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ABSTRACT

Existing approaches leveraging large pretrained vision-language models (VLMs)
like CLIP for zero-shot text-image classification often focus on generating fine-
grained class-specific descriptors, leaving higher-order semantic relations between
classes underutilized. We address this gap by proposing DefiNed Taxonomic
Stratification (DefNTaxS), a novel and malleable framework that supplements
per-class descriptors with inter-class taxonomies to enrich semantic resolution
in zero-shot classification tasks. Using large language models (LLMs), DefN-
TaxS automatically generates subcategories that group similar classes and appends
context-specific prompt elements for each dataset/subcategory, reducing inter-
class competition and providing deeper semantic insight. This process is fully
automated, requiring no manual modifications or further training for any of the
models involved. We demonstrate that DefNTaxS yields consistent performance
gains across a number of datasets often used to benchmark these frameworks, en-
hancing accuracy and semantic interpretability in zero-shot classification tasks of
varying scale, granularity, and type.

1 INTRODUCTION

Figure 1: Conceptual visualization of the difference in embedding geometries using CLIP, D-CLIP,
and DefNTaxS. While CLIP relies on class names for classification, D-CLIP uses class-specific de-
scriptors to enhance classification accuracy. DefNTaxS further improves classification by incorpo-
rating taxonomic subcategories to reduce inter-class competition and enhance semantic resolution.
The structured taxonomic information provided by DefNTaxS helps differentiate classes at multiple
levels of granularity, leading to more accurate and interpretable classification.

The rise of Vision-Language Models (VLMs) like CLIP (Radford et al., 2021) has transformed
zero-shot text-image classification by learning shared representations between visual content and
textual descriptions. These models effectively align multimodal data, enabling quick classification of
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images based on text prompts without additional training. However, their performance heavily relies
on the specificity of these prompts, often making it challenging to distinguish between semantically
similar classes.

To address this, recent approaches like (Menon & Vondrick, 2023; Pratt et al., 2023; Novack et al.,
2023) have used Large Language Models (LLMs) to generate detailed class-specific descriptors, en-
hancing text-image alignment. WaffleCLIP Roth et al. (2023) achieves similar accuracy to D-CLIP
by replacing LLM-generated descriptors with random words, highlighting that high-level semantic
concepts from LLMs enhance classification more effectively than fine-grained details. CuPL (Pratt
et al., 2023) also uses LLMs for generating descriptors, but while D-CLIP enforces a structured list
of identifying features to improve explainability, it may reduce classification performance; CuPL, in
contrast, employs multiple free-form prompts to capture nuanced category information, resulting in
improved accuracy. CHiLS (Novack et al., 2023) takes a different approach by refining class labels
into finer-grained subclasses, using either existing label hierarchies or LLMs like GPT-3 to generate
linguistic hyponyms, whereas our work clusters related classes into broader taxonomic groups to
streamline classification and reduce competition among similar classes. MPVR (Mirza et al., 2024)
leverages LLMs to automate the creation of diverse, category-specific prompts for zero-shot image
recognition based on minimal input such as task descriptions and class labels. While effective to
some extent, these methods face limitations: (1) They overly focus on fine-grained details, neglect-
ing medium- and coarse-grained semantics that provide crucial context. (2) Fine-grained descriptors
can introduce noise and ambiguity, reducing interpretability and leading to misclassifications. (3) A
lack of structured semantic hierarchy amplifies competition between similar classes, particularly in
datasets with high intra-class similarity.

Motivated by viewing zero-shot classification through the lens of competition among classes, we
argue that the goal is not to find the “best” descriptor for a class, but rather the “most distinctive”
one. This perspective aligns with the idea that classes should not directly compete with one another
in a complex, high-dimensional space. Instead, effective differentiation can be achieved by grouping
classes within a structured hierarchy, leveraging taxonomic relationships to enhance clarity. By
working together within this framework and establishing distinctions at multiple levels of resolution,
classes can reduce inter-class competition and improve classification accuracy.

To this end, we propose Defined Taxonomic Stratification (DefNTaxS), a novel approach designed
to overcome the limitations of existing methods by incorporating taxonomy classes directly into
the text prompts of CLIP. Our method uses LLMs to analyze the classes within a dataset and pro-
pose taxonomic groupings based on shared semantic relationships, creating a hierarchical classifica-
tion framework. DefNTaxS consistently outperforms existing methods across all evaluated datasets,
showcasing its effectiveness in zero-shot classification tasks. Additionally, it reveals and organizes
the underlying structure of the CLIP embedding space, offering a semantically structured view that
clarifies how classes are organized and differentiated within the hierarchy.

