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Immunopeptidome Cluster Profiling
with Critical Variable Selection

I ABSTRACT

Despite the worldwide effort to gain a deeper comprehen-
sion of the molecular mechanism that characterizes cancer,
its blueprint is still elusive.
In the last decade, results in the context of cancer immunol-
ogy helped researchers to identify a set of biological objects,
namely antigens, which now represent a promising direction.
Mass spectrometry is the typical investigation involved in
collecting molecules.
This method and modern techniques allow a limited but sat-
isfactory throughout on peptide knowledge.
However, the diversity coming out from such experiments is
still poorly characterized.
In this paper, UnChAnTies (Unsupervised characterization
of antigen communities) is introduced.
This tool is a computational platform that enables unsuper-
vised clusterings and identifies critical variables characteriz-
ing each community of antigens. The goal of the pipeline is
to identify relevant structures through unsupervised feature
extraction with a model-free approach. Additionally, shed
light, that takes part in the interplay between various kinds
of cancer through their antigen are determined.

II INTRODUCTION AND MOTIVATION

In the last years, machine learning had an essential impact on
immunology and cancer studies. The use of this technology
allows determining more effective applications on the tumor
treatments.

In addition, most of the neoantigens predicted computationally
fail to elicit an immune response in vivo [1], meaning that design
principles of antigens are poorly understood and the epitope -
the terminal to which T-cells receptors bins- prediction is still
limited.
Cancer can be characterized by the alterations heap in the
genome and the typical cell regulatory activity alteration. These
facts have long been known to result in antigen proliferation,
resulting in peptides bound to primary histocompatibility class
I (HMC-I) molecules on cancer cells’ surfaces, distinguishing
them from their regular counterparts.

The eradication of all its cells is required to prevent cancer pro-
liferation. During the last two decades, the possibility to tackle
cancer employing the capability of immunity emerged and is
currently known as Cancer Immunology. This research field
introduced novel both experimental and computational tech-
niques (eg, respectively mass-spectrometry immunopeptidomics
[2], [3] and machine learning-based methods [4] [5]).
The adaptive immune system is the largest source of genetic di-
versity inside the human body. A crucial locus for the immune
system, located in chromosome 6, Human Leukocyte Antigen
(HLA) contributes to more than half of the four to five million
single-nucleotide polymorphisms (SNPs) in each genome. This
locus encodes cell-surface proteins responsible for the regulation
of the immune system.
Since pioneering the work of Boon [6], we know that DC8+ T
cells, spontaneously produced by patients, can recognize such
cancer-specific peptide-MHCI complexes, making the detection
of cancer cells feasible for the immune system.
On the physiological side, the immune system response to can-
cer is based on the Cancer-Immunity Cycle (CIC) [7]. Ideally,
during this process, the T-Cells should recognize, reach and de-
stroy cancer cells. The CIC is articulated in 7 main steps:

• Cancer cells spontaneously dies releasing antigens in the
tissue environment (1): such antigens are captured by den-
dritic cells and presented to the T-cells (2)

• The T receptor cells do not recognize such antigens as a
native from the organism (histocompatibility is broken) and
activate (3)

• Starting from a lymph node and through blood vessel the T
cells trafficking occurs until the cancer bed is reached (4)

• T cells infiltrate in tumor (5), recognize (6), and kill (7)
cancer cells.

