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Abstract

Recently, LLM agents have made rapid
progress in improving their programming ca-
pabilities. However, existing benchmarks lack
the ability to automatically evaluate from users’
perspective, and also lack the explainability of
the results of LLM agents’ code generation ca-
pabilities. Thus, we introduce ProjectEval, a
new benchmark for LLM agents project-level
code generation’s automated evaluation by sim-
ulating user interaction. ProjectEval is con-
structed by LLM with human reviewing. It has
three different level inputs of natural languages
or code skeletons. ProjectEval can evaluate
the generated projects by user interaction sim-
ulation for execution, and by code similarity
through existing objective indicators. Through
ProjectEval, we find that systematic engineer-
ing project code, overall understanding of the
project and comprehensive analysis capability
are the keys for LLM agents to achieve practical
projects. Our findings and benchmark provide
valuable insights for developing more effective
programming agents that can be deployed in
future real-world production. !

1 Introduction

The field of programming has seen significant ad-
vances with the rise of large language models
(LLMs), today the LLM agents can do many pro-
gramming works without the help of humans (Liu
et al., 2024). To evaluate the programming ability
of GPT-2, Chen et al. (2021) raised the first pro-
gramming benchmark named HumanEval in 2021.
HumanEval was also the first of the HumanEval-
based benchmarks. In the last three years, more
than 20 benchmarks had been raised manually or
automatically based on LLM. After HumanEval,
MBPP (Austin et al., 2021) came out which also
was a base for many benchmarks. MBPP concen-
trating on algorithm realization. In 2023, DS-1000

"Dataset, code and constructed evaluation machine will be
available soon.

(Lai et al., 2023) was raised and represented a
new series of benchmarks, evaluating LLM agents
programming abilities of accessing the third-party
libraries or packages. In 2024, LLM-based pro-
gramming agents developed rapidly, researchers
noticed that many of them can do project-level
programming (Hong et al., 2024, Nguyen et al.,
2024). Therefore, project-level benchmarks came
out, they were SoftwareDev (Hong et al., 2024),
ProjectDev (Nguyen et al., 2024), SRDD (Qian
et al., 2024), CASSD (Zhang et al., 2024a), and
DevBench (Li et al., 2024a). These benchmarks
provided the methods evaluated agent’s code gen-
eration capabilities at the granularity level project.
However, only DevBench achieved automated
evaluation using in-project test units, and the
test-unit-evaluation was NOT a realistic method
in a production environment used by human
users. And, the other benchmarks still relied on
natural language tests, which usually required
human judgment for correctness and efficiency.
Moreover, only DevBench provided a table of
evaluation scores, but it lacked explainability.

To bridge this gap, we propose ProjectEval, a
novel benchmark tailored for automated evaluating
project-level programming tasks(missions) in this
field. ProjectEval is designed to assess the abil-
ity of agents to tackle complex user-driven tasks
with precision and adaptability. Unlike existing
benchmarks, ProjectEval emphasizes real-world
usability by integrating automated test suites of
user interaction simulation, parameter analysis,
and canonical solutions into a cohesive evaluation
pipeline. ProjectEval contains 20 real-world tasks
with totally 284 testcases, and supports two task
types: website-based projects and batch/console-
based programs, with theoretical scalability to even
more complex, custom Ul-based tasks. By lever-
aging LL.Ms for generation, supplemented with
manual reviewing, ProjectEval ensures robust and
detailed evaluation metrics.




Construction

Input Level

Evaluation Pass@k #Tasks #Tests #LOC #Tokens

Benchmarks Subject Test Type Automated Checklist Skeleton Automated LLM-less Avaliable
SoftwareDev(2024) Execution X X X - - X 70 191.6  6218.0
ProjectDev(2024) Execution Manual Checklist Reviewing X v X X v v 14 19.1 36818.0
SRDD(2024)  Checklist LLM-Rating v v X v X X 1200 - -
CASSD(2024a)  Execution Manual Checklist Reviewing X v X X v v 72 525 ~240 21993.0
evbenc! a xecution nside Project Test Units . . .
DevBench(2024a) Executi Inside Project Test Uni X X X v v v 22 1018 377.8 12983
ProjectEval(ours) Execution User Interaction Simulation o v v v v v 20 14.2  402.2 29720

Table 1: Summary of Existing Project Level Benchmarks. @: Our benchmark is constructed by GPT-40 with human
reviewing and editing, which is semi-automated. -:SoftwareDev does not contain any evaluation.

We introduce the core structure and evaluation
process of ProjectEval, highlight the challenges
faced by state-of-the-art models such as Gemma-2
and GPT-40, and demonstrate the benchmark’s abil-
ity to test comprehensive capabilities through pass
rate (Pass@K) and existing algorithms. Our goal
is to establish a more effectively, and more explain-
able new standard for automated evaluating project
code quality. We summarize the contributions of
this work as follow:

* User-Centric Project-level Benchmark: Pro-
jectEval fills the gap in existing benchmarks
by offering a user-focused framework with
real-world applicability with comprehensive
and project-level metrics. It supports website
and batch/console-based projects.

* Enhancing the Agent Code Generation Ex-

plainability by Three Different Level Inputs:

Three different level inputs integrating three

kinds of objective indicators and pass rate,

ProjectEval ensures precise, adaptable evalua-

tion and enhances the result explainability.

Automated Evaluation Testsuites: ProjectEval

realizes the automated evaluation from user

perspective in website tasks and batch/con-
sole tasks through simulating user interaction.

This is a new low-cost method to evaluate the

code generation capabilities of agents.

