
SLowcal-SGD: Slow Query Points Improve Local-SGD
for Stochastic Convex Optimization

Tehila Dahan
Department of Electrical Engineering

Technion
Haifa, Israel

t.dahan@campus.technion.ac.il

Kfir Y. Levy
Department of Electrical Engineering

Technion
Haifa, Israel

kfirylevy@technion.ac.il

Abstract

We consider distributed learning scenarios where M machines interact with a
parameter server along several communication rounds in order to minimize a joint
objective function. Focusing on the heterogeneous case, where different machines
may draw samples from different data-distributions, we design the first local update
method that provably benefits over the two most prominent distributed baselines:
namely Minibatch-SGD and Local-SGD. Key to our approach is a slow querying
technique that we customize to the distributed setting, which in turn enables a
better mitigation of the bias caused by local updates.

1 Introduction

Federated Learning (FL) is a framework that enables huge scale collaborative learning among a
large number of heterogeneous1 clients (or machines). FL may potentially promote fairness among
participants, by allowing clients with small scale datasets to participate in the learning process and
affect the resulting model. Additionally, participants are not required to directly share data, which
may improve privacy. Due to these reasons, FL has gained popularity in the past years, and found use
in applications like voice recognition [1, 4], fraud detection [2], drug discovery [3], and more [33].

The two most prominent algorithmic approaches towards federated learning are Minibatch-SGD
[10] and Local-SGD (a.k.a. Federated-Averaging) [26, 27, 32] . In Minibatch-SGD all machines
(or clients) always compute unbiased gradient estimates of the same query points, while using large
batch sizes; and it is well known that this approach is not degraded due to data heterogeneity [36].
On the downside, the number of model updates made by Minibatch-SGD may be considerably
smaller compared to the number of gradient queries made by each machine; which is due to the use of
minibatches. This suggests that there may be room to improve over this approach by employing local
update methods like Local-SGD, where the number of model updates and the number of gradient
queries are the same. And indeed, in the past years, local update methods have been extensively
investigated, see e.g. [18] and references therein.

We can roughly divide the research on FL into two scenarios: the homogeneous case, where it is
assumed that the data on each machine is drawn from the same distribution; and to the more realistic
heterogeneous case where it is assumed that data distributions may vary between machines.

For the homogeneous case it was shown in [35, 13] that the standard Local-SGD method is not supe-
rior to Minibatch-SGD. Nevertheless, [38] have designed an accelerated variant of Local-SGD that
provably benefits over the Minibatch baseline. These results are established for the fundamental
Stochastic Convex Optimization (SCO) setting, which assumes that the learning objective is convex.

1Heterogeneous here refers to the data of each client, and we assume that its statistical properties may vary
between different clients.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



Table 1: We compare the best known guarantees for parallel learning, to our SLowcal-SGD approach
for the heterogeneous SCO case. The bolded term in the Rate column is the one that compares least
favourably against Minibatch SGD. Where G and G∗ relate to the dissimilarity measures that are
defined in Equations (1) and (3). The Rmin column presents the minimal number of communication
rounds that are required to obtain a linear speedup (we fixed values of K,M and take σ = 1). Note
that we omit methods that do not enable a wall-clock linear speedup with M , e.g. [28, 29].

Method Rate Rmin (σ = 1)

MiniBatch SGD
[10]

1
R

+ σ√
MKR

MK

Accelerated MiniBatch SGD
[10, 24]

1
R2 + σ√

MKR
(MK)1/3

Local SGD
[36]

G2/3

R2/3 + σ2/3

(
√
KR)2/3 + 1

KR
+ σ√

MKR
G4 · (MK)3 +M3K

SCAFFOLD
[20]

1
R

+ σ√
MKR

MK

SLowcal-SGD
(This paper)

σ1/2+G
1/2
∗

K1/4R
+ 1

KR
+ 1

K1/3R4/3 + 1
R2 + σ√

MKR
G∗ ·MK1/2 +MK1/2

Lower Bound: Local-SGD
[38]

G
2/3
∗

R2/3 + σ
2/3
∗

(
√
KR)2/3 + 1

KR
+ σ√

MKR
G4

∗ · (MK)3 +M3K

Similarly to the homogeneous case, it was shown in [36, 13] that Local-SGD is not superior to
Minibatch-SGD in heterogeneous scenarios. Nevertheless, several local approaches that compare
with the Minibatch baseline were designed in [20, 14]. Unfortunately, we have so far been missing a
local method that provably benefits over the Minibatch baseline in the heterogeneous SCO setting.

Our work focuses on the latter heterogeneous SCO setting, and provide a new Local-SGD-style
algorithm that provably benefits over the minibatch baseline. Our algorithm named SLowcal-SGD,
builds on customizing a recent technique for incorporating a slowly-changing sequence of query
points [9, 21], which in turn enables to better mitigate the bias induced by the local updates. Curiously,
we also found importance weighting to be crucial in order to surpass the minibatch baseline.

In Table 1 we compare our results to the state-of-the-art methods for the heterogeneous SCO setting.
We denote M to be the number of machines, K is the number of local updates per round, and R is
the number of communications rounds. Additionally, G (or G∗) measures the dissimilarity between
machines. Our table shows that Local-SGD requires much more communication rounds compared
to Minibatch-SGD, and that the dissimilarity G (or G∗) substantially degrades its performance.
Conversely, one can see that even if the dissimilarity measure is G∗ = O(1), our approach SLowcal-
SGD still requires less communication rounds compared to Minibatch-SGD.

Similarly to the homogeneous case, accelerated-Minibatch-SGD [10, 24], obtains the best perfor-
mance among all current methods, and it is still open to understand whether one can outperform this
accelerated minibatch baseline. In App. A we elaborate on the computations of Rmin in Table 1.
Related Work. We focus here on centralized learning problems, where we aim to employ M
machines in order to minimize a joint learning objective. We allow the machines to synchronize
during R communication rounds through a central machine called the Parameter Server (PS); and
allow each machine to draw K samples and perform K local gradient computations in every such
communication round. We assume that each machine i may draw i.i.d. samples from a distribution
Di, which may vary between machines.

The most natural approach in this context is Minibatch-SGD, and its accelerate variant [10], which
have been widely adopted both in academy and in industry, see e.g. [16, 31, 37]. Local update
methods like Local-SGD [27], have recently gained much popularity due to the rise of FL, and have
been extensively explored in the past years.

Focusing on the SCO setting, it is well known that the standard Local-SGD is not superior (actually
in most regimes it is inferior) to Minibatch-SGD [35, 36, 13]. Nevertheless, [38] devised a novel
accelerated local approach that provably surpasses the Minibatch baseline in the homogeneous case.

The heterogeneous SCO case has also been extensively investigated, with several original and
elegant approaches [23, 22, 20, 36, 29, 14, 28, 30]. Nevertheless, so far we have been missing a local
approach that provably benefits over Minibatch-SGD. Note that [29, 28] improve the communication

2



complexity with respect to the condition number of the objective; However their performance does
not improve as we increase the number of machines M 2, which is inferior to the minibatch baseline.

The heterogeneous non-convex setting was also extensively explored [20, 19, 14]; and the recent
work of [30] has developed a novel algorithm that provably benefits over the minibatch baseline in
this case. The latter work also provides a lower bound which demonstrates that their upper bound is
almost tight. Finally, for the special case of quadratic loss functions, it was shown in [35] and in [20]
that it is possible to surpass the minibatch baseline.

It is important to note that excluding the special case of quadratic losses, there does not exist a
local update algorithm that provably benefits over accelerated-Minibatch-SGD [10]. And the latter
applies to both homogeneous and heterogeneous SCO problems.

Our local update algorithm utilizes a recent technique of employing slowly changing query points in
SCO problems [9]. The latter has shown to be useful in designing universal accelerated methods [21,
12, 5], as well as in improving asynchronous training methods [6].

2 Setting: Parallel Stochastic Optimization

We consider Parallel stochastic optimization problems where the objective f : Rd 7→ R is convex
and is of the following form,

f(x) :=
1

M

∑
i∈[M ]

fi(x) :=
1

M

∑
i∈[M ]

Ezi∼Di
fi(x; z

i) .

Thus, the objective is an average of M functions {fi : Rd 7→ R}i∈[M ], and each such fi(·) can be
written as an expectation over losses fi(·, zi) where the zi are drawn from some distribution Di

which is unknown to the learner. For ease of notation, in what follows we will not explicitly denote
Ezi∼Di

but rather use E to denote the expectation w.r.t. all randomization.

We assume that there exist M machines (computation units), and that each machine may independently
draw samples from the distribution Di, and can therefore compute unbiased gradient estimates to the
gradients of fi(·). Most commonly, we allow the machines to synchronize during R communication
rounds through a central machine called the Parameter Server (PS); and allow each machine to
perform K local computations in every such communication round.

We consider first order optimization methods that iteratively employ samples and generate a sequence
of query points and eventually output a solution xoutput. Our performance measure is the expected
excess loss, ExcessLoss := E[f(xoutput)]−f(w∗) , where the expectation is w.r.t. the randomization
of the samples, and w∗ is a global minimum of f(·) in Rd, i.e., w∗ ∈ argminx∈Rd f(x).

More concretely, at every computation step, each machine i ∈ [M ] may draw a fresh sample zi ∼ Di,
and compute a gradient estimate g at a given point x ∈ Rd as follows, g := ∇fi(x, zi) . and note
that E[g|x] = ∇fi(x), i.e. g is an ubiased estimate of∇fi(x).

General Parallelization Scheme. A general scheme for parallel stochastic optimization is described
in Alg. 1. It can be seen that the PS communicates with the machines along R communication
rounds. In every round r ∈ [R] the PS distributes an anchor point Θr which is a starting point for the
local computations in that round. Based on Θr each machine performs K local gradient computations
based on K i.i.d. draws from Di, and yields a message Φi

r. At the end of round r the PS aggregates
the messages from all machines and updates the anchor point Θr+1. Finally, after the last round, the
PS outputs xoutput, which is computed based on the anchor points {Θr}Rr=1.

Ideally, one would hope that using M machines in parallel will enable to accelerate the learning
process by a factor of M . And there exists a rich line of works that have shown that this is indeed
possible to some extent, depending on K,R, and on the parallelization algorithm.

Next, we describe the two most prominent approaches to first-order Parallel Optimization,
2This implies that such methods do not obtain a wall-clock speedup as we increase the number of machines

M .

3



Algorithm 1 Parallel Stochastic Optimization Template

Input: M machines, Parameter Server PS , #Communication rounds R, #Local computations K,
initial point x0

PS Computes initial anchor point Θ0 using x0

for r = 0, . . . , R− 1 do
Distributing anchor: PS distributes anchor Θr to all M machines
Local Computations: Each machine i ∈ [M ] performs K local gradient computations based
on K i.i.d. draws from Di, and yields a message Φi

r
Aggregation: PS aggregates {Φi

r}i∈[M ] from all machines, and computes a new anchor Θr+1

end for
output: PS computes xoutput based on {Θr}Rr=1

(i) Minibatch SGD: In terms of Alg. 1, one can describe Minibatch-SGD as an algorithm in which
the PS sends a weight vector xr ∈ Rd in every round as the anchor point Θr. Based on that anchor
Θr := xr, each machine i computes an unbiased gradient estimate based on K independent samples
from Di, i.e. gir := 1

K

∑K
k=1∇fi(xr, z

i
Kr+k), and communicates gir as the message Φi

r to the PS.
The latter aggregates the messages {Φi

r := gir}i∈[M ] and compute the next anchor point xr+1,

xr+1 = xr − η · 1

M

∑
i∈[M ]

gir ,

where η > 0 is the learning rate of the algorithm. The benefit in this approach is that all machines
always compute gradient estimates at the same anchor points {xr}r, which highly simplifies its
analysis. On the downside, in this approach the number of gradient updates R is smaller compared to
the number of stochastic gradient computations made by each machine which is KR. This gives the
hope that there is room to improve upon Minibatch SGD, by mending this issue.

(ii) Local SGD: In terms of Alg. 1, one can describe Local-SGD as an algorithm in which the PS
sends a weight vector xrK ∈ Rd in every round r ∈ [R] as the anchor information Θr. Based on
the anchor Θr := xrK , each machine performs a sequence of local gradient updates based on K
independent samples from Di as follows, ∀k ∈ [K],

xi
rK+k+1 = xi

rK+k − η · ∇fi(xi
rK+k, z

i
rK+k) ,

where for all machines i ∈ [M ] we initialize xi
rK = xrK := Θr, and η > 0 is the learning rate of

the algorithm. At the end of round r each machine communicates xi
(r+1)K as the message Φi

r to the
PS and the latter computes the next anchor as follows,

Θr+1 := x(r+1)K =
1

M

∑
i∈[M ]

xi
(r+1)K .

In local SGD the number of gradient steps is equal to the number of stochastic gradient computations
made by each machine which is KR. The latter suggests that such an approach may potentially
surpass Minibatch SGD. Nevertheless, this potential benefit is hindered by the bias that is introduced
between different machines during the local updates. And indeed, as we show in Table 1, this
approach is inferior to Minibatch SGD in the prevalent case where σ = O(1).
Assumptions. We assume that f(·) is convex, and that the fi(·) are smooth i.e. ∃L > 0 such,

∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥ , ∀i ∈ [M ] , ∀x, y ∈ Rd

We also assume that variance of the gradient estimates is bounded, i.e. that there exists σ > 0 such,

E∥∇fi(x; z)−∇fi(x)∥2 ≤ σ2 , ∀x ∈ Rd , ∀i ∈ [M ] .