2 RELATED WORK

Zero-shot Image Classification using VLMs. Vision-Language Models (VLMs) (Jia et al., 2021;
Kim et al., 2021; Radford et al., 2021; Yao et al., 2022; Wang et al., 2022; Yu et al., 2022; Cho et al.,
2021; Li et al., 2023; Naeem et al., 2023) learn a joint representation that aligns visual content with
associated textual descriptions in a shared embedding space. This learned alignment allows VLMs
to perform effectively on zero-shot image classification tasks, where they rely on textual cues, such
as class labels, to classify novel image categories without prior exposure during training. Notably,
CLIP (Radford et al., 2021) has emerged as a prominent approach for learning multimodal repre-
sentations that align visual and textual information within a shared embedding space. The model
utilizes a dual-encoder architecture, with separate encoders for image and text modalities, trained
through contrastive learning to maximize the similarity between matching image-text pairs and min-
imize it for non-matching pairs. Each encoder can have a different backbone. At inference, CLIP
uses prompts like “a photo of a [class name]” providing context for classification and enabling
zero-shot transfer to various tasks without task-specific fine-tuning. Subsequent works, such as
FLAVA (Singh et al., 2022), Florence (Yuan et al., 2021), and BLIP (Li et al., 2022), have built
upon the CLIP paradigm and advanced multimodal representation learning. Florence enhances this
learning by leveraging a significantly larger and more diverse pre-training dataset. FLAVA focuses
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on novel training objectives beyond contrastive learning, such as masked image modeling combined
with contrastive loss, to improve multimodal understanding. Meanwhile, BLIP incorporates a re-
fined model architecture that better integrates visual and linguistic features for more effective joint
representation. VLM research follows two main pipelines: visual prompting and text prompting.
Visual prompting enhances performance by processing or aligning visual inputs with textual repre-
sentations, while text prompting focuses on refining textual descriptors Li et al. (2024); Zhang et al.
(2024). Our work adopts an exclusively text-based approach, leaving the images, model weights,
and embeddings unaltered.

Training-free textual prompting in VLMs. While CLIP demonstrates strong zero-shot capabil-
ities, its performance in downstream tasks is significantly affected by prompt choice, as noted by
(Radford et al., 2021) and (Zhou et al., 2022). (Zhou et al., 2022) specifically point out that finding
the optimal prompt is a complex and time-consuming process, often requiring prompt tuning. How-
ever, with the rise of large language models (LLMs) like GPT-3 (Brown, 2020), new approaches
(Menon & Vondrick, 2023; Pratt et al., 2023) have emerged to enhance CLIP’s zero-shot generaliza-
tion by leveraging LLMs. Rather than relying on handcrafted templates to generate class features,
these methods utilize LLMs to create high-level concepts, class descriptions resulting in enriched
text features and improved performance. D-CLIP (Menon & Vondrick, 2023) demonstrated that
leveraging the knowledge embedded in LLMs to automatically generate class-specific descriptions
that focus on the discriminating features of image categories can enhance zero-shot classification.
WaffleCLIP (Roth et al., 2023) achieves the same accuracy as D-CLIP by replacing LLM-generated
descriptors with random words. It highlights that high-level semantic concepts from LLMs improve
classification more effectively than fine-grained details. CuPL (Pratt et al., 2023) also uses LLMs
for generating descriptors, but D-CLIP enforces a structured list of identifying features, enhanc-
ing explainability but potentially reducing classification performance. In contrast, CuPL generates
multiple, free-form prompts to better capture the nuances of each category, resulting in improved
accuracy. CHiLS (Novack et al., 2023) refines class labels into finer-grained subclasses by lever-
aging either existing label hierarchies or large language models like GPT-3 to generate linguistic
hyponyms for each class. In our work, we also consider the taxonomy of classes but take the oppo-
site approach—by clustering related classes into broader taxonomic groups to reduce competition
among similar classes and streamline classification. MPVR (Mirza et al., 2024) automates the cre-
ation of category-specific prompts for zero-shot image recognition by leveraging LLMs to generate
diverse prompts based on minimal input, such as a task description and class labels. Another study
Ren et al. (2024) addresses zero-shot classification by constructing a class hierarchy through iter-
ative k-means clustering and LLM-generated descriptions; in contrast, our work avoids clustering
and iterative refinement, offering a more efficient, single-stage framework with enhanced semantic
interpretability through directly leveraging inter-class taxonomies.

3 METHOD

3.1 GENERATING SUBCATEGORIES

The aim of this approach is to enhance zero-shot classification performance by reducing unnec-
essary competition amongst classes. This problem arises when each class is considered in direct
competition with all other classes, which can result in misclassification, particularly for classes with
overlapping semantics. To address this, our process begins by using the LLM to analyze the classes
in the dataset and propose a set of taxonomic classes. These taxonomic classes are designed to
cluster classes based on shared semantic relationships, thereby minimizing the competition between
classes with similar characteristics. For instance, classes such as “forks,” “knives,” and “spoons”
might all be grouped under a broader taxonomic class like “kitchen utensils.”

