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(a) (b)

Figure 1: (a) Results generated by StyleAdapter. (b) Results generated by our proposed StyleMaster,
which can better stylized the images based on the reference images. Compared with StyleAdapter,
our method can generate more consistent and delicate stylized images with different styles. For
simplicity we only present the generated images here. Styles from up to bottom: pixar, wooden,
cubism, Van Goah. For the style reference images please refer to the supplementary material.

ABSTRACT

Stylized Text-to-Image Generation (STIG) aims to generate images based on text
prompts and style reference images. We in this paper propose a novel framework
dubbed StyleMaster for this task by leveraging pretrained Stable Diffusion (SD),
which addresses previous problems such as misinterpreted style and inconsistent
semantics. The enhancement lies in two novel modules: multi-source style em-
bedder and dynamic attention adapter. In order to provide SD with better style
embeddings, we propose the multi-source style embedder, which considers both
global and local level visual information along with textual information, thereby
offering both complementary style-related and semantic-related knowledge. Ad-
ditionally, aiming for better balance between the adapter capacity and semantic
control, the proposed dynamic attention adapter is applied to the diffusion UNet
in which adaptation weights are dynamically calculated based on the style embed-
dings. Two objective functions are introduced to optimize the model alongside the
denoising loss, which can further enhance semantic and style consistency. Exten-
sive experiments demonstrate the superiority of StyleMaster over existing meth-
ods, rendering images with variable target styles while successfully maintaining
the semantic information from the text prompts.

1 INTRODUCTION

Stylized Image Generation (SIG), which generates images with specific styles, has broad academic
value and practical applications in fields like art and film. With the rise of diffusion-based generative
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models Ho et al. (2020); Rombach et al. (2022), research has shifted from traditional style transfer
to Stylized Text-to-Image Generation (STIG). In this task, one or several style reference images
are given as condition, and various images are generated based on these style conditions along
with additional information such as text prompts. Generally, STIG approaches provide enhanced
flexibility despite their complex, mixed input conditions, making them highly relevant for real-world
applications.

Recently, StyleAdapter Wang et al. (2023b), built on pretrained Stable Diffusion (SD), has emerged
as a representative and effective STIG method. It processes reference images through a style em-
bedding module, injecting these embeddings into the diffusion UNet via cross-attention modules
to guide style incorporation during denoising and generate stylized images. The framework has
also been successfully extended in recent work Wang et al. (2024). However, despite its effective-
ness with specific styles and prompts, StyleAdapter faces key challenges: (1) misinterpreted style,
where generated images fail to fully capture complex reference styles, and (2) inconsistent se-
mantics, where elements from reference images leak into the output, misaligning with text prompts.
These issues arise from the design of StyleAdapter, particularly its use of CLIP Radford et al. (2021),
which focuses on local patch-level patterns while neglecting critical global patterns. Furthermore,
by injecting style embeddings into all cross-attention layers of the diffusion UNet, the model biases
text-prompt integration, leading to semantic inconsistencies.

In this paper, we propose StyleMaster, a novel STIG framework featuring advanced extraction and
injection of style information. Our method builds on the basic pipeline of StyleAdapter but intro-
duces specific enhancements for style embedding extraction and injection.

For style extraction, we propose a multi-source structure to address the limitations of CLIP’s patch-
level information. Specifically, in addition to using CLIP-based patch embeddings, we incorporate
global-level VGG descriptors, which are integrated into the attention process via adaptive scaling
and shifting. Moreover, we utilize the semantic knowledge from reference image captions. To pre-
vent this abstract semantic content from influencing the style embedding, we introduce a negative
embedding branch that removes semantic information. By combining these different latent spaces,
our method captures a more comprehensive representation of target styles while avoiding semantic
leakage. For style embedding injection, we advocate that limiting the attachment of adapters only
to specific parts of the UNet, such as the upsampling layers, could prevent semantic distortion. How-
ever, this direct limitation reduces the capacity of adapters and worsens the issue of misinterpreted
style. To resolve this, we propose a dynamic attention adapter that generates dynamic weights from
the style embeddings. These weights adapt both self-attention and cross-attention layers in the dif-
fusion UNet, allowing for more precise and flexible style adaptation. This ensures that the generated
images maintain both the intended style and semantic consistency with the text prompts.

Furthermore, we enhance the model with objectives beyond the standard noise prediction loss com-
monly used in diffusion models. We introduce a Gram consistency loss, augmenting the reference
images with two sets of transformations: one set preserves the original style, while the other adopts
a distorted style. We then compute Gram matrices of the estimated denoised results and these trans-
formed reference images as their style-aware statistics. By applying a triplet loss among these
matrices, the model is encouraged to generate images with more robust and consistent styles when
processing different reference images. Additionally, we utilize a semantic disentanglement loss to
mitigate the inconsistent semantics problem by contrasting the style embeddings against reference
text embeddings, while ensuring they remain similar to the reference image embeddings.