Letting w∗ be a global minimum of f(·), we assume there exist G∗ ≥ 0 such that,

1

M

∑
i∈[M ]

∥∇fi(w∗)∥2 ≤ G2
∗/2 , (G∗-Dissimilarity) (1)

4



The above assumption together with the smoothness and convexity imply (see App. B) ,

1

M

∑
i∈[M ]

∥∇fi(x)∥2 ≤ G2
∗ + 4L(f(x)− f(w∗)) , ∀x ∈ Rd (2)

A stronger dissimilarity assumption that is often used in the literature is the following,

1

M

∑
i∈[M ]

∥∇fi(x)−∇f(x)∥2 ≤ G2/2 , ∀x ∈ Rd (G-Dissimilarity) (3)

Notation: For {yt}t we denote yt1:t2 :=
∑t2

τ=t1
yτ . For N ∈ Z+ we denote [N ] := {0, . . . , N − 1}.

3 Our Approach

Section 3.1 describes a basic (single machine) algorithmic template called Anytime-GD. Section 3.2
describes our SLowcal-SGD algorithm, which is a Local-SGD style algorithm in the spirit of Anytime
GD. We describe our method in Alg. 2, and state its guarantees in Thm. 2.

3.1 Anytime GD

The standard GD algorithm computes a sequence of iterates {wt}t∈[T ] and queries the gradients
at theses iterates. It was recently shown that one can design a GD-style scheme that computes a
sequence of iterates {wt}t∈[T ] yet queries the gradients at a different sequence {xt}t∈[T ] which may
be slowly-changing, in the sense that ∥xt+1 − xt∥ may be considerably smaller than ∥wt+1 − wt∥.
Concretely, the Anytime-GD algorithm [9, 21] that we describe in Equations (4) and (5), employs
a learning rate η > 0 and a sequence of non-negative weights {αt}t. The algorithm maintains two
sequences {wt}t, {xt}t that are updated as follows ∀t,

wt+1 = wt − ηαtgt ,∀t ∈ [T ] ,where gt = ∇f(xt) , (4)

and then,

xt+1 =
α0:t

α0:t+1
xt +

αt+1

α0:t+1
wt+1 . (5)

It can be shown that the above implies that xt+1 = 1
α0:t+1

∑t+1
τ=0 ατwτ , i.e. the xt’s are weighted

averages of the wt’s. Thus, at every iterate the gradient gt is queried at xt which is a weighted
average of past iterates, and then wt+1 is updated similarly to GD with a weight αt on the gradient
gt. Moreover, at initialization x0 = w0.

Curiously, it was shown in [9] that Anytime-GD obtains the same convergence rates as GD for convex
loss functions (both smooth and non-smooth). It was further shown and that one can employ a
stochastic version (Anytime-SGD) where we query noisy gradients at xt instead of the exact ones,
and that approach performs similarly to SGD.
Slowly changing query points. A recent work [6], demonstrates that if we use projected Anytime-
SGD, i.e. project the wt sequence to a given bounded convex domain; then one can immediately
show that for both αt = 1 and αt = t+ 1 we obtain ∥xt+1 − xt∥ ≤ 2D/t, where D is the diameter
of the convex domain. Conversely, for standard SGD we have ∥wt+1 − wt∥ ≤ η∥gt∥, where gt here
is a (possibly noisy) unbiased estimate of∇f(wt). Thus, while the change between consecutive SGD
queries is controlled by η which is usually ∝ 1/

√
t, and by magnitude of stochastic gradients; for

Anytime-SGD the change decays with time, irrespective of the learning rate η. In [6], this is used to
design better and more robust asynchronous training methods.
Relation to Momentum. In the appendix we show that Anytime-SGD can be explicitly written as a
momentum method, and therefore is quite different from standard SGD. Concretely, for αt = 1 we
show that xt+1 ≈ xt−η

∑t
τ=1(τ/t

2)·gτ , and for αt ∝ t we show that xt+1 ≈ xt−η
∑t

τ=1(τ/t)
3·gτ .

Where gτ here is a (possibly noisy) unbiased estimate of ∇f(xτ ). This momentum interpretation
provides a complementary intuition regarding the benefit of Anytime-SGD in the context of local
update methods. Momentum brings more stability to the optimization process which in turn reduces
the bias between different machines.

For the sake of this paper we will require a specific theorem that does not necessarily regard Anytime-
GD, but is rather more general. We will require the following definition,

5



Algorithm 2 SLowcal-SGD

Input: M machines, Parameter Server PS , #Communication rounds R, #Local computations K,
initial point x0, learning rate η > 0, weights {αt}t
Initialize: set w0 = x0, initialize anchor point Θ0 := (w0, x0), and set t = 0
for r = 0, . . . , R− 1 do

Distributing anchor: PS distributes anchor Θr := (wt, xt) to all machines, each machine
i ∈ [M ] initializes (wi

t, x
i
t) = Θr := (wt, xt)

for k = 0, . . . ,K − 1 do
Set t = rK + k
Every machine i ∈ [M ] draws a fresh sample zit ∼ Di, and computes git = ∇fi(xi

t, z
i
t)

Update wi
t+1 = wi

t − ηαtg
i
t, and xi

t+1 = (1− αt+1

α0:t+1
)xi

t +
αt+1

α0:t+1
wi

t+1

end for
Aggregation: PS aggregates {(wi

t+1, x
i
t+1)}i∈[M ] from all machines, and computes a new

anchor Θr+1 := (wt+1, xt+1) =
(

1
M

∑
i∈[M ] w

i
t+1,

1
M

∑
i∈[M ] x

i
t+1

)
end for
output: PS outputs xT (recall T = KR)

Definition Let {αt ≥ 0}t be a sequence of non-negative weights, and let {wt ∈ Rd}t, be an
arbitrary sequence. We say that a sequence {xt ∈ Rd}t is an {αt}t weighted average of {wt}t if
x0 = w0, and for any t > 0 Eq. (5) is satisfied.

Next, we state the main theorem for this section, which applies for any sequence {wt ∈ Rd}t,
Theorem 1 (Rephrased from Theorem 1 in [9]). Let f : Rd 7→ R be a convex function with a global
minimum w∗. Also let {αt ≥ 0}t, and {wt ∈ Rd}t, {xt ∈ Rd}t such that {xt}t is an {αt}t weighted
average of {wt}t. Then the following holds for any t ≥ 0,

0 ≤ α0:t (f(xt)− f(w∗)) ≤
t∑

τ=0

ατ∇f(xτ ) · (wτ − w∗) .

3.2 SLowcal-SGD

Our approach is to employ an Anytime version of Local-SGD, which we name by SLowcal-SGD.
Notation: Prior to describing our algorithm we will define t to be the total of per-machine local
updates up to step k of round r, resulting t := rK + k. In what follows, we will often find it useful to
denote the iterates and samples using t, rather than explicitly denoting t = rK + k. Additionally we
use {αt}t to denote a pre-defined sequence of non-negative weights. Finally, we denote T := RK.

In the spirit of Anytime-SGD our approach is to maintain two sequences per machine i ∈ [M ]:
{wi

t ∈ Rd}t and {xi
t ∈ Rd}t. Our approach is depicted explicitly in Alg. 2. Next we describe our

algorithm in terms of the scheme depicted in Alg. 1:
(i) Distributing anchor. At the beginning of round r the PS distributes Θr = (wt, xt) =
(wrK , xrK) ∈ Rd × Rd to all machines.
(ii) Local Computations. For t = rK, every machine initializes (wi

t, x
i
t) = Θr, and for the next

K rounds, i.e. for any rK ≤ t ≤ (r + 1)K − 1, every machine performs a sequence of local
Anytime-SGD steps as follows,

wi
t+1 = wi

t − ηαtg
i
t , (6)

where similarly to Anytime-SGD we query the gradients at the averages xi
t, meaning git =

∇fi(xi
t, z

i
t) . And query points are updated as weighted averages of past iterates {wt}t, ,

xi
t+1 = (1− αt+1

α0:t+1
)xi

t +
αt+1

α0:t+1
wi

t+1 , ∀ rK ≤ t ≤ (r + 1)K − 1 . (7)

At the end round r, i.e. t = (r+1)K, each machine communicates (wi
t, x

i
t) as a message to the PS .

(iii) Aggregation. The PS aggregates the messages and computes the next anchor point Θr+1 =

(wt, xt) =
1
M

∑
i∈[M ] Φ

i
r :=

(
1
M

∑
i∈[M ] w

i
t,

1
M

∑
i∈[M ] x

i
t

)
, where t = (r + 1)K.

6



Remark: Note that for t = rK our notation for (wi
t, x

i
t) is inconsistent: at the end of round r − 1

these values may vary between different machines, while at the beginning of round r these values
are all equal to Θr := (wt, xt). Nevertheless, for simplicity we will abuse notation, and explicitly
state the right definition when needed. Importantly, in most of our analysis we will mainly need to
refer to the averages

(
1
M

∑
i∈[M ] w

i
t,

1
M

∑
i∈[M ] x

i
t

)
, and note the latter are consistent at the end

and beginning of consecutive rounds due to the definition of Θr, and Φi
r−1.

3.2.1 Guarantees & Intuition

Below we state our main result for SLowcal-SGD (Alg. 2),
Theorem 2. Let f(·) be a convex and L-smooth function. Then under the assumption that we make in
Sec. 2, invoking Alg. 2 with weights {αt = t+ 1}t∈[T ] , and an appropriate learning rate η ensures,

E∆T ≤ O

(
LB2

0

(
1

KR
+

1

R2
+

1

K1/3R4/3

)
+

σB0√
MKR

+
L1/2(σ1/2 +G

1/2
∗ ) ·B3/2

0

K1/4R

)
,

where ∆T := f(xT )− f(x∗), B0 := ∥w0 − w∗∥, and we choose the learning rate as follows,

η = min

{
1

48L(T + 1)
,

1

10LK2
,

1

40LK(T + 1)2/3
,
∥w0 − w∗∥

√
M

σT 3/2
,

∥w0 − w∗∥1/2

L1/2K7/4R(σ1/2 +G
1/2
∗ )

}
(8)

As Table 1 shows, Thm. 2 implies that SLowcal-SGD improves over all existing upper bounds for
Minibatch and Local SGD, by allowing less communication rounds to obtain a linear speedup of M .
Intuition. The degradation in local SGD schemes (both standard and Anytime) is due to the bias that
it introduces between different machines during each round, which leads to a bias in their gradients.
Intuitively, this bias is small if the machines query the gradients at a sequence of slowly changing
query points. This is exactly the benefit of SLowcal-SGD which queries the gradients at averaged
iterates xi

t’s. Intuitively these averages are slowly changing compared to the iterates themselves wi
t;

and recall that the latter are the query points used by standard Local-SGD. A complementary intuition
to the benefit of our approach, is the interpretation of Anytime-SGD as a momentum method (see
Sec. 3.1 and the appendix) which leads to decreased bias between machines.

To further simplify the more technical discussion here, we will assume the homogeneous case, i.e.,
that for any i ∈ [M ] we have Di = D and fi(·) = f(·).
So a bit more formally, let us discuss the bias between query points in a given round r ∈ [R], and let
us denote t0 = rK. The following holds for standard Local SGD,

wi
t = wt0 − η

t−1∑
τ=t0

giτ , ∀i ∈ [M ], t ∈ [t0, t0 +K] . (9)

where giτ is the noisy gradients that Machine i computes in wi
τ , and we can write giτ := ∇f(wi

τ )+ξiτ ,
where ξiτ is the noisy component of the gradient. Thus, for two machines i ̸= j we can write,

E∥wi
t − wj

t∥2 = η2E

∥∥∥∥∥
t−1∑
τ=t0

giτ − gjτ

∥∥∥∥∥
2

≈ η2E

∥∥∥∥∥
t−1∑
τ=t0

∇f(wi
τ )−∇f(wj

τ )

∥∥∥∥∥
2

+ η2E

∥∥∥∥∥
t−1∑
τ=t0

ξiτ − ξjτ

∥∥∥∥∥
2

And it was shown in [35], that the noisy term is dominant and therefore we can bound,

1

η2
E∥wi

t − wj
t∥2 ⪅ E

∥∥∥∥∥
t−1∑
τ=t0

ξiτ − ξjτ

∥∥∥∥∥
2

≈ t− t0 ≤ K . (10)

Similarly, for SLowcal-SGD we would like to bound E∥xi
t − xj

t∥2 for two machines i ̸= j; and in
order to simplify the discussion we will assume uniform weights i.e., αt = 1 , ∀t ∈ [T ]. Now the
update rule for the iterates wi

t, is of the same form as in Eq. (9), only now giτ := ∇f(xi
τ )+ ξiτ , where

ξiτ is the noisy component of the gradient. Consequently,
t∑

τ=t0

(wi
τ − wj

τ ) ≈ −η
t−1∑
τ=t0

(t− τ)(giτ − gjτ ) ≈ −ηK
t−1∑
τ=t0

(giτ − gjτ ) ,

7



where we took a crude approximation of t − τ ≈ K. Now, by definition of xi
t and αt = 1,

xi
t =

t0
t · xt0 +

1
t

∑t
τ=t0

wi
τ , ∀i ∈ [M ], t ∈ [t0, t0 +K] . Thus, for two machines i ̸= j we have,

1

η2
E∥xi

t − xj
t∥2 =

1

η2
E

∥∥∥∥∥1t
t∑

τ=t0

wi
τ − wj

τ

∥∥∥∥∥
2

≈ 1

η2
· η

2K2

t2
E

∥∥∥∥∥
t−1∑
τ=t0

giτ − gjτ

∥∥∥∥∥
2

≈ K2

t2
E

∥∥∥∥∥
t−1∑
τ=t0

∇f(xi
τ )−∇f(xj

τ )

∥∥∥∥∥
2

+
K2

t2
E

∥∥∥∥∥
t−1∑
τ=t0

ξiτ − ξjτ

∥∥∥∥∥
2

.