Let C = {c1, c2, . . . , cm} be the set of classes in the dataset, with m being the total number of
classes. The LLM generates a set of taxonomic classes Tc = {t1, t2, . . . , tk}, where each ti ⊆ C
represents a subcategory grouping semantically related classes, as in Figure 1. Formally,

Tc = {ti | ti ⊆ C,∀i = 1, . . . , k}, (1)
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Figure 2: The creation of subcategories, the assignment of classes to them, and the generation of
taxonomic class contextualizing sentences is completed iteratively using the LLM. Inputs are in blue,
processes are in purple, and outputs are in green. (1) The LLM generates a set of taxonomic classes
based on the classes in the dataset. If too few taxonomic classes are generated (i.e. |T | < |C|/10),
the process is repeated. (2) Each class is assigned to one of the taxonomic classes. If too many
classes are assigned to a single taxonomic class (i.e. |ti| > 20), the process is repeated. (3) A
sentence contextualizing the taxonomic class within the final prompt structure is generated.

where each ti is a subset of C such that
k⋃

i=1

ti = C and ti ∩ tj = ∅ ∀i ̸= j. (2)

This means that the LLM creates a structured grouping where each taxonomic class is a non-
overlapping subcategory of the original classes, covering all classes without redundancy. As in
2, each query to the LLM focuses exclusively on a single task to avoid confusion of the request
or the model missing elements of the request. The prompts used also emphasize this necessity, as
shown in Appendix A. This ensures that all classes will be assigned to a subcategory and only one
subcategory.

If the size of the set of taxonomic classes |Tc| is less than |C|
10 , then the list of taxonomic classes is

provided back to the LLM for further refinement. Formally, if:

|Tc| <
|C|
10

(3)

then a refined set of taxonomic classes T ′
c = {t′1, t′2, ..., t′k′} is generated, where k′ > k. For

instance, a taxonomic class like ”dogs” may be further divided into more specific subcategories,
such as ”small dogs,” ”medium dogs,” and ”big dogs.” This choice is validated empirically through
repeatedly reducing the minimum number of subcategories to be generated, offering the LLM a
greater number of options for assigning the classes. An example of this validation can be seen in
Table 3 in 6.1.

Additionally, if the total number of classes is less than 20, |C| < 20, we also consider a scenario
where taxonomic class is assigned to be the name of the dataset. That is, the set of taxonomic classes
is replaced by the name of the dataset:

Tc = C. (4)

For example, in the EuroSAT (Helber et al., 2017) dataset, instead of generating new subcategories,
the taxonomic class contextualizing sentence ending is replaced with “from the EuroSAT dataset” .
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3.2 DESCRIPTORS WITH SEMANTIC CONTEXT

Once the list of potential taxonomic classes Tc is finalized, we iteratively use the LLM to allocate
each individual class c ∈ C to one of the taxonomic classes ti ∈ Tc. This allocation provides
a semantic context for each class based on its shared relationships with other classes within the
subcategory. Consequently, each class c is not only associated with its specific textual descriptors
Dc = {d1, d2, ..., d|Dc|}, but also with the broader context of its taxonomic class t.

To effectively encode this semantic information into a text prompt, we construct a structured text
representation for each class c. Inspired by CLIP (Radford et al., 2021), which classifies a query
image x by finding the category c ∈ C that maximizes the cosine similarity between its image
embedding ϕI(x) and its textual prompt embedding ϕL(f(c)), where f(c) = “A photo of a {c}”,
our approach enhances this structure. Specifically, D-CLIP (Menon & Vondrick, 2023) introduces
a richer set of descriptors Dc, using prompts of the form f(c, d) = ”{c} which is/has/etc {d}” to
better capture the visual characteristics of each category. The classification score of D-CLIP is
computed by averaging the similarity between the image embedding and all descriptor embeddings:

c̃ = argmax
c∈C

1

|Dc|
∑
d∈Dc

s(ϕI(x), ϕL(f(c, d))), (5)

where s(·, ·) denotes the cosine similarity.

DefNTaxS further modifies this by incorporating the taxonomic class context Tc. For each class c,
the corresponding taxonomic class ti ∈ Tc is included in the textual prompt to provide a broader
semantic context. Specifically, we introduce a function g(C, ti) that generates a sentence contex-
tualizing the taxonomic class within the dataset. For example, the Food101 dataset may have the
contextualizing sentence, g(C, ti) = “on a menu under “‘ti” ”, and the class “cannoli” with descrip-
tor “nuts” may be assigned to the subcategory “desserts”, producing:

f(c, d, g(C, ti)) = “cannoli, which has nuts, found on a menu under “desserts””. (6)

The classification score is then calculated by averaging the similarity between the image embedding
and all descriptor embeddings that incorporate the taxonomic context:

c̃ = argmax
c∈C

1

|Dc|
∑
d∈Dc

s(ϕI(x), ϕL(f(c, d, g(C, ti)))). (7)

By introducing g(C, ti), the textual prompt effectively leverages both the class-specific descriptors
and the broader semantic relationships defined by the taxonomic classes, improving the model’s
ability to capture complex inter-class relationships in zero-shot classification.

4 EXPERIMENTAL SETTINGS

In this section, we assess the performance of the DefNTaxS method through a series of experiments
and comprehensive ablation studies.

4.1 IMPLEMENTATION/EVALUATION DETAILS

Unless specified otherwise, all experiments are conducted on a single NVIDIA RTX 4090 GPU. The
descriptors used in the experiments are sourced from the prior work in D-CLIP (Menon & Vondrick,
2023). The prompt structure used in the experiments is the same as that of D-CLIP (Menon &
Vondrick, 2023), which follows the format ”ci which has/is di.” The models are evaluated using the
same zero-shot classification setup as in (Menon & Vondrick, 2023), with the same train-test splits
and evaluation metrics. The classification accuracy is reported as the primary evaluation metric,
with additional analysis provided to understand the impact of the proposed method on the model’s
decision-making process.