To show the effectiveness of our proposed method, we conduct extensive experiments among various
styles containing both one-shot and multi-shot settings. We show that our method can significantly
outperform baseline methods including StyleAdapter, generating correct styles and avoiding incon-
sistent semantics. In summary, the contributions of this work are as follows:
1) Enhanced Framework for STIG: We present StyleMaster, a novel framework for Stylized Text-
to-Image Generation (STIG) that enhances the existing StyleAdapter pipeline. StyleMaster sig-
nificantly improves style embedding extraction and injection, effectively addressing issues such as
misinterpreted styles and inconsistent semantics.
2) Multi-Source Structure for Style Extraction: Our StyleMaster introduce a multi-source approach
that integrates CLIP-based patch embeddings, global-level VGG descriptors, and semantic knowl-
edge from image captions, capturing comprehensive target style representations while preventing
semantic leakage through a negative embedding branch.
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3) Dynamic Attention Adapter for Style Injection: To enhance style embedding injection, StyleMas-
ter introduces a dynamic attention adapter that generates weights from style embeddings, enabling
precise adaptation of self-attention and cross-attention layers in the diffusion UNet. This ensures
that generated images maintain the intended style and semantic consistency with text prompts.
4) Enhanced Training Objectives: our model incorporates objectives beyond standard noise pre-
diction loss, including a novel Gram consistency loss that promotes robust and consistent styles
through triplet loss on Gram matrices from transformed reference images. Additionally, a semantic
disentanglement loss contrasts style embeddings with reference text embeddings while maintaining
similarity to reference image embeddings, addressing inconsistent semantics.

2 RELATED WORK

Text-to-image diffusion models. Diffusion models have been proven to be a powerful family of
generative models. DDPM Ho et al. (2020) originated to propose the framework by modeling the
mapping between Gaussian distribution and image distribution with the forward diffusion and in-
verse denoising process. Based on that Latent Diffusion Model (LDM) Rombach et al. (2022)
largely improved the practical usage by leveraging diffusion model to latent space instead of pixel
space, which leads to commonly-known text-to-image diffusion models such as Stable Diffusion
(SD), Midjourney and DALLE-3 Betker et al. (2023). Other works focus on improve the diffusion
model structure. For example, DiT Peebles & Xie (2023), MDT Gao et al. (2023) and PIXART-
α Chen et al. (2023) utilize the transformer instead of UNet structure, which can be better scaled
to larger model size. Blattmann et al. (2022) and Zhang et al. (2023b) leverage ideas of Retrieval
Augmented Generation (RAG) to generate images based on other retrived images which provide
extra knowledge. Yang et al. (2024) propose to leverage the LLMs for planning the text-to-image
problems. Our work is built on pretrained SD models, in which the attention mechanism merges
conditional information from text prompts to images. Different from the previous works, we focus
on designing extra attention adaptation so that the knowledge contained in the style reference images
can be smoothly embedded into the denoising process, leading to stylized images.

Stylized image generation. Among all conditional image generation tasks, stylized image gener-
ation has long been a highlighted one. Most previous works focus on style transfer, i.e., transfer
the style of a content image given another style refernce image. For example, Gatys et al. (2016)
solved this problem by optimizing the style-related statistics. Li et al. (2017) equipped this method
with explanability. MicroAST Wang et al. (2023a) proposed to speed up such framework by aban-
doning the complex visual encoder and utilizing a dual-modulation strategy. Yang et al. (2023)
leverages diffusion models, in which the style-aware guidance is used to generate the wanted style.
InST Zhang et al. (2023c) realized style transfer by inverting the content image to noise and then
re-generate it with the condition control of style images. Apart from these style transfer methods,
StyleAdapter Wang et al. (2023b) proposes a new framework which can generate images directly
from style reference images and text prompts without content images. Our work mainly follows
StyleAdapter to present a generalized stylization method. Different from StyleAdapter, we analyze
the role of style reference images and text prompts in the generation process. Based on that, we
propose a novel module to extract more representative style embeddings, which are then injected
into noise space with our proposed dynamic adapter.

3 PRELIMINARY: STABLE DIFFUSION

Diffusion models model the data distribution pθ (x0) of clean data x0 by progressively denoising
a standard Gaussian distribution, of which the learning process is instantiated as denoising score
matching. Stable Diffusion (SD) extends such a model to text-to-image based on text prompt p.
With pre-trained VQ-VAE Van Den Oord et al. (2017) containing encoder E and decoder D, SD
allows the model to focus more on the semantic information of data and improves efficiency. A
diffusion UNet is used to predict the noise, in which attention mechanism is adopted. Specifically,
for the l-th layer, self-attention is first used to interact among spatial features: zl = Attention(W l

Q ·
zl,W l

K · zl,W l
V · zl), where Attention denotes the attention operator, zl denotes latent embeddings

of the l-th layer, WQ,WK ,WV denotes the projection layers of self-attention. After that the cross-
attention is utilized to merge condition information such as text prompt: ẑl = Attention(Ŵ l

Qt
·

3
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Figure 2: Overview of our proposed StyleMaster. Concretely, the multi-source style embedder
(Sec. 4.1) aggregates style patterns contained in each reference image simultaneously from global
and local levels. Style embeddings are then engaged in the denoising procedure through the proposed
dynamic attention adaptation (Sec. 4.2), which guides both the attentions in diffusion UNet to
properly merge style and semantic information from different sources. During training augmented
input images are used as style reference images, through which objectives as described in Sec. 4.3 are
used to optimize the model. During inference the style reference images are achieves with manual
assignment instead of using augmentation of a specific image.
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Figure 3: Left: multi-source style embedder. Right: dynamic attention adapter.

zl, Ŵ l
Kt

·ztext, Ŵ l
Vt
·ztext), where ztext denotes text prompt embedding, ŴQ, ŴK , ŴV denotes the

projection layers of cross-attention. The training objective of SD is as follows:

Lnoise = EE(x),ϵ∼N (0,1),t

[∥∥ϵ− ϵθ
(
zt, t

)∥∥2
2

]
, (1)

where t is uniformly sampled from {0, ..., T}, zt denotes noisy latent at t-th timestep.

