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Abstract

Recently, LLM agents have made rapid001
progress in improving their programming ca-002
pabilities. However, existing benchmarks lack003
the ability to automatically evaluate from users’004
perspective, and also lack the explainability of005
the results of LLM agents’ code generation ca-006
pabilities. Thus, we introduce ProjectEval, a007
new benchmark for LLM agents project-level008
code generation’s automated evaluation by sim-009
ulating user interaction. ProjectEval is con-010
structed by LLM with human reviewing. It has011
three different level inputs of natural languages012
or code skeletons. ProjectEval can evaluate013
the generated projects by user interaction sim-014
ulation for execution, and by code similarity015
through existing objective indicators. Through016
ProjectEval, we find that systematic engineer-017
ing project code, overall understanding of the018
project and comprehensive analysis capability019
are the keys for LLM agents to achieve practical020
projects. Our findings and benchmark provide021
valuable insights for developing more effective022
programming agents that can be deployed in023
future real-world production. 1024

1 Introduction025

The field of programming has seen significant ad-026

vances with the rise of large language models027

(LLMs), today the LLM agents can do many pro-028

gramming works without the help of humans (Liu029

et al., 2024). To evaluate the programming ability030

of GPT-2, Chen et al. (2021) raised the first pro-031

gramming benchmark named HumanEval in 2021.032

HumanEval was also the first of the HumanEval-033

based benchmarks. In the last three years, more034

than 20 benchmarks had been raised manually or035

automatically based on LLM. After HumanEval,036

MBPP (Austin et al., 2021) came out which also037

was a base for many benchmarks. MBPP concen-038

trating on algorithm realization. In 2023, DS-1000039

1Dataset, code and constructed evaluation machine will be
available soon.

(Lai et al., 2023) was raised and represented a 040

new series of benchmarks, evaluating LLM agents 041

programming abilities of accessing the third-party 042

libraries or packages. In 2024, LLM-based pro- 043

gramming agents developed rapidly, researchers 044

noticed that many of them can do project-level 045

programming (Hong et al., 2024, Nguyen et al., 046

2024). Therefore, project-level benchmarks came 047

out, they were SoftwareDev (Hong et al., 2024), 048

ProjectDev (Nguyen et al., 2024), SRDD (Qian 049

et al., 2024), CASSD (Zhang et al., 2024a), and 050

DevBench (Li et al., 2024a). These benchmarks 051

provided the methods evaluated agent’s code gen- 052

eration capabilities at the granularity level project. 053

However, only DevBench achieved automated 054

evaluation using in-project test units, and the 055

test-unit-evaluation was NOT a realistic method 056

in a production environment used by human 057

users. And, the other benchmarks still relied on 058

natural language tests, which usually required 059

human judgment for correctness and efficiency. 060

Moreover, only DevBench provided a table of 061

evaluation scores, but it lacked explainability. 062

To bridge this gap, we propose ProjectEval, a 063

novel benchmark tailored for automated evaluating 064

project-level programming tasks(missions) in this 065

field. ProjectEval is designed to assess the abil- 066

ity of agents to tackle complex user-driven tasks 067

with precision and adaptability. Unlike existing 068

benchmarks, ProjectEval emphasizes real-world 069

usability by integrating automated test suites of 070

user interaction simulation, parameter analysis, 071

and canonical solutions into a cohesive evaluation 072

pipeline. ProjectEval contains 20 real-world tasks 073

with totally 284 testcases, and supports two task 074

types: website-based projects and batch/console- 075

based programs, with theoretical scalability to even 076

more complex, custom UI-based tasks. By lever- 077

aging LLMs for generation, supplemented with 078

manual reviewing, ProjectEval ensures robust and 079

detailed evaluation metrics. 080

1



Benchmarks Subject Test Type Construction Input Level Evaluation Pass@k #Tasks #Tests #LOC #Tokens
Automated Checklist Skeleton Automated LLM-less Avaliable

SoftwareDev(2024) Execution - % % % - - % 70 - 191.6 6218.0
ProjectDev(2024) Execution Manual Checklist Reviewing % ! % % ! ! 14 19.1 - 36818.0

SRDD(2024) Checklist LLM-Rating ! ! % ! % % 1200 - - -
CASSD(2024a) Execution Manual Checklist Reviewing % ! % % ! ! 72 5.25 ≈240 21993.0

DevBench(2024a) Execution Inside Project Test Units % % % ! ! ! 22 10.18 377.8 1298.3
ProjectEval(ours) Execution User Interaction Simulation a ! ! ! ! ! 20 14.2 402.2 2972.0

Table 1: Summary of Existing Project Level Benchmarks. a: Our benchmark is constructed by GPT-4o with human
reviewing and editing, which is semi-automated. -:SoftwareDev does not contain any evaluation.