2 Related Works

2.1 LLM-Based Coding Agents

There are many code LLMs to date, e.g. StarCoder,
InCoder, WizardCoder, CodeGen and etc. How-
ever, only the NL-i/o-available models could be-
come programming agents as the instruction of an
agent-level mission used to be natural language.
Without NL input ability, the LL.Ms are really hard
to become agents through agent designs of CoT,
ReAct or Reflextion. Some researchers have de-
veloped LLM agents. ChatDev (Qian et al., 2024)
presents a diffusion-based model combining large

language models with image decoders, advancing
text-to-image generation. AgileCoder (Nguyen
et al., 2024) introduces multi-agent Agile role as-
signments for efficient, collaborative software de-
velopment, while MetaGPT (Hong et al., 2024)
encodes workflows into prompt sequences for struc-
tured multi-agent task management.

2.2 Benchmarks for Code Generation

Table 2 provides a detailed summary of existing
benchmarks in the programming domain, and cat-
egorize them into six groups: exploratory bench-
marks before 2020, HumanEval-based benchmarks
(Chen et al. 2021,Liu et al. 2023, Hao et al. 2022,
Peng et al. 2024, Athiwaratkun et al. 2023), MBPP-
based benchmarks (Austin et al. 2021, Peng et al.
2024, Hendrycks et al. 2021, Huang et al. 2024,
Jain et al. 2024, Li et al. 2023, Li et al. 2022),
DS-based benchmarks (Lai et al. 2023, Du et al.
2023, Zhang et al. 2024b), problem understand-
ing benchmarks, and those focused on specific do-
mains or methods. With the development of LLM
and agents, the benchmarks are gradually moving
toward higher granularity level. The project-level
is the last and highest level of programming. The
project-level benchmarks, which are the primary
focus of our research, comprehensively evaluate
the process of transforming an initial idea into a
complete project.

There are currently five benchmarks in this cate-
gory, see Table 1 for the differences. In summary,
all project-level benchmarks can’t evaluate auto-
matically except DevBench and our ProjectEval.
Except ours, all benchmarks don’t provide a multi-
level inputs. Compared with DevBench, we have
more testcases, and our tasks (missions) are compli-
cate than DevBench as more lines of code and more
tokens. Besides, existing project-level benchmarks
use the test units, manual checklist reviewing or
LLM-scoring directly from the tested library or
framework to complete the evaluation, rather than
actually compiling and executing the project and



Granularity

Benchmark ‘ Language Construction Evaluation Source Level #Tasks #Tests #LOC #Tokens Input Information
HumanEval-based
HumanEval (2021) Python Manual Automated Original Function 164 7.7 115 244 NL+ Signature
Multi-HumanEval(2023)| Multiple Manual Automated HumanEval & Original ~ Function 164 7.7 115 244 NL+ Signature
MBPP-based
MBPP(2021) Python Manual Automated Original Function 974 3.0 68 24.2 NL
CodeContests(2022) |Python, C++  Automated  Automated Contest Sites Competitive 165 203.7 59.8 184.8 NL + Example I/O
DS-based
DS-1000(2023) Python Automated Automated Stack Overflow Statement 1000 1.6 3.8 12.8 NL
CoderEval(2024b)  |Python, Java  Automated  Automated Github Function 230 N/A  30.0 108.2 NL + Signature
ClassEval (2023) Python Manual Automated PyPI + Original Class 100 33.1 457 1237 Class Skeleton
Granularity Level - Project
SRDD (2024) Python Automated  Automated Original Project 1200 N/A N/A  N/A NL
CASSD (2024a) Python Manual Manual Original Project 72 525 =240 21993.0 NL
SoftwareDev(2024) Multiple Manual N/A Original Project 70  N/A 191.6 6218.0 NL
ProjectDev(2024) Multiple Manual Manual Original Project 14 19.1 N/A 36818.0 NL
DevBench(2024a) Multiple Manual Automated Original Project 22 10.18 377.8 1298.3 NL
. . SoftwareDev & . NL+ Class Skeleton
ProjectEval (ours) Python Semi-automated Automated ProjectDev & Origin Project 20 14.2 402.2 2972.0 /Function Skeleton

Table 2: Summary of Existing Benchmarks for Code Generation. #Tasks: number of tasks, #Tests: average number
of testcase in each task, #LOC: average lines of code in the canonical answer, #Tokens: average number of tokens
of code in the canonical answer. N/A: This benchmark doesn’t involve this item. Part of this table is referred from

Du et al.’s (2023). Other categories are in Appendix C.

checking in users’ perspective.
For other based benchmarks, see Table 2 for
brief and Appendix C for full version.

3 ProjectEval Benchmark

3.1 Benchmark Format

A standard ProjectEval mission will have three
parts: Inputs, Test Suite and Canonical Solution.
Figure 1 shows an example structure of a standard
ProjectEval mission.

As for the inputs, there are three different input
types named Level for the test in each mission for
the agent to achieve the target in ProjectEval (See
example in Figure 1 purple part):

* Level 1 - Natural Language Prompt (NL
Prompt): In this level, the agent will receive
one or several natural language sentences to
describe the target of the project. The agent
will create the entire project ONLY based on
these sentences.

e Level 2 — Natural Language Checklist (NL
ChecKlist): In this level, the agent will re-
ceive a standard natural language checklist de-
scribing the project through the abilities and
functions that the project should have.

* Level 3 — Skeleton: In this level, the agent
will receive a skeleton of the standard answer.
This skeleton contains doc-strings and com-
ments to describe the project inside.

A mission test suite will contain two parts (See

example in Figure 1 orange part):

* Testcodes: a mission contains several auto-
mated evaluation Python functions similar to
HumanEval testcases. But, these testcodes are
prohibited using test unit inside the technical
stack but using user simulation by operating
Ul to test the project generated by agents.

Parameter Description (PD): usually, every
testcode has a matching parameter descrip-
tions. PD is used for a special kind of parame-
ter alignment. These parameters are required
by the matching testcode to achieve the es-
tablished test goal(s), e.g. in Figure 1, the
“test_url” is the URL of the page which can
show all the “tasks” that are required by the
testcodes. PD is similar with a user manual
given by developers to guide users to accom-
plish what they want to do - that is, the main
evaluation concept we designed: evaluation
based on the user’s perspective.