When the T-cells reach and kill cancer cells, antigens are newly
released, and the process restarts. Thus, the CIC works as a
positive feedback loop if optimally performed until the antigens
are not released anymore.
However, in cancer patients, the CIC is disrupted and subopti-
mally performed. If one of the steps mentioned above is compro-
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mised, the cycle is no longer possible, and the cancer population
proliferates.
This fact allows cancer to select its antigens (surface peptides)
repertory thanks to its continuous mutations and escape the im-
mune surveillance as a consequence of the interaction with the
immune system. These escape mechanisms are implemented by
selecting MHC class I-deficient tumor escape variants.
On the other side, we have cancer antigens, i.e., ensembles
of molecules with which the T-Cells recognize cancer as a
pathogen. We call such ensemble the immunopeptidome. Over-
all the immunopeptidome, only a few objects can be regarded as
a candidate for being included in immunotherapy. This particu-
lar quality, known as tumoral specificity, gives rise to peptides
that arise from the expression of somatically mutated genes,
namely, the Neoantigens. In the language of statistical physics,
Neoantigens are points in a high-dimensional space correspond-
ing where a gain function is optimized by cancer cells selec-
tion. Understanding the structure of the gain function landscape
can help to decode the design principle of cancer evolution as a
reverse engineering problem. Some clinical trials already em-
ployed neoantigen successfully [8], but why this happens re-
mains elusive. However, these partial results stimulated the sci-
entific community to discover the cancer-specific antigens me-
diating immune-system response or, in general, to enhance pos-
itive feedback in the CIC.
Inspired by the vast literature regarding reverse engineering of
proteins [9] which is primarily based on the Potts Model, we
were interested in a model-free description of biological objects.
Such description actually exists and is known in the statistical
physics community as critical variable selection (CVS) [10],
which can be considered, in modern machine learning terms,
an unsupervised feature extraction algorithm. This approach is
promising, as it was shown to capture statistical moments be-
yond the second one and find long-range structures (eg. beyond
linear motives) in the context of protein families.
The algorithm was introduced to find an easily interpretable ex-
planation to the regularities found in multiple sequence align-
ment (MSA) of protein families. In general, evolution con is
thought of as a process towards optimization of some biological
function. If such optimization exists, there should be relevant
sites, organized as (eventually non-contiguous) subsequences
occurring with a broad distribution in the MSA. This special kind
of occurrence was shown to encode both evolutionary and struc-
tural properties in the multiple sequence alignment of proteins.
The described tools have been primarily employed in the con-
text of multiple sequence alignment (MSA) of protein families
[11]. We can regard a protein family as a cluster of evolutionary-
related clusters of sequences.
Our main idea is to employ this unsupervised, model-free
method to multiple sequence alignment of peptides, to find the
relevant variables that characterize them. Unfortunately, im-

munopeptidomics data are not organized as protein families
are. We thus created our peptide multiple sequence alignment
(pepMSA) after clustering a custom dataset of epitopes. After
this clustering procedure, we profiled each cluster with the CVS
algorithm, mapping the diversity of the immunopeptidome land-
scape, finding a rich, formerly unobserved, structure that will
help to design better therapies in the future. We thus created Un-
ChAnTies our in-house clustering and pepMSA workflow and
applied the formerly described approach to antigen peptides.

III METHODS

A Data mining

Over the last fifteen years, the field of immunology flourished
in an unprecedented way, thanks to the rapid expansion of im-
munologic experimental techniques [3] and the development of
a theoretical framework for the comprehension of the diversity
in the immune system [12]. So far, despite many efforts [13],
limitations in the direct access to molecular data persist, in par-
ticular, due to privacy issues. This situation strongly limits a
wider comprehension of the CIC and other features of cancer.
Fortunately, open-access resources are available. Our dataset is
a subset of the IEDB [14], which collects > 1.6 million of exper-
iments from ≈ 19500 scientific publications. The total amount
of epitopes now reaches. This effort sums up to detailed and
standardized experimental data regarding more than ≈ 200000
epitopes are now freely and easily accessible via browser. We
searched for the following kinds of cancer, obtaining a .fasta file
for each of them. We provide a summary of the dataset charac-
teristics:

B Finding Clusters in the Immunopeptidome

Clustering is a central challenge in data mining and, due to
their astonishing diversity, in molecular data as well. Typically,
next-generation sequencing (NGS) produces a vast array of
data that are counterintuitive to interpret if not grouped. This
problem is a long-standing and well understood one in the
context of proteins [15], [16], where a plethora of resources
accumulated in time.

