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Abstract

Ultrasound and radar signals are useful for medical imaging due to their non-invasive,
non-radiative, low-cost, and accessible nature. However, traditional imaging techniques
lack resolution, contrast, and physical interpretation. Quantitative medical imaging is
necessary for this purpose, as it provides a visual representation of physical characteristics.
However, current techniques have drawbacks, including convergence to local minima and
delayed results, which can lead to unsatisfactory outcomes. To address these limitations, we
propose a neural network that incorporates the symmetries and properties of the received
signals to achieve real-time quantitative mappings of physical properties. Our method
achieves high accuracy using several numerical metrics for complex shapes with less than
0.15 seconds per test sample, compared to 0.75-2 hours for the competing method.
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1. Introduction

Ultrasound (US) and radar signals are two primary signals used in non-invasive and non-
radiative medical imaging. US and radar imaging produce images based on the received
signals, referred to as Channel Data (CD), obtained from the received echoes (for US) or
microwave signals (for radar) scattered by the scanned medium (Van Veen and Buckley,
1988; Li et al., 2005), as illustrated in Fig. 1.a-c. However, current imaging techniques using
US or radar signals provide limited physical interpretation, hence Quantitative Medical
Imaging (QMI) is needed. QMI has the potential to visualize various Quantitative Physical
Properties (QPPs) of the scanned medium, such as Speed-of-Sound (SoS), density, and
relative permittivity, which can be beneficial for diverse medical applications such as fatty
liver diagnosis, and stroke imaging (Ruby et al., 2019; Ireland and Bialkowski, 2011).

To obtain quantitative images, a non-linear Inverse Scattering Problem (ISP) must
be solved for reconstructing the QPPs of the scanned medium using the received CD.
Full Waveform Inversion (FWI) is one such method that utilizes an iterative optimization
algorithm to solve the ISP (Shultzman and Eldar, 2022; Guasch et al., 2020). The goal of
FWI is to minimize the loss between the measured and predicted CD according to the QPPs
estimation. However, FWI can be time-consuming and may converge to a local minimum.
Furthermore, an initial guess close to the real solution based on some prior knowledge is
required, which is often unavailable in realistic settings. To address these limitations, deep
learning techniques have been proposed as a potential solution for solving the ISP (Chen
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Figure 1: (a)-(b) depict the wave propagation from one antenna over two successive time
samples. (c) depicts a medium with 60 antennas surrounding a stroke-affected brain. (d)
displays the training set creation process from simulation, utilizing the QPPs of the grid and
known pulse to obtain the channel data for network input. (e). QUARK-MI architecture
for both radar and US schemes. The channel number of each convolution block is displayed.

et al., 2020; Wei and Chen, 2018; LeCun et al., 1998). Nevertheless, previous works only
reconstructed one QPP and tested it on simple synthetic tests.

Our contribution is twofold. First, we propose a Neural Network (NN) for real-time re-
construction of multiple QPPs from measured CD. By incorporating the physical meaning
of the input CD, our method achieves more accurate reconstructions and avoids converging
to a local minimum, as occurs in FWI. Second, we demonstrate the versatility of our pro-
posed network by showing its ability to reconstruct physical properties using either radar
signals or US signals. Additionally, we demonstrate the network’s ability to reconstruct
more than one property for each case, and to handle complex nonhomogeneous domains
such as a realistic human brain with random stroke.

2. Data and Method

We introduce QUARK-MI (Quantitative-Ultrasound-and-Radar Knowledge-based Medical
Imaging), a real-time NN solution that can accurately reconstruct the medium’s QPPs
from either US or radar signals. QUARK-MI has a U-Net based architecture with skip
connections, stride convolution, and batch normalization, enabling the NN to learn from
different signal channels and capture fine details while preserving information from the entire
CD tensor. The input to the NN is the CD tensor consists of the receiving signals over time
for each transmission. Our training sets include simulations of one random object in a
sample with liver properties for the US case, and different training sets simulations for the
radar case: MNIST digit (LeCun et al., 1998) in a random position and blood properties as
the scatter object, and realistic brain slices generated according to (Qureshi and Mustansar,
2017), with a random stroke. We use the known wave propagation equations to create the
CD inputs (Fig. 1.d).
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Figure 2: (a) The comparison of QUARK-MI and FWI methods for the reconstruction with
respect to the Ground-Truth (GT). (b) The accuracy performance.

Our approach integrates the CD physical interpretation into the network architecture.
Each transmission channel offers complementary information about the QPPs and treated
as the convolution channels, while the time and receiving signal dimensions are treated as
the spatial image dimensions in traditional U-Net. Additionally, as illustrated in Fig.1.e,
we employ derivable rescaling to achieve square spatial dimensions. The final convolution
block in our model sums the transmission channels over the spatial dimensions, generating
two channels that depict two mappings of the medium’s QPPs.

3. Evaluation, Results and Conclusion

Evaluation and results We conducted a comprehensive evaluation of our QUARK-MI
method and compared it with the FWI algorithm using numerical metrics (NRMSE, PSNR,
and SSIM), to assess the accuracy of object shape and position as well as quantitative values
of pixels, as shown in Fig.2. Our NN accurately reconstructs QPPs from challenging US
signals scenarios, including two scattering objects with a uniform background (trained on
only one object in each sample), and a noisy medium (where FWI diverge). Additionally,
for the radar case, we reconstructed non-defined objects from the MNIST dataset with
QPPs, and a realistic brain slice with a generated stroke. QUARK-MI outperforms FWI in
most scenarios (highlighted in green), except for one case where FWI has as the initial guess
the homogeneous background value (highlighted in grey). Our NN shows a generalization
ability to reconstruct multiple objects even though the training set contained only one
random object in each image, and reconstruction of highly complex shapes, even in the case
of a human brain where the skull causes a significant decrease in signal quality, in which
both the outline of the brain and the location and size of the stroke were restored with
great success. Our method achieves high accuracy in complex and realistic objects, with
less than 0.15 seconds per sample, compared to 0.75-2 hours for FWI.

Conclusion In conclusion, our proposed NN that incorporates the symmetries and prop-
erties of received signals can achieve real-time mappings of QPPs for medical imaging. This
method provides improved physical interpretation and can lead to the accomplishment of
new clinical goals such as fast stroke imaging and cancer detection. With high accuracy and
fast computational time, this approach has the potential to significantly impact the field of
medical imaging.
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