Finally, every mission we constructed has a canon-
ical solution, beside the canonical code, we also
build every PD’s standard answer matching to the
canonical code called canonical parameter values
(See example in Figure 1 red part). In addition, we
categorized tasks into “easy”, “medium”, “hard”,
and “human” based on code volume and human-
reviewed complexity. However, since results show

no distinction, we won’t elaborate further.
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'# example_app/views.py
‘class TodoListView(ListView):
;  template name = '

model = TodoList

def g Juer (self):

return queryset

are

n \\home\n"

Canonical Parameter Values: the standard answer correspond to Canonical Solution for the testcase.
Note: every solution will have their own parameter values to getpass the festcase

Figure 1: A typical ProjectEval website mission, includ-
ing three different levels of input, a test suite, and a
canonical solution. Notice that the upper test suite is the
test suite used in website mission while the lower one is
an example of console/file mission test suite.

We give the agent missions by JSON format
directly embedded into their prompt and asked
the same format output, which we consider as a
very important ability of code generation.

3.2 Construction Process

The construction process of ProjectEval is rela-
tively complex (See Appendix A for the complete
version ProjectEval process and structure diagram).

Level 1 NL Prompt & Level 2 NL Checklist:
There are initial 20 tasks (missions) in ProjectEval
that are manually edited into concise natural lan-
guage descriptions, which is Level 1 NL Prompt. 7
of them are sourced from SoftwareDev (Hong et al.,
2024) and ProjectDev (Nguyen et al., 2024) while
others are created originally by us. Figure 2 purple
part shows that these descriptions are sent to an
LLM, which generates a list of more detailed natu-
ral language task descriptions. After manual review
and modification, the refined version is referred as
the Level 2 NL Checklist.

Testsuite: Figure 2 orange part shows that the
NL Checklist is given into the LLM, which, from
a user testing perspective, generates test code.
For website missions, the test code is mostly
implemented using the open-source testing li-
brary Selenium, which simulates user behav-
ior in a browser to interact with websites. For
batch/console tasks, the test code typically uses
Python’s subprocess module to mimic user inter-
actions such as running commands and entering
keyboard input. If the task involves file genera-
tion, the test code utilizes dedicated open-source
libraries to read and compare the similarity of the
generated file against a canonical file. For example,
programs that generate Excel files are validated
using the Openpyxl library to compare with the
reference files. The test code often requires one or
more parameters to execute because the specifics of
the code generated by an agent—such as variable
names, function names, class names, and output
file names—are unpredictable. To address this, the
test code is input into the LLM to generate an addi-
tional Parameter Description (PD), which provides
a natural language explanation of the parameters
needed by the test code. The PD, along with the
test code, constitutes the Test Suite.

Canonical Solution: Simultaneously, in Fig-
ure 2 red part, the NL Checklist is put into another
LLM thread to generate a temporary project skele-
ton, which is then fed back into the LLM to infer
and generate Canonical Code (CNC). Practical re-
sults show that while most of the code can’t be
use directly, a little of the LLM-generated code is
mostly correct, but it often requires manual correc-
tions to form the true canonical code. This process
aligns with the findings of AgileCoder experiments
partially. A human reviewer is asked for checking
the CNC to confirm that it is runnable and meets
the requirements of the Checklist. By inputting
the PD and CNC into the LLM and applying mini-
mal manual adjustments, Canonical Parameter Val-
ues (CPV) are obtained. Together, CPV and CNC
are the Canonical Solution (CNS). When the CNS
is input into the ProjectEval testing controller, it
achieves a perfect score, i.e., Pass@K = 100%.

Level 3 Skeleton: Finally, the CNC is processed
through a Masker (which could be a regex-based
program or an LLM) to replace function bodies,
class bodies, and critical HTML tag content with
functional description comments. This produces
a test skeleton that can evaluate LLMs without
natural language generation capabilities, referred
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Figure 2: Construction of ProjectEval. Testcode is aligned with Checklist. Parameter Description is aligned with
Testcode and Canonical Parameter Values. Canonical Parameter Values is aligned with Canonical Code and use for

testcode to get passed.

to as the Level 3 Skeleton.

All CNC are programmed in Python but Project-
Eval theoretically supports any programming
language as we evaluate the LLM through users’
perspective. It may need researchers compile the
LLM-generated program in advance. The total cost
of construction process with GPT-4o is $2.95 and
the human reviewing cost is $420 by hiring a third-
party company with contract.

3.3 Evaluation Process

The evaluation process begins by selecting a spe-
cific level from the input and presenting it to the
agent (See Figure 3). The agent can use any de-
signs or methods to solve the inputs and generate
Solution Code (Code). The Code is then fed back
into the same agent along with the PD. The agent
is tasked with answering the parameter description
based on its own generated Code to produce Param-
eter Values (PV). The Code is then converted into
an executable file, creating a tangible project. This
project, together with the testcode with PV substi-
tuted, is integrated into the ProjectEval evaluation
machine to obtain the evaluation results.

Parts Method Type

Sentence Transformer (2020) Maximum
+ Jonker Volgenant (1987)
CodeBLEU (2020)

+ Jonker Volgenant

Level 2 Checklist

Maximum
Level 3 Skeleton

Code CodeBLEU + Jonker Volgenant Maximum

Parameters Values Levenshtein Distance (1966)  Average

Table 3: ProjectEval Objective Indicators. Four addi-
tional objective similarity evaluation methods to evalu-
ate the performance of each parts individually.

Since we have different level inputs, we can com-
pare the similarity of the generated results at each
level and obtain the score for each step. This pro-
cess is equivalent to disassembling the CoT of LLM
agents to a certain extent, thereby enhancing the
explanabilities of the pass rate results.