4 METHODOLOGY

We focus on reference-based Stylized Text-to-Image Generation (STIG) in this paper. Formally,
a reference style image set Is = {Iistyle}

Ns
i=1, where Ns denotes the number of reference images,

together with text prompt p are given as condition information. Ns can be variable among different
trials to describe different style concepts. The model is required to generate image I that shares
the same style pattern with Is and same semantic meaning with text prompt p. To solve this task
we present a novel framework named StyleMaster based on SD, as shown in Fig. 2, which will be
introduced in this section.

4.1 MULTI-SOURCE STYLE EMBEDDER

Given the successful application of text-to-image based on SD, an ideal reference-based styliza-
tion should necessarily depend on extracting style embeddings that are as representative as the
text embeddings resulted from strong embedders such as CLIP and T5, from reference images.

4
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StyleAdapter Wang et al. (2023b) adopts CLIP visual encoder Radford et al. (2021) to extract the
patch-level features from style reference images, which are then processed with cross-attentions us-
ing learnable style tokens. However, StyleAdapter still suffers from issues such as misinterpreted
style and inconsistent semantics, i.e., the semantic knowledge in reference images is generated dur-
ing the denoising procedure. The former problem can be attributed to the fact that CLIP-based patch
embeddings concentrate more on local patterns. In this way, the style embeddings fail to hold the
global style patterns, leading to misinterpreted styles. Meanwhile, since CLIP image embeddings are
aligned with their captions, they inevitably contain information about content in the images. Incor-
porating such information in style embeddings can lead to inconsistent semantics. Moreover, since
SD models different kinds of information across different denoising timesteps, providing identical
conditional information means SD has to extract the required information on its own, thus leading
to heavier learning burden for SD.

To solve these problems, we propose leveraging knowledge from multiple sources to complement the
style embedding. Specifically, given a style image set Is, we extract three different kinds of features
with pretrained models: (1) local style-aware features: Following StyleAdapter, we utilize CLIP
to encode each style image Iistyle into latent patch tokens z̃iCLIP ∈ Rc×(wh), where c, h, w denote
latent channel, height and width of CLIP features. Then we apply discrete wavelet transform (DWT)
to z̃iCLIP , leading to low-frequency features z̃iCLIP,lf and high-frequency counterparts z̃iCLIP,hf .
All low and high frequency features from Is are then concatenated together along the token di-
mension, resulting in zCLIP . (2) global style-aware features: Inspired by previous style transfer
methods Gatys et al. (2016), we adopt the Gram matrix to represent global-level style information.
Specifically, Iistyle is processed with VGG-19 Simonyan & Zisserman (2014) to obtain the relu3 1
feature zivgg ∈ Rc′×h′w′

, where c′, h′, w′ denote the latent channel, height and width of VGG fea-

ture map. Then the Gram matrix can be calculated as zigram = zivgg · zivgg
T , which is flattened to a

vector with dimension Rc2 afterwards. Then Gram matrices for different style images are averaged
to get the final representation zgram. (3) semantic-aware features: We adopt CLIP text encoder to
extract the text embedding zicap of captions of Iistyle, which are then concatenated into zcap. During
training, the captions are provided in the training set, while during inference, we adopt BLIP Li et al.
(2022) to first annotate the style reference images.

Generally, each token in zCLIP contains local-level style features, while zgram describes more
abstract style information. On the other hand, zcap contains the semantic information of Is, which
should be eliminated in the final style embedding to avoid inconsistent semantics. To properly
make use of these embeddings, we propose a novel dual-branch structure as shown in Fig. 3(a).
Concretely, several learnable style tokens zs are first attached to zCLIP , with their replication zNs
denoted as negative semantic tokens attached to zcap:

ẑCLIP = zCLIP ∥t(zs + δt), ẑcaption = zcap∥tzNs (2)

where ·∥t· denotes concatenation along the token dimension, δt is the same time embedding of the
denoising timestep as used in diffusion UNet. ẑcaption is then individually processed with sev-
eral transformer layers to aggregate the information between style tokens and text embedding. For
ẑCLIP , we adopt a modified version of transformer layer. Specifically, zgram is first projected to
scaling and shift coefficients. These coefficients are applied to the self-attention procedure in the
same way as adaLN Perez et al. (2018). Before processing the attention result with FFN, the style
token part in ẑcaption is subtracted from the counterpart in ẑCLIP .