We introduce the core structure and evaluation081

process of ProjectEval, highlight the challenges082

faced by state-of-the-art models such as Gemma-2083

and GPT-4o, and demonstrate the benchmark’s abil-084

ity to test comprehensive capabilities through pass085

rate (Pass@K) and existing algorithms. Our goal086

is to establish a more effectively, and more explain-087

able new standard for automated evaluating project088

code quality. We summarize the contributions of089

this work as follow:090

• User-Centric Project-level Benchmark: Pro-091

jectEval fills the gap in existing benchmarks092

by offering a user-focused framework with093

real-world applicability with comprehensive094

and project-level metrics. It supports website095

and batch/console-based projects.096

• Enhancing the Agent Code Generation Ex-097

plainability by Three Different Level Inputs:098

Three different level inputs integrating three099

kinds of objective indicators and pass rate,100

ProjectEval ensures precise, adaptable evalua-101

tion and enhances the result explainability.102

• Automated Evaluation Testsuites: ProjectEval103

realizes the automated evaluation from user104

perspective in website tasks and batch/con-105

sole tasks through simulating user interaction.106

This is a new low-cost method to evaluate the107

code generation capabilities of agents.108

2 Related Works109

2.1 LLM-Based Coding Agents110

There are many code LLMs to date, e.g. StarCoder,111

InCoder, WizardCoder, CodeGen and etc. How-112

ever, only the NL-i/o-available models could be-113

come programming agents as the instruction of an114

agent-level mission used to be natural language.115

Without NL input ability, the LLMs are really hard116

to become agents through agent designs of CoT,117

ReAct or Reflextion. Some researchers have de-118

veloped LLM agents. ChatDev (Qian et al., 2024)119

presents a diffusion-based model combining large120

language models with image decoders, advancing 121

text-to-image generation. AgileCoder (Nguyen 122

et al., 2024) introduces multi-agent Agile role as- 123

signments for efficient, collaborative software de- 124

velopment, while MetaGPT (Hong et al., 2024) 125

encodes workflows into prompt sequences for struc- 126

tured multi-agent task management. 127

2.2 Benchmarks for Code Generation 128

Table 2 provides a detailed summary of existing 129

benchmarks in the programming domain, and cat- 130

egorize them into six groups: exploratory bench- 131

marks before 2020, HumanEval-based benchmarks 132

(Chen et al. 2021,Liu et al. 2023, Hao et al. 2022, 133

Peng et al. 2024, Athiwaratkun et al. 2023), MBPP- 134

based benchmarks (Austin et al. 2021, Peng et al. 135

2024, Hendrycks et al. 2021, Huang et al. 2024, 136

Jain et al. 2024, Li et al. 2023, Li et al. 2022), 137

DS-based benchmarks (Lai et al. 2023, Du et al. 138

2023, Zhang et al. 2024b), problem understand- 139

ing benchmarks, and those focused on specific do- 140

mains or methods. With the development of LLM 141

and agents, the benchmarks are gradually moving 142

toward higher granularity level. The project-level 143

is the last and highest level of programming. The 144

project-level benchmarks, which are the primary 145

focus of our research, comprehensively evaluate 146

the process of transforming an initial idea into a 147

complete project. 148

There are currently five benchmarks in this cate- 149

gory, see Table 1 for the differences. In summary, 150

all project-level benchmarks can’t evaluate auto- 151

matically except DevBench and our ProjectEval. 152

Except ours, all benchmarks don’t provide a multi- 153

level inputs. Compared with DevBench, we have 154

more testcases, and our tasks (missions) are compli- 155

cate than DevBench as more lines of code and more 156

tokens. Besides, existing project-level benchmarks 157

use the test units, manual checklist reviewing or 158

LLM-scoring directly from the tested library or 159

framework to complete the evaluation, rather than 160

actually compiling and executing the project and 161
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Benchmark Language Construction Evaluation Source Granularity
Level #Tasks #Tests #LOC #Tokens Input Information

HumanEval-based

HumanEval (2021) Python Manual Automated Original Function 164 7.7 11.5 24.4 NL+ Signature
Multi-HumanEval(2023) Multiple Manual Automated HumanEval & Original Function 164 7.7 11.5 24.4 NL+ Signature

MBPP-based

MBPP(2021) Python Manual Automated Original Function 974 3.0 6.8 24.2 NL
CodeContests(2022) Python, C++ Automated Automated Contest Sites Competitive 165 203.7 59.8 184.8 NL + Example I/O

DS-based

DS-1000(2023) Python Automated Automated Stack Overflow Statement 1000 1.6 3.8 12.8 NL
CoderEval(2024b) Python, Java Automated Automated Github Function 230 N/A 30.0 108.2 NL + Signature
ClassEval (2023) Python Manual Automated PyPI + Original Class 100 33.1 45.7 123.7 Class Skeleton

Granularity Level - Project

SRDD (2024) Python Automated Automated Original Project 1200 N/A N/A N/A NL
CASSD (2024a) Python Manual Manual Original Project 72 5.25 ≈240 21993.0 NL

SoftwareDev(2024) Multiple Manual N/A Original Project 70 N/A 191.6 6218.0 NL
ProjectDev(2024) Multiple Manual Manual Original Project 14 19.1 N/A 36818.0 NL
DevBench(2024a) Multiple Manual Automated Original Project 22 10.18 377.8 1298.3 NL

ProjectEval (ours) Python Semi-automated Automated SoftwareDev & Project 20 14.2 402.2 2972.0 NL+ Class Skeleton
ProjectDev & Origin /Function Skeleton

Table 2: Summary of Existing Benchmarks for Code Generation. #Tasks: number of tasks, #Tests: average number
of testcase in each task, #LOC: average lines of code in the canonical answer, #Tokens: average number of tokens
of code in the canonical answer. N/A: This benchmark doesn’t involve this item. Part of this table is referred from
Du et al.’s (2023). Other categories are in Appendix C.

checking in users’ perspective.162

For other based benchmarks, see Table 2 for163

brief and Appendix C for full version.164

3 ProjectEval Benchmark165

3.1 Benchmark Format166

A standard ProjectEval mission will have three167

parts: Inputs, Test Suite and Canonical Solution.168

Figure 1 shows an example structure of a standard169

ProjectEval mission.170

As for the inputs, there are three different input171

types named Level for the test in each mission for172

the agent to achieve the target in ProjectEval (See173

example in Figure 1 purple part):174

• Level 1 - Natural Language Prompt (NL175

Prompt): In this level, the agent will receive176

one or several natural language sentences to177

describe the target of the project. The agent178

will create the entire project ONLY based on179

these sentences.180

• Level 2 – Natural Language Checklist (NL181

Checklist): In this level, the agent will re-182

ceive a standard natural language checklist de-183

scribing the project through the abilities and184

functions that the project should have.185

• Level 3 – Skeleton: In this level, the agent186

will receive a skeleton of the standard answer.187

This skeleton contains doc-strings and com-188

ments to describe the project inside.189

A mission test suite will contain two parts (See 190

example in Figure 1 orange part): 191

• Testcodes: a mission contains several auto- 192

mated evaluation Python functions similar to 193

HumanEval testcases. But, these testcodes are 194

prohibited using test unit inside the technical 195

stack but using user simulation by operating 196

UI to test the project generated by agents. 197

• Parameter Description (PD): usually, every 198

testcode has a matching parameter descrip- 199

tions. PD is used for a special kind of parame- 200

ter alignment. These parameters are required 201

by the matching testcode to achieve the es- 202

tablished test goal(s), e.g. in Figure 1, the 203

“test_url” is the URL of the page which can 204

show all the “tasks” that are required by the 205

testcodes. PD is similar with a user manual 206

given by developers to guide users to accom- 207

plish what they want to do - that is, the main 208

evaluation concept we designed: evaluation 209

based on the user’s perspective. 210

Finally, every mission we constructed has a canon- 211

ical solution, beside the canonical code, we also 212

build every PD’s standard answer matching to the 213

canonical code called canonical parameter values 214

(See example in Figure 1 red part). In addition, we 215

categorized tasks into “easy”, “medium”, “hard”, 216

and “human” based on code volume and human- 217

reviewed complexity. However, since results show 218

no distinction, we won’t elaborate further. 219
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Input

Level 1 NL Prompt - Source:                       ,                               and original.

Create a website for a Todo application, additional chart for analysis will be better.

MetaGPT

Level 2 NL Checklist - Generated by LLM with manual reviewing

 "Page-Todo List":
    "Create New List": "Allows users to create a new Todo list",
    "View Tasks":"Displays all tasks under a selected list",

Level 3 Skeleton - Generated by Masker module from Canonical Solution

 class TodoListView(ListView):
    def get_queryset(self):
        """
        Gets the list of TodoLists, updating their completion status.
        """

Test Suite

Parameters' values
will be reasoned by
agent based on
description and
given solution

Console&File Testcode - For No-UI mission

def test_move_player(direction, expected_output):
    stdout = _subprocess.send_command("cd "+direction)
    assert utils.string_similarity(expected_output, stdout)

"direction": "A destination name..."
"expected_output": " ... wrong selection..."