Therefore, we introduces four additional objec-
tive similarity evaluation methods to evaluate the
performance of four parts individually (See Ta-
ble 3). As a Level 2 Checklist consists of multi-
ple independent natural language sentences, which
cannot be considered a cohesive document, after
calculating the similarity between each sentence
in the canonical Checklist and the test Check-
list using Sentence Transformers (Reimers and
Gurevych, 2020), the Jonker-Volgenant algorithm
(1987) is employed to determine the optimal match-
ing scheme, from which an overall matching score
is derived. Since both the Level 3 Skeleton and the
answer are written as code, existing code evaluation
tools like CodeBLEU (Ren et al., 2020) are used
to compute BLEU scores by considering structure
similarity. The Skeleton and Code have the rect-
angular linear sum assignment problems same as
Checklist, so Jonker-Volgenant is also used in these
parts. Parameter Values are typically short, often
consisting of single words, compound words, or
simple URLs. Therefore, strings cosine similarity
is directly used to measure their similarity.

4 Experiments

4.1 Research Questions

Our experiments intend to answer the following
research questions:

* RQ1 (Overall Correctness): How do LLM
agents perform on ProjectEval benchmark?
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machine to obtain the evaluation results.

* RQ2 (Cascade Generation & Direct Gener-
ation): Do LLM agents performs better when
they generated level by level till answer code
(i.e. cascade) than directly generate?

¢ RQ3 (Basic LLM Selection): Which basic
LLM perform the best in the experiments and
where it does better than the others?

* RQ4 (Step by Step Performance): How do
LLM agents performs on each part of Pro-
jectEval benchmark?

For the basic LLM selection and settings part, see
Appendix B.

4.2 Evaluation Metric

Same as many benchmarks of HumanEval-based
and MBPP-based, we adapt the pass rate (Pass@K)
for every LLM. We have average 14.2, totally 284
testcases (including runnable as a testcase) to eval-
uate the correctness of Code generated by LLM
(See Table 1 for all statistics). The percentage of
test cases that passed is the final score that an LLM
gains from ProjectEval. Notice that some of the
testcases are chain-reacted, as if the former one
fails, the followings will never get passed.

We also added 4 objective indicators mentioned
in Section 3.3 for each part which agents generated
mentioned in Table 3. ProjectEval will compute
these metrics in parallel with Pass@K.

The total evaluation cost of Pass@5 with GPT-40
is $28.02, average $5.60 for each round.

5 Results

5.1 RQ1: Overall Correctness

Table 4 shows the overall correctness is low. The
results are very similar to CoderEval(2024b) and

| Cascade | Direct

| All Avg,
[Level 1 Level 2 Avg. [Level 1 Level 2 Level 3 Avg. |

Open-source AGI LLMs

Llama-2-7B 0.00 0.07 0.04] 028 000 0.07 0.12| 0.08
Llama-3.1-7B 028 028 028| 0.14 028 042 028| 0.28
Llama-3.2-3B 021 0.14 0.18| 0.14 000 0.00 0.05| 0.10

Model

Phi-3-14B 0.00 0.00 0.00| 0.00 0.00 0.00 0.00| 0.00
Phi-4-14B 0.14 056 035| 1.76 1.13 2.04 1.64| 1.13
Gemma-7B 099 1.06 1.02| 056 063 049 0.56| 0.75

Gemma-2-9B 1.69 106 137| 134 056 063 085| 1.06
Mistral-7B-v0.3 | 148 1.06 127| 092 099 056 0.82| 1.00

Code Generation LLMs

StarCoder-2-7B - - - - - 0.00
CodeGemma - - - - - 1.20
CodeLlama - - - - - 0.77

Close-source AGI LLMs

GPT-3.5-turbo 239 246 243|197 239 528 322| 290
GPT-40 8.52 12.32 10.42| 16.06 15.42 10.14 13.87| 12.49
Gemini 1.5pro | 7.82 739 7.61| 528 451 824 6.01| 6.65
Gemini 2.0-flash| 3.24 359 3.42| 352 345 775 491| 431

Avg. | 223 250 237] 266 245 251 269| 256

Table 4: ProjectEval Result Pass@5. ProjectEval is hard
for recent LLM agents to get pass. GPT-40 has the best
score. See Appendix D for Pass@K.

Dev-Bench(2024a) as all agents are very unlikely
to make the project runnable (only 17.91% projects
in CoderEval’s result) and almost impossible to
make every details correct in the project (lower
than 10% passed in DevBench’s result).

Table 5 shows that most of the opensource-
model agents cannot generate compilable project.
We examine through Phi-4 and Gemma-2, they
have only 1 to 3 simple projects can be compiled
and run. Even if the close-source LLMs can hardly
reach the 10% of ProjectEval standard, but the
close-source LLM agents do better than the open-
source ones which is equivalent to 1 or 2 simple
projects get almost full scores.

However, Table 5 shows that the Gemma,
Gemma-2 and Phi-4 do have the abilities on Check-
list generating as they have approximate score to