4.2 DATASETS

For evaluating our method, we use the benchmark outlines provided in Menon & Vondrick (2023)
for zero-shot classification. This benchmark consists of ImageNet (Deng et al., 2009), a dataset
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for classifying everyday objects; CUB (Welinder et al., 2010), which focuses on fine-grained bird
species classification; Oxford Pets (Parkhi et al., 2012), designed for the recognition of common
pets; DTD (Cimpoi et al., 2014), used for texture and pattern classification in natural settings;
Food101 (Bossard et al., 2014), aimed at food categorization; and Places365 (Zhou et al., 2017),
a large-scale dataset for scene and environment recognition. Furthermore, we assess our method on
additional datasets such as EuroSAT (Helber et al., 2017), which focuses on land use and land cover
classification based on Sentinel-2 satellite imagery.

4.3 BASELINES

In these experiments, we compare the performance of DefNTaxS against several state-of-the-art
methods for zero-shot image classification using VLMs. The baselines include:

• CLIP (Radford et al., 2021), which uses the format ”{class}” as the prompt,
• E-CLIP (Radford et al., 2021), an approach that enhances CLIP by using handcrafted

templates for each class, such as ”A photo of a {class}”,
• D-CLIP Menon & Vondrick (2023), which generates class-specific descriptors using LLMs

and uses the prompt format ”{class} which has/is {descriptor}”,
• WaffleCLIP (Roth et al., 2023), which replaces the LLM-generated descriptors with ran-

dom words, using the format ”{class} which has/is {random words/characters}”,
• WaffleCLIP + Concepts (Roth et al., 2023), which uses the same structure as WaffleCLIP

but includes high-level semantic concepts from LLMs, and
• CuPL (Pratt et al., 2023), which generates multiple free-form prompts for each class to

capture the nuances of each category, with no specific format.

Each of these baselines was recreated using the setup described in 4.1 and the code provided for
each study. All potential variables were maintained strictly to those used in the original studies. In
doing so, we aimed to reduce any inconsistencies due to hardware, software, or other issues.

5 RESULTS

5.1 ZERO-SHOT CLASSIFICATION RESULTS

Table 1: Comparison of zero-shot visual classification performance across different image classifi-
cation benchmarks using multiple CLIP backbones.

Method ImageNet CUB Oxford Pets DTD Food101 Places365 EuroSAT
B/32 B/16 L/14 B/32 B/16 L/14 B/32 B/16 L/14 B/32 B/16 L/14 B/32 B/16 L/14 B/32 B/16 L/14 B/32 B/16 L/14

CLIP 58.89 64.10 71.55 51.86 56.42 62.98 77.88 80.14 86.82 41.12 44.57 50.74 77.83 84.02 89.87 37.50 38.32 39.04 44.26 46.10 36.83
E-CLIP 61.90 66.60 72.81 52.00 55.89 62.65 82.10 85.51 91.81 43.07 43.62 51.42 78.78 84.88 89.78 39.13 39.19 39.76 33.44 52.74 54.04
CuPL 62.12 66.01 73.68 52.34 56.84 63.03 81.78 84.03 84.60 90.95 42.61 43.87 79.84 83.89 88.97 38.87 39.01 38.57 41.50 38.57 48.25
D-CLIP 63.00 68.05 75.00 53.21 57.49 64.52 81.84 85.58 91.15 43.62 45.51 54.59 80.43 85.55 90.33 39.84 40.55 40.86 47.36 51.95 49.98
WaffleCLIP 62.35 67.29 74.07 52.17 56.20 62.34 82.38 81.22 88.24 40.05 42.50 49.41 79.43 85.27 90.51 38.35 39.52 39.86 31.49 31.94 34.28
WaffleCLIP+concepts 62.35 67.29 74.07 52.47 56.90 62.55 85.40 86.93 92.76 40.05 42.50 49.41 81.25 86.10 90.87 40.22 40.52 41.02 40.81 41.27 50.01
DefNTaxS 63.48 68.03 75.03 54.00 58.15 63.93 86.09 89.31 93.71 45.89 47.38 52.75 81.26 86.40 90.93 40.00 41.09 41.81 57.22 56.51 59.68

In this section, we present the zero-shot classification results of the DefNTaxS method compared to
the baseline approaches on various benchmark datasets. The results are summarized in Table 1.

We observe that DefNTaxS approximately equals or outperforms the baseline methods across all
datasets, achieving higher classification accuracy with a method that requires no additional train-
ing or manual intervention. The improvements are particularly pronounced on datasets with high
class counts or high intra-class similarity, where the taxonomic grouping helps reduce inter-class
competition and improve classification accuracy.