Parameter
Descriptions

Selenium Testcode - For Website mission

def test_view_tasks(driver, test_url, selector_class_name):
    driver.get(test_url)
    todo_list_selector = \
      driver.find_element(By.CLASS_NAME, selector_class_name)
    todo_list_selector.click()
    assert 'New List' in driver.title

"test_url": "the url for test"
"selector_class_name": "the class name for a todo list selector"

Parameter
Descriptions

Canonical Solution

Canonical Parameter Values
"test_url": 
    "http://localhost:8000/todos/"
"todo_list_selector_class_name": 
    "todo-list-selector"

Canonical Parameter Values
"direction": "home"
"expected_output": 
    "You are now in \\home\n"

Canonical Code

# example_app/views.py
class TodoListView(ListView):
    template_name = 'todo_list.html'
    model = TodoList

    def get_queryset(self):
...

        return queryset

Canonical Parameter Values: the standard answer correspond to Canonical Solution for the testcase.
Note: every solution will have their own parameter values to getpass the testcase

Canonical Code: A reference solution generated by 
LLM with manual reviewing passable to all the testcase

Figure 1: A typical ProjectEval website mission, includ-
ing three different levels of input, a test suite, and a
canonical solution. Notice that the upper test suite is the
test suite used in website mission while the lower one is
an example of console/file mission test suite.

We give the agent missions by JSON format220

directly embedded into their prompt and asked221

the same format output, which we consider as a222

very important ability of code generation.223

3.2 Construction Process224

The construction process of ProjectEval is rela-225

tively complex (See Appendix A for the complete226

version ProjectEval process and structure diagram).227

Level 1 NL Prompt & Level 2 NL Checklist:228

There are initial 20 tasks (missions) in ProjectEval229

that are manually edited into concise natural lan-230

guage descriptions, which is Level 1 NL Prompt. 7231

of them are sourced from SoftwareDev (Hong et al.,232

2024) and ProjectDev (Nguyen et al., 2024) while233

others are created originally by us. Figure 2 purple234

part shows that these descriptions are sent to an235

LLM, which generates a list of more detailed natu-236

ral language task descriptions. After manual review237

and modification, the refined version is referred as238

the Level 2 NL Checklist.239

Testsuite: Figure 2 orange part shows that the 240

NL Checklist is given into the LLM, which, from 241

a user testing perspective, generates test code. 242

For website missions, the test code is mostly 243

implemented using the open-source testing li- 244

brary Selenium, which simulates user behav- 245

ior in a browser to interact with websites. For 246

batch/console tasks, the test code typically uses 247

Python’s subprocess module to mimic user inter- 248

actions such as running commands and entering 249

keyboard input. If the task involves file genera- 250

tion, the test code utilizes dedicated open-source 251

libraries to read and compare the similarity of the 252

generated file against a canonical file. For example, 253

programs that generate Excel files are validated 254

using the Openpyxl library to compare with the 255

reference files. The test code often requires one or 256

more parameters to execute because the specifics of 257

the code generated by an agent—such as variable 258

names, function names, class names, and output 259

file names—are unpredictable. To address this, the 260

test code is input into the LLM to generate an addi- 261

tional Parameter Description (PD), which provides 262

a natural language explanation of the parameters 263

needed by the test code. The PD, along with the 264

test code, constitutes the Test Suite. 265

Canonical Solution: Simultaneously, in Fig- 266

ure 2 red part, the NL Checklist is put into another 267

LLM thread to generate a temporary project skele- 268

ton, which is then fed back into the LLM to infer 269

and generate Canonical Code (CNC). Practical re- 270

sults show that while most of the code can’t be 271

use directly, a little of the LLM-generated code is 272

mostly correct, but it often requires manual correc- 273

tions to form the true canonical code. This process 274

aligns with the findings of AgileCoder experiments 275

partially. A human reviewer is asked for checking 276

the CNC to confirm that it is runnable and meets 277

the requirements of the Checklist. By inputting 278

the PD and CNC into the LLM and applying mini- 279

mal manual adjustments, Canonical Parameter Val- 280

ues (CPV) are obtained. Together, CPV and CNC 281

are the Canonical Solution (CNS). When the CNS 282

is input into the ProjectEval testing controller, it 283

achieves a perfect score, i.e., Pass@K = 100%. 284

Level 3 Skeleton: Finally, the CNC is processed 285

through a Masker (which could be a regex-based 286

program or an LLM) to replace function bodies, 287

class bodies, and critical HTML tag content with 288

functional description comments. This produces 289

a test skeleton that can evaluate LLMs without 290

natural language generation capabilities, referred 291
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Level 1
NL Prompt

Source 

SoftwareDev
MetaGPT

ProjectEval
Original

ProjectDev
Level 2

NL Checklist

Test Suite

Parameters
DescriptionTestcode

Canonical Solution

Canonical
Parameter

Values
Masker

Level 3
Skeleton

Human
Reviewing

GPT-4o
Reasoning

Input

Temporary
Skeleton

Canonical 
Code

Figure 2: Construction of ProjectEval. Testcode is aligned with Checklist. Parameter Description is aligned with
Testcode and Canonical Parameter Values. Canonical Parameter Values is aligned with Canonical Code and use for
testcode to get passed.

to as the Level 3 Skeleton.292

All CNC are programmed in Python but Project-293

Eval theoretically supports any programming294

language as we evaluate the LLM through users’295

perspective. It may need researchers compile the296

LLM-generated program in advance. The total cost297

of construction process with GPT-4o is $2.95 and298

the human reviewing cost is $420 by hiring a third-299

party company with contract.300

3.3 Evaluation Process301

The evaluation process begins by selecting a spe-302

cific level from the input and presenting it to the303

agent (See Figure 3). The agent can use any de-304

signs or methods to solve the inputs and generate305

Solution Code (Code). The Code is then fed back306

into the same agent along with the PD. The agent307

is tasked with answering the parameter description308

based on its own generated Code to produce Param-309

eter Values (PV). The Code is then converted into310

an executable file, creating a tangible project. This311

project, together with the testcode with PV substi-312

tuted, is integrated into the ProjectEval evaluation313

machine to obtain the evaluation results.

Parts Method Type

Level 2 Checklist
Sentence Transformer (2020) Maximum

+ Jonker Volgenant (1987)

Level 3 Skeleton
CodeBLEU (2020) Maximum

+ Jonker Volgenant

Code CodeBLEU + Jonker Volgenant Maximum

Parameters Values Levenshtein Distance (1966) Average

Table 3: ProjectEval Objective Indicators. Four addi-
tional objective similarity evaluation methods to evalu-
ate the performance of each parts individually.