As we show in our analysis, the noisy term is dominant, so we can therefore bound,

1

η2
E∥xi

t − xj
t∥2 ⪅

K2

t2
E

∥∥∥∥∥
t−1∑
τ=t0

ξiτ − ξjτ

∥∥∥∥∥
2

≈ K2(t− t0)

t2
≤ K3

t2
. (11)

Taking t ≈ T = RK above yields a bound of O(K/R2). Thus Equations (10), (11), illustrate that
the bias of SLowcal-SGD is smaller by a factor of R2 compared to the bias of standard Local-SGD.
In the appendix we demonstrate the same benefit of Anytime-SGD over SGD when both use αt ∝ t.

Finally, note that the biases introduced by the local updates come into play in a slightly different
manner in Local-SGD compared to SLowcal-SGD 3. Consequently, the above discussion does not
enable to demonstrate the exact rates that we derive. Nevertheless, it provides some intuition regarding
the benefit of our approach. The full and exact derivations appear in the appendix.
Importance Weights. One may wonder whether it is necessary to employ increasing weights
αt = t+1, rather than employing standard uniform weights αt = 1 ,∀t. Surprisingly, in our analysis
we have found that increasing weights are crucial in order to obtain a benefit over Minibatch-SGD,
and that upon using uniform weights SLowcal-SGD performs worse compared to Minibatch SGD!
We elaborate on this in Appendix L. Below we provide an intuitive explanation.
Intuitive Explanation. The intuition behind the importance of using increasing weights is the
following: Increasing weights are a technical tool to put more emphasis on the last rounds. Now, in
the context of Local update methods, the iterates of the last rounds are more attractive since the bias
between different machines shrinks as we progress. Intuitively, this happens since as we progress
with the optimization process, the expected value of the gradients that we compute goes to zero (since
we converge); and consequently the bias between different machines shrinks as we progress.

3.3 Proof Sketch for Theorem 2

Proof Sketch for Theorem 2. As a starting point for the analysis, for every iteration t ∈ [T ] we will
define the averages of (wi

t, x
i
t, g

i
t) across all machines as follows,

wt :=
1

M

∑
i∈[M ]

wi
t , & xt :=

1

M

∑
i∈[M ]

xi
t & gt :=

1

M

∑
i∈[M ]

git .

Note that Alg. 2 explicitly computes (wt, xt) only once every K local updates, and that theses are
identical to the local copies of every machine at the beginning of every round. Combining the above
definitions with Eq. (6) yields,

wt+1 = wt − ηαtgt , ∀t ∈ [T ] (12)

Further combining these definitions with Eq. (7) yields,

xt+1 = (1− αt+1

α0:t+1
)xt +

αt+1

α0:t+1
wt+1 , ∀t ∈ [T ] (13)

The above implies that the {xt}t∈[T ] sequence is an {αt}t∈[T ] weighted average of {wt}t∈[T ]. This
enables to employ Thm. 1 which yields, α0:t∆t ≤

∑t
τ=0 ατ∇f(xτ ) · (wτ −w∗) , where we denote

∆t := f(xt)− f(w∗). This bound highlights the challenge in the analysis: our algorithm does not
directly compute unbiased estimates of xt, except for the first iterate of each round. Concretely,
Eq. (12) implies that our algorithm effectively updates using gt which is a biased estimate of∇f(xt).

3A major challenge in our analysis is that for a given i ∈ [M ] the {xi
t}t sequence is not necessarily an {αt}t

weighted average of the {wi
t}t.

8



It is therefore natural to decompose∇f(xτ ) = gτ + (∇f(xτ )− gτ ) in the above bound, yielding,

α0:t∆t ≤
t∑

τ=0

ατgτ · (wτ − w∗)︸ ︷︷ ︸
(A)

+

t∑
τ=0

ατ (∇f(xτ )− gτ ) · (wτ − w∗)︸ ︷︷ ︸
(B)

(14)

Thus, we intend to bound the weighted error α0:t∆t by bounding two terms: (A) which is related to
the update rule of the algorithm, and (B) which accounts for the bias between gt and∇f(xt).
Notation: In what follows we will find the following notation useful, ḡt := 1

M

∑
i∈[M ]∇fi(xi

t), and

note that ḡt = E
[
gt|{xi

t}i∈[M ]

]
. We will also employ the following notations: Vt :=

∑t
τ=0 α

2
τ∥ḡτ −

∇f(xτ )∥2 , and Dt := ∥wt − w∗∥2 , where w∗ is a global minimum of f(·). We will also denote
D0:t :=

∑t
τ=0 ∥wτ − w∗∥2.

Bounding (A): Due to the update rule of Eq. (12), one can show by standard regret analysis that:
(A) :=

∑t
τ=0 ατgτ · (wτ − w∗) ≤ ∥w0−w∗∥2

2η + η
2

∑t
τ=0 α

2
τ∥gτ∥2 ,

Bounding (B): We can bound (B) in expectation using Vt and D0:t as follows for any ρ > 0:
E [(B)] ≤ 1

2ρEVt +
ρ
2ED0:t ,

Combining (A) and (B): Combining the above boounds on (A) and (B) into Eq. (14) we obtain
the following bound which holds for any ρ > 0 and t ∈ [T ],

α0:tE∆t ≤
∥w0 − w∗∥2

2η
+

η

2
E

T∑
τ=0

α2
τ∥gτ∥2 +

1

2ρ
EVT +

ρ

2
ED0:T (15)

Now, to simplify the proof sketch we shall assume that Dt ≤ D0 ∀t, implying that D0:T ≤ TD0.
Plugging this into the above equation and taking ρ = 1

4ηT gives,

α0:tE∆t ≤
∥w0 − w∗∥2

η
+ η · E

T∑
τ=0

α2
τ∥gτ∥2︸ ︷︷ ︸

(∗)

+ 4ηTEVT . (16)

Next we will bound (∗) and EVT , and plug them back into Eq. (16).

Bounding (∗): To bound (∗) it is natural to decompose gτ = (gτ− ḡτ )+(ḡτ−∇f(xτ ))+∇f(xτ ).
Using this decomposition we show that, (∗) ⪅ 3σ2

M

∑T
t=0 α

2
t + 3EVT + 12LE

∑T
t=0 α0:t∆t .

Bounding EVT The definition of Vt shows that it is encompasses the bias that is introduced due
to the local updates, which in turn relates to the distances ∥xi

t − xj
t∥ , ∀i, j ∈ [M ]. Thus, EVT is

therefore directly related to the dissimilarity between the machines. Our analysis shows the following:
EVT ≤ 400L2η2K3

∑T
τ=0 α0:τ ·(G2

∗+4L∆τ )+90L2η2K6R3σ2 . Plugging the above into Eq. (16),
and using our choice for η, gives an almost explicit bound,

α0:tE∆t ⪅
∥w0 − w∗∥2

η
+ η

σ2

M

T∑
t=0

α2
t + L2η3TK6R3σ2 + L2η3TK3

T∑
τ=0

α0:τG
2
∗ +

1

2(T + 1)
E

T∑
t=0

α0:t∆t .

The theorem follows by plugging above the choices of η, αt, and using a technical lemma.

4 Experiments

To evaluate the effectiveness of our proposed approach, we conducted experiments on the MNIST
[25] dataset—a widely used benchmark in image classification comprising 70,000 grayscale images
of handwritten digits (0–9), divided into 60,000 training images and 10,000 test images. The dataset
was accessed through torchvision (version 0.16.2). We implemented a logistic regression model

9



[7] using the PyTorch framework and performed all computations on an NVIDIA RTX 3090 GPU.
To ensure the reliability of our results, we averaged the outcomes over three different random seeds.
The code used for these experiments is available in our GitHub repository.4

We compared our approach, utilizing parameters suggested by our theoretical framework (αt = t),
against Local-SGD and Minibatch-SGD across various configurations. Specifically, we experimented
with 16, 32, and 64 workers and varied the number of local updates K (or minibatch sizes for
Minibatch-SGD) among 4, 8, 16, 32, and 64. In SLowcal-SGD and Local-SGD, each local update
was computed using a single sample. We optimized the learning rate through grid search, setting it to
0.01. All experiments involved a single pass over the MNIST dataset.

(a) SLowcal-SGD and Local-SGD vs. Minibatch-SGD. (b) SLowcal-SGD vs. Local-SGD.

Figure 1: Test Accuracy vs. Local Iterations (K) for different numbers of workers (↑ is better).

(a) SLowcal-SGD and Local-SGD vs. Minibatch-SGD. (b) SLowcal-SGD vs. Local-SGD.

Figure 2: Test Loss vs. Local Iterations (K) for different numbers of workers (↓ is better).

Our results on the MNIST dataset, illustrated in Figures 1 and 2, highlight the effectiveness of using
local steps over equivalently sized batches in this setting. As shown in Figures 1a and 2a, both
SLowcal-SGD and Local-SGD demonstrate substantial improvements in test accuracy and loss over
Minibatch-SGD, where these become more significant as the number of local steps grows.

At a closer look, Figures 1b and 2b indicate that with an increasing number of local iterations, the
performance gap between SLowcal-SGD and Local-SGD generally becomes more pronounced. This
gap suggests that SLowcal-SGD’s approach, which maintains closer alignment of weights both within
local updates and across workers, enhances convergence, resulting in superior performance over
Local-SGD.

5 Conclusion

We have presented the first local approach for the heterogeneous distributed Stochastic Convex
Optimization (SCO) setting that provably benefits over the two most prominent baselines, namely
Minibatch-SGD, and Local-SGD. There are several interesting avenues for future exploration:
(a) developing an adaptive variant that does not require the knowledge of the problem parameters like
σ and L; (b) Allowing a per dimension step-size that could benefit in (the prevalent) scenarios where
the scale of the gradients considerably changes between different dimensions; in the spirit of the well
known AdaGrad method [11]. Finally, (c) it will be interesting to understand whether we can find an
algorithm that provably dominates over the Accelerated Minibach-SGD baseline, which is an open
question also in the homogeneous SCO setting.

4https://github.com/dahan198/slowcal-sgd

10

https://github.com/dahan198/slowcal-sgd


Acknowledgement

This research was partially supported by Israel PBC-VATAT, the Technion Artificial Intelligent Hub
(Tech.AI), and the Israel Science Foundation (grant No. 3109/24).

References
[1] Apple. designing for privacy (video and slide deck). apple wwdc, 2019.

[2] Intel and consilient. intel and consilient join forces to fight financial fraud with ai, 2020.

[3] Melloddy. melloddy project meets its year one objective: Deployment of the world’s first
secure platform for multi-task federated learning in drug discovery among 10 pharmaceutical
companies, 2020.

[4] Google. your voice and audio data stays private while google assistant improves, 2021.

[5] Kimon Antonakopoulos, Dong Quan Vu, Volkan Cevher, Kfir Levy, and Panayotis Mertikopou-
los. Undergrad: A universal black-box optimization method with almost dimension-free
convergence rate guarantees. In International Conference on Machine Learning, pages 772–795.
PMLR, 2022.

[6] Rotem Zamir Aviv, Ido Hakimi, Assaf Schuster, and Kfir Yehuda Levy. Asynchronous dis-
tributed learning: Adapting to gradient delays without prior knowledge. In International
Conference on Machine Learning, pages 436–445. PMLR, 2021.

[7] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning,
volume 4. Springer, 2006.

[8] Ashok Cutkosky. Lecture notes for ec525: Optimization for machine learning.

[9] Ashok Cutkosky. Anytime online-to-batch, optimism and acceleration. In International
conference on machine learning, pages 1446–1454. PMLR, 2019.

[10] Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal distributed online
prediction using mini-batches. Journal of Machine Learning Research, 13(1), 2012.

[11] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of machine learning research, 12(7), 2011.

[12] Alina Ene, Huy L Nguyen, and Adrian Vladu. Adaptive gradient methods for constrained
convex optimization and variational inequalities. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pages 7314–7321, 2021.

[13] Margalit R Glasgow, Honglin Yuan, and Tengyu Ma. Sharp bounds for federated averaging
(local sgd) and continuous perspective. In International Conference on Artificial Intelligence
and Statistics, pages 9050–9090. PMLR, 2022.

[14] Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. Local sgd: Unified theory and new
efficient methods. In International Conference on Artificial Intelligence and Statistics, pages
3556–3564. PMLR, 2021.

[15] Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends® in
Optimization, 2(3-4):157–325, 2016.

[16] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the
generalization gap in large batch training of neural networks. Advances in neural information
processing systems, 30, 2017.

[17] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. Advances in neural information processing systems, 26, 2013.

11



[18] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,
et al. Advances and open problems in federated learning. Foundations and Trends® in Machine
Learning, 14(1–2):1–210, 2021.

[19] Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J Reddi,
Sebastian U Stich, and Ananda Theertha Suresh. Mime: Mimicking centralized stochastic
algorithms in federated learning. arXiv preprint arXiv:2008.03606, 2020.

[20] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pages 5132–5143. PMLR, 2020.

[21] Ali Kavis, Kfir Y Levy, Francis Bach, and Volkan Cevher. Unixgrad: A universal, adaptive
algorithm with optimal guarantees for constrained optimization. Advances in neural information
processing systems, 32, 2019.

[22] Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. Tighter theory for local sgd on
identical and heterogeneous data. In International Conference on Artificial Intelligence and
Statistics, pages 4519–4529. PMLR, 2020.

[23] Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian Stich. A
unified theory of decentralized sgd with changing topology and local updates. In International
Conference on Machine Learning, pages 5381–5393. PMLR, 2020.

[24] Guanghui Lan. An optimal method for stochastic composite optimization. Mathematical
Programming, 133(1-2):365–397, 2012.

[25] Yann LeCun, Corinna Cortes, Chris Burges, et al. Mnist handwritten digit database, 2010. URL
http://yann.lecun.com/exdb/mnist/. Licensed under CC BY-SA 3.0, available at
https://creativecommons.org/licenses/by-sa/3.0/.

[26] Olvi L Mangasarian and Mikhail V Solodov. Backpropagation convergence via deterministic
nonmonotone perturbed minimization. Advances in Neural Information Processing Systems, 6,
1993.

[27] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics, pages 1273–1282. PMLR, 2017.