Our design enjoys three major merits. First, the module is timestep-aware. Since the frequency-
aware style tokens are merged with time embedding, different denoising steps can thus model differ-
ent information. Second, the global information in zgram can guide the model to better concentrate
on style-related knowledge, thus avoiding those irrelevant but repetitive local patterns shared among
style images. Third, the negative semantic tokens generally contain more abstract content informa-
tion rather than style. Consequently, subtracting it from ẑCLIP can help alleviate the problem of
inconsistent semantics. While some captions may describe the style of images, the model can learn
to maintain this knowledge during training thanks to the training strategy described in Sec. 4.3. By
using the proposed module, we can learn more representative and generalizable style embeddings
which can better facilitate the stylization process described as follows.
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4.2 DYNAMIC ATTENTION ADAPTATION

The extracted style embedding zs from Is as described above can then be used to adapt the pretrained
SD to guide the denoising process based on style information. Thanks to the design of self-attention
and cross-attention mechanism in diffusion UNet, such adaptation can be simply instantiated as an
extra cross-attention module that is parallel to the original prompt-based cross-attention, as adopted
in StyleAdapter. However, we empirically find that such a method is suboptimal in a large amount of
cases, leading to severe semantic inconsistency. A straightforward solution is cut down the number
of extra attention modules so that only upsample layers in diffusion UNet are adapted. In this way,
the text prompt can dominate the cross-attention in half of the UNet, consequently resulting in better
semantics in the generated images. However, this can decrease the capacity of adapters, leading to
less preferable stylization. To this end, we propose adopting a dynamic adaptation strategy which is
applied to both self-attention and cross-attention (Fig. 3(b)).

Dynamic self-attention adapter. As discussed in previous works Hertz et al. (2023), the projected
value tensor W l

V · zl in the self-attentions contributes to the texture of generated images. Therefore
we introduce a dynamic self-attention adapter module based on adaIN. Formally, for the l-th self-
attention layer, we project zs with a linear layer and adjust W l

V · zl according to statistics of zs:

V̂l = µ(f l
proj−SA(zs)) +

σ(f l
proj−SA(zs))

σ(W l
V · zl)

∗ (W l
V · zl − µ(W l

V · zl)) (3)

where f l
proj−SA denotes dynamic projection layer, µ, σ denote mean and standard deviation. By

rescaling Vl, the information contained in zs can be directly embedded into the image feature with-
out destroying the structure and semantic meaning of the generated image.

Dynamic cross-attention adapter. To adapt the cross-attention layers, we follow the idea of
StyleAdapter to adopt the dual-path cross-attention mechanism. Basically, for the l-th cross-
attention layer, besides the original cross-attention performed between text embedding ztext
and image embedding zl as in Sec. 3, an extra style-aware cross-attention is added as z̃l =

Attention(Ŵ l
Qt

· zl, Ŵ l
Ks

· zs, Ŵ l
Vs

· zs) with additional learnable parameters Ŵ l
Ks

, Ŵ l
Vs

. Then
ẑl + λz̃l is fed into the following feed-forward networks, where λ is learnable coefficient.

To enhance the capacity, we further propose a dynamic cross-attention adapter. Specifically, we first
project the statistics of zs to a layer specific latent space:

zls = f l
proj−CA(µ(zs)∥cσ(zs)) (4)

where fproj−CA denotes a linear projection layer, ·∥c· denotes concatenation along the channel
dimension. Then two weight generators instantiated as linear layers are applied to zls, resulted in
two dynamic weights W l

Kd
,W l

Vd
with dimension d ∗ dl. These two features are reshaped into linear

layer weights and used to transform zs. After that the style-aware cross-attention is modified as

z̃l = Attention(Ŵ l
Qt

· zl, (Ŵ l
Ks

+W l
Kd

) · zs, (Ŵ l
Vs

+W l
Vd
) · zs) (5)

In this way, the key and value projections are partially dependent on zs, resulting in a more complex
transformation of zs and leading to better capacity. To make this module parameter-efficient, we
adopt a grouping strategy, i.e., channels of zs in each group share the same dynamic weight to
produce W l

Kd
and W l

Vd
, hence lighter weight generators can be used to generate dynamic weights.

4.3 TRAINING OBJECTIVES

To train the model such that it can generate images that are conforms to both the style information
from style reference images and semantic information from text prompts, we introduce a mixed
training objectives including three terms as follows.

L = Lnoise + Ldisen + Lstyle (6)

where Lnoise is the noise prediction loss as in Eq. 1. Ldisen denotes a semantic disentangle loss
applied to style embedding zs. To ensure that the proposed style embedding model can get rid of
the semantic information contained in Istyle when producing zs, Ldisen is designed by enlarging
the similarity between zs and zCLIP while decreasing the similarity between zs and text embedding

6
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ztext. Formally, Ldisen = sim(zcap, zs)− δsim(zCLIP , zs), where δ is hyper-parameter set as 0.1,
sim denotes cosine similarity. As discussed in Sec. 4.1, the text embedding represents more abstract
semantic information than the image embedding. Therefore this loss term can help the model avoid
the possibility of semantic leakage, thus leading to better style embedding. On the other hand, to
enhance the style consistency, we propose to regulate the Gram matrix of x̂0, which is the noisy
estimation from zt and can be calculated as

ẑ0 =
zt −

√
1− ᾱtϵt√
ᾱt

, x̂0 = D(ẑ0) (7)

Specifically, we apply several rigid transformations such as random rotation and cropping to IS to
get a new image Ipos that has the same style as x̂0. Then elastic transformation and color jitter are
also applied to IS . The resulted Ineg , while sharing similar semantic object to Iinp, barely inherits
the style from it. Then the objective is a triplet loss which can be written as