Due to inherent ambiguity in many class labels, many approaches of this type (Menon & Vondrick,
2023; Roth et al., 2023) require extra context be manually added to more accurately capture the
expected content of the images within these datasets. For example, a dog and a fighting athlete
may both be described as ”a boxer”, but may suffer from classification deterioration unless speci-
fied. DefNTaxS naturally solves many of these issues through the generated subcategory titles and
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their common ability to capture this specificity. This is a significant improvement in the processing
required to achieve the results, completely eliminating

One exception to this subcategory contextualization is with the EuroSAT dataset Helber et al. (2017),
where the small number of classes leads us to automatically default to using the dataset name to
contextualize the prompt. For completeness, the contextualizing sentence shown in 3.1 was replaced
by ”from a dataset of satellite images.” and also achieved the significant result of 55.13% accuracy
with ViT-B/32.

In other cases, we see benefits due to common co-appearing text structures(Udandarao et al.). As an
example, images of pets tend to be uploaded more often in a casual, social location, often appearing
with simple statements like ”this is a photo of [pet’s name]”. For this reason and with no other
benchmark, we see an improved performance with the Oxford Pets dataset (Parkhi et al., 2012) when
prefixing the classification prompts with the standard CLIP templates, which often capture these
simple statements that often appear on Facebook statuses, Instagram captions, and other popular
image sharing sites.

5.2 DOMAIN GENERALIZATION RESULTS

To understand the impact of the proposed method on out of domain generalization, we evaluate the
performance of DefNTaxS on the ImageNetV2 dataset, which is designed to test the generalization
capabilities of models trained on ImageNet. The dataset matches the distribution frequency of the
original ImageNet dataset but contains new images, making it a suitable benchmark for assessing
the model’s ability to generalize to unseen data. We compare the performance of DefNTaxS against
this baseline to assess the model’s generalization capabilities in Table 2.

Table 2: Comparison of zero-shot visual classification performance on the ImageNetV2 dataset
using three different CLIP backbones (B/32, B/16, L/14).

Method ImageNet V2
B/32 B/16 L/14

CLIP 51.70 57.86 65.43
E-CLIP 54.45 60.62 67.14
D-CLIP 55.77 61.54 69.33
WaffleCLIP 52.98 58.64 65.67
DefNTaxS 56.31 61.49 68.84

We observe that DefNTaxS outperforms the baseline for this task to a similar scale as the original
ImageNet dataset, demonstrating the effectiveness of the proposed method in improving the model’s
generalization capabilities.

6 ABLATION

Factors that were considered in the ablation study include the structure of the prompt, the length
of the prompt, the number of subcategories generated, and the impact of the taxonomic class on
classification performance. This study aims to provide insights into the effectiveness of the proposed
method and identify the key components that contribute to its performance.

6.1 REDUCED TAXONOMIC REFINEMENT

For larger datasets, especially ImageNet and Places365 with hundreds of classes, the taxonomic
refinement process may result in subcategories with a large number of classes. For example, a sub-
category like “dogs” could contain over 150 different dog species in ImageNet, leading to increased
competition between classes within the same subcategory. To investigate the impact of this sce-
nario, we conduct an ablation study where the taxonomic refinement process is limited to a single
iteration, resulting in subcategories with 100 or more classes. We also conducted various studies
of gradually increasing the number of taxonomic subcategories, but as the numbers purely act as
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a guide for the LLM in generating these subcategory names (Appendix A), the results varied in-
significantly from the results of this main study. The results of this ablation study, shown in Table
3, demonstrate a significant decrease in classification accuracy, indicating that the model gains lit-
tle benefit from subcategories that are coincident with a large number of classes, as it can provide
distinction between the classes. This highlights the importance of refining the taxonomic structure
to create more distinct subcategories, which can help reduce inter-class competition and improve
classification performance.

Table 3: Effect of reduced taxonomic refinement on zero-shot visual classification performance for
the ImageNet and Places365 datasets.

Method ImageNet Places365
B/32 B/16 L/14 B/32 B/16 L/14

CLIP 58.86 64.07 71.57 37.48 38.33 39.05
E-CLIP 61.90 66.61 72.80 39.12 39.18 39.75
D-CLIP 63.26 68.38 75.16 40.89 41.85 41.46
WaffleCLIP 60.25 64.60 71.91 38.28 38.05 38.93
DefNTaxS 61.23 66.14 74.72 37.53 40.22 39.89

6.2 DESCRIPTOR REGENERATION

In this ablation study, we investigate the impact of regenerating the descriptors using more advanced
LLMs, such as GPT-4 or other state-of-the-art models, to determine if this process provides similar
benefits to the taxonomic refinement. We intend to understand whether the improvements in clas-
sification performance are primarily due to the subcategories or the enhanced semantic information
within descriptors generated by more powerful LLMs.

The results show in Table 4 that regenerating the descriptors with more advanced LLMs does not
provide the same benefits as the taxonomic refinement process. However, the combination of both
approaches leads to a significant improvement in classification accuracy, suggesting that the subcat-
egories and enhanced descriptors complement each other to enhance the model’s performance.

Table 4: Comparison of zero-shot visual classification performance across different image classifi-
cation benchmarks using multiple CLIP backbones and descriptors generated by GPT-4.