[28] Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich, and Peter Richtárik. Proxskip:
Yes! local gradient steps provably lead to communication acceleration! finally! In International
Conference on Machine Learning, pages 15750–15769. PMLR, 2022.

[29] Aritra Mitra, Rayana Jaafar, George J Pappas, and Hamed Hassani. Linear convergence in
federated learning: Tackling client heterogeneity and sparse gradients. Advances in Neural
Information Processing Systems, 34:14606–14619, 2021.

[30] Kumar Kshitij Patel, Lingxiao Wang, Blake Woodworth, Brian Bullins, and Nathan Srebro. To-
wards optimal communication complexity in distributed non-convex optimization. In Advances
in Neural Information Processing Systems.

[31] Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. Don’t decay the learning
rate, increase the batch size. arXiv preprint arXiv:1711.00489, 2017.

[32] Sebastian U. Stich. Local SGD converges fast and communicates little. In International
Conference on Learning Representations, 2019.

[33] Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H. Brendan McMahan, Blaise Agüera
y Arcas, Maruan Al-Shedivat, Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh
Data, Suhas N. Diggavi, Hubert Eichner, Advait Gadhikar, Zachary Garrett, Antonious M. Girgis,
Filip Hanzely, Andrew Hard, Chaoyang He, Samuel Horváth, Zhouyuan Huo, Alex Ingerman,
Martin Jaggi, Tara Javidi, Peter Kairouz, Satyen Kale, Sai Praneeth Karimireddy, Jakub Konečný,

12

http://yann.lecun.com/exdb/mnist/
https://creativecommons.org/licenses/by-sa/3.0/


Sanmi Koyejo, Tian Li, Luyang Liu, Mehryar Mohri, Hang Qi, Sashank J. Reddi, Peter Richtárik,
Karan Singhal, Virginia Smith, Mahdi Soltanolkotabi, Weikang Song, Ananda Theertha Suresh,
Sebastian U. Stich, Ameet Talwalkar, Hongyi Wang, Blake E. Woodworth, Shanshan Wu,
Felix X. Yu, Honglin Yuan, Manzil Zaheer, Mi Zhang, Tong Zhang, Chunxiang Zheng, Chen
Zhu, and Wennan Zhu. A field guide to federated optimization. CoRR, abs/2107.06917, 2021.

[34] Jun-Kun Wang, Jacob Abernethy, and Kfir Y Levy. No-regret dynamics in the fenchel game:
A unified framework for algorithmic convex optimization. arXiv e-prints, pages arXiv–2111,
2021.

[35] Blake Woodworth, Kumar Kshitij Patel, Sebastian Stich, Zhen Dai, Brian Bullins, Brendan
Mcmahan, Ohad Shamir, and Nathan Srebro. Is local sgd better than minibatch sgd? In
International Conference on Machine Learning, pages 10334–10343. PMLR, 2020.

[36] Blake E Woodworth, Kumar Kshitij Patel, and Nati Srebro. Minibatch vs local sgd for heteroge-
neous distributed learning. Advances in Neural Information Processing Systems, 33:6281–6292,
2020.

[37] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli,
Xiaodan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for
deep learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

[38] Honglin Yuan and Tengyu Ma. Federated accelerated stochastic gradient descent. Advances in
Neural Information Processing Systems, 33:5332–5344, 2020.

13



A Explanations Regarding the Linear Speedup and Table 1

Here we elaborate on the computations done in Table 1. First we will explain why the dominance of
the term 1√

MKR
implies a linear speedup by a factor of M .

Explanation. Recall that using SGD with a single machine M = 1, yields a convergnece rate of
1√
KR

(as a dominant term). Thus, in order to obtain an excess loss smaller than some ε > 0, SGD
requires RK ≥ Ω

(
1
ε2

)
. Where RK is the wall-clock time required to compute the solution.

Now, when we use parallel optimization with R communication rounds, K local computations, and
M machines, the wall-clock time to compute a solution is still RK. Now, if the dominant term in the
convergence rate of this algorithm is 1√

MKR
then the wall clock time to obtain an ε-optimal solution

should be RK ≥ Ω
(

1
Mε2

)
. And the latter is smaller by a factor of M compared to a single machine.

Computation of Rmin in Table 1. The term 1√
MKR

appears in the bounds of all of the parallel
optimization methods that we describe. Nevertheless, it is dominant up as long as the number of
communication rounds R is larger than some treshold value Rmin, that depends on the specific
convergence rate. Clearly, smaller values of Rmin imply less communication. Thus, in the Rmin

column of the table we compute Rmin for each method based on the term in the bound that compares
least favourably against 1√

MKR
. These terms are bolded in the Rate column of the table.

Concretely, denoting this less favourable term by Bparallel := Bparallel(M,K,R,G∗)
5, then Rmin

is the lowest R which satisfies,

Bparallel ≤ 1√
MKR

.

B On Heterogeneity Assumption

Let us assume that the following holds at the optimum w∗,

1

M

∑
i∈[M ]

∥∇fi(w∗)∥2 ≤ G2
∗/2

Then we can show the following relation for any w ∈ Rd,

1

M

∑
i∈[M ]

∥∇fi(w)∥2 =
1

M

∑
i∈[M ]

∥∇fi(w)−∇fi(w∗) +∇fi(w∗)∥2

≤ 2

M

∑
i∈[M ]

∥∇fi(w)−∇fi(w∗)∥2 + 2

M

∑
i∈[M ]

∥∇fi(w∗)∥2

≤ 4L(f(w)− f(w∗)) +G2
∗ .

where we used ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2 which holds for any a, b ∈ Rd, and the last line follows
by the lemma below that we borrow from [17, 8].

Lemma 1. Let L(x) = 1
M

∑
i∈[M ] ℓi(x) be a convex function with global minimum w∗, and assume

that every fi : Rd 7→ R is L-smooth. Then the following holds,

1

M

∑
i∈[M ]

∥∇ℓi(w)−∇ℓi(w∗)∥2 ≤ 2L(L(w)− L(w∗)) .

Proof of Lemma 1. The lemma follows immediately from lemma 27.1 in [8], by taking v = w∗

therein.

5Bparallel may also depend on σ, L, ∥w0 − w∗∥ but for simplicity of exposition we hide these dependencies
in Table 1.

14



C Interpreting Anytime-SGD as Momentum

Here we show how to interpret the Anytime-SGD algorithm that we present in Equations (4),(5), as a
momentum method. For completeness we rewrite the update equations below,

wt+1 = wt − ηαtgt ,∀t ∈ [T ] ,where gt = ∇f(xt) , (17)

and then,

xt+1 =
α0:t

α0:t+1
xt +

αt+1

α0:t+1
wt+1 . (18)

where gt is an unbiased gradient estimate at xt, and {αt}t is a sequence of non-negative scalars. And
at initialization x0 = w0.

First note that Eq. (18) directly implies that,

xt+1 =
1

α0:t+1

t+1∑
τ=0

ατwτ .

Next, note that we can directly write,

wτ = w0 − η

τ−1∑
n=0

αngn

Plugging the above into the formula for xt+1 yields,

xt+1 = w0 − η
1

α0:t+1

t+1∑
τ=0

τ−1∑
n=0

αταngn

= w0 − η
1

α0:t+1

t∑
n=0

t+1∑
τ=n+1

αταngn

= w0 − η
1

α0:t+1

t∑
n=0

αn+1:t+1αngn .

Thus,

1

η
(xt+1 − xt) =

1

α0:t

t−1∑
n=0

αn+1:tαngn −
1

α0:t+1

t∑
n=0

αn+1:t+1αngn

=
1

α0:t+1

t−1∑
n=0

α0:t+1

α0:t
αn+1:tαngn −

1

α0:t+1

t−1∑
n=0

αn+1:t+1αngn −
1

α0:t+1
αt+1αtgt

= − 1

α0:t+1

t−1∑
n=0

(
αn+1:t+1 −

α0:t+1

α0:t
αn+1:t

)
αngn −

1

α0:t+1
αt+1αtgt

= − 1

α0:t+1

t−1∑
n=0

αt+1
α0:n

α0:t
αngn −

1

α0:t+1
αt+1αtgt

= − 1

α0:t+1

t∑
n=0

αt+1αn
α0:n

α0:t
gn , (19)

where we used the equality below,

αn+1:t+1 −
α0:t+1

α0:t
αn+1:t = αt+1 − αn+1:t

αt+1

α0:t
= αt+1(1−

αn+1:t

α0:t
) = αt+1

α0:n

α0:t
.

Thus we can write,

xt+1 ≈ xt − η
1

α0:t+1

t∑
n=0

αt+1αn
α0:n

α0:t
gn ,

15



Uniform Weights. Thus, taking uniform weights αt = 1 yields,

xt+1 ≈ xt − η

t∑
n=0

n

t2
gn .

Linear Weights. Similarly, taking linear weights αt = t+ 1 yields,

xt+1 ≈ xt − η

t∑
n=0

n3

t3
gn .

D Proof of Theorem 1

Proof of Theorem 1. We rehearse the proof of Theorem 1 from [9].

First, since w∗ is a global minimum and α0:t are non-negative than clearly,

α0:t (f(xt)− f(w∗)) ≥ 0 .

Now, notice that the following holds,

αt(xt − wt) = α0:t−1(xt−1 − xt)

Using the gradient inequality for f gives,
t∑

τ=0

ατ (f(xτ )− f(w∗)) ≤
t∑

τ=0

ατ∇f(xτ ) · (xτ − w∗)

=

t∑
τ=0

ατ∇f(xτ ) · (wτ − w∗) +

t∑
τ=0

ατ∇f(xτ ) · (xτ − wτ )

=

t∑
τ=0

ατ∇f(xτ ) · (wτ − w∗) +

t∑
τ=0

α0:τ−1∇f(xτ ) · (xτ−1 − xτ )

≤
t∑

τ=0

ατ∇f(xτ ) · (wτ − w∗) +

t∑
τ=0

α0:τ−1(f(xτ−1)− f(xτ )) ,

where we have used the gradient inequality again which implies∇f(xτ ) · (xτ−1−xτ ) ≤ f(xτ−1)−
f(xτ ).

Now Re-ordering we obtain,
t∑

τ=0

(α0:τf(xτ )− α0:τ−1f(xτ−1))− α0:tf(w
∗) ≤

t∑
τ=0

ατ∇f(xτ ) · (wτ − w∗) .

Telescoping the sum in the LHS we conclude the proof,

α0:t (f(xτ )− f(w∗)) ≤
t∑

τ=0

ατ∇f(xτ ) · (wτ − w∗) .

E More Intuition and Discussion Regarding the Benefit of SLowcal-SGD

More Elaborate Intuitive Explanation. The intuition is the following: We have two extreme
baselines: (1) Minibatch-SGD where queries do not change at all during updates-implying that
there is no bias between different machines. However, Minibatch-SGD is “lazy” since among KR
queries it only performs R gradient updates. Conversely (2) Local-SGD is not “lazy” since each
machine performs KR gradient updates. Nevertheless, the queries of different machines change
substantially during each round, which translates to bias between machines, which in turn degrades
the convergence.

16



Ideally, we would like to have a “non-lazy” method where each machine performs KR gradient
updates (like Local-SGD), but where the queries of each machine do not change at all during rounds
(like Minibatch-SGD) and therefore no bias is introduced between machines. Of course, this is too
good to exist, but our method is a step in this direction: it is “non-lazy” and the query points of
different machines change slowly, and therefore introduce less bias between machines. This translates
to a better convergence rate.

Additional Technical Intuition for αt ∝ t. Here we extend the technical explanation that we
provide in Sec. 3.2.1 to the case where αt ∝ t, and show again that SLowcal-SGD yields smaller bias
between different machines compared to Local-SGD.

As in the intuition for the case of uniform weights, to simplify the more technical discussion, we will
assume the homogeneous case, i.e., that for any i ∈ [M ] we have Di = D and fi(·) = f(·).
Note that upon employing linear weights, the normalization factor α0:T that plays a major role in
the convergence guarantees of Anytime-SGD (see Thm. 1) also grows as α0:T ∝ T 2. Thus, in
order to make an proper comparison, we should compare the bias of weighted Anytime-SGD, to the
appropriate weighted version of SGD; where the normalization factor α0:T also plays a similar role
in the guarantees (see e.g. [34]). This weighted SGD is as follows [34], ∀t ≥ 0

wt+1 = wt − ηαtgt ; where gt is unbiased of ∇f(wt) . (20)

and after t iterations it outputs wT = 1
α0:T

∑T
t=0 αtwt. And for αt = t+ 1 this version enjoys the

same guarantees as standard SGD.

Next, we compare the Local-SGD version of the above weighted SGD (Eq. (20)) to our SLowcal-
SGDwhen both employ αt = t+ 1. So a bit more formally, let us discuss the bias between query
points in a given round r ∈ [R], and let us denote t0 = rK. The following holds for weighted Local
SGD,

wi
t = wt0 − η

t−1∑
τ=t0

ατg
i
τ , ∀i ∈ [M ], t ∈ [t0, t0 +K] . (21)

where giτ is the noisy gradients that Machine i computes in wi
τ , and we can write giτ := ∇f(wi

τ )+ξiτ ,
where ξiτ is the noisy component of the gradient. Thus, for two machines i ̸= j we can write,

E∥wi
t − wj

t∥2 = η2E

∥∥∥∥∥
t−1∑
τ=t0

ατ (g
i
τ − gjτ )

∥∥∥∥∥
2

≈ η2E

∥∥∥∥∥
t−1∑
τ=t0

ατ (∇f(wi
τ )−∇f(wj

τ ))

∥∥∥∥∥
2

+ η2E

∥∥∥∥∥
t−1∑
τ=t0

ατ (ξ
i
τ − ξjτ )

∥∥∥∥∥
2

Now, we can be generous with respect to weighted SGD and only take the second noisy term into
account and neglect the first term 6. Thus we obtain,

1

η2
E∥wi

t − wj
t∥2 ⪅ E

∥∥∥∥∥
t−1∑
τ=t0

ατ (ξ
i
τ − ξjτ )

∥∥∥∥∥
2

≈ α2
t0+KE

∥∥∥∥∥
t−1∑
τ=t0

(ξiτ − ξjτ )

∥∥∥∥∥
2

≈ (rK)2 · (t− t0) ≤ r2K3 .