δp =
∑

|G(ϕvgg(x̂0))− G(ϕvgg(Ipos))| (8)

δn =
∑

|G(ϕvgg(x̂0))− G(ϕvgg(Ineg))| (9)

Lstyle = max{δp − δn + 0.1, 0} (10)

where G denotes the Gram matrix of features. By optimizing this loss term, the model is encouraged
to learn more detailed style information, thus leading to better results. In total, during training,
only the style embedder and the added adapters are trained with objectives as in Eq. 6. Those used
backbones such as VGG, CLIP and original parameters from SD are not trained. During inference,
we directly use the trained models to generate stylized images without any test-time optimization.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAIL

Dataset. We follow StyleAdapter to adopt LAION-Aesthetic 6.5+ as the training set, which contains
about 600k images. For each input image during training, we use its augmented variants as the style
reference images. For evaluation we adopt 50 prompts used in StyleAdapter, and select 20 styles
covering color, texture and global layout. More details are presented in the supplementary material.

Experiment setting. Our experiments cover both one-shot and multi-shot settings. To make the
evaluation more challenging, the shot number, i.e., number of reference images, varies from 2 to 5
among different styles in the multi-shot setting. We use all 20 styles for multi-shot experiments and
10 of them for one-shot experiments.

Training details. We adopt AdamW as optimizer with 1e-5 learning rate. Our model is trained for
200,000 iterations on 8 V100s with 8 batch size on each gpu, which takes about 3 days.

Competitor. We include extensive methods as our competitor. For 1-shot experiment, Mi-
croAST Wang et al. (2023a), StyleAlign Hertz et al. (2023), StyTR2 Deng et al. (2022), and
StyleAdapter Wang et al. (2023b) are adopted. For multi-shot experiment, InST Zhang et al. (2023c),
LoRA Hu et al. (2021), Textual Inversion (TI) Gal et al. (2022), StyleDrop Sohn et al. (2023) and
StyleAdapter are adopted.

5.2 QUANTITATIVE RESULTS

Objective quantitative results. For quantitative evaluation we adopt CLIP to calculate the style
similarity between generated images and target style reference images, and the semantic similarity
between generated images and target text prompts. The results are presented in Tab. 1 and Tab. 2 for
1-shot and multi-shot respectively. Note that for SD1.5, InstantStyle receives incredibly high style
similarity, which is not attributed to its strong performance. In fact, as we will show in the qualita-
tive results, InstantStyle-SD1.5 totally leaks the content in the reference images into the generated
images, thus leading to extremely poor text similarity. Moreover, MicroAST and StyTR2 share sim-
ilar text similarity to ours one-shot experiments. This is because we use pretrained SD to generate
base images for them, thus the basic semantic meaning is contained in the image. However the
gap in terms of style similarity is much more marginal. Our method outperforms the best baseline

7
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Table 1: Quantitative results for one-shot set-
ting. For all metrics, the larger score denotes
the better model.

Backbone 1-shot Methods Text Sim ↑ Style Sim ↑

SD15

MicroAST Wang et al. (2023a) 0.299 0.529
StyTR2 Deng et al. (2022) 0.298 0.541

StyleDrop Sohn et al. (2023) 0.290 0.583
InstantStyle Wang et al. (2024) 0.167 0.840

StyleAdapter Wang et al. (2023b) 0.282 0.668
Ours 0.299 0.708

SDXL
StyleAlign Hertz et al. (2023) 0.276 0.645

InstantStyle Wang et al. (2024) 0.295 0.652
Ours 0.311 0.696

Table 2: Quantitative results for multi-shot
setting. For all metrics, the larger score de-
notes the better model.

Backbone multi-shot Methods Text Sim ↑ Style Sim ↑

SD15

InST Zhang et al. (2023c) 0.196 0.692
LoRA Hu et al. (2021) 0.237 0.665

TI Gal et al. (2022) 0.268 0.678
StyleDrop Sohn et al. (2023) 0.273 0.599

InstantStyle Wang et al. (2024) 0.186 0.749
StyleAdapter Wang et al. (2023b) 0.286 0.682

Ours 0.291 0.719

SDXL InstantStyle Wang et al. (2024) 0.291 0.645
Ours 0.293 0.667

StyleAdapter by 0.04. As for SDXL, our method performs generally better than other competitors.
The results for multi-shot setting are consistent with one-shot, thus showing the superiority of the
proposed method.

Table 3: User Study for one-shot setting with
SD1.5 as backbone. For all metrics, the
larger score denotes the better model.

Methods Text Sim ↑ Style Sim ↑
MicroAST 3.18 2.84

StyTR2 3.85 3.25
StyleDrop 3.11 2.91

StyleAdapter 3.16 3.30
Ours 3.20 3.80

Table 4: User Study for multi-shot setting
with SD1.5 as backbone. For all metrics, the
larger score denotes the better model.