Initially, clustering proteins involves the analysis of protein
families to determine unknown sequences. This process is, for
instance, described in [15] which applies protein domains to
obtain a clusterization of the datasets. In particular, this allows
the assignment of functions to predicted proteins by comparison
with proteins that belong to the same group, so characterized by
joint annotations.
During our analysis, this process is not directly applicable. In
fact, it is unknown how the peptides cluster, and it is conse-
quently impossible to provide joint annotations involving this
methodology.
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To gain clustering information, it is critical underly that the
grouping emerges because classes of proteins share some struc-
ture at the sequence level.
As explained in [17], it is possible to perform Multiple Sequence
Alignment (MSA) to illustrate evolutionary related sequences.
That accounts for evolutionary properties (eg, mutations, inser-
tions, deletions, and rearrangements) and aligns the different se-
quences reflecting evolutionary traits. For instance, a method
could involve adding gaps to the sequence: the additions repre-
sent insertions or deletions that occurred in the evolutionary path
and allow the homologous positions to be aligned.
Different kinds of alignment may be possible. In particular,
during this work, the researched alignment is functional. Fur-
thermore, it is foreseen that, if the alignment is functional, the
aligned positions are expected to support similar functions and
so to be homologous. It is still important to consider that, even
if it is reasonable to expect an overlap, the complexity of evolu-
tionary changes does not allow a complete agreement.
But, if we assume that the sequence entirely determines function,
then it is possible to perform a multiple sequence alignment, for
which a vast literature exists [17].

In any case, it is important, at the conceptual level, to note that
many of the MSA algorithms rely on the identification of mo-
tives, with which proteins recognize their interaction partners.
Linear motives can be regarded as a continuous approximation
of highly recurring subsequences, which is the central object of
the critical variable selection algorithm. Thus, motives should
be regarded as an ansatz for a more general structure. Once we
build .fasta file for each cancer type, we grouped such files into
a unique one, as if it comes out from a unique sampling process.
We then choose, among the many algorithm available Hammock
[18], which contemporary performs both clusterings (finding the
correspondent of the protein families, which we will call com-
munities) and performs multiple sequence alignment, the data
structure to feed in CVS. We run Hammock with standard pa-
rameters, obtaining a total of NCluster =

We further checked that the quality of the obtained MSA reaches
the standards.

Fig. 1: An example of multiple sequence alignment from the retrieved
peptides. ([arwrf])

C Critical Variable Selection

In contemporary molecular biology, objects are mainly investi-
gated through their sequence. Such sequences are written with
different (but related ) alphabets. The alphabet belonging to pro-
teins is based on 21 amino acids. During 70’s Anfinsen [19]
postulated that, under very general conditions, the folding of a
protein (and its function) should be completely determined by
its amino acid sequence. Unfortunately, the mapping between
sequence, folding, and function is a longstanding and unsolved
problem. Several databases of homologous (ie performing the
same function) proteins exists [11], [20], [21] and they were in-
vestigated in recent works based on model-oriented and model-
free approaches [22], [9], [10]. One of the leading ideas in the
field is that every algorithm that tries to do reverse-engineering
the ensemble of proteins should be formulated as an optimization
problem, which nature solves by sampling aminoacid sequences
as configurations.
Similar efforts were still not applied in the context of peptides
and, in particular, with antigens. If evolutionary forces select
optimal peptides in cancer, we expect that they group according
to some, still unknown, principles. In the former section, we
described how we obtained the peptide clusters from a hetero-
geneous dataset, in the same way, homologous proteins are re-
trieved from a wide diversity of experiments. Applying a model-
free method mutated from statistical physics [10] we aim to find
if the internal space of sequences building up each cluster has an
internal structure that can help us to shed light on their function.
Once we obtained the MSA for each peptides cluster, we charac-
terized its internal structure with critical variable selection. Al-
beit detrimental for the host, tumor cells pursuit their perpetra-
tion through the optimization of a set of tasks [23]. With this
analogy in mind, we considered CVS as a suitable tool to map
the immunopeptidome.
We can translate the multiple sequence alignment structure into
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a matrix form. Let be

si, j ∈ {A,B,C, ...} i = 1...M, j = 1...L (1)

The j-th amino acid of the i-th sequence. We can introduce, for
the single sequence, the notation s⃗i.
This setting can be represented in a matrix form as follows.


m1,1 m1,2 . . . m1,C

m2,1
. . .