\ Cascade \ Direct
Model
\ Level 1 \ Level 2 | Levell | [Level2 | Level3
| CL SK Code PV | SK Code PV |Code PV |Code PV |Code PV
Open-source AGI LLMs
Llama-2-7B 1.13 043 032 0.00 | 0.00 049 0.00 | 0.13 0.00 | 0.30 0.00 | 0.40 0.00
Llama-3.1-7B 361 260 141 033|192 199 068 | 1.92 0.68 | 1.84 0.39 | 474 0.54
Llama-3.2-3B 1.00 027 1.61 0.00 | 0.55 0.00 0.00 | 0.17 0.00 | 0.00 0.00 | 0.17 0.00
Phi-3-14B 562 169 137 044 | 1.14 088 0.00 | 0.30 0.00 | 0.00 0.00 | 0.29 0.00
Phi-4-14B 4192 374 171 137 | 242 382 474 |10.87 10.76 | 6.87 8.15 | 13.32 9.70
Gemma-7B 38.08 570 5.12 0.00 | 698 637 0.00 | 1.95 0.00 | 238 0.00 | 5.38 0.00
Gemma-2-9B 4025 790 7,53 932 | 770 9.05 662 | 550 893 | 597 659 | 8.07 5.19
Mistral-7B-v0.3 | 420 7.12 873 9.74 | 703 748 7.14 | 637 6.16 | 6.80 7.45 | 7.81 7.23
Code Generation LLMs
StarCoder-2-7B - - - - - - - - - - 0.00 0.00
CodeGemma - - - - - - - - - - 9.99 14.75
CodeLlama - - - - - - - - - - 544 099
Close-source AGI LLMs
GPT-3.5-turbo 38.33 8.82 13.73 38.46|12.56 13.55 4230 13.27 37.73 | 13.91 41.19 | 34.19 39.21
GPT-40 55.73 16.57 36.37 54.75 | 15.46 36.42 53.62 | 35.18 51.75| 33.10 50.16 | 53.01 62.69
Gemini 1.5 pro | 49.48 14.01 31.96 18.15| 1522 31.04 25.62| 1597 9.99 |24.32 22.05|46.51 27.90
Gemini 2.0-flash | 51.85 16.08 20.63 6.61 | 17.63 22.02 11.53|26.39 10.46|24.99 13.39 | 41.89 19.40
Gemini 2.0-pro* | 49.44 13.69 16.86 5.09 | 19.93 24.09 1091 | 2.61 0.00 |30.19 16.22 | 36.95 10.39
Average \ 2928 7.59 1134 11.10 \ 8.35 12.09 12.55 \ 9.28 10.50 \ 11.59 12.74 \ 16.76 12.37

Table 5: ProjectEval Result Objective Indicators. Phi-4, the Gemmas and all close-source LLM agents have abilities
to generate Checklist well, but only close-source LLLM agents can do the Skeleton and Code well. CL: Checklist,
SK: Skeleton, PV: Parameter Value. * We only test the Gemini-2.0-pro pass@1.

GPT-3.5-turbo, lower than GPT-40 and Geminis,
while the Llama series, Mistral and Phi-3 have very
low scores. The latter is caused by the lack of
JSON format adaptability.

Both tables shows that Gemma-2 and Phi-4 may
have the same capability to GPT-3.5-turbo, but far
more way to go for GPT-40 and Gemini-1.5-pro.

Additionally, the Code LLMs agents have almost
no effective results can be produced. The reason
may be that Skeleton only has natural language
descriptions, and it is difficult to fill in the whole
framework without the context code.

In summary, ProjectEval is hard for nowadays
agents as only GPT-40 reach the Pass@5 of 15%.
Open-source LLM agents are doing worse than the
close-source ones, and Code LLMs agents do not
have the abilities to pass ProjectEval.

5.2 RQ2: Cascade Generation & Direct
Generation

The average scores of objective indicators (Table 5)
show that agents are doing better on cascade gener-
ation than the direct generation mode with 2.06%
higher at Level 1 input. The cascade generation in
a way mimics the CoT process and the ReAct de-

sign of an agent. It allows agents to re-examine the
project development procedure and correct some of
the errors. As for the core scores (Pass @K) of all
LLMs, they are too low to analyze. But we notice
that two Gemma models, Mistral, and Gemini-1.5-
pro are doing better in cascade generation.

However, GPT-40 has higher scores when us-
ing direct generation mode rather than the cascade
mode. So, we study a case, Project 3 — “Create a
password generator”’, of GPT-40 (See Appendix E).
We resend all the input and output by order back to
GPT-40 and ask the CoT of it. It shows that GPT-
4o directly hits the files that need to be generated
when using the direct generation mode while it con-
centrates more on the NL processing and analysis
on cascade generation mode. This is an interesting
phenomenon, and we suspect that asking the LLM
agents to generate according to the thought steps
we set induces the LLM to tend to activate param-
eters about natural language rather than the more
important aspects of code generation.

This phenomenon does not affect ProjectEval’s
evaluating capabilities as the cascade mode is not
for ProjectEval core functions.

Also, this finding in ProjectEval Pass@5 is con-



flicted with the CodeBLEU result, as the latter’s
cascade scores are higher than the direct scores no
matter it uses Level 1 or Level 2 input, both in Code
and PV. This means even if CodeBLEU has consid-
ered the structure, “details will determine success
or failure”. For instance, we found that the GPT-
40’s cascade generation did has better structure of
the code but it just missed filling a path parameter
and the result was fatal for the project.

In summary, cascade generation is better than
direct generation, and ProjectEval execution pass
rate is better than the similarity indicators as the
latter cannot reflect the program execution effects.

5.3 RQ3: Basic LLM Selection

The close-source LLM agents have better perfor-
mance on ProjectEval than the open-source ones
(See Table 4). GPT-40 are the SOTA of project
generation under ProjectEval evaluation.

The first difference is the ability to generate sys-
tematic project code based on natural language.
From the objective indicators (Table 5), we find the
close-source LLM agents do better on skeleton and
code generation, both GPT and Gemini can gener-
ate better skeleton reflecting well to the standard
code. We used GPT-40 as the ProjectEval’s data
generation procedure base model but Gemini-1.5-
pro reaches almost the same performance of GPT-
40. Thus, the reason may not be the familiarity
of GPT’s prompt. This suggests that close-source
LLM agents may have better ability on reflecting
the Checklist into a skeleton or framework. The
Checklist and Skeleton’s Functions and/or Classes
are many-to-many relationship. It’s a very compli-
cate mission for open-source LLM agents to solve
than the close-source ones.

Second, the over-all understanding of the project
and comprehensive analysis capabilities are also
very important for the LLM agents. Close-source
LLM agents are doing well on all parts of the Pro-
jectEval inputs and the open-source LLM agents
will have a better chance to get passed ProjectEval
when they have better performance on those parts.