Methods Text Sim ↑ Style Sim ↑
InST 2.11 2.68
LoRA 2.84 3.34

TI 2.95 3.03
StyleDrop 2.71 3.11

StyleAdapter 3.12 3.78
Ours 3.14 3.86

Subjective quantitative results. Apart from the quantitative results in the main paper, we randomly
sample 5 images for each method using SD1.5 as backbone and each style and conduct a user study.
Given the abnormal performance of InstantStyle, it is not involved in this process. During the study,
the participant are required to score 1-5 for each image by considering both semantic fidelity and
style consistency. Then all scores are averaged. The results are shown in Tab. 3 and Tab. 4, which are
generally consistent with the objective results except that the text similarity of StyTR2 is extremely
high with human scores. Since StyTR2 cannot fully stylized the base images, some of its results are
exactly the same as the base images, which makes it enjoy almost the same semantic fidelity as SD,
leading to better text similarity but low style similarity. On the other hand, while StyTR2 receives
good semantic fidelity, its style consistency is poor. Our method, on the contrary, can find a good
balance for the trade off between semantic and style.

5.3 QUALITATIVE RESULTS

Ours StyTR2 MicroAST StyleAdapter InstantStyleStyleDrop

Figure 4: One-shot qualitative comparison with SD1.5 as backbone. Styles from top to bottom:
Cezanne, flat cartoon, expressionism, ink. Prompts from left to right: A bird in a word; A boy
wearing glasses, he is reading a thick book; A cherry blossom. For detailed reference images and
comparison with SDXL as backbone, please refer to the appendix.

We present several uncurated results with SD1.5 as backbone for both settings in Fig. 4 and Fig. 5
respectively. First of all, as mentioned above, we find that InstantStyle suffers from problem of

8
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Ours InST StyleAdapter LoRA TI StyleDrop InstantStyle

Figure 5: Multi-shot qualitative comparison with SD1.5 as backbone. Styles from top to bottom:
pencil, watercolor, Monet, impasto. Prompts from left to right: A robot; A modern house with a
pool; A lake with calm water and reflections. For detailed reference images and comparison with
SDXL as backbone, please refer to the appendix.

full modelw/o disen lossw/o style lossfull modelw/o dynamic adaptorw/o OnlyUPfull modelw/o NegEmbw/o VGGToken

Figure 6: Images generated by different model variants.

content leakage, resulting in meaningless generation. For one-shot experiment, since we use pre-
trained SD to first generate the content images, the style transfer based methods such as StyTR2

and MicroAST can generally enjoy reasonable semantic consistency. However, such methods can
only inherit the basic color information from reference images rather than the detailed style infor-
mation such as shape, texture and layout, thus making them less preferable. For example, they fail
to present the cubism and the curves in the second and third row. This is because these methods rely
on simple representation to transfer the style-related knowledge from reference images, which leads
to the problem of under-stylization. StyleAlign, on the other hand, can stylize the images better.
For example the images generated by StyleAlign in the fourth row share similar style patterns with
the reference image. However, we find that StyleAlign suffers from inconsistent semantics problem,
which leads to inconsistent semantic meaning with the text prompt. Moreover, images generated by
StyleAlign seems messy and disordered, which may be attributed to the uncontrolled shared self-
attention between content and style images. The performance of StyleAdapter is much better than
other competitors, while it is hard for this method to understand complex style patterns, leading
to undesirable results when it comes to ink painting (fourth row). Compared with these methods,
our method can learn appropriate style information from reference images, e.g., the scattered color
patches in the first and fourth row, and simultaneously keep the images faithful to the prompts, thus
making the best of both worlds.

The multi-shot setting which is more challenging shows similar results. InST can hardly repli-
cate the style. LoRA and TI suffer from limited style information. StyleAdapter, while utilizing a
specifically-designed pipeline, shows a tendency to confuse the given styles with the photographic
prior knowledge from pretrained SD. Such phenomenon is most obvious in the first row of Fig. 5,
where pencil drawings are provided as reference images, but StyleAdapter generates grayscale pho-
tos. Our method, thanks to the proposed multi-source style embedder which can extract more de-
tailed style information and the dynamic attention adaptation, can generally generate different kinds
of styles with high image quality and semantic fidelity.

9
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Table 5: Quantitative ablation study for both one-shot and multi-shot settings. For all metrics, the
larger score denotes the better model.

multi-shot Methods One-shot Multi-shot
Text Sim Style Sim Text Sim Style Sim

w/o VGGToken 0.288 0.692 0.288 0.698
w/o NegEmb 0.285 0.689 0.281 0.696
w/o OnlyUP 0.286 0.697 0.286 0.702

w/o dynamic adaptor 0.301 0.611 0.299 0.643
w/o style loss 0.280 0.694 0.290 0.705
w/o disen loss 0.282 0.695 0.286 0.694

Ours 0.299 0.708 0.291 0.719

5.4 ABLATION STUDY

To further verify the efficacy of our contributions, we conduct several ablation studies on multi-shot
setting. The quantitative results are shown in Tab. 5. More qualitative ablation studies are provided
in the appendix.

Design of style embedding module. We consider two variants together with the full model for
the style embedding module: not using the VGG Gram matrix to regulate the attention layers (w/o
VGGToken), and not engaging the reference image captions in the extraction (w/o NegEmb). The
results are shown in the left three columns of Fig. 6. The style of images generated by model
without VGGToken is generally less mimic. Meanwhile, the model without NegEmb not only has
worse style (first and second row) but also suffers from mistaken semantic meaning (third row).