314

Since we have different level inputs, we can com- 315

pare the similarity of the generated results at each 316

level and obtain the score for each step. This pro- 317

cess is equivalent to disassembling the CoT of LLM 318

agents to a certain extent, thereby enhancing the 319

explanabilities of the pass rate results. 320

Therefore, we introduces four additional objec- 321

tive similarity evaluation methods to evaluate the 322

performance of four parts individually (See Ta- 323

ble 3). As a Level 2 Checklist consists of multi- 324

ple independent natural language sentences, which 325

cannot be considered a cohesive document, after 326

calculating the similarity between each sentence 327

in the canonical Checklist and the test Check- 328

list using Sentence Transformers (Reimers and 329

Gurevych, 2020), the Jonker-Volgenant algorithm 330

(1987) is employed to determine the optimal match- 331

ing scheme, from which an overall matching score 332

is derived. Since both the Level 3 Skeleton and the 333

answer are written as code, existing code evaluation 334

tools like CodeBLEU (Ren et al., 2020) are used 335

to compute BLEU scores by considering structure 336

similarity. The Skeleton and Code have the rect- 337

angular linear sum assignment problems same as 338

Checklist, so Jonker-Volgenant is also used in these 339

parts. Parameter Values are typically short, often 340

consisting of single words, compound words, or 341

simple URLs. Therefore, strings cosine similarity 342

is directly used to measure their similarity. 343

4 Experiments 344

4.1 Research Questions 345

Our experiments intend to answer the following 346

research questions: 347

• RQ1 (Overall Correctness): How do LLM 348

agents perform on ProjectEval benchmark? 349
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Input - Level X

e.g. Level 1: Create a website for a Todo application, additional chart ...

Can use any 
designs

and/or tricks

Code
# example_app/views.py
class TodoListView(ListView):
    template_name = 'todo_list.html'
    model = TodoList

    def get_queryset(self):
        queryset = TodoList.objects.all()
        for todolist in queryset:
 ...

File Writer Executor

Answer

Parameter Values

"test_url": 
    "http://localhost:8000/todos/"
"todo_list_selector_class_name": 
    "todo-list-selector"

Test Suite

ProjectEval

Score

Report: {'total': 20, 'pass': 20,
'failed': 0, 'score': 1.0}

 Random
Test Data

Substitute

Executable File(s)

Project

Test Functions

Parameter Descriptions
"test_url": "the url for test"
"selector_class_name": 
    "the class name for a todo list selector"

Selenium Testcode - For Website mission

def test_view_tasks(driver, test_url, selector_class_name):
    driver.get(test_url)
    ...
    assert 'New List' in driver.title

Figure 3: Evaluation Process of ProjectEval. The evaluation process begins by selecting a specific level from the
input and presenting it to the agent. The agent generates solution code. The solution code is then fed back into the
same agent along with the parameter description. The agent is tasked with answering the parameter description
based on its own solution to produce parameter values (PV). The code is then converted into an executable file,
creating a tangible project. PV is substitute to testcode, and testcode is integrated into the ProjectEval evaluation
machine to obtain the evaluation results.

• RQ2 (Cascade Generation & Direct Gener-350

ation): Do LLM agents performs better when351

they generated level by level till answer code352

(i.e. cascade) than directly generate?353

• RQ3 (Basic LLM Selection): Which basic354

LLM perform the best in the experiments and355

where it does better than the others?356

• RQ4 (Step by Step Performance): How do357

LLM agents performs on each part of Pro-358

jectEval benchmark?359

For the basic LLM selection and settings part, see360

Appendix B.361

4.2 Evaluation Metric362

Same as many benchmarks of HumanEval-based363

and MBPP-based, we adapt the pass rate (Pass@K)364

for every LLM. We have average 14.2, totally 284365

testcases (including runnable as a testcase) to eval-366

uate the correctness of Code generated by LLM367

(See Table 1 for all statistics). The percentage of368

test cases that passed is the final score that an LLM369

gains from ProjectEval. Notice that some of the370

testcases are chain-reacted, as if the former one371

fails, the followings will never get passed.372

We also added 4 objective indicators mentioned373

in Section 3.3 for each part which agents generated374

mentioned in Table 3. ProjectEval will compute375

these metrics in parallel with Pass@K.376

The total evaluation cost of Pass@5 with GPT-4o377

is $28.02, average $5.60 for each round.378

5 Results379

5.1 RQ1: Overall Correctness380

Table 4 shows the overall correctness is low. The381

results are very similar to CoderEval(2024b) and382

Model Cascade Direct All Avg.
Level 1 Level 2 Avg. Level 1 Level 2 Level 3 Avg.

Open-source AGI LLMs

Llama-2-7B 0.00 0.07 0.04 0.28 0.00 0.07 0.12 0.08
Llama-3.1-7B 0.28 0.28 0.28 0.14 0.28 0.42 0.28 0.28
Llama-3.2-3B 0.21 0.14 0.18 0.14 0.00 0.00 0.05 0.10
Phi-3-14B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Phi-4-14B 0.14 0.56 0.35 1.76 1.13 2.04 1.64 1.13
Gemma-7B 0.99 1.06 1.02 0.56 0.63 0.49 0.56 0.75
Gemma-2-9B 1.69 1.06 1.37 1.34 0.56 0.63 0.85 1.06
Mistral-7B-v0.3 1.48 1.06 1.27 0.92 0.99 0.56 0.82 1.00

Code Generation LLMs

StarCoder-2-7B - - - - - 0.00 - -
CodeGemma - - - - - 1.20 - -
CodeLlama - - - - - 0.77 - -

Close-source AGI LLMs

GPT-3.5-turbo 2.39 2.46 2.43 1.97 2.39 5.28 3.22 2.90
GPT-4o 8.52 12.32 10.42 16.06 15.42 10.14 13.87 12.49
Gemini 1.5 pro 7.82 7.39 7.61 5.28 4.51 8.24 6.01 6.65
Gemini 2.0-flash 3.24 3.59 3.42 3.52 3.45 7.75 4.91 4.31

Avg. 2.23 2.50 2.37 2.66 2.45 2.51 2.69 2.56

Table 4: ProjectEval Result Pass@5. ProjectEval is hard
for recent LLM agents to get pass. GPT-4o has the best
score. See Appendix D for Pass@K.

Dev-Bench(2024a) as all agents are very unlikely 383

to make the project runnable (only 17.91% projects 384

in CoderEval’s result) and almost impossible to 385

make every details correct in the project (lower 386

than 10% passed in DevBench’s result). 387

Table 5 shows that most of the opensource- 388

model agents cannot generate compilable project. 389

We examine through Phi-4 and Gemma-2, they 390

have only 1 to 3 simple projects can be compiled 391

and run. Even if the close-source LLMs can hardly 392

reach the 10% of ProjectEval standard, but the 393

close-source LLM agents do better than the open- 394

source ones which is equivalent to 1 or 2 simple 395

projects get almost full scores. 396

However, Table 5 shows that the Gemma, 397

Gemma-2 and Phi-4 do have the abilities on Check- 398

list generating as they have approximate score to 399
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Model
Cascade Direct

Level 1 Level 2 Level 1 Level 2 Level 3

CL SK Code PV SK Code PV Code PV Code PV Code PV

Open-source AGI LLMs

Llama-2-7B 1.13 0.43 0.32 0.00 0.00 0.49 0.00 0.13 0.00 0.30 0.00 0.40 0.00
Llama-3.1-7B 3.61 2.60 1.41 0.33 1.92 1.99 0.68 1.92 0.68 1.84 0.39 4.74 0.54
Llama-3.2-3B 1.00 0.27 1.61 0.00 0.55 0.00 0.00 0.17 0.00 0.00 0.00 0.17 0.00
Phi-3-14B 5.62 1.69 1.37 0.44 1.14 0.88 0.00 0.30 0.00 0.00 0.00 0.29 0.00
Phi-4-14B 41.92 3.74 1.71 1.37 2.42 3.82 4.74 10.87 10.76 6.87 8.15 13.32 9.70
Gemma-7B 38.08 5.70 5.12 0.00 6.98 6.37 0.00 1.95 0.00 2.38 0.00 5.38 0.00
Gemma-2-9B 40.25 7.90 7.53 9.32 7.70 9.05 6.62 5.50 8.93 5.97 6.59 8.07 5.19
Mistral-7B-v0.3 4.20 7.12 8.73 9.74 7.03 7.48 7.14 6.37 6.16 6.80 7.45 7.81 7.23