Third, the LLM agents’ formatted output capabil-
ities have huge influence. We ask all LLM agents
to output JSON format. All the close-source agents
can do well compare with only Phi-4, Gemma and
Gemma-2 have this capabilities of open-source
agents. This finding is important for research or
engineering that requires the LLM Agent to be the
controller, as they need to guarantee stable and
regulated outputs.

In summary, the close-source LLM agents are
doing better on ProjectEval. GPT-40 are the SOTA
of project generation under ProjectEval evaluation.

5.4 RQ4: Step-by-Step Performance

Objective indicators can also show the step-by-step
performance in cascade generation (Table 5).

Except the Llama series, from the cascade per-
spective, the LLM agents perform well in the field
of NL generation for Checklists, which is also
one of its fundamental capabilities. In addition,
the Checklist itself includes an understanding of
project prompts which means most LLMs also pos-
sess this capability.

When it comes to the Skeleton, we have already
mentioned the problem of many-to-many relation-
ship question of Checklist and Skeleton. This is a
challenge for LLM agents to deal with.

Code generation is a traditional topic of LLM
agents, Phi-4 does better when it directly generates
the code from Level 1 rather than the cascade.

Parameter answering reflects the code under-
standing capability. Though, in ProjectEval, the
score may highly connect with the Code genera-
tions but still may indicate that the capability of
LLM agents. When the code is effective, both open-
source and close-source LLM agents can explain
their own code, which confirms that LLM agents
have a strong ability to understand code. Specif-
ically, it can identify the key statements needed
from the PD as for ProjectEval questions.

In summary, LLM agents are best at generating
Checklists than the other parts of ProjectEval.

6 Conclusion

We develop a new benchmark ProjectEval. It fills
the gap for the lack of benchmark in the project
granularity level code generation field of natural
language processing and provides automated evalu-
ation tools for higher-level research in LLM agent.
We also leverage additional objective metrics to
reveal the effectiveness of LLM agents at different
stages of project generation. These metrics are cru-
cial in revealing the capabilities for improvement
in the agents’ performance, thus offering a deeper
understanding of how these models can be further
enhanced. We confirmed that GPT-4o is still the
SOTA in this field. Our findings and benchmark
provide valuable insights for developing more ef-
fective programming agents that can be deployed
in real-world production environments.



7 Limitation

* Some challenging projects, whether due to
complexity or human-related difficulties, may
follow common design patterns that do not
align with Django, our primary technical
stack. However, we will document all possible
designs we thought of in the dataset remarks
for each project where this issue arises.

* JSON format is not universally compati-
ble with all LLMs. We have noticed that
some open-source models struggle to gener-
ate JSON format output required by ProjectE-
val. These models might perform better if we
allowed to generate output in their own for-
mat. However, permitting this would compro-
mise fairness and introduce inconsistencies
in output standards. Additionally, developing
custom formatters for each LLM would be
impractical.

e CPV is based on the CNC, but the CNC may
not the only answer for the project. This may
lead to some PV is correct for the reflected
code but will get lower score on Levenshtein
Distance evaluation. But, since the PV is not
very important in the metric, this does little
effect on the ProjectEval results.

All these limitations will be solved in the future
research if it is possible.

Besides, the ProjectEval judge machine will au-
tomatically run the project that generated by LLM
agents which may contain harmful code. This is a
potential risk that we can’t fix.
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Figure 4: ProjectEval Structure and Construction Process

B Basic LLM Selection and Settings

Since the ProjectEval Level 1, Level 2 input and PV input are natural language but the Level 3 input, and
code output are program language, the basic LLM models should have both aspects abilities. This means

that ProjectEval full evaluation must be run under AGI LLM models.

We select three types of models: open-source AGI LLMs, close-source AGI LLMs, and code genera-
tion LLMs. Among the open-source AGI models, we include Mistral-7B-v0.3(2023), Gemma(2023b),
Phi(2023), and Llama(2023), which are known for their advancements in general Al capabilities. In the
close-source AGI LLM category, we consider models such as GPT(OpenAl, 2023) and Gemini(Google,

2023a), which represent cutting-edge proprietary models excelling in a variety of tasks.

Additionally, the Code generation LLMs category features CodeLlama and Starcoder2, which are

specialized in code generation and will be used only in Skeleton input evaluation.

For Gemma series, we include Gemma-7B, Gemma?2-9B; For Phi series, we include Phi-4, Phi-3-14B;
For Llama series we include Llama3.2-3B, Llama3.1-8B, Llama2-7B; For GPT series, we include GPT-40
and GPT-3.5-turbo; For Gemini we include Gemini-1.5-pro and Gemini-2.0. All the models are running

under temperature zero with all settings default in their releases.
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C Related Benchmarks