Method ImageNet CUB Oxford Pets DTD Food101 Places365 EuroSAT
B/32 B/16 L/14 B/32 B/16 L/14 B/32 B/16 L/14 B/32 B/16 L/14 B/32 B/16 L/14 B/32 B/16 L/14 B/32 B/16 L/14

CLIP 58.86 64.07 71.57 51.83 56.35 62.98 77.96 80.12 86.83 41.08 44.59 50.76 77.84 84.02 89.86 37.48 38.33 39.05 44.32 46.20 36.97
E-CLIP 61.90 66.61 72.80 51.95 55.87 62.70 82.06 85.49 91.87 43.12 43.60 51.44 78.79 84.86 89.78 39.12 39.18 39.75 33.31 52.56 54.10
CuPL 62.10 67.23 73.31 51.97 56.89 63.45 80.89 82.25 90.78 45.51 45.95 53.61 79.26 83.71 90.02 39.84 40.55 40.86 47.36 51.95 49.98
D-CLIP 63.26 68.38 75.16 53.83 59.13 65.34 81.54 85.64 91.58 47.11 47.64 56.54 81.06 86.09 91.22 40.89 41.85 41.46 42.80 49.85 46.08
WaffleCLIP 62.26 67.18 74.11 52.05 55.42 62.75 80.12 81.27 88.17 41.03 44.49 50.46 80.31 85.23 90.60 38.64 39.64 40.10 35.28 49.47 46.24
WaffleCLIP+concepts 62.26 67.18 74.11 52.49 56.18 63.13 85.33 86.64 93.88 41.03 44.49 50.46 81.56 86.41 91.28 40.62 40.82 41.25 46.05 49.39 51.59
DefNTaxS 63.63 68.28 75.05 54.42 59.53 64.62 86.67 89.27 93.14 48.09 48.87 54.57 81.47 86.45 91.28 39.31 40.81 40.96 57.51 60.25 60.67

6.3 DEFNTAXS WITHOUT DESCRIPTORS

Much research on hierarchical approaches to zero-shot text-image classification focus of either as-
cending or descending levels of descriptive resolution, but rarely both. DefNTaxS leverages both the
benefits of greater taxonomic hierarchy while also incorporating the fine-grained visual descriptors
introduced by D-CLIP (Menon & Vondrick, 2023). Comparison between the DefNTaxS approach
and D-CLIP through the baselines in 1, isolating the effect of fine-grained semantic information, but
for completeness we must also investigate the effect of the taxonomic subcategories.

In all but a select few cases, the original DefNTaxS approach outperforms both approaches that
isolate a single factor: either fine-grained semantics or taxonomic hierarchy. However, the isolated
taxonomies do show benefit over the CLIP baseline and even outperform all other baselines with the
Food101 dataset Bossard et al. (2014). Results of this investigation can found in Table 5.
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Table 5: Comparison of zero-shot visual classification performance between DefNTaxS and DefN-
TaxS without the use of D-CLIP-based descriptors.

Method ImageNet CUB Oxford Pets DTD Food101 Places365 EuroSAT
B/32 B/16 L/14 B/32 B/16 L/14 B/32 B/16 L/14 B/32 B/16 L/14 B/32 B/16 L/14 B/32 B/16 L/14 B/32 B/16 L/14

CLIP 58.89 64.10 71.55 51.86 56.42 62.98 77.88 80.14 86.82 41.12 44.57 50.74 77.83 84.02 89.87 37.50 38.32 39.04 44.26 46.10 36.83
D-CLIP 63.00 68.05 75.00 53.21 57.49 64.52 81.84 85.58 91.15 43.62 45.51 54.59 80.43 85.55 90.33 39.84 40.55 40.86 47.36 51.95 49.98
DefNTaxS 63.48 68.03 75.03 54.00 58.15 63.93 86.09 89.31 92.76 45.89 47.38 52.75 81.26 86.10 90.93 40.00 41.09 41.81 57.22 56.51 59.68
DefNTaxSsansdescriptor 62.30 66.09 73.34 53.94 57.42 62.75 85.25 88.78 92.75 43.49 44.17 49.61 81.37 86.36 90.60 38.87 39.40 40.04 55.17 51.97 45.34

6.4 PROMPT MODIFICATION

In this section, we present an ablation study aimed at systematically analyzing how the structure/-
format and length of the prompt in the language component of CLIP (Radford et al., 2021) impact
classification performance. To conduct this analysis, we utilize the CUB (Welinder et al., 2010)
dataset, a fine-grained image dataset that provides a suitable context for evaluating the sensitivity of
CLIP to variations in prompt design.

6.4.1 STRUCTURE OF PROMPT

Table 6: Impact of Different Prompt Structures on Zero-Shot Classification Accuracy
Method Prompt Structure Accuracy (%)

E-CLIP Baseline "A photo of a {c}" 51.95
D-CLIP Baseline "{c}, which is/has/etc {d}" 52.57

Class-Descriptor Switch "{d}, which is/has/etc {c}" 51.34
Prefix Modification "An image of a {c}, which has/is {d}" 50.94

Class-Specific Prefix Modification "A photo of a {c}, which has/is {d}, a type of bird" 53.33
Class Label Modification "{c}, which is/has/etc {d}" 22.14

Descriptor-Only "{d}" 3.81
Class Repetition "{c}, which is/has/etc {c}" 52.35

In our initial investigation, we analyzed the prompt structure of D-CLIP (Menon & Vondrick, 2023),
which follows the format “ci which has/is di,” where ci represents the class and di the descriptor.
We explored how the arrangement of these elements influences classification performance.