Code Generation LLMs

StarCoder-2-7B - - - - - - - - - - - 0.00 0.00
CodeGemma - - - - - - - - - - - 9.99 14.75
CodeLlama - - - - - - - - - - - 5.44 0.99

Close-source AGI LLMs

GPT-3.5-turbo 38.33 8.82 13.73 38.46 12.56 13.55 42.30 13.27 37.73 13.91 41.19 34.19 39.21
GPT-4o 55.73 16.57 36.37 54.75 15.46 36.42 53.62 35.18 51.75 33.10 50.16 53.01 62.69
Gemini 1.5 pro 49.48 14.01 31.96 18.15 15.22 31.04 25.62 15.97 9.99 24.32 22.05 46.51 27.90
Gemini 2.0-flash 51.85 16.08 20.63 6.61 17.63 22.02 11.53 26.39 10.46 24.99 13.39 41.89 19.40
Gemini 2.0-pro* 49.44 13.69 16.86 5.09 19.93 24.09 10.91 2.61 0.00 30.19 16.22 36.95 10.39

Average 29.28 7.59 11.34 11.10 8.35 12.09 12.55 9.28 10.50 11.59 12.74 16.76 12.37

Table 5: ProjectEval Result Objective Indicators. Phi-4, the Gemmas and all close-source LLM agents have abilities
to generate Checklist well, but only close-source LLM agents can do the Skeleton and Code well. CL: Checklist,
SK: Skeleton, PV: Parameter Value. * We only test the Gemini-2.0-pro pass@1.

GPT-3.5-turbo, lower than GPT-4o and Geminis,400

while the Llama series, Mistral and Phi-3 have very401

low scores. The latter is caused by the lack of402

JSON format adaptability.403

Both tables shows that Gemma-2 and Phi-4 may404

have the same capability to GPT-3.5-turbo, but far405

more way to go for GPT-4o and Gemini-1.5-pro.406

Additionally, the Code LLMs agents have almost407

no effective results can be produced. The reason408

may be that Skeleton only has natural language409

descriptions, and it is difficult to fill in the whole410

framework without the context code.411

In summary, ProjectEval is hard for nowadays412

agents as only GPT-4o reach the Pass@5 of 15%.413

Open-source LLM agents are doing worse than the414

close-source ones, and Code LLMs agents do not415

have the abilities to pass ProjectEval.416

5.2 RQ2: Cascade Generation & Direct417

Generation418

The average scores of objective indicators (Table 5)419

show that agents are doing better on cascade gener-420

ation than the direct generation mode with 2.06%421

higher at Level 1 input. The cascade generation in422

a way mimics the CoT process and the ReAct de-423

sign of an agent. It allows agents to re-examine the 424

project development procedure and correct some of 425

the errors. As for the core scores (Pass@K) of all 426

LLMs, they are too low to analyze. But we notice 427

that two Gemma models, Mistral, and Gemini-1.5- 428

pro are doing better in cascade generation. 429

However, GPT-4o has higher scores when us- 430

ing direct generation mode rather than the cascade 431

mode. So, we study a case, Project 3 – “Create a 432

password generator”, of GPT-4o (See Appendix E). 433

We resend all the input and output by order back to 434

GPT-4o and ask the CoT of it. It shows that GPT- 435

4o directly hits the files that need to be generated 436

when using the direct generation mode while it con- 437

centrates more on the NL processing and analysis 438

on cascade generation mode. This is an interesting 439

phenomenon, and we suspect that asking the LLM 440

agents to generate according to the thought steps 441

we set induces the LLM to tend to activate param- 442

eters about natural language rather than the more 443

important aspects of code generation. 444

This phenomenon does not affect ProjectEval’s 445

evaluating capabilities as the cascade mode is not 446

for ProjectEval core functions. 447

Also, this finding in ProjectEval Pass@5 is con- 448
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flicted with the CodeBLEU result, as the latter’s449