Granularity .y o #Tests #LOC #Tokens

Benck k L Construction  Evaluation Source Level Input Information
Early Years Research
Concode (2018a) Java Automated Automated GitHub Function 2000 NA' N/A! 26.3 NL
CoNaLA (2018) Python Automated Automated Stack Overflow Statement 500 N/A! 1.0 4.6 NL
BLEU-based
Django (2018b) Python
CodeBLEU(2020) Multiple N/AZ Automated N/A2 Project N/AZ Code
SketchBLEU(2024) Multiple
HumanEval-based
HumanEval (2021) Python Manual Automated Original Function 164 77 115 244 NL+ Function
Signature
AixBench (2022) Java Manual Automated HumanEval & Original Function 175 N/A3 NLT Function
Signature
Multi-HumanEval(2023) | Multiple Manual Automated HumanEval & Original Function 164 7.7 11.5 244 NL+ Signature
HumanEval+ Python Manual Automated Original Function 164 7748 115 24.4 NL+ Signature
MBPP-based
MBPP(2021) Python Manual Automated Original Function 974 3.0 6.8 242 NL
APPS(2021) Python Automated Automated Contest Sites Competitive 5000 13.2 214 58 NL+ Examples
MBXP(2023) Multiple Manual Automated MBPP & Original Function 974 3.0 6.8 242 NL
CodeContests(2022) | Python, C++ Automated Automated Contest Sites Competitive 165 2037 59.8 184.8 NL + Example I/O
DS-based
DS-1000(2023) Python Automated Automated Stack Overflow Statement 1000 1.6 3.8 12.8 NL
CoderEval(2024b) Python, Java Automated Automated Github Function 230 N/A' 300 108.2 NLS;:;TrZOH
ClassEval (2023) Python Manual Automated PyPI + Original Class 100 33.1 457 1237 Class Skeleton
EvoCodeBench (2024b) Python Semi-automated Automated GitHub Function 275 N/A' NA 20.40 185.57
Program Understanding
ReCode(2023) Python Automated Automated HumanEval & MBPP Function 30 100 NA' NA! Code
CRUXEval (2024) Python Automated Automated  Python Standard Libs Function 800 100 549 NA'! Code
CodeBenchGen(2024) Python Automated Automated COdeSfé‘;fIl:‘[I:;;(zozo) Function 1931 8.79 605 4919  Code + NL Statements
Granularity Level - Project
SRDD (2024) Python Automated  Automated Original Project 1200 NA' NA' O N/AL NL
CASSD (2024a) Python Manual Manual Original Project 72 525 =240 21993.0 NL
SoftwareDev(2024) Multiple Manual' N/A Original Project 70 N/A' 1916 62180 NL
ProjectDev(2024) Multiple Manual Manual Original Project 14 190 NA' 36818.0 NL
DevBench(2024a) Multiple Manual Automated Original Project 22 10.18 377.8 1298.3 NL
SoftwareDev & NL+ Class/Function
1 S 1 A 1 .
ProjectEval (ours) Python S ProjectDev & Origin Project 20 14.2 4022 2972.0 Skeleton

[1]This benchmark doesn’t involve this item.

[2]The Bleu-based benchmark doesn’t involve construction, source and number items.

[3]Since Aixbench wrote 175 Java files for testing and wrote the test samples directly into the code, it is very difficult to count its details.

Table 6: Summary of Existing Benchmarks for Code Generation. #Tasks: number of tasks, #Tests: average number
of testcase in each task, #LLOC: average lines of code in the canonical answer, #Tokens: average number of tokens

of code in the canonical answer. Part of this table is referred from Du et al.’s (2023).

HumanEval-based Benchmarks: These benchmarks are similar to or extensions of OpenAl’s Hu-
manEval, primarily emphasizing functional tasks with general-purpose functions.
MBPP-based Benchmarks: These benchmarks are similar to or derived from Google’s MBPP, focusing

on algorithmic problem-solving functions.

DS-based Benchmarks: DS-based benchmarks involve the use of external libraries or classes. However,
the specific contents and documentation of these libraries/classes are not included within the benchmark

dataset itself.
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Program Understanding Benchmarks: Unlike other benchmarks that focus on whether the code is
written correctly, these benchmarks assess the ability of an agent or LLM to thoroughly understand the
provided code.

Project-level Benchmarks: Project-level benchmarks, which are the primary focus of this paper,
comprehensively evaluate the process of transforming an initial idea into a complete program. There are
currently five benchmarks in this category, see Table 1 for the differences.

D ProjectEval Result Pass@K

‘ Pass@1 ‘ Pass@5
Model . i
‘ Cascade ‘ Direct ‘ Cascade ‘ Direct ‘
All Avg.
‘ Level 1 Level 2 ‘ Level 1 Level 2 Level 3 ‘ Level 1 Level 2 Avg. ‘ Level 1 Level 2 Level 3 Avg. ‘
Open-source AGI LLMs
Llama-2-7B 0.00 0.35 1.06 0.00 0.35 0.00 0.07 0.04| 0.28 0.00 0.07 0.12 0.08
Llama-3.1-7B 070 070 | 035 070 1.06 | 028 028 028| 0.14 028 042 0.28| 0.28
Llama-3.2-3B 070 035 | 035 0.00 0.00 | 021 0.14 0.18| 0.14 0.00 0.00 0.05| 0.10
Phi-3-14B 000 000 | 0.00 0.00 0.00 | 000 0.00 0.00| 000 0.00 0.00 0.00 0.00
Phi-4-14B 0.35 1.06 | 423 141 423 | 0.14 056 035] 1.76 113 2.04 1.64| 1.13
Gemma-7B 1.41 1.41 .06 070 1.06 | 099 1.06 1.02| 056 063 049 056| 0.75
Gemma-2-9B 211 246 | 2.11 1.06 106 | 1.69 1.06 1.37| 134 056 063 0385 1.06
Mistral-7B-v0.3 | 2.11 1.76 1.41 141 0.70 1.48 1.06 1.27| 092 099 056 0382 1.00
Code Generation LLMs
StarCoder-2-7B - - - - 0.00 - - - - - 0.00 - -
CodeGemma - - - - 2.11 - - - - - 1.20 - -
CodeLlama - - - - 1.41 - - - - - 0.77 - -
Close-source AGI LLMs
GPT-3.5-turbo 246 246 | 246 246 6.69 | 239 246 243| 197 239 528 322| 290
GPT-40 10.21 15.85 | 19.72 1796 12.32 | 8.52 12.32 10.42| 16.06 1542 10.14 13.87| 12.49
Gemini 1.5pro | 9.15 880 | 7.39 634 951 | 782 739 761| 528 451 824 6.01 6.65
Gemini 2.0-flash| 5.63 528 | 563 6.69 880 | 324 359 342 352 345 775 4091 431
Gemini 2.0-pro*| 4.93 493 | 0.00 563 7.39 - - - - - - - -
Avg. 3.06 3.49 3.52 4.03 3.54 2.23 2.50 237 2.66 2.45 2.51  2.69 2.56
* We only test the Gemini-2.0-pro pass@]1.
Table 7: ProjectEval Result Pass@k
E Casestudy Log of GPT-40
E.1 Cascade Version
Listing 1: Cascade Verison
My chain of thought for each step in the log is as follows:

1. **Instruction to Generate Natural Language Function Checklistx**:
- xxInput Reasoning#**: A request is made to create a website for a
password generator and generate a natural language function
checklist from the users' perspectives in a JSON format.
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- **xAction Taken**: Based on the request, I generate a JSON object
representing different pages of the proposed website, each
containing functions for user interactions, along with
descriptions of these functions.