(22)

where we used αt ≤ αt0+K ,∀t ≤ t0 +K, as well as α2
t0+K = (r(K +1)+ 1)2 ≈ (rK)2. We also

used t− t0 ⪅ K.

Similarly, for SLowcal-SGD we would like to bound E∥xi
t − xj

t∥2 for two machines i ̸= j; while
assuming linear weights i.e., αt = t + 1 , ∀t ∈ [T ]. Now the update rule for the iterates wi

t, is of
the same form as in Eq. (21), only now giτ := ∇f(xi

τ ) + ξiτ , where ξiτ is the noisy component of the
gradient. Consequently, we can show the following,

t∑
τ=t0

ατ (w
i
τ − wj

τ ) ≈ −η
t∑

τ=t0

ατ

τ−1∑
n=t0

αn(g
i
n − gjn) ≈ −η

t−1∑
n=t0

αn+1:tαn(g
i
n − gjn) ≈ −ηr2K3

t−1∑
τ=t0

(giτ − gjτ ) ,

where we took a crude approximation of αn+1:tαn ≈ αt0:t+Kαt0 ⪅ rK2 · rK = r2K3. In the last
"≈" we also change the notation of summation variable from n to τ .

6It was shown in [35], that the noisy term is dominant for standard SGD

17



Now, by definition, xi
t ≈

α0:t0

α0:t
· xt0 +

1
α0:t

∑t
τ=t0

ατw
i
τ , ∀i ∈ [M ], t ∈ [t0, t0 +K] . Thus, for

two machines i ̸= j we have,

1

η2
E∥xi

t − xj
t∥2 =

1

η2
E

∥∥∥∥∥ 1

α0:t

t∑
τ=t0

ατ (w
i
τ − wj

τ )

∥∥∥∥∥
2

≈ 1

η2
· η

2r4K6

(α0:t)2
E

∥∥∥∥∥
t−1∑
τ=t0

giτ − gjτ

∥∥∥∥∥
2

≈ 1

η2
· η

2r4K6

r4K4
E

∥∥∥∥∥
t−1∑
τ=t0

giτ − gjτ

∥∥∥∥∥
2

≈ K2E

∥∥∥∥∥
t−1∑
τ=t0

∇f(xi
τ )−∇f(xj

τ )

∥∥∥∥∥
2

+K2E

∥∥∥∥∥
t−1∑
τ=t0

ξiτ − ξjτ

∥∥∥∥∥
2

.

where we have used α0:t ≈ α0:t0 ∝ t20 ≈ r2K2.

As we show in our analysis, the noisy term is dominant, so we can therefore bound,

1

η2
E∥xi

t − xj
t∥2 ⪅ K2E

∥∥∥∥∥
t−1∑
τ=t0

ξiτ − ξjτ

∥∥∥∥∥
2

≈ K2(t− t0) ≤ K3 . (23)

Thus Equations (22), (23), illustrate that for αt ∝ t, then the bias of SLowcal-SGD is smaller by a
factor of r2 compared to the bias of weighted Local-SGD.
Since r2 can be as big as R2 this coincides with the benefit of SLowcal-SGD over standard SGD in
the case where αt = 1, which we demonstrate in the main text.

Finally, note that upon dividing by the normalization factor α0:T ,we have, that for SLowcal-SGD with
either αt = 1 or αt ∝ t then,

1

α0:T

1

η
E∥xi

t − xj
t∥ ≈

1

R2K2
·
√
K3 ≈ 1

RK
·
√

K

R2
=

1√
KR2

(24)

Comparably, upon dividing by the normalization factor α0:T ,we have, that for Local-SGD with either
αt = 1 or αt ∝ t that,

1

α0:T

1

η
E∥wi

t − wj
t∥ ≈

1

R2K2
·
√
R2K3 ≈ 1

RK
·
√
K =

1√
KR

(25)

Thus, with respect to the approximate and intuitive analysis that we make here SLowcal-SGD main-
tains similar benefit over Local-SGD for both αt = 1 and αt = t+ 1.

As we explain in Appendix L, taking αt = 1 in SLowcal-SGD does not actually enable to provide a
benefit over Local-SGD. The reason is that for αt = 1, the condition for which the dominant term
in the bias (between different machines) is the noisy term (this enables the approximate analysis
that we make here and in the body of the paper), leads to limitation on the learning rate which in
turn degrades the performance for SLowcal-SGD with αt = 1. Conversely, for αt ∝ t there is no
such degradation due to the limitation of the learning rate. For more details and intuition please see
Appendix L.

F Proof of Thm. 2

Proof of Thm. 2. As a starting point for the analysis, for every iteration t ∈ [T ] we will define the
averages of (wi

t, x
i
t, g

i
t) across all machines as follows,

wt :=
1

M

∑
i∈[M ]

wi
t , & xt :=

1

M

∑
i∈[M ]

xi
t & gt :=

1

M

∑
i∈[M ]

git .

Note that Alg. 2 explicitly computes (wt, xt) only once every K local updates, and that theses are
identical to the local copies of every machine at the beginning of every round. Combining the above
definitions with Eq. (6) yields,

wt+1 = wt − ηαtgt , ∀t ∈ [T ] (26)

18



Further combining these definitions with Eq. (7) yields,

xt+1 = (1− αt+1

α0:t+1
)xt +

αt+1

α0:t+1
wt+1 , ∀t ∈ [T ] (27)

And the above implies that the {xt}t∈[T ] sequence is an {αt}t∈[T ] weighted average of {wt}t∈[T ].
This enables to employ Thm. 1 which yields,

α0:t∆t := α0:t(f(xt)− f(w∗)) ≤
t∑

τ=0

ατ∇f(xτ ) · (wτ − w∗) ,

where we denote ∆t := f(xt)− f(w∗). The above bound highlights the challenge in the analysis:
our algorithm does not directly computes unbiased estimates of xt, except for the first iterate of each
round. Concretely, Eq. (26) demonstrates that our algorithm effectively updates using gt which might
be a biased estimate of∇f(xt).

It is therefore natural to decompose ∇f(xτ ) = gτ + (∇f(xτ )− gτ ) in the above bound, leading to,

α0:t∆t ≤
t∑

τ=0

ατgτ · (wτ − w∗)︸ ︷︷ ︸
(A)

+

t∑
τ=0

ατ (∇f(xτ )− gτ ) · (wτ − w∗)︸ ︷︷ ︸
(B)

(28)

Thus, we intend to bound the weighted error α0:t∆t by bounding two terms: (A) which is directly
related to the update rule of the algorithm (Eq. (26)), and (B) which accounts for the bias between gt
and ∇f(xt).
Notation: In what follows we will find the following notation useful,

ḡt :=
1

M

∑
i∈[M ]

∇fi(xi
t) (29)

and the above definition implies that ḡt = E
[
gt|{zi0}i∈[M ], . . . , {zit−1}i∈[M ]

]
= E

[
gt|{xi

t}i∈[M ]

]
.

We will also employ the following notations,

Vt :=

t∑
τ=0

α2
τ∥ḡτ −∇f(xτ )∥2 , & Dt := ∥wt − w∗∥2

where w∗ is a global minimum of f(·). Moreover, we will also use the notation D0:t :=
∑t

τ=0 ∥wτ −
w∗∥2.

Bounding (A): Due to the update rule of Eq. (26), one can show by standard regret analysis (see
Lemma 2 below) that,

(A) :=

t∑
τ=0

ατgτ · (wτ − w∗) ≤ ∥w0 − w∗∥2

2η
+

η

2

t∑
τ=0

α2
τ∥gτ∥2 , (30)

Lemma 2. (OGD Regret Lemma -See e.g. [15]) Let w0 ∈ Rd and η > 0. Also assume a sequence of
T non-negative weights {αt ≥ 0}t∈[T ] and T vectors {gt ∈ Rd}t∈[T ], and assume an update rule of
the following form:

wt+1 = wt − ηαtgt ,∀t ∈ [T ] .

Then the following bound holds for any u ∈ Rd, and t ∈ [T ],

t∑
τ=0

ατgτ · (wτ − u) ≤ ∥w0 − u∥2

2η
+

η

2

t∑
τ=0

α2
τ∥gτ∥2 .

for completeness we provide a proof in Appendix G.

19



Bounding (B): Since our goal is to bound the expected excess loss, we will bound the expected
value of (B), thus,

E [(B)] = E

[
t∑

τ=0

ατ (∇f(xτ )− gτ ) · (wτ − w∗)

]

= E

[
t∑

τ=0

ατ (∇f(xτ )− ḡτ ) · (wτ − w∗)

]

≤ E
t∑

τ=0

(
1

2ρ
α2
τ∥∇f(xτ )− ḡτ∥2 +

ρ

2
E∥wτ − w∗∥2

)
=

1

2ρ
EVt +

ρ

2
ED0:t , (31)

where the second line follows by the definition of ḡτ (see Eq. (29)) and due to the
fact that wτ is measurable with respect to

{
{zi0}i∈[M ], . . . , {ziτ−1}i∈[M ]

}
while ḡτ =

E
[
gτ |{zi0}i∈[M ], . . . , {ziτ−1}i∈[M ]

]
implying that E[gτ · (wτ − w∗)] = E[ḡτ · (wτ − w∗)]; the

third line uses Young’s inequality a · b ≤ infρ>0{ρ2∥a∥
2 + 1

2ρ∥b∥
2} which holds for any a, b ∈ Rd;

and the last two lines use the definition of Vt and D0:T .

Combining (A) and (B): Combining Equations (30) and (31) into Eq. (28) we obtain the following
bound which holds for any ρ > 0 and t ∈ [T ],

α0:tE∆t ≤
∥w0 − w∗∥2

2η
+

η

2
E

T∑
τ=0

α2
τ∥gτ∥2 +

1

2ρ
EVT +

ρ

2
ED0:t (32)

where we have used Vt ≤ VT which holds for any t ∈ [T ], as well as E
∑t

τ=0 α
2
τ∥gτ∥2 ≤

E
∑T

τ=0 α
2
τ∥gτ∥2, which holds since t ≤ T .

Next, we shall bound each of the above terms. The following lemma bounds ED0:t,

Lemma 3. The following bound holds for any t ∈ [T ],

ED0:t = E
t∑

τ=0

∥wτ − w∗∥2 ≤ 2T∥w0 − w∗∥2 + 2Tη2E
T∑

t=0

α2
t ∥gt∥2 + 16η2T 2 · EVT

Combining the above lemma into Eq. (33) gives,

α0:tE∆t ≤
∥w0 − w∗∥2

2η
+
(η
2
+ ρTη2

)
E

T∑
τ=0

α2
τ∥gτ∥2 +

(
1

2ρ
+ 8ρη2T 2

)
EVT + ρT∥w0 − w∗∥2

Since the above holds for any ρ > 0 let us pick a specific value of ρ = 1
4ηT ; by doing so we obtain,

α0:tE∆t ≤
∥w0 − w∗∥2

η
+ η · E

T∑
τ=0

α2
τ∥gτ∥2︸ ︷︷ ︸

(C)

+ 4ηTEVT . (33)

Next, we would like to bound (C); to do so it is natural to decompose gτ = (gτ − ḡτ ) + (ḡτ −
∇f(xτ )) + ∇f(xτ ). The next lemma provides a bound, and its proof goes directly through this
decomposition,

Lemma 4. The following holds,

(C) ≤ 3
σ2

M

T∑
t=0

α2
t + 3EVT + 12LE

T∑
t=0

α0:t∆t .

20



Combining the above Lemma into Eq. (33) yields,

α0:tE∆t ≤
∥w0 − w∗∥2

η
+ 3η

σ2

M

T∑
t=0

α2
t + 8ηTEVT + 12ηLE

T∑
t=0

α0:t∆t , (34)

where we have uses 3 ≤ 4T which holds since T ≥ 1. The next lemma provides a bound for EVt,

Lemma 5. For any t ≤ T := KR, Alg. 2 with the learning choice in Eq. (8) ensures the following
bound,

EVt ≤ 400L2η2K3
T∑

τ=0

α0:τ · (G2
∗ + 4L∆τ ) + 90L2η2K6R3σ2 .

Plugging the above bound back into Eq. (34) gives an almost explicit bound,

α0:tE∆t

≤ ∥w0 − w∗∥2

η
+ 3η

σ2

M

T∑
t=0

α2
t + 720L2η3TK6R3σ2

+ 4 · 103L2η3TK3
T∑

τ=0

α0:τ · (G2
∗ + 4L∆τ )) + 12ηLE

T∑
t=0

α0:t∆t

=
∥w0 − w∗∥2

η
+ 3η

σ2

M

T∑
t=0

α2
t + 720L2η3TK6R3σ2 + 4 · 103L2η3TK3

T∑
τ=0

α0:τG
2
∗

+ (12ηL+ 16 · 103L3η3TK3)E
T∑

t=0

α0:t∆t

≤ ∥w0 − w∗∥2

η
+ 3η

σ2

M

T∑
t=0

α2
t + 720L2η3TK6R3σ2 + 4 · 103L2η3TK3

T∑
τ=0

α0:τG
2
∗ +

1

2(T + 1)
E

T∑
t=0

α0:t∆t ,

(35)

and we used 12ηL ≤ 1/4(T + 1) which follows since η ≤ 1
48L(T+1) (see Eq. (8)), as well as

16 · 103L3η3TK3 ≤ 1/4(T +1), which follows since η ≤ 1
40LK(T+1)2/3

(see Eq. (8)). Next we use
the above bound and invoke the following lemma,

Lemma 6. Let {At}t∈[T ] be a sequence of non-negative elements and B ∈ R, and assume that for
any t ≤ T ,

At ≤ B +
1

2(T + 1)

T∑
t=0

At ,

Then the following bound holds,
AT ≤ 2B .