cascade scores are higher than the direct scores no450

matter it uses Level 1 or Level 2 input, both in Code451

and PV. This means even if CodeBLEU has consid-452

ered the structure, “details will determine success453

or failure”. For instance, we found that the GPT-454

4o’s cascade generation did has better structure of455

the code but it just missed filling a path parameter456

and the result was fatal for the project.457

In summary, cascade generation is better than458

direct generation, and ProjectEval execution pass459

rate is better than the similarity indicators as the460

latter cannot reflect the program execution effects.461

5.3 RQ3: Basic LLM Selection462

The close-source LLM agents have better perfor-463

mance on ProjectEval than the open-source ones464

(See Table 4). GPT-4o are the SOTA of project465

generation under ProjectEval evaluation.466

The first difference is the ability to generate sys-467

tematic project code based on natural language.468

From the objective indicators (Table 5), we find the469

close-source LLM agents do better on skeleton and470

code generation, both GPT and Gemini can gener-471

ate better skeleton reflecting well to the standard472

code. We used GPT-4o as the ProjectEval’s data473

generation procedure base model but Gemini-1.5-474

pro reaches almost the same performance of GPT-475

4o. Thus, the reason may not be the familiarity476

of GPT’s prompt. This suggests that close-source477

LLM agents may have better ability on reflecting478

the Checklist into a skeleton or framework. The479

Checklist and Skeleton’s Functions and/or Classes480

are many-to-many relationship. It’s a very compli-481

cate mission for open-source LLM agents to solve482

than the close-source ones.483

Second, the over-all understanding of the project484

and comprehensive analysis capabilities are also485

very important for the LLM agents. Close-source486

LLM agents are doing well on all parts of the Pro-487

jectEval inputs and the open-source LLM agents488

will have a better chance to get passed ProjectEval489

when they have better performance on those parts.490

Third, the LLM agents’ formatted output capabil-491

ities have huge influence. We ask all LLM agents492

to output JSON format. All the close-source agents493

can do well compare with only Phi-4, Gemma and494

Gemma-2 have this capabilities of open-source495

agents. This finding is important for research or496

engineering that requires the LLM Agent to be the497

controller, as they need to guarantee stable and498

regulated outputs.499

In summary, the close-source LLM agents are 500

doing better on ProjectEval. GPT-4o are the SOTA 501

of project generation under ProjectEval evaluation. 502

5.4 RQ4: Step-by-Step Performance 503

Objective indicators can also show the step-by-step 504

performance in cascade generation (Table 5). 505

Except the Llama series, from the cascade per- 506

spective, the LLM agents perform well in the field 507

of NL generation for Checklists, which is also 508

one of its fundamental capabilities. In addition, 509

the Checklist itself includes an understanding of 510

project prompts which means most LLMs also pos- 511

sess this capability. 512

When it comes to the Skeleton, we have already 513

mentioned the problem of many-to-many relation- 514

ship question of Checklist and Skeleton. This is a 515

challenge for LLM agents to deal with. 516

Code generation is a traditional topic of LLM 517

agents, Phi-4 does better when it directly generates 518

the code from Level 1 rather than the cascade. 519

Parameter answering reflects the code under- 520

standing capability. Though, in ProjectEval, the 521

score may highly connect with the Code genera- 522

tions but still may indicate that the capability of 523

LLM agents. When the code is effective, both open- 524

source and close-source LLM agents can explain 525

their own code, which confirms that LLM agents 526

have a strong ability to understand code. Specif- 527

ically, it can identify the key statements needed 528

from the PD as for ProjectEval questions. 529

In summary, LLM agents are best at generating 530

Checklists than the other parts of ProjectEval. 531

6 Conclusion 532

We develop a new benchmark ProjectEval. It fills 533

the gap for the lack of benchmark in the project 534

granularity level code generation field of natural 535

language processing and provides automated evalu- 536

ation tools for higher-level research in LLM agent. 537

We also leverage additional objective metrics to 538

reveal the effectiveness of LLM agents at different 539

stages of project generation. These metrics are cru- 540

cial in revealing the capabilities for improvement 541

in the agents’ performance, thus offering a deeper 542

understanding of how these models can be further 543

enhanced. We confirmed that GPT-4o is still the 544

SOTA in this field. Our findings and benchmark 545

provide valuable insights for developing more ef- 546

fective programming agents that can be deployed 547

in real-world production environments. 548
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7 Limitation549

• Some challenging projects, whether due to550

complexity or human-related difficulties, may551

follow common design patterns that do not552

align with Django, our primary technical553

stack. However, we will document all possible554

designs we thought of in the dataset remarks555

for each project where this issue arises.556

• JSON format is not universally compati-557

ble with all LLMs. We have noticed that558

some open-source models struggle to gener-559

ate JSON format output required by ProjectE-560

val. These models might perform better if we561

allowed to generate output in their own for-562

mat. However, permitting this would compro-563

mise fairness and introduce inconsistencies564

in output standards. Additionally, developing565

custom formatters for each LLM would be566

impractical.567

• CPV is based on the CNC, but the CNC may568

not the only answer for the project. This may569

lead to some PV is correct for the reflected570

code but will get lower score on Levenshtein571

Distance evaluation. But, since the PV is not572

very important in the metric, this does little573

effect on the ProjectEval results.574

All these limitations will be solved in the future575

research if it is possible.576

Besides, the ProjectEval judge machine will au-577

tomatically run the project that generated by LLM578

agents which may contain harmful code. This is a579

potential risk that we can’t fix.580
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Input

Level 1 NL Prompt - Source:                       ,                               and original.

Create a website for a Todo application, additional chart for analysis will be better.

MetaGPT

Level 2 NL Checklist - Generated by        GPT-4o with manual reviewing

 "Page-Todo List":
    "Create New List": "Allows users to create a new Todo list",
    "View Tasks":"Displays all tasks under a selected list",
...

Level 3 Skeleton - Generated by Masker module from Canonical Solution

 class TodoListView(ListView):
    def get_queryset(self):
        """
        Gets the list of TodoLists, updating their completion status.
        """
        pass

Test Suite

Selenium Testcode - For Website mission

def test_view_tasks(driver, test_url, todo_list_selector_class_name):
    driver.get(test_url)
    todo_list_selector = driver.find_element(By.CLASS_NAME, todo_list_selector_class_name)
    todo_list_selector.click()
    assert 'New List' in driver.title
...

"test_url": "the url for test"
"todo_list_selector_class_name": "the class name for a todo list selector"

Parameter
Descriptions

Console&File Testcode - For No-UI mission

def test_move_player(direction, expected_output):
    stdout = _subprocess.send_command("cd "+direction)
    assert utils.string_similarity(expected_output, stdout)
...

"direction": "A destination name..."
"expected_output": "...player input a wrong selection..."

Parameter
Descriptions

Parameters' values
will be reasoned and
answered by agent
based on their
description and given
solution

Canonical Solution

Canonical Code: A reference solution generated by  LLM with manual
reviewing passable to all the testcase

Canonical Code

# example_app/views.py
class TodoListView(ListView):
    template_name = 'todo_list.html'
    model = TodoList

    def get_queryset(self):
        queryset = TodoList.objects.all()
        for todolist in queryset:
            flag = True
            for todoitem in todolist.todoitem_set.all():
                if todoitem.completed:
                    continue
                flag = False
                break
            todolist.completed = flag
            todolist.save()
        return queryset
...

Canonical Parameter Values

"test_url": 
    "http://localhost:8000/todos/"
"todo_list_selector_class_name": 
    "todo-list-selector"

Canonical Parameter Values
"direction": "home"
"expected_output": 
    "You are now in \\home\n"

Canonical Parameter Values: the standard
answer correspond to Canonical Solution for
the testcase.
Note: every solution will have their own
parameter values to getpass the testcase

Level 1
NL Prompt

Natural Language (NL) Prompt Source

ProjectDev
ProjectEval

OriginalSoftwareDev

Level 2
NL Checklist

Human
Reviewing

Test Suite

Parameters
DescriptionTestcode

Canonical Solution

Canonical
Code

Canonical
Parameter Values

Masker

Temporary
Skeleton

Level 3
Skeleton

LLM
Reasoning

Legends

Figure 4: ProjectEval Structure and Construction Process

B Basic LLM Selection and Settings794

Since the ProjectEval Level 1, Level 2 input and PV input are natural language but the Level 3 input, and795

code output are program language, the basic LLM models should have both aspects abilities. This means796

that ProjectEval full evaluation must be run under AGI LLM models.797

We select three types of models: open-source AGI LLMs, close-source AGI LLMs, and code genera-798

tion LLMs. Among the open-source AGI models, we include Mistral-7B-v0.3(2023), Gemma(2023b),799

Phi(2023), and Llama(2023), which are known for their advancements in general AI capabilities. In the800

close-source AGI LLM category, we consider models such as GPT(OpenAI, 2023) and Gemini(Google,801

2023a), which represent cutting-edge proprietary models excelling in a variety of tasks.802

Additionally, the Code generation LLMs category features CodeLlama and Starcoder2, which are803

specialized in code generation and will be used only in Skeleton input evaluation.804

For Gemma series, we include Gemma-7B, Gemma2-9B; For Phi series, we include Phi-4, Phi-3-14B;805

For Llama series we include Llama3.2-3B, Llama3.1-8B, Llama2-7B; For GPT series, we include GPT-4o806

and GPT-3.5-turbo; For Gemini we include Gemini-1.5-pro and Gemini-2.0. All the models are running807

under temperature zero with all settings default in their releases.808
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C Related Benchmarks 809

Benchmark Language Construction Evaluation Source Granularity
Level #Tasks #Tests #LOC #Tokens Input Information