- xx0utput Reasoning#**: I structure the output JSON to clearly
separate the different pages (e.g., Home, Password Generator,
Settings) and the functions associated with each, providing a
concise description for each user-facing action.

**Generate Django Framework Skeletonx*x:

- *xInput Reasoning#**: Build a Django framework skeleton based on
the previously provided checklist, using JSON format to outline

the necessary files and logic.

- *%*Action Taken*x: Construct a basic Django app structure,
including “views.py™ and “urls.py” for simplicity, containing
placeholder functions that align with the provided natural
language functions.

- xx0utput Reasoning#**: The JSON output details files like “views.
py~ and “urls.py™, including paths and basic skeleton code for
each function as derived from the JSON function checklist.

**Complete Django Project with Essential Filesxx*:

- *xInput Reasoning#**: Expand the Django project to include all
essential files for a basic working project, add ID attributes,

and consider adding classes to HTML elements for future CSS or
JavaScript interactions.

- *xAction Takenxx: Create a comprehensive JSON representation of
a Django project, including files such as “manage.py~, °
settings.py™, “urls.py” for the project and the app, HTML
templates, and CSS files necessary for the application.

- **xQutput Reasoningx**: The output JSON contains each files
relative path and code content, ensuring each crucial component

for running a Django application is included. It also adheres
to the instruction of adding identifiers like IDs and classes
to HTML elements.

**Generating Required Parameters for Django Project Testx*x*:

- xxInput Reasoning#**: Derive and return necessary parameters for
testing each function within the previously defined Django
project based on the requirements outlined, using JSON format,
specifying example URLs and identifiers.

- *xAction Takenxx: I extract specific identifiers (like IDs and
URLs) used in the Django project HTML and map them to their
respective functions in a JSON format that defines parameter
names and their corresponding examples.

- **xQutput Reasoningx**: The JSON output specifies each
functions parameters for testing purposes, using IDs defined

in the HTML and expected URL paths. Each function in the
project maps back to a user scenario described earlier,
ensuring the testing parameters align with those scenarios.
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Throughout each step, I maintained a structured approach to interpret

the instructions, generating JSON outputs that capture the

interaction logic, application skeleton, and testing parameters in

alignment with the requirements provided.

E.2 Direct Version

Listing 2: Direct Verison

Given the provided log, here's how I processed the task requests step

#H#t#

by-step:

Initial Request and Reasoning

1. xxRequest to Provide a Django Project:xx

The request was to create a Django project for a password
generator. The specific structure was requested in a JSON
format that included all necessary files for the project.

The project was constructed with essential modules and files,
typical of a basic Django setup: “manage.py~, ~__init__.py~,
settings.py”, “urls.py ™, “wsgi.py , etc.

Inside the project folder, two main components were established:

“password_generator ™ for project-level configurations and °

generator ™ for the app dedicated to password generation logic.

2. **Project Configuration and Application Code:xx*

**~manage.py **: Standard entry point for running Django
commands.

*%x~settings.py **: Configures the project's settings including
installed apps (like ~generator ™), middleware, database
configurations, allowed hosts, static files handling, etc.

**-urls.py **x at the project level defines the URL routes and
maps them to respective views in the ~generator™ app.

The app ~generator™ has core logic hosted in its “views.py~,
handling requests to generate passwords with different options
(uppercase, numbers, symbols).

3. *xHTML Templates for User Interaction:*x

*x~home.html “*xx: Presents users with options to generate a
password, using forms with checkboxes and a submit button to
include various character types.

*%x~password.html “x*x: Displays the generated password, allowing
users to generate another if desired.

*% > about.html “xx: Provides basic project information.

IDs and classes were assigned to HTML elements per the
requirement to enable easy referencing in styles and scripts.

### Parameterized Test Outputs
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4., *%xParameters Extraction for Test:xx

- A structured JSON was requested to determine specific parameter
values within the project for automated testing purposes.
- Each HTML element's IDs, button names, and page URLs were mapped
to ensure correct access and functionality tests.

5. **xPage: Home:*x%

- It confirmed the main URL and associated ID for displaying the
welcome message (“title™).

- Navigation from the home page via specific button IDs to the
password generator feature was detailed.

6. **Page: PasswordOptions:*x

- Confirmed the identification of form elements like length input
and checkboxes for including character types (uppercase,
numbers, symbols) during password generation.

7. *x*Page: GeneratedPassword:x**

- Ensured the display of generated passwords was accurately linked
via the element ID (" password™).
- Proposed testing for a "Copy to Clipboard” functionality (though
the ID “copy” was assumed, this component may have been
developed later).

8. xxPage: About:*x*

- Validated navigation to and from the 'About' page. Extracted the
ID from the hyperlink (" about™) as well as a description ID,
although it posed wrong by using “title~ where expected a
unique ID for description was needed.

9. **Errors & Oversights:xx

- Some mismatches were found in the parameter mappings, notably in
assuming generic IDs like “length~ to also be suitable for
lowercase inclusion function tests or reusing “title~ for °
description_id"™.
- This indicates that further adjustments or clarification might
be needed to align data bindings for consistent testing.

This reflection covers the derivation of each function response from
the given initial requests and input, along with the pathway the
project's elements were stored and rationalized for potential
tests.
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