Taking At ← α0:tE∆t and B ← ∥w0−w∗∥2

η + 3η σ2

M

∑T
t=0 α

2
t + 720L2η3TK6R3σ2 + 2 ·

103L2η3TK3
∑T

τ=0 α0:τG
2
∗ provides the following explicit bound,

α0:T E∆T ≤
2∥w0 − w∗∥2

η
+ 6η

σ2

M

T∑
t=0

α2
t + 2 · 103L2η3TK6R3σ2 + 8 · 103L2η3TK3

T∑
τ=0

α0:τG
2
∗

≤ 2∥w0 − w∗∥2

η
+ 6η

σ2

M
· (KR)3 + 2 · 103L2η3K7R4σ2 + 8 · 103L2η3K7R4 ·G2

∗ ,

(36)

where we have used
∑T

τ=0 α0:τ ≤
∑T

t=0 α
2
t ≤

∑R−1
r=0

∑K−1
k=0 (r + 1)2K2 ≤ K3R3, as well as

T = KR,

21



Recalling that T = KR and that,

η = min

{
1

48L(T + 1)
,

1

10LK2
,

1

40LK(T + 1)2/3
,
∥w0 − w∗∥

√
M

σT 3/2
,

∥w0 − w∗∥1/2

L1/2K7/4R(σ1/2 +G
1/2
∗ )

}
The above bound translates into,

α0:T E∆T ≤ (37)

O

(
L(T +K2 +KT 2/3)∥w0 − w∗∥2 + σ∥w0 − w∗∥T 3/2

√
M

+ L1/2K7/4R(σ1/2 +G
1/2
∗ ) · ∥w0 − w∗∥3/2

)
(38)

Noting that α0:T ≥ Ω(T 2) and using T = KR gives the final bound,

E∆T ≤

O

(
L∥w0 − w∗∥2

KR
+

L∥w0 − w∗∥2

K1/3R4/3
+

L∥w0 − w∗∥2

R2
+

σ∥w0 − w∗∥√
MKR

+
L1/2(σ1/2 +G

1/2
∗ ) · ∥w0 − w∗∥3/2

K1/4R

)
.

which establishes the Theorem.

G Proof of Lemma 2

Proof of Lemma 2. The update rule implies for all τ ∈ [T ]

∥wτ+1 − u∥2 = ∥(wτ − u)− ηατgτ∥2

= ∥wτ − u∥2 − 2ηατgτ · (wτ − u) + η2α2
τ∥gτ∥2

Re-ordering and gives,

2ηατgτ · (wτ − u) =
(
∥wτ − u∥2 − ∥wτ+1 − u∥2

)
+ η2α2

τ∥gτ∥2 .
Summing over τ and telescoping we obtain,

2η

t∑
τ=0

ατgτ · (wτ − u) =
(
∥w1 − u∥2 − ∥wt+1 − u∥2

)
+ η2

t∑
τ=0

α2
τ∥gτ∥2

≤ ∥w1 − u∥2 + η2
t∑

τ=0

α2
τ∥gτ∥2

Dividing the above by 2η establishes the lemma.

H Proof of Lemma 3

Proof of Lemma 3. Recalling the notations Dτ := ∥wτ − w∗∥2, our goal is to bound ED0:t. To do
so, we will derive a recursive formula for D0:t. Indeed, the update rule of Alg. 2 implies Eq. (26),
which in turn leads to the following for any t ∈ [T ],

∥wt+1 − w∗∥2 = ∥(wt − w∗)− ηαtgt∥2 = ∥wt − w∗∥2 − 2ηαtgt · (wt − w∗) + η2α2
t ∥gt∥2

Unrolling the above equation and taking expectation gives,

E∥wt+1 − w∗∥2 = ∥w0 − w∗∥2−2ηE
t∑

τ=0

ατgτ · (wτ − w∗)︸ ︷︷ ︸
(∗)

+ η2E
t∑

τ=0

α2
τ∥gτ∥2 (39)

The next lemma provides a bound on (∗),
Lemma 7. The following holds for any t ∈ [T ],

(∗) ≤ 2η
√

EVT ·
√

ED0:T

and recall that D0:T :=
∑T

t=0 ∥wt − w∗∥2, and VT :=
∑T

t=0 α
2
t ∥ḡt −∇f(xt)∥2.

22



Plugging the bound of Lemma 7 into Eq. (39), and using the notation of Dt we conclude that for any
t ∈ [T ],

EDt ≤ D0 + 2η
√

EVT ·
√

ED0:T + η2E
t∑

τ=0

α2
τ∥gτ∥2

≤ D0 + 2η
√

EVT ·
√

ED0:T + η2E
T∑

t=0

α2
t ∥gt∥2 ,

where we used t ≤ T . Summing the above equation over t gives,

ED0:T ≤ T∥w0 − w∗∥2 + 2ηT ·
√

EVT ·
√

ED0:T + Tη2E
T∑

t=0

α2
t ∥gt∥2 (40)

We shall now require the following lemma,

Lemma 8. Let A,B,C ≥ 0, and assume that A ≤ B + C
√
A, then the following holds,

A ≤ 2B + 4C2

Now, using the above Lemma with Eq. (40) implies,

ED0:T ≤ 2T∥w0 − w∗∥2 + 2Tη2E
T∑

t=0

α2
t ∥gt∥2 + 16η2T 2 · EVT (41)

where we have taken A← D2
0:T , B ← T∥w0−w∗∥2+Tη2E

∑T
t=0 α

2
t ∥gt∥2, and C ← 2ηT ·

√
EVT .

Thus, Eq. (41) establishes the lemma.

H.1 Proof of Lemma 7

Proof of Lemma 7. Recall that (∗) = −2ηE
∑t

τ=0 ατgτ ·(wτ−w∗), we shall now focus on bounding
(∗)/2η,

−E
t∑

τ=0

ατgτ · (wτ − w∗) = −E
t∑

τ=0

ατ ḡτ · (wτ − w∗)

= −E
t∑

τ=0

ατ∇f(xτ ) · (wτ − w∗)− E
t∑

τ=0

ατ (ḡτ −∇f(xτ )) · (wτ − w∗)

≤ 0 + E
t∑

τ=0

α2
τ∥ḡτ −∇f(xτ )∥2 · ∥wτ − w∗∥2

≤ 0 +

t∑
τ=0

√
Eα2

τ∥ḡτ −∇f(xτ )∥2 ·
√

E∥wτ − w∗∥2

≤

√√√√E
t∑

τ=0

α2
τ∥ḡτ −∇f(xτ )∥2 ·

√√√√E
t∑

τ=0

∥wτ − w∗∥2

≤

√√√√E
T∑

t=0

α2
t ∥ḡt −∇f(xt)∥2 ·

√√√√E
T∑

t=0

∥wt − w∗∥2

:=
√

EVT ·
√

ED0:T , (42)

where the first line is due to the definitions of gτ and ḡτ appearing in Eq. (29) (this is formalized
in Lemma 9 below and in its proof); the third line follows by observing that the {xt}t sequence is
and {αt}t weighted average of {wt}t and thus Theorem 1 implies that E

∑t
τ=0 ατ∇f(xτ ) · (wτ −

23



w∗) ≥ 0 for any t, as well as from Cauchy-Schwarz; the fourth line follows from the Cauchy-
Schwarz inequality for random variables, which asserts that for every random variables X,Y , then
E[XY ] ≤

√
EX2

√
EY 2; the fifth line is an application of the following inequality

t∑
τ=0

aτ bτ ≤

√√√√ t∑
τ=0

a2τ

√√√√ t∑
τ=0

b2τ

which holds for any two sequences {aτ ∈ R}τ , {bτ ∈ R}τ , and the above also follows from the
standard Cauchy-Schwarz inequality. Thus, Eq. (42) establishes the lemma.

We are left to show that E [gτ · (wτ − w∗)] = E [ḡτ · (wτ − w∗)] which is established in the lemma
below,

Lemma 9. The following holds for any τ ∈ [T ],

E [gτ · (wτ − w∗)] = E [ḡτ · (wτ − w∗)] .

H.1.1 Proof of Lemma 9

Proof of Lemma 9. Let {Fτ}τ∈[T ] be the natural filtration induces by the history of samples up to
every time step τ . Then according to the definitions of gt and ḡt we have,

E [gτ · (wτ − w∗)] = E [E [gτ · (wτ − w∗)|Fτ−1]]

= E [E [gτ |Fτ−1] · (wτ − w∗)]

= E [E [ḡτ |Fτ−1] · (wτ − w∗)]

= E [ḡτ · (wτ − w∗)] ,

where the first line follows by the law of total expectations; the second line follows since wτ is
measurable w.r.t. Fτ−1; the third line follows by definition of gτ and ḡτ ; and the last line uses the
law of total expectations.

H.2 Proof of Lemma 8

Proof of Lemma 8. We will divide the proof into two case.
Case 1: B ≥ C

√
A. In this case,

A ≤ B + C
√
A ≤ 2B ≤ 2B + 4C2 .

Case 2: B ≤ C
√
A. In this case,

A ≤ B + C
√
A ≤ 2C

√
A ,

dividing by
√
A and taking the square implies,

A ≤ 4C2 ≤ 2B + 4C2 .

And therefore the lemma holds.

I Proof of Lemma 4

Proof of Lemma 4. Recalling that (C) := E
∑T

τ=0 α
2
τ∥gτ∥2, we will decompose gτ = (gτ − ḡτ ) +

(ḡτ −∇f(xτ )) +∇f(xτ ) which gives,

24



(C) := E
T∑

τ=0

α2
τ∥(gτ − ḡτ ) + (ḡτ −∇f(xτ )) +∇f(xτ )∥2

≤ 3E
T∑

τ=0

α2
τ∥gτ − ḡτ∥2 + 3E

T∑
τ=0

α2
τ∥ḡτ −∇f(xτ )∥2 + 3E

T∑
τ=0

α2
τ∥∇f(xτ )∥2

≤ 3E
T∑

τ=0

α2
τ∥gτ − ḡτ∥2 + 3EVT + 6LE

T∑
τ=0

α2
τ∆τ

≤ 3
σ2

M
E

T∑
τ=0

α2
τ + 3EVT + 6LE

T∑
τ=0

α2
τ∆τ

≤ 3
σ2

M
E

T∑
τ=0

α2
τ + 3EVT + 12LE

T∑
τ=0

α0:τ∆τ , (43)

where the second line uses ∥a+ b+ c∥2 ≤ 3(∥a∥2 + ∥b∥2 + ∥c∥2) which holds for any a, b, c ∈ Rd;
the third line uses the definition of VT as well as the smoothness of f(·) implying that ∥∇f(xτ )∥2 ≤
2L(f(xτ )− f(w∗)) := 2L∆τ (see Lemma 10 below); the fourth line invokes Lemma 11; the fifth
line uses α2

τ = (τ + 1)2 ≤ 2α0:τ .

Lemma 10. Let F : Rd 7→ R be an L-smooth function with a global minimum x∗, then for any
x ∈ Rd we have,

∥∇F (x)∥2 ≤ 2L(F (x)− F (w∗)) .

Lemma 11. The following bound holds for any t ∈ [T ],

E∥gτ − ḡτ∥2 ≤
σ2

M
.

I.1 Proof of Lemma 10

Proof of Lemma 10. The L smoothness of f means the following to hold ∀w, u ∈ Rd,

F (x+ u) ≤ F (x) +∇F (x)⊤u+
L

2
∥u∥2 .

Taking u = − 1
L∇F (x) we get,

F (x+ u) ≤ F (x)− 1

L
∥∇F (x)∥2 + 1

2L
∥∇F (x)∥2 = F (x)− 1

2L
∥∇F (x)∥2 .

Thus:

∥∇F (x)∥2 ≤ 2L
(
F (x)− F (x+ u)

)
≤ 2L

(
F (x)− F (x∗)

)
,

where in the last inequality we used F (x∗) ≤ F (x+ u) which holds since x∗ is the global minimum.

I.2 Proof of Lemma 11

Proof of Lemma 11. Recall that we can write,

gτ − ḡτ :=
1

M

∑
i∈[M ]

(giτ − ḡiτ )

25



where ḡiτ := ∇fi(xi
τ ), and giτ := ∇fi(xi

τ , z
i
τ ), and that z1t , . . . , z

M
t are independent of each

other. Thus, conditioning over {xi
t}Mi=1 then {giτ − ḡiτ}Mi=1 are independent and zero mean i.e.

E[giτ − ḡiτ |{xi
t}Mi=1] = 0. Consequently,

E
[
∥gτ − ḡτ∥2|{xi

t}Mi=1

]
=

1

M2
E


∥∥∥∥∥∥
∑
i∈[M ]

(giτ − ḡiτ )

∥∥∥∥∥∥
2

|{xi
t}i∈[M ]


=

1

M2

∑
i∈[M ]

E
[
∥giτ − ḡiτ∥2|{xi

t}Mi=1

]
≤ 1

M2

∑
i∈[M ]

σ2

≤ σ2

M
.

Using the law of total expectation implies that E∥gτ − ḡτ∥2 ≤ σ2

M .

J Proof of Lemma 5

Proof of Lemma 5. To bound EVt we will first employ the definition of xt together with the smooth-
ness of f(·),

E∥∇f(xτ )− ḡτ∥2 = E

∥∥∥∥∥∥ 1

M

∑
i∈[M ]

∇fi(xτ )−
1

M

∑
i∈[M ]

∇fi(xi
τ )

∥∥∥∥∥∥
2

≤ 1

M

∑
i∈[M ]

E∥∇fi(xτ )−∇fi(xi
τ )∥2

≤ L2

M

∑
i∈[M ]

E∥xτ − xi
τ∥2

=
L2

M

∑
i∈[M ]

E

∥∥∥∥∥∥ 1

M

∑
j∈[M ]

xj
τ − xi

τ

∥∥∥∥∥∥
2

≤ L2

M2

∑
i,j∈[M ]

E∥xj
τ − xi

τ∥2 , (44)

where the first line uses the definition of ḡt, the second line uses Jensen’s inequality, and the third
line uses the smoothness of fi(·)’s. The last line follows from Jensen’s inequality.