Early Years Research

Concode (2018a) Java Automated Automated GitHub Function 2000 N/A 1 N/A 1 26.3 NL

CoNaLA (2018) Python Automated Automated Stack Overflow Statement 500 N/A 1 1.0 4.6 NL

BLEU-based

Django (2018b) Python

N/A2 Automated N/A2 Project N/A2 CodeCodeBLEU(2020) Multiple

SketchBLEU(2024) Multiple

HumanEval-based

HumanEval (2021) Python Manual Automated Original Function 164 7.7 11.5 24.4 NL+ Function
Signature

AixBench (2022) Java Manual Automated HumanEval & Original Function 175 N/A3 NL+ Function
Signature

Multi-HumanEval(2023) Multiple Manual Automated HumanEval & Original Function 164 7.7 11.5 24.4 NL+ Signature

HumanEval+ Python Manual Automated Original Function 164 774.8 11.5 24.4 NL+ Signature

MBPP-based

MBPP(2021) Python Manual Automated Original Function 974 3.0 6.8 24.2 NL

APPS(2021) Python Automated Automated Contest Sites Competitive 5000 13.2 21.4 58 NL+ Examples

MBXP(2023) Multiple Manual Automated MBPP & Original Function 974 3.0 6.8 24.2 NL

CodeContests(2022) Python, C++ Automated Automated Contest Sites Competitive 165 203.7 59.8 184.8 NL + Example I/O

DS-based

DS-1000(2023) Python Automated Automated Stack Overflow Statement 1000 1.6 3.8 12.8 NL

CoderEval(2024b) Python, Java Automated Automated Github Function 230 N/A1 30.0 108.2 NL + Function
Signature

ClassEval (2023) Python Manual Automated PyPI + Original Class 100 33.1 45.7 123.7 Class Skeleton

EvoCodeBench (2024b) Python Semi-automated Automated GitHub Function 275 N/A 1 N/A 20.40 185.57

Program Understanding

ReCode(2023) Python Automated Automated HumanEval & MBPP Function 30 10.0 N/A 1 N/A 1 Code

CRUXEval (2024) Python Automated Automated Python Standard Libs Function 800 10.0 5.49 N/A 1 Code

CodeBenchGen(2024) Python Automated Automated CodeSearchNet(2020)
(GitHub) Function 1931 8.79 60.5 491.9 Code + NL Statements

Granularity Level - Project

SRDD (2024) Python Automated Automated Original Project 1200 N/A 1 N/A 1 N/A 1 NL

CASSD (2024a) Python Manual Manual Original Project 72 5.25 ≈240 21993.0 NL

SoftwareDev(2024) Multiple Manual1 N/A Original Project 70 N/A 1 191.6 6218.0 NL

ProjectDev(2024) Multiple Manual Manual Original Project 14 19.1 N/A 1 36818.0 NL

DevBench(2024a) Multiple Manual Automated Original Project 22 10.18 377.8 1298.3 NL

ProjectEval (ours) Python Semi-automated Automated SoftwareDev &
ProjectDev & Origin Project 20 14.2 402.2 2972.0 NL+ Class/Function

Skeleton

[1]This benchmark doesn’t involve this item.

[2]The Bleu-based benchmark doesn’t involve construction, source and number items.

[3]Since Aixbench wrote 175 Java files for testing and wrote the test samples directly into the code, it is very difficult to count its details.

Table 6: Summary of Existing Benchmarks for Code Generation. #Tasks: number of tasks, #Tests: average number
of testcase in each task, #LOC: average lines of code in the canonical answer, #Tokens: average number of tokens
of code in the canonical answer. Part of this table is referred from Du et al.’s (2023).

HumanEval-based Benchmarks: These benchmarks are similar to or extensions of OpenAI’s Hu- 810

manEval, primarily emphasizing functional tasks with general-purpose functions. 811

MBPP-based Benchmarks: These benchmarks are similar to or derived from Google’s MBPP, focusing 812

on algorithmic problem-solving functions. 813

DS-based Benchmarks: DS-based benchmarks involve the use of external libraries or classes. However, 814

the specific contents and documentation of these libraries/classes are not included within the benchmark 815

dataset itself. 816
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Program Understanding Benchmarks: Unlike other benchmarks that focus on whether the code is817

written correctly, these benchmarks assess the ability of an agent or LLM to thoroughly understand the818

provided code.819

Project-level Benchmarks: Project-level benchmarks, which are the primary focus of this paper,820

comprehensively evaluate the process of transforming an initial idea into a complete program. There are821

currently five benchmarks in this category, see Table 1 for the differences.822

D ProjectEval Result Pass@K823

Model
Pass@1 Pass@5

Cascade Direct Cascade Direct
All Avg.

Level 1 Level 2 Level 1 Level 2 Level 3 Level 1 Level 2 Avg. Level 1 Level 2 Level 3 Avg.

Open-source AGI LLMs

Llama-2-7B 0.00 0.35 1.06 0.00 0.35 0.00 0.07 0.04 0.28 0.00 0.07 0.12 0.08

Llama-3.1-7B 0.70 0.70 0.35 0.70 1.06 0.28 0.28 0.28 0.14 0.28 0.42 0.28 0.28

Llama-3.2-3B 0.70 0.35 0.35 0.00 0.00 0.21 0.14 0.18 0.14 0.00 0.00 0.05 0.10

Phi-3-14B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Phi-4-14B 0.35 1.06 4.23 1.41 4.23 0.14 0.56 0.35 1.76 1.13 2.04 1.64 1.13

Gemma-7B 1.41 1.41 1.06 0.70 1.06 0.99 1.06 1.02 0.56 0.63 0.49 0.56 0.75

Gemma-2-9B 2.11 2.46 2.11 1.06 1.06 1.69 1.06 1.37 1.34 0.56 0.63 0.85 1.06

Mistral-7B-v0.3 2.11 1.76 1.41 1.41 0.70 1.48 1.06 1.27 0.92 0.99 0.56 0.82 1.00

Code Generation LLMs

StarCoder-2-7B - - - - 0.00 - - - - - 0.00 - -

CodeGemma - - - - 2.11 - - - - - 1.20 - -

CodeLlama - - - - 1.41 - - - - - 0.77 - -

Close-source AGI LLMs

GPT-3.5-turbo 2.46 2.46 2.46 2.46 6.69 2.39 2.46 2.43 1.97 2.39 5.28 3.22 2.90

GPT-4o 10.21 15.85 19.72 17.96 12.32 8.52 12.32 10.42 16.06 15.42 10.14 13.87 12.49

Gemini 1.5 pro 9.15 8.80 7.39 6.34 9.51 7.82 7.39 7.61 5.28 4.51 8.24 6.01 6.65

Gemini 2.0-flash 5.63 5.28 5.63 6.69 8.80 3.24 3.59 3.42 3.52 3.45 7.75 4.91 4.31

Gemini 2.0-pro* 4.93 4.93 0.00 5.63 7.39 - - - - - - - -

Avg. 3.06 3.49 3.52 4.03 3.54 2.23 2.50 2.37 2.66 2.45 2.51 2.69 2.56

* We only test the Gemini-2.0-pro pass@1.