...
mF,1 mF,C

 =


v1,1
v2,1

...
vF,1

 (2)

The concept of CVS comes out by thinking of a sequence as the
solution of an optimization problem with an unknown function
and unobserved (latent variables). Following [10], the frequency
with which a sub-sequence occurs in a given set of realizations
is a reliable proxy for the underlying function being optimized.
Once the sub-set of sites is fixed, sites harboring functional and
structural information are very peaked in a frequency distribu-
tion, while highly non-conserved ones tend to have a flatter dis-
tribution. Thus, the heterogeneity in this distribution is a proxy
for the relevance of the biological process of such a site. This
observation imposes to look for subsets of variables such that
the frequency with which the corresponding subsequences occur
has a larger heterogeneity in the MSA.
Let us assume that the MSA spans L sites and that among these
only l < L are relevant for the peptide to carry its function in
the immunopeptidome. We introduce the index for the subset
of such variables I ⊆ {1,2, ..,L} and we will call it slice, with
meaning cleared in the following. We can thus think of each
sequence as composed of relevant/non-relevant sites.
For example, let us consider L = 8 and I = 1,4,5,7. We can
rearrange a set of sequences (here just one for sake of simplicity)
as follows:

s⃗i = (s1,s2,s3,s4,s5,s6,s7,s8) =

= (s1,s4,s5,s7︸ ︷︷ ︸
relevant

s2,s3,s6,s8︸ ︷︷ ︸
non-relevant

) = (⃗s ρ

i , s⃗ ρ

i )

We can now define two information-theoretic measures regard-
ing the sub-matrix of SSS where we only consider the columns
identified by Iρ . We thus drop the index ρ , remarking that Iρ

will be fixed until where the contrary is mentioned.

kI(s) =
L

∑
j=1

δ (s,s j) (3)

Is the number of times that a sub-sequence s appears in the I-slice
of the MSA.

mI(s) = ∑
s

δ (k,kI(s)) (4)

is the number of sub-sequences appearing exactly k times. Ex-
tending the former example, we can visualize the relevant/non-
relevant slicing procedure fig. 2 and how the practical calcula-
tion of ki(s) and mI(s) is performed.

Fig. 2: Entropies are calculated one the subsequences sites I is fixed.
After slicing the MSA we obtain H[kI ],H[sI ]. Considering

I = {1,3,4,5}for this example, one get k([YDYB]) = 3/7,k([YDYB]) =
3/7,k([WRYB]) = 1/7,k([WFYE]) = 1/7. For the ms:

m(k = 3) = 1,m(k = 2) = 1,m(k = 1) = 2

We measure the relevance of the sub-sequences generated by the
slicing We say that a given slicing index I, unveils the relevance
of the sites which is referred to with the following entropy, which
is related [10] to the number of states that the slice I can distin-
guish using their sampling frequency:

H[kI ] =−∑
s

kmI(k)
M

log2
kmI(k)

M
(5)

When H[kI ]> H[kI′ ] it means that the slice I′ produces a broader
distribution of frequencies meaning that some structure with a
strong biological meaning emerges considering I′ as the slice of
the relevant sites. Thus, for fixed slice length |I|= n we want to
find the slice that maximises the relevance:

Ĩ(n) = arg max
I:|I|=n

H[kI ] (6)

The description of the algorithm with which we find such I is
demanded in the next section. Finally, we note that H[kI ] is dif-
ferent from the entropy of the sequence

H[sI ] =−∑
s

kI(s)
M

log2
kI(s))

M
=−∑

k

kmI(k)
M

log2
kI(s)

M
(7)

Which is anyway related to H[kI ] by H[kI ] = H[sI ] −
∑k

kmk
M logmk from which we obtain the bound H[kI ]≤ H[sI ]
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Here, starting with the same MSA a different choice of the slic-
ing set I at a fixed number of relevant sites n can result in a
different outcome in the histogram of k. This histogram is the
central object of our investigation since it defines both H[kI ] and
H[sI ].