We use the following notation for any τ ∈ [T ]

qi,jτ := α2
τ∥xi

τ − xj
τ∥2 , & qiτ := α2

τ

∑
j∈[M ]

∥xi
τ − xj

τ∥2 , & Qτ :=
1

M2
α2
τ

∑
i,j∈[M ]

∥xi
τ − xj

τ∥2 ,

(45)

and notice that
∑

j∈[M ] q
i,j
τ = qiτ , and that

∑
i,j∈[M ] q

i,j
τ = M2Qτ . Moreover qi,jτ = qj,iτ ,∀i, j ∈

[M ].

Thus, according to Eq. (44) it is enough to bound EVt as follows,

EVt :=

t∑
τ=0

α2
τE∥∇f(xτ )− ḡτ∥2 ≤ L2 ·

t∑
τ=0

Qτ︸ ︷︷ ︸
(⋆)

. (46)

Next we will bound the above term.

26



Bounding (⋆): Let t ∈ [T ], if t = rK for some r ∈ [R], then according to Alg. 2 xi
t = xt for any

machine i ∈ [M ], thus xi
t − xj

t = 0 for any two machines i, j ∈ [M ].

More generally, if t = rK + k for some r ∈ [R], and k ∈ [K], then by denoting t0 := rK we can
write t = t0 + k. Using this notation, the update rule for xi

τ implies the following for any i ∈ [M ],

xi
t =

α0:t0

α0:t
xi
t0 +

1

α0:t

t∑
τ=t0+1

ατw
i
τ =

α0:t0

α0:t
xt0 +

1

α0:t

t∑
τ=t0+1

ατw
i
τ ,

where we used xi
t0 = xt0 , ∀i ∈ [M ]. Thus, for any i ̸= j we can write,

α2
t ∥xi

t − xj
t∥2 =

α2
t

(α0:t)2

∥∥∥∥∥
t∑

τ=t0+1

ατ (w
i
τ − wj

τ )

∥∥∥∥∥
2

. (47)

So our next goal is to derive an expression for
∑t

τ=t0+1 ατ (w
i
τ − wj

τ ). The update rule of Eq. (6)
implies that for any τ ∈ [t0, t0 +K],

wi
τ = wi

t0 − η

τ∑
n=t0+1

αng
i
n = wt0 − η

τ∑
n=t0+1

αng
i
n (48)

where the second equality is due to the initialization of each round implying that wi
t0 = wt0 ,∀i ∈

[M ].

Next, we will require the following notation ḡit := ∇fi(xi
t), and ξit := git − ḡit. We can therefore

write, git = ḡit + ξit and it is immediate to show that E[ξit|xi
t] = 0. Using this notation together with

Eq. (48), implies that for any τ ∈ [t0, t0 +K] and i ̸= j we have,

ατ (w
i
τ − wj

τ ) = −η
τ∑

n=t0+1

αταn(ḡ
i
n − ḡjn)− η

τ∑
n=t0+1

αταn(ξ
i
n − ξjn)

= −η
τ∑

n=t0+1

αταn(ḡ
i
n − ḡjn)− η

τ∑
n=t0+1

αταnξn (49)

and in the last line we use the following notation ξn := ξin − ξjn
7.

Summing Eq. (49) over τ ∈ [t0 + 1, t] we obtain,

t∑
τ=t0+1

ατ (w
i
τ − wj

τ ) = −η
t∑

τ=t0+1

τ∑
n=t0+1

αταn(ḡ
i
n − ḡjn)− η

t∑
τ=t0+1

τ∑
n=t0+1

αταnξn

= −η
t∑

n=t0+1

t∑
τ=n

αταn(ḡ
i
n − ḡjn)− η

t∑
n=t0+1

t∑
τ=n

αταnξn

= −η
t∑

n=t0+1

αn:tαn(ḡ
i
n − ḡjn)− η

t∑
n=t0+1

αn:tαnξn

= −η
t∑

τ=t0+1

ατ :tατ (ḡ
i
τ − ḡjτ )− η

t∑
τ=t0+1

ατ :tατξτ , (50)

where in the last equation we replace the notation of the summation index from n to τ (only done to
ease notation).

7A more appropriate notation would be ξ
(i,j)
n := ξin − ξjn, but to ease notation we absorb the (i, j) notation

into ξ.

27



Plugging the above equation back into Eq. (47) we obtain for any t ∈ [t0, t0 +K]

qi,jt := α2
t ∥xi

t − xj
t∥2

=
α2
t

(α0:t)2

∥∥∥∥∥
t∑

τ=t0+1

ατ (w
i
τ − wj

τ )

∥∥∥∥∥
2

=
α2
t

(α0:t)2

∥∥∥∥∥η
t∑

τ=t0+1

ατ :tατ (ḡ
i
τ − ḡjτ ) + η

t∑
τ=t0+1

ατ :tατξτ

∥∥∥∥∥
2

≤ η2
2α2

t

(α0:t)2

∥∥∥∥∥
t∑

τ=t0+1

ατ :tατ (ḡ
i
τ − ḡjτ )

∥∥∥∥∥
2

+ η2
2α2

t

(α0:t)2

∥∥∥∥∥
t∑

τ=t0+1

ατ :tατξτ

∥∥∥∥∥
2

≤ η2
2α2

t

(α0:t)2
· (t− t0)

t∑
τ=t0+1

(ατ :tατ )
2∥ḡiτ − ḡjτ∥2 + η2

2α2
t

(α0:t)2

∥∥∥∥∥
t∑

τ=t0+1

ατ :tατξτ

∥∥∥∥∥
2

≤ η2
2α2

t

(α0:t)2
·K · (Kαt)

2
t∑

τ=t0+1

α2
τ∥∇fi(xi

τ )−∇fj(xj
τ )∥2 + η2

2α2
t

(α0:t)2

∥∥∥∥∥
t∑

τ=t0+1

ατ :tατξτ

∥∥∥∥∥
2

= η2
2α4

t

(α0:t)2
·K3L2 · 1

L2

t∑
τ=t0+1

α2
τ∥∇fi(xi

τ )−∇fj(xj
τ )∥2 + η2

2α2
t

(α0:t)2

∥∥∥∥∥
t∑

τ=t0+1

ατ :tατξτ

∥∥∥∥∥
2

≤ 8η2K3L2 · 1

L2

t∑
τ=t0+1

α2
τ∥∇fi(xi

τ )−∇fj(xj
τ )∥2 + (8η2/α2

t )

∥∥∥∥∥
t∑

τ=t0+1

ατ :tατξτ

∥∥∥∥∥
2

= 8η2K3L2 · 1

L2

t∑
τ=t0+1

α2
τ∥∇fi(xi

τ )−∇fj(xj
τ )∥2 + 8η2α2

t

∥∥∥∥∥
t∑

τ=t0+1

ατ :t
ατ

α2
t

ξτ

∥∥∥∥∥
2

,

(51)

where the first inequality uses ∥a+b∥2 ≤ 2∥a∥2+2∥b∥2 which holds ∀a, b ∈ Rd, the second inequal-
ity uses ∥

∑N2

n=N1+1 an∥2 ≤ (N2 −N1)
∑N2

n=N1+1 ∥an∥2 which holds for any {an ∈ Rd}N2

n=N1+1;
the third inequality uses the definition of ḡiτ , it also uses t− t0 ≤ K as well as (ατ :t)

2 ≤ (Kαt)
2

which holds since τ ≤ t and since both ατ ≤ αt; and the last inequality uses the fact that αt = t+ 1
implying that the following holds,

α4
t

(α0:t)2
≤ 4 , &

α2
t

(α0:t)2
≤ 4

α2
t

Lemma 12. The following holds for any i, j ∈ [M ],

∥∇fi(xi
τ )−∇fj(xj

τ )∥2 ≤
3L2

Mα2
τ

(qiτ + qjτ ) + 6
(
∥∇fi(xτ )∥2 + ∥∇fj(xτ )∥2

)
,

Using the above lemma inside Eq. (51) yields,

qi,jt := α2
t ∥xi

t − xj
t∥2

≤ 24η2K3L2 · 1

M
(qit0+1:t + qjt0+1:t) + 48η2K3

t∑
τ=t0+1

α2
τ

(
∥∇fi(xτ )∥2 + ∥∇fj(xτ )∥2

)
+ 8η2α2

t

∥∥∥∥∥
t∑

τ=t0+1

ατ :t
ατ

α2
t

ξτ

∥∥∥∥∥
2

=
θ

2
· 1

M
(qit0+1:t + qjt0+1:t) +

θ

L2

t∑
τ=t0+1

α2
τ

(
∥∇fi(xτ )∥2 + ∥∇fj(xτ )∥2

)
+ Bi,jt , (52)

28



where we have denoted 8

θ := 48η2K3L2 , & Bi,jt := 8η2α2
t

∥∥∥∥∥
t∑

τ=t0+1

ατ :t
ατ

α2
t

ξτ

∥∥∥∥∥
2

.

Summing Eq. (52) over i, j ∈ [M ] and using the definition of Qt gives,

M2Qt =
∑

i,j∈[M ]

qi,jt

≤ θ

2
· 1

M
· 2M3Qt0+1:t +

θ

L2
· 2M

t∑
τ=t0+1

α2
τ

∑
i∈[M ]

∥∇fi(xτ )∥2 +
∑

i,j∈[M ]

Bi,jt

= M2θ ·Qt0+1:t +
2Mθ

L2

t∑
τ=t0+1

α2
τ

∑
i∈[M ]

∥∇fi(xτ )∥2 +
∑

i,j∈[M ]

Bi,jt , (53)

where we used, ∑
i,j∈[M ]

qiτ =
∑

j∈[M ]

∑
i∈[M ]

qiτ =
∑

j∈[M ]

M2Qτ = M3Qτ .

Now dividing Eq. (53) by M2 gives ∀t ∈ [t0, t0 +K],

Qt ≤ θ ·Qt0+1:t +
2θ

L2

t∑
τ=t0+1

α2
τ ·

1

M

∑
i∈[M ]

∥∇fi(xτ )∥2 +
1

M2

∑
i,j∈[M ]

Bi,jt

≤ θ ·Qt0+1:t +
2θ

L2

t∑
τ=t0+1

α2
τ · (G2

∗ + 4L(f(xτ )− f(w∗))) +
1

M2

∑
i,j∈[M ]

Bi,jt

≤ θ ·Qt0+1:t +
2θ

L2

t∑
τ=t0+1

α2
τ · (G2

∗ + 4L∆τ )) +
1

M2

∑
i,j∈[M ]

Bi,jt , (54)

where the second line follows from the dissimilarity assumption Eq. (2), and the last line is due to the
definition of ∆τ .

Thus, we can re-write the above equation as follows forall t ∈ [t0, t0 +K],

Qt ≤ θQt0+1:t +Ht , (55)

where Ht =
2θ
L2

∑t
τ=t0+1 α

2
τ · (G2

∗ + 4L∆τ )) +
1

M2

∑
i,j∈[M ] B

i,j
t , and recall that θ := 48η2K3L2.

Now, notice that Qt, Ht ≥ 0, and that θ satisfies θK = 48η2K4L2 ≤ 1/2 since we assume that
η2 ≤ 1

100L2K4 (see Eq. (8)). This enables to make use of Lemma 13 below to conclude,

Qt0+1:t0+K ≤ 2Ht0+1:t0+K =
4θ

L2

t0+K∑
τ=t0+1

α2
τ · (G2

∗ + 4L∆τ )) +
2

M2

∑
i,j∈[M ]

Bi,jt0+1:t0+K

= 200η2K3
t0+K∑

τ=t0+1

α2
τ · (G2

∗ + 4L∆τ )) +
2

M2

∑
i,j∈[M ]

Bi,jt0+1:t0+K .

(56)

Lemma 13. Let K, θ > 0, and assume θK ≤ 1/2. Also assume a sequence of non-negative terms
{Qt ≥ 0}t0+K

t=t0+1 and another sequence {Ht ≥ 0}t0+K
t=t0+1 that satisfy the following inequality for any

t ∈ [t0, t0 +K],
Qt ≤ θQt0+1:t +Ht

Then the following holds,
Qt0+1:t0+K ≤ 2Ht0+1:t0+K .

8Formally we should use the i, j upper script for ξτ in the definition of Bi,j
t , i.e. to define Bi,j

t :=

8η2α2
t

∥∥∥∑t
τ=t0+1 ατ :t

ατ

α2
t
ξi,jτ

∥∥∥2

. We absorb this notation into ξτ to simplify the notation.

29



Recalling that we like to bound the expectation of the LHS of Eq. (56), we will next bound∥∥∥∑t
τ=t0+1 ατ :t

ατ

α2
t
ξτ

∥∥∥2, which is done in the following Lemma 9,

Lemma 14. The following bound holds for any t ∈ [t0, t0 +K],

E

∥∥∥∥∥
t∑

τ=t0+1

ατ :tατ

α2
t

ξτ

∥∥∥∥∥
2

≤ 4K3σ2 .

Since the above lemma for any i, j and t ∈ [t0, t0 +K] we can now bound EBi,jt0+1:t0+K as follows,

EBi,jt0+1:t0+K = 8η2α2
t

t0+K∑
t=t0+1

E

∥∥∥∥∥
t∑

τ=t0+1

ατ :tατ

α2
t

ξτ

∥∥∥∥∥
2

≤ 8η2α2
t

t0+K∑
t=t0+1

4K3σ2

= 32η2α2
tK

4σ2

= 32η2(r + 1)2K6σ2 , (57)
where the last lines αt ≤ (r + 1)K for any iteration t that belongs to round r.