Table 7: ProjectEval Result Pass@k

E Casestudy Log of GPT-4o824

E.1 Cascade Version825

Listing 1: Cascade Verison
826

My chain of thought for each step in the log is as follows:827

828

1. ** Instruction to Generate Natural Language Function Checklist **:829

- **Input Reasoning **: A request is made to create a website for a830

password generator and generate a natural language function831

checklist from the users ' perspectives in a JSON format.832
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- ** Action Taken **: Based on the request , I generate a JSON object 833

representing different pages of the proposed website , each 834

containing functions for user interactions , along with 835

descriptions of these functions. 836

- ** Output Reasoning **: I structure the output JSON to clearly 837

separate the different pages (e.g., Home , Password Generator , 838

Settings) and the functions associated with each , providing a 839

concise description for each user -facing action. 840

841

2. ** Generate Django Framework Skeleton **: 842

- **Input Reasoning **: Build a Django framework skeleton based on 843

the previously provided checklist , using JSON format to outline 844

the necessary files and logic. 845

- ** Action Taken **: Construct a basic Django app structure , 846

including `views.py` and `urls.py` for simplicity , containing 847

placeholder functions that align with the provided natural 848

language functions. 849

- ** Output Reasoning **: The JSON output details files like `views. 850

py` and `urls.py`, including paths and basic skeleton code for 851

each function as derived from the JSON function checklist. 852

853

3. ** Complete Django Project with Essential Files **: 854

- **Input Reasoning **: Expand the Django project to include all 855

essential files for a basic working project , add ID attributes , 856

and consider adding classes to HTML elements for future CSS or 857

JavaScript interactions. 858

- ** Action Taken **: Create a comprehensive JSON representation of 859

a Django project , including files such as `manage.py`, ` 860

settings.py`, `urls.py` for the project and the app , HTML 861

templates , and CSS files necessary for the application. 862

- ** Output Reasoning **: The output JSON contains each f i l e s 863

relative path and code content , ensuring each crucial component 864

for running a Django application is included. It also adheres 865

to the instruction of adding identifiers like IDs and classes 866

to HTML elements. 867

868

4. ** Generating Required Parameters for Django Project Test **: 869

- **Input Reasoning **: Derive and return necessary parameters for 870

testing each function within the previously defined Django 871

project based on the requirements outlined , using JSON format , 872

specifying example URLs and identifiers. 873

- ** Action Taken **: I extract specific identifiers (like IDs and 874

URLs) used in the Django project HTML and map them to their 875

respective functions in a JSON format that defines parameter 876

names and their corresponding examples. 877

- ** Output Reasoning **: The JSON output specifies each 878

f u n c t i o n s parameters for testing purposes , using IDs defined 879

in the HTML and expected URL paths. Each function in the 880

project maps back to a user scenario described earlier , 881

ensuring the testing parameters align with those scenarios. 882

883
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Throughout each step , I maintained a structured approach to interpret884

the instructions , generating JSON outputs that capture the885

interaction logic , application skeleton , and testing parameters in886

alignment with the requirements provided.887888

E.2 Direct Version889

Listing 2: Direct Verison
890

Given the provided log , here 's how I processed the task requests step891

-by-step:892

893

### Initial Request and Reasoning894

895

1. ** Request to Provide a Django Project :**896

897

- The request was to create a Django project for a password898

generator. The specific structure was requested in a JSON899

format that included all necessary files for the project.900

- The project was constructed with essential modules and files ,901

typical of a basic Django setup: `manage.py`, `__init__.py`, `902

settings.py`, `urls.py`, `wsgi.py`, etc.903

- Inside the project folder , two main components were established:904

`password_generator ` for project -level configurations and `905

generator ` for the app dedicated to password generation logic.906

907

2. ** Project Configuration and Application Code :**908

909

- **`manage.py `**: Standard entry point for running Django910

commands.911

- **`settings.py `**: Configures the project 's settings including912

installed apps (like `generator `), middleware , database913

configurations , allowed hosts , static files handling , etc.914

- **`urls.py `** at the project level defines the URL routes and915

maps them to respective views in the `generator ` app.916

- The app `generator ` has core logic hosted in its `views.py`,917

handling requests to generate passwords with different options918

(uppercase , numbers , symbols).919

920

3. **HTML Templates for User Interaction :**921

922

- **`home.html `**: Presents users with options to generate a923

password , using forms with checkboxes and a submit button to924

include various character types.925

- **`password.html `**: Displays the generated password , allowing926

users to generate another if desired.927

- **`about.html `**: Provides basic project information.928

- IDs and classes were assigned to HTML elements per the929

requirement to enable easy referencing in styles and scripts.930

931

### Parameterized Test Outputs932

933
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4. ** Parameters Extraction for Test :** 934

935

- A structured JSON was requested to determine specific parameter 936

values within the project for automated testing purposes. 937

- Each HTML element 's IDs , button names , and page URLs were mapped 938

to ensure correct access and functionality tests. 939

940

5. **Page: Home :** 941

942

- It confirmed the main URL and associated ID for displaying the 943

welcome message (`title `). 944

- Navigation from the home page via specific button IDs to the 945

password generator feature was detailed. 946

947

6. **Page: PasswordOptions :** 948

949

- Confirmed the identification of form elements like length input 950

and checkboxes for including character types (uppercase , 951

numbers , symbols) during password generation. 952

953

7. **Page: GeneratedPassword :** 954

955

- Ensured the display of generated passwords was accurately linked 956

via the element ID (`password `). 957

- Proposed testing for a "Copy to Clipboard" functionality (though 958

the ID `copy ` was assumed , this component may have been 959

developed later). 960

961

8. **Page: About :** 962

963

- Validated navigation to and from the 'About ' page. Extracted the 964

ID from the hyperlink (`about `) as well as a description ID, 965

although it posed wrong by using `title ` where expected a 966

unique ID for description was needed. 967

968

9. ** Errors & Oversights :** 969

970

- Some mismatches were found in the parameter mappings , notably in 971

assuming generic IDs like `length ` to also be suitable for 972

lowercase inclusion function tests or reusing `title ` for ` 973

description_id `. 974

- This indicates that further adjustments or clarification might 975

be needed to align data bindings for consistent testing. 976

977

This reflection covers the derivation of each function response from 978

the given initial requests and input , along with the pathway the 979

project 's elements were stored and rationalized for potential 980

tests. 981982

17


	Introduction
	Related Works
	LLM-Based Coding Agents
	Benchmarks for Code Generation

	ProjectEval Benchmark
	Benchmark Format
	Construction Process
	Evaluation Process

	Experiments
	Research Questions
	Evaluation Metric

	Results
	RQ1: Overall Correctness
	RQ2: Cascade Generation & Direct Generation
	RQ3: Basic LLM Selection
	RQ4: Step-by-Step Performance

	Conclusion
	Limitation
	ProjectEval Structure and Construction Process Full-version
	Basic LLM Selection and Settings
	Related Benchmarks
	ProjectEval Result Pass@K
	Casestudy Log of GPT-4o
	Cascade Version
	Direct Version