Design of attention adapter. We illustrate the role of different parts in the proposed dynamic
attention adapter in the middle three columns of Fig. 6. When the model adopts attention adapter for
all UNet attention layers instead of only the upsample ones, the images generally have problem of
mistaken semantic meaning. For example, the clock is missing in the first row, and the cloth color is
mistaken in the third row. Also, it is obvious that when only using the same cross-attention adapter
as in StyleAdapter, the generated images show inconsistent and undesirable styles, which can be
attributed to the limited capacity to such strategy. Interestingly, we find in Tab. 5 that when not using
dynamic adapter, the model has a very different tendency compared with the full model, with much
better text prompt similarity but much worse style similarity. This is reasonable since the proposed
dynamic adapter greatly strengthens the impact of style embedding during both self-attention and
cross-attention. In this way, the cross-attention with text prompts is weakened is disguise. In general,
adopting dynamic adapter can make a good balance between text prompt fidelity and style fidelity.

Effectiveness of different objective functions. In the right three columns of Fig. 6 we inspect the
efficacy of two objectives introduced in Sec. 4.3. The results directly support our claim that the
gram consistency loss can enhance the style in generated images and the semantic disentangle loss
can make the model tell apart semantic and style information from reference images, thus better
handling contents in the text prompts.

6 CONCLUSION

We try to solve Stylized Text-to-Image Generation in this paper. A novel model is proposed to solve
the problems of misinterpreted style and inconsistent semantics which are suffered by previous meth-
ods such as StyleAdapter. The improvement mainly comes from the multi-source style embedder,
in which multiple sources and used to achieve comprehensive style embeddings and eliminate the
semantic information from style reference images, and the dynamic attention adapter, in which style
embeddings dynamically interact with attention layers in diffusion UNet. Extensive experiments
have been conducted to show the efficacy of our proposed method as a powerful stylization method,
which can be widely applied to real-life scenarios.
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A EXPERIMENT DETAILS

Competitors. We follow the original training protocol to train StyleAdapter, and utilize 500 and
1000 iterations for LoRA and TI respectively to achieve suitable performance and avoid overfitting.
To adapt the style transfer methods to our setting, we first utilize pretrained SD v1.5 to generate an
image according to the text prompt, then transfer its style using the corresponding methods. For
StyleAlign, we first adopt DDIM-inversion Mokady et al. (2023) to invert reference images back to
noise, and then attach it to other images to be generated.

Style reference images. To make sure our experiments is extensive enough to show the general-
ization ability of our method, we manually design the style reference image set, which are shown in
Fig. 7 and Fig. 8, with the search results provided by Google with key words sets as the notations
as depicted in the captions. Our style reference images cover different style concepts such as artis-
tic contents, shapes, colors and textures, which can better support our conclusion that the proposed
AnyArt is capable for various cases.

Styles used in figures in main paper. In order to make some results (Fig. 1 and Fig. 6) in main
paper simple and easier to understand, we omit the style reference images and summarize the used
styles here:

• Fig. 1 from first row to fifth row: pixar, ink, wooden, cubism, Van Goah.
• Fig. 6 first row from left to right: Degas, Cezanne, Cubism.
• Fig. 6 second row from left to right: ink, flat cartoon, pencil.
• Fig. 6 third row from left to right: flat cartoon, impasto, watercolor.

Figure 7: Style reference images used in this paper. Each column denotes a style, in which the
images in the first row are used in one-shot experiments, and all images are used in multi-shot
experiments. Notations for each column from left to right: Cezanne, crayon, cubism, Degas, expres-
sionism, flat cartoon, ukiyoe, Van Goah, impasto, ink.

Prompts used in figures in main paper. All qualitative results in the qualitative ablation study of
main paper use the same prompts as in the quantitative evaluation, concretely as follows,

• Fig. 6 first row from left to right: A girl wearing a red dress, she is dancing; A little boy
with glasses and a watch; A smiling little girl.

• Fig. 6 second row from left to right: A puppy sitting on a sofa; An curly-haired boy; A boy
wearing glasses, he is reading a thick book.

• Fig. 6 third row: A man wearing a black leather jacket and a red tie.
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Figure 8: Style reference images used in this paper. Each column denotes a style, in which the
images in the first row are used in one-shot experiments, and all images are used in multi-shot
experiments. Notations for each column from left to right: japan anime, Monet, pencil, pixar,
psychedelic, america anime, watercolor, surreal, wooden, surf.

B MORE DISCUSSION

Limitations. We would like to highlight two limitations of our method. First, the multi-source
style embedding extraction model relies on a patch-level transformer. In this way, it is less efficient
for this model to process too many style reference images. While such a scenario is to some extent
unrealistic, since it is generally sufficient to represent a specific style with less than 10 images,
solving this problem can be related to improving vision transformer structures, which can be taken
as future works. Second, the proposed method is only available for style conditions in the form of
images. Other forms such as texts, videos and 3D data are not considered in this work and can be
solved in the future.

Broader impacts. Our work will not lead to significant negative social impacts. Problems such
as privacy invasion and misinformation can be also attributed to normal image generative models.
Solving such problems would be a large future research topic.