Since the above holds for any i, j it follows that,
2

M2

∑
i,j∈[M ]

Bi,jt0+1:t0+K ≤ 2 · 32η2(r + 1)2K6σ2 = 64η2(r + 1)2K6σ2 .

Plugging the above back into Eq. (56) gives,

Qt0+1:t0+K ≤ 200η2K3
t0+K∑

τ=t0+1

α2
τ · (G2

∗ + 4L∆τ )) + 64η2(r + 1)2K6σ2 . (58)

Final Bound on EVt. Finally, using the above bound together with the Eq. (46) enables to bound
EVt as follows,

1

L2
EVt ≤

t∑
τ=0

Qτ

≤
T∑

τ=0

Qτ

≤ 200η2K3
T∑

τ=0

α2
τ · (G2

∗ + 4L∆τ )) +
R−1∑
r=0

rK+K∑
t=rK+1

α2
t E∥xi

t − xj
t∥2

≤ 200η2K3
T∑

τ=0

α2
τ · (G2

∗ + 4L∆τ )) +

R−1∑
r=0

64η2(r + 1)2K6σ2

≤ 200η2K3
T∑

τ=0

α2
τ · (G2

∗ + 4L∆τ )) + 64η2K6σ2 · 8
6
R3

≤ 400η2K3
T∑

τ=0

α0:τ · (G2
∗ + 4L∆τ )) + 90η2K6R3σ2 ,

where we have used
∑R−1

r=0 (r + 1)2 ≤ 8
6R

3, and the last line uses α2
τ = (τ + 1)2 ≤ 2α0:τ

Consequently, we can bound

EVt ≤ 400L2η2K3
T∑

τ=0

α0:τ · (G2
∗ + 4L∆τ )) + 90L2η2K6R3σ2 ,

which established the lemma.
9recall that for simplicity of notation we denote ξτ rather than ξi,jτ .

30



J.1 Proof of Lemma 12

Proof of Lemma 12. First note that by definition of xτ we have for any i ∈ [M ],

∥xτ − xi
τ∥2 =

∥∥∥∥∥∥ 1

M

∑
l∈[M ]

xl
τ − xi

τ

∥∥∥∥∥∥
2

≤ 1

M

∑
l∈[M ]

∥xl
τ − xi

τ∥2 =
1

Mα2
τ

qiτ . (59)

where we have used Jensen’s inequality, and the definition of qiτ .

Using the above inequality, we obtain,

∥∇fi(xi
τ )−∇fj(xj

τ )∥2 = ∥(∇fi(xi
τ )−∇fi(xτ )) + (∇fi(xτ )−∇fj(xτ ))− (∇fj(xj

τ )−∇fj(xτ ))∥2

≤ 3∥∇fi(xi
τ )−∇fi(xτ )∥2 + 3∥∇fi(xτ )−∇fj(xτ )∥2 + 3∥∇fj(xj

τ )−∇fj(xτ )∥2

≤ 3L2
(
∥xτ − xi

τ∥2 + ∥xτ − xj
τ∥2
)
+ 6

(
∥∇fi(xτ )∥2 + ∥∇fj(xτ )∥2

)
≤ 3L2

Mα2
τ

(qiτ + qjτ ) + 6
(
∥∇fi(xτ )∥2 + ∥∇fj(xτ )∥2

)
,

where the second and third lines use ∥
∑N

n=1 an∥2 ≤ N
∑N

n=1 ∥an∥2 which holds for any {an ∈
Rd}Nn=1; we also used the smoothness of the fi(·)’s; and the last line uses Eq. (59).

J.2 Proof of Lemma 13

Proof of Lemma 13. Since the Qt’s and θ are non-negative, we can further bound Qt for all t ∈
[t0, t0 +K] as follows,

Qt ≤ θQt0+1:t +Ht ≤ θQt0+1:t0+K +Ht .

Summing the above over t gives,

Qt0+1:t0+K :=

t0+K∑
t=t0+1

Qt ≤ θK ·Qt0+1:t0+K +Ht0+1:t0+K ≤
1

2
·Qt0+1:t0+K +Ht0+1:t0+K

where we used θK ≤ 1/2. Re-ordering the above equation immediately establishes the lemma.

J.3 Proof of Lemma 14

Proof of Lemma 14. Letting {Ft}t be the natural filtration that is induces by the random draws up to
time t, i.e., by {{zi1}i∈[M ], . . . , {zit}i∈[M ]}. By the definition of ξt it is clear that ξt is measurable
with respect to Ft, and that,

E[ξt|Ft−1] = 0 .

31



Implying that {ξt}t is martingale difference sequence with respect to the filtration {Ft}t. The
following implies that,

E

∥∥∥∥∥
t∑

τ=t0+1

ατ :tατ

α2
t

ξτ

∥∥∥∥∥
2

≤
t∑

τ=t0+1

(
ατ :tατ

α2
t

)2

E ∥ξτ∥2

≤
t∑

τ=t0+1

(
Kαt · αt

α2
t

)2

E ∥ξτ∥2

= K2
t∑

τ=t0+1

E ∥ξτ∥2

≤ K2
t∑

τ=t0+1

E
∥∥ξiτ − ξjτ

∥∥2
≤ 2K2

t∑
τ=t0+1

(E∥ξiτ∥2 + E∥ξiτ∥2)

≤ 2K2
t∑

τ=t0+1

2σ2

≤ 4K2σ2 · (t− t0)

≤ 4K3σ2 ,

where the first line follows by Lemma 15 below, the second line holds since ατ ≤ αt, and ατ :t ≤ Kαt

(recall ατ ≤ αt since τ ≤ t); the fourth line follows due to ξτ := ξiτ − ξjτ ; the fifth line uses
∥a+b∥2 ≤ 2∥a∥2+2∥b∥2 for any a, b ∈ Rd; the sixth line follows since E∥ξiτ∥2 := E∥giτ − ḡiτ∥2 :=
E∥∇f(xi

τ , z
i
τ )−∇f(xi

τ )∥2 ≤ σ2; and the last line uses (t− t0) ≤ K.

Lemma 15. Let {ξt}t be a martingale difference sequence with respect to a filtration {Ft}t, then
the following holds for all time indexes t1, t2 ≥ 0

E

∥∥∥∥∥
t2∑

τ=t1

ξτ

∥∥∥∥∥
2

=

t2∑
τ=t1

E ∥ξτ∥2 .

J.3.1 Proof of Lemma 15

Proof of Lemma 15. We shall prove the lemma by induction over t2. The base case where t2 = t1
clearly holds since it boils down to the following identity,

E

∥∥∥∥∥
t1∑

τ=t1

ξτ

∥∥∥∥∥
2

= E ∥ξt1∥
2
=

t1∑
τ=t1

E ∥ξτ∥2 .

32



Now for induction step let us assume that the equality holds for t2 ≥ t1 and lets prove it holds for
t2 + 1. Indeed,

E

∥∥∥∥∥
t2+1∑
τ=t1

ξτ

∥∥∥∥∥
2

= E

∥∥∥∥∥ξt2+1 +

t2∑
τ=t1

ξτ

∥∥∥∥∥
2

= E

∥∥∥∥∥
t2∑

τ=t1

ξτ

∥∥∥∥∥
2

+ E∥ξt2+1∥2 + 2E

(
t2∑

τ=t1

ξτ

)
· ξt2+1

=

t2+1∑
τ=t1

E ∥ξτ∥2 + 2E

[
E

[(
t2∑

τ=t1

ξτ

)
· ξt2+1|Ft2

]]

=

t2+1∑
τ=t1

E ∥ξτ∥2 + 2E

[(
t2∑

τ=t1

ξτ

)
· E [ξt2+1|Ft2 ]

]

=

t2+1∑
τ=t1

E ∥ξτ∥2 + 0

=

t2+1∑
τ=t1

E ∥ξτ∥2 ,

where the third line follows from the induction hypothesis, as well as from the law of total expectations;
the fourth lines follows since {ξτ}t2τ=0 are measurable w.r.t Ft2 , and the fifth line follows since
E[ξt2+1|Ft2 ] = 0. Thus, we have established the induction step and therefore the lemma holds.

K Proof of Lemma 6

Proof of Lemma 6. Summing the inequality At ≤ B + 1
2(T+1)

∑T
t=0 At over t gives,

A0:T ≤ (T + 1)B + (T + 1)
1

2(T + 1)
A0:T = (T + 1)B +

1

2
A0:T ,

Re-ordering we obtain,

A0:T ≤ 2(T + 1)B .

Plugging this back to the original inequality and taking t = T gives,

AT ≤ B +
1

2(T + 1)
A0:T ≤ 2B .

which concludes the proof.

L The Necessity of Non-uniform Weights

One may wonder, why should we employ increasing weights αt ∝ t rather than using standard
uniform weights αt = 1 ,∀t. Here we explain why uniform weights are insufficient and why
increasing weights e.g. αt ∝ t are crucial to obtain our result.

Intuitive Explanation. Prior to providing an elaborate technical explanation we will provides some
intuition. The intuition behind the importance of using increasing weights is the following: Increasing
weights are a technical tool to put more emphasis on the last rounds. Now, in the context of Local
update methods, the iterates of the last rounds are more attractive since the bias between different
machines shrinks as we progress. Intuitively, this happens since as we progress with the optimization
process, the bias in the stochastic gradients that we compute goes to zero (in expectation), and
consequently the bias between different machines shrinks as we progress.

33



Technical Explanation. Assume general weights {αt}t, and let us go back to the proof of Lemma 5
(see Section J). Recall that in this proof we derive a bound of the following form (see Eq. (55))

At ≤ θAt0+1:t +Bt , (60)

where At := α2
t ∥xi

t − xj
t∥2, Bt = 8η2α2

t

∥∥∥∑t
τ=t0+1 ατ :t

ατ

α2
t
ξτ

∥∥∥2, and importantly 10,

θ := η2
2α4

t

(α0:t)2
·K3L2 .

Now, a crucial part of the proof is the fact that θK ≤ 1/2, which in turn enables to employ Lemma 13
in order to bound EVt.

Not let us inspect the constraint θK ≤ 1/2 for polynomial weights of the form αt ∝ tp where p ≥ 0.
This condition boils down to,

η2
2α4

t

(α0:t)2
·K3L2 ·K ≤ 1/2 ,

Implying the following bound should apply to η for any t ∈ [T ],

η ≤ 1

2LK2
· α0:t

α2
t

≈ 1

2LK2
· t

p+1

t2p
=

1

2LK2
· t1−p

Now since the bound should hold for any t ∈ [T ] we could divide into two cases:
Case 1: p ≤ 1. In this case t1−p is monotonically increasing with t so the above condition should be
satisfied for the smallest t, namely t = 1, implying,

η ≤ 1

2LK2
· α0:t

α2
t

≈ 1

2LK2
.

The effect of this term on the overall error stems from the first term in the error analysis (see e.g.
Eq. (36)), namely,

1

α0:T
· ∥w0 − w∗∥2

η
=

2LK2 · ∥w0 − w∗∥2

T p+1

Now, for the extreme values p = 0(uniform weights) and p = 1 (linear weights), the above expression
results an error term of the following form,

Err(p = 0) = O
(
K2/T

)
= O(K/R) & Err(p = 1) = O(K2/T 2) = O(1/R2) . (61)

Thus, for p = 0, the error term is considerably worse even compared to Minibatch-SGD, and p = 1
is clearly an improvement.
Case 2: p > 1. In this case t1−p is decreasing increasing with t so the above condition should be
satisfied for the largest t, namely t = T , implying,

η ≤ 1

2LK2
· α0:t

α2
t

≈ 1

2LK2
· 1

T p−1
.

Now, the effect of this term on the overall error stems from the first term in the error analysis (see e.g.
Eq. (36)), namely,

1

α0:T
· ∥w0 − w∗∥2

η
=

2LK2 · ∥w0 − w∗∥2 · T p−1

T p+1
=

2LK2 · ∥w0 − w∗∥2·
T 2

Thus, for any p ≥ 1 we obtain,

Err(p) = O(K2/T 2) = O(1/R2) . (62)

Conclusion: As can be seen from Equations (61) (62), using uniform weights or even polynomial
weights αt ∝ tp with p < 1 yields strictly worse guarantees compared to taking p ≥ 1.

10Indeed, in the case where αt := t+1 we can take θ := 8η2K3L2, and this is used in the proof of Lemma 5

34



NeurIPS paper checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: we claim to present the first local-update method that improves over the
minibatch baseline in the SCO heterogeneous setting, and this is exactly what we establish
in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the intro and conclusion sections, we discuss that our approach does not
aqpply to non-convex scenarios, and state it as future direction
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

35



Answer: [Yes]

Justification: we indeed provide the full set of assumptions and a complete (and correct)
proof

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

36



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

37

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: we ensured that our paper conforms with the NeurIPS Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: we do not foresee any special societal impact that arise due to our work

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

38

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

39

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: our work does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

40


	Introduction
	Setting: Parallel Stochastic Optimization
	Our Approach
	Anytime GD
	SLowcal-SGD
	Guarantees & Intuition

	Proof Sketch for Theorem 2

	Experiments
	Conclusion
	Explanations Regarding the Linear Speedup and Table 1
	On Heterogeneity Assumption
	Interpreting Anytime-SGD as Momentum
	Proof of Theorem 1
	More Intuition and Discussion Regarding the Benefit of SLowcal-SGD
	Proof of Thm. 2
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 7
	Proof of Lemma 9

	Proof of Lemma 8

	Proof of Lemma 4
	Proof of Lemma 10
	Proof of Lemma 11

	Proof of Lemma 5
	Proof of Lemma 12
	Proof of Lemma 13
	Proof of Lemma 14
	Proof of Lemma 15


	Proof of Lemma 6
	The Necessity of Non-uniform Weights