Fig. 3: Each cluster has highly diverse entropy landscape, which, in
any case, respect the bound H[kI ]≤ H[sI ].

D Algorithm Implementation
Due to the specificity of the CVS framework, we follow [24]
in defining proposing an ansatz for finding Ĩ(n). The idea is to
go towards the global optimum of H[kI ] with a gradient ascent
algorithm, with a Monte-Carlo-inspired implementation. This
algorithm was then performed on every cluster of the dataset, to
obtain a characterization of the internal variables involved in the
ligand-receptor recognition between T-cells receptors and cancer
surface proteins, namely the antigen.
The idea is to explore as much as possible all local maxima of the
entropy landscape. To do so we set several iterations T that is the
maximum number of states that can be explored for each trajec-
tory. Inside each trajectory, a new state is proposed employing
a rejection-acceptance rule: if the entropy of the new state is
higher than the old one, then the proposed state is accepted as
a new one. The new state is generated randomly choosing, one
of the sites in I and changing it with a random one. We call this
rule flip Algorithm 1. To ensure convergence, we set a maximum
number of rejections re jections. This part of the algorithm is
supposed to reach, at best, a local maximum. To ensure a com-
plete exploration of the entropy landscape we run this algorithm
R times with a randomly initialized state.
This algorithm runs over all the MSA that characterize each clus-
ter, looking for different large-scale correlations.

IV RESULTS

Now, we can consider the outcome of our critical variable se-
lection procedure. We can introduce the following measure of
relevance for a single site: let ci be the number of times (even-
tually normalized) that a site appears as an argument of In when

Algorithm 1 Gradient-Ascent Relevance optimization

1: for t in R do ▷ Random initialization
2: for t in T do ▷ Monte Carlo
3: while p≤ re jection do
4: I′← f lip(I)
5: end while
6: if H[kI ]≤ H[k′I ] then
7: I← I′

8: else
9: p+= 1

10: end if
11: end for
12: end for

it reaches a local maximum. As we see from 4, this measure ex-
hibits, for all clusters a universal curve characterized by a peak.
Such a pattern suggests that there exists a common organiza-
tional principle of the immunopeptidome. This should not be
surprising, since every sequence in such an ensemble partici-
pates in the ligandome, and perform the same function. In any
field of sciences, it is central in the comprehension of a phe-
nomenon to identify if a pattern can be reproduced by a random
model. If the random model produces a pattern comparable to
the data, then one can state that variability in data can be de-
scribed as a deviation from a random model. Now, a typical
method to test this idea [25] is to produce new data from the
available ones. We implemented such a procedure as follows.
We substitute every column with a similar one but randomly
permuted. We do this random permutation independently for
each column, to destroy the identity of sites. Doing the same
along rows we destroy the identity of sequences as well. While
this procedure scrambles both samples and variables, it does not
modify the entries of the data matrix.
Thus, we obtained a randomized version of the data against
which we could compare the empirical ones. If after random-
ization the pattern would look the same, that would mean that
even original data were random. After the randomization pro-
cedure, we compared the two ci patterns finding the second one.
exhibit a ci that is constant plus noise, meaning that the universal
peak we find in data is a strong signal of the spatial structure that
relevance assumes in the immunopeptidome.

V CONCLUSION

During the present work, we explored and characterized the di-
versity between antigens. It has been shown that critical variable
selections can identify the original function of the antigen.
What has been additionally shown, is that the sites have a uni-
versal organization. That may be caused by the fact that all se-
quences we are considering belong to surface proteins, so they
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Fig. 4: Each cluster exhibits a universal pattern in the organisation of
relevance along the biological sequence which is strongly non-random.

In fact, random data present flat distribution, as shown in the second
picture, contrary to the relevant shape of real data (first picture) which

is modal.

are part of the ligandome. As described by [26], despite molec-
ular diversity, universal laws that regulate universal ligandome
interactions hold. In future work, it will be crucial to collect a
larger amount of data, to let statistical differences emerge more
clearly. In the context of random models, [27], deviation of the
data from a random baseline is a valuable direction for further
investigations.
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