We first tested reversing the positions of the class and descriptor, using the structure “di, which is
a description of a ci.” This modification aimed to prioritize the descriptors over the class, based on
findings that initial tokens in a prompt have greater weight in embedding space (Han et al., 2024;
Kazemnejad et al., 2024). However, this change resulted in reduced accuracy, showing that the
model performs better when the class is positioned at the start of the prompt.

Next, we added prefixes such as “An image of ...” before the class label, restructuring the prompt as
“An image of a ci, which has/is di.” This modification also decreased accuracy, as the filler content
shifted focus away from the class. The model consistently performed better when the class was
positioned at the start of the prompt without additional prefixes. However, one notable exception
was observed with domain-specific templates, such as the BirdSnap template. Using a structure
like “a photo of a class label, a type of bird,” tailored for bird classification, significantly improved
accuracy, even surpassing the baseline D-CLIP performance. This indicates that carefully designed,
domain-specific templates can be beneficial despite generally negative effects of filler content.

We also experimented with simplifying class names to focus on broad categories. For instance,
“Red-winged Blackbird” was simplified to “Blackbird,” relying on the descriptor to distinguish
between similar classes. This approach significantly reduced accuracy, as it removed distinctive
features from the class name and increased dependence on the descriptors, which were often insuf-
ficiently detailed for fine-grained distinctions.

In an extreme experiment, we eliminated the class name entirely, constructing prompts solely with
descriptors. This approach caused a sharp decline in accuracy, highlighting the critical role of class
labels in guiding the model to differentiate between categories effectively. Without class names, the
model struggled to perform reliable classification, even with detailed descriptors.
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Finally, we replaced descriptors with repeated class names, emphasizing the role of the class in the
prompt. This modification significantly improved accuracy, showing that class labels play a vital
role in the model’s performance by providing clear, consistent information for classification. These
findings underscore the importance of thoughtful prompt design, particularly the positioning and
inclusion of class labels, in achieving optimal performance. The summary of all prompt structure
modifications, along with their respective accuracy results, is presented in Table 6.

6.4.2 LENGTH OF PROMPT

Table 7: Impact of Length of Prompt on Zero-Shot Classification Accuracy

Method Accuracy (%)
CLIP Baseline 51.95

D-CLIP GPT-3 Baseline 52.57
D-CLIP GPT-4 Baseline 53.90

Random character count: 2 51.55
Random character count: 5 51.87

Random character count: 10 51.10
Truncation (Class label only) 51.78

Truncation (Maximum @ 100%) 53.88
Truncation (Minimum @ 10%) 50.77

Truncation (@ 0%) 52.23
Truncation (@ 50%) 51.34
Truncation (@ 70%) 53.59

In this section, we conduct experiments to examine the influence of prompt length on classification
accuracy, independent of semantic content.

In the first experiment, we control prompt length by truncating descriptors to specific fractions of
their character count while maintaining the overall prompt structure. For example, truncating a 100-
character descriptor to 20% retains only the first 20 characters. Full descriptors correspond to 100%
truncation, while 0% truncation leaves only a minimal structure with the class label and punctuation
(e.g., “Black-footed Albatross,”). A “class label only” baseline prompt is also tested to isolate the
descriptor’s impact on accuracy.

Results show accuracy decreases with progressive truncation, with a minimum observed at 10–20%
truncation. Notably, the “class label only” prompt performs worse than even minimally truncated
descriptors, highlighting the value of partial descriptor information.

In the second experiment, we isolate the effect of length by appending random strings to class labels
(e.g., “Black-footed Albatross ghdf idfh”). This ensures that only character count varies, enabling
us to assess how prompt length, independent of semantic content, influences accuracy. In Table 7,
we present a summarization of truncation levels and prompt length, along with their corresponding
classification accuracies.

7 CONCLUSION

We propose a novel method, DefNTaxS, that enhances zero-shot image classification using VLMs by
refining the taxonomic structure of classes, further enhanced by regenerating class-specific descrip-
tors. Our method significantly improves classification accuracy across various image classification
benchmarks, outperforming several state-of-the-art methods. We conduct a comprehensive evalu-
ation of the proposed method, including domain generalization experiments, ablation studies, and
comparisons with existing approaches. Our results demonstrate the effectiveness of DefNTaxS in
improving zero-shot image classification performance and generalization capabilities. The proposed
method provides a systematic approach to enhancing the interpretability and accuracy of VLMs for
image classification tasks, offering valuable insights into the model’s decision-making process.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
nents with random forests. In Computer vision–ECCV 2014: 13th European conference, zurich,
Switzerland, September 6-12, 2014, proceedings, part VI 13, pp. 446–461. Springer, 2014.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Jaemin Cho, Jie Lei, Hao Tan, and Mohit Bansal. Unifying vision-and-language tasks via text
generation. In International Conference on Machine Learning, pp. 1931–1942. PMLR, 2021.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 3606–3613, 2014.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-infinite:
Zero-shot extreme length generalization for large language models. In Proceedings of the 2024
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pp. 3991–4008, 2024.