Comparison with InstantStyle-SDXL and StyleAlign. In Fig. 9 we present the comparison be-
tween our method and InstantStyle and StyleAlign, both using SDXL as backbone network. We
find that while InstantStyle does perform better with SDXL than SD1.5, suffering less from content
leakage, it tends to generate images with classic art styles such as paintings. This makes the gener-
ated results less similar to the reference images. On the other hand, InstantStyle-SDXL still cannot
handle styles such as cubism and impasto, which can be well modelled by our method. Moreover,
StyleAlign is generally worse than the other two methods.

Effectiveness of frequency domain decomposition. In the multi-source style embedding extrac-
tion module, we utilize the discrete wavelet transform to first decompose the patch level features of
style reference images into low-frequency and high-frequency features. To see how this process can
help our module, we visualize the attention weights for two sets of reference images among different
denoising time steps in Fig. 10. Three main phenomenon can be concluded: (1) Style embeddings
concentrate more on low frequency features, which is reasonable since low-frequency features con-
tain information such as color. (2) The patterns of feature usage are consistent among two prompts
for each style, while being different for different styles. (3) For high-frequency features, different
timesteps generally focus on different information. These results can sufficiently support our design
of decomposing the image features regarding frequency.
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Ours

InstantStyle

Ours

InstantStyle

Impasto Cubism

Surf America Anime

StyleAlign

StyleAlign

Figure 9: Qualitative comparison with InstantStyle and StyleAlign using SDXL as backbone.

A little cute boy. A robot.

impasto

flat cartoon

cubism

ink

cezanne

Figure 10: Attention weight visualization between style embedding and frequency domain features
of style reference images. Each column represents the same text prompt and each row represents the
same style, which are listed in the figure. Zoom in for more details.
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Figure 11: Multi-shot qualitative results with non-related objects added to the caption of style ref-
erence images. Prompts for every two columns from left to right: A bird in a word; A daisy with a
ladybug on it; A stone with a crack in it, holding a plant growing out of it; A puppy sitting on a sofa.

Versatility of our method. To show that our method is generalizable enough, we further apply our
method to pretrained SDXL, which is an advanced version of SD. The results are shown in Fig. 13
and Fig. 14. We can find that basically the proposed method can introduce correct style to pretrained
SDXL. Since there is significant gap between the prior knowledge learned by SDXL and SD1.5, the
generated images also show different patterns. The results show that SDXL can better handle styles
regarding lines and colors, while SD1.5 can provide better global-level styles. Moreover, SDXL
can make better balance between style and general image aesthetic. The human faces generated by
SDXL are more proper, thanks to its larger capacity.

Reasonableness of negative semantic embedding. One would ask whether it is proper to directly
subtract style token part in ẑcaption from ẑCLIP and if the subtracted vector could inadvertently con-
tain elements of the negative prompt (e.g., “reading a book”), rather than purely style information.
Note that after each subtraction an attention is further applied to ẑCLIP , where unrelated negative
prompts would be weakened. To verify this we provide several examples on multi-shot ink and wa-
tercolor styles. Specifically, we add a non-related caption ‘There is a robot, a UFO and a monster
in the image.’ to the caption of each reference image. The results are presented in Fig. 11, in which
the semantics of generated images do not degrade compared with original StyleMaster.

Figure 12: Qualitative results of StyleMaster under 10-shot setting. The first and third rows contain
the reference images, the other rows show the generated results.

Results with more shots. To further show the versatility of our proposed method, we conduct a
10-shot experiment, of which the results are presented in Fig. 12. The results show that our method,
when given reasonable reference images, is robust and well performing under 10-shot setting.

Image-to-image. Apart from the basic text-to-image task, we also extend our method to image-to-
image task, in which we follow the commonly used pipeline to first and then adopt the ControlNet-
Canny Zhang et al. (2023a) together with our proposed method to generate a new image with target
style. The results are shown in Fig. 15. One can find that when given different reference images
such as Japan anime, American anime, Von Goah’s painting and pixar anime, etc. The human face
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Figure 13: Quantitative results of our proposed method with SDXL in one-shot setting. Styles used
in each row from up to bottom: Cezanne, flat cartoon, cubism, pencil.

Figure 14: Quantitative results of our proposed method with SDXL in multi-shot setting. Styles used
in each row from up to bottom: america anime, Cezanne, Expressionism, ukiyoe, pencil, surreal,
psychedelic.
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in the base image can flexibly change according to the style, which illustrates the effectiveness of
our method.

Figure 15: Image to image results generated by our model.

C MORE QUALITATIVE RESULTS

We provided more quantitative results in both one-shot and multi-shot settings in Fig. 16, Fig. 17
and Fig. 18. The images generated with each group of reference images share consistent style, while
correctly showing the target objects.
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Figure 16: More quantitative results of our proposed method in one-shot setting. Styles used in
each two rows from up to bottom: ink, impasto, Monet, Van Goah. Uncompressed version is in the
supplementary material.
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Figure 17: More quantitative results of our proposed method in multi-shot setting. Styles used in
each three rows from up to bottom: Cezanne, flat cartoon, america cartoon. Uncompressed version
is in the supplementary material.
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Figure 18: More quantitative results of our proposed method in multi-shot setting. Styles used in
each three rows from up to bottom: surreal, psychedelic, surf. Uncompressed version is in the
supplementary material.
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