch size and problem dimension. Since
GPR-EI relies on repetitions, it is much more limited in
terms of exploration, while our approaches can evaluate B
unique points at each BO iteration. Hence, our approach is
much less sensitive to the curse of dimensionality.

Experiments also show that for low-dimensional, smaller
batches, Q-GIBBON is the best alternative, while with in-
creasing dimension and batch size, the simpler Thompson

sampling seems to perform best. Depending on the avail-
able hardware, the parallel nature of TS might also provide
substantial advantages in terms of wall-clock time.
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