Patrick Helber, Benjamin Bischke, Andreas R. Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 12:2217–2226, 2017. URL https:
//api.semanticscholar.org/CorpusID:11810992.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
with noisy text supervision. In International conference on machine learning, pp. 4904–4916.
PMLR, 2021.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva
Reddy. The impact of positional encoding on length generalization in transformers. Advances
in Neural Information Processing Systems, 36, 2024.

Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-and-language transformer without convo-
lution or region supervision. In International conference on machine learning, pp. 5583–5594.
PMLR, 2021.

Haopeng Li, Qiuhong Ke, Mingming Gong, and Tom Drummond. Progressive video summarization
via multimodal self-supervised learning. In Proceedings of the IEEE/CVF winter conference on
applications of computer vision, pp. 5584–5593, 2023.

Jinhao Li, Haopeng Li, Sarah Monazam Erfani, Lei Feng, James Bailey, and Feng Liu. Visual-text
cross alignment: Refining the similarity score in vision-language models. In Forty-first Interna-
tional Conference on Machine Learning, 2024.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International conference on
machine learning, pp. 12888–12900. PMLR, 2022.

Sachit Menon and Carl Vondrick. Visual classification via description from large language models.
ICLR, 2023.

M. Jehanzeb Mirza, Leonid Karlinsky, Wei Lin, Sivan Doveh, , Jakub Micorek, Mateusz Kozinski,
Hilde Kuhene, and Horst Possegger. Meta-Prompting for Automating Zero-shot Visual Recog-
nition with LLMs. In Proceedings of the European Conference on Computer Vision (ECCV),
2024.

Muhammad Ferjad Naeem, Yongqin Xian, Xiaohua Zhai, Lukas Hoyer, Luc Van Gool, and Fed-
erico Tombari. Silc: Improving vision language pretraining with self-distillation. arXiv preprint
arXiv:2310.13355, 2023.

11

https://api.semanticscholar.org/CorpusID:11810992
https://api.semanticscholar.org/CorpusID:11810992


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zachary Novack, Julian McAuley, Zachary Chase Lipton, and Saurabh Garg. Chils: Zero-shot image
classification with hierarchical label sets. In International Conference on Machine Learning, pp.
26342–26362. PMLR, 2023.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2012
IEEE conference on computer vision and pattern recognition, pp. 3498–3505. IEEE, 2012.

Sarah Pratt, Ian Covert, Rosanne Liu, and Ali Farhadi. What does a platypus look like? gener-
ating customized prompts for zero-shot image classification. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 15691–15701, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Zhiyuan Ren, Yiyang Su, and Xiaoming Liu. Chatgpt-powered hierarchical comparisons for image
classification. Advances in neural information processing systems, 36, 2024.

Karsten Roth, Jae Myung Kim, A Koepke, Oriol Vinyals, Cordelia Schmid, and Zeynep Akata.
Waffling around for performance: Visual classification with random words and broad concepts. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15746–15757,
2023.

Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Mar-
cus Rohrbach, and Douwe Kiela. Flava: A foundational language and vision alignment model.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
15638–15650, 2022.

Vishaal Udandarao, Ameya Prabhu, Adhiraj Ghosh, Yash Sharma, Philip H. S. Torr, Adel Bibi,
Samuel Albanie, and Matthias Bethge. No ”zero-shot” without exponential data: Pretraining
concept frequency determines multimodal model performance. URL http://arxiv.org/
abs/2404.04125.

Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai, Yulia Tsvetkov, and Yuan Cao. SimVLM:
Simple visual language model pretraining with weak supervision. In International Confer-
ence on Learning Representations, 2022. URL https://openreview.net/forum?id=
GUrhfTuf_3.

Peter Welinder, Steve Branson, Takeshi Mita, Catherine Wah, Florian Schroff, Serge Belongie, and
Pietro Perona. Caltech-ucsd birds 200. 2010.

Lewei Yao, Runhui Huang, Lu Hou, Guansong Lu, Minzhe Niu, Hang Xu, Xiaodan Liang, Zhenguo
Li, Xin Jiang, and Chunjing Xu. FILIP: Fine-grained interactive language-image pre-training. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=cpDhcsEDC2.

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui
Wu. Coca: Contrastive captioners are image-text foundation models. arXiv preprint
arXiv:2205.01917, 2022.

Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel Codella, Xiyang Dai, Jianfeng Gao, Houdong Hu,
Xuedong Huang, Boxin Li, Chunyuan Li, et al. Florence: A new foundation model for computer
vision. arXiv preprint arXiv:2111.11432, 2021.

Sheng Zhang, Muzammal Naseer, Guangyi Chen, Zhiqiang Shen, Salman Khan, Kun Zhang, and
Fahad Shahbaz Khan. S3a: Towards realistic zero-shot classification via self structural semantic
alignment. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
7278–7286, 2024.

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10
million image database for scene recognition. IEEE transactions on pattern analysis and machine
intelligence, 40(6):1452–1464, 2017.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
language models. International Journal of Computer Vision, 130(9):2337–2348, 2022.

12

http://arxiv.org/abs/2404.04125
http://arxiv.org/abs/2404.04125
https://openreview.net/forum?id=GUrhfTuf_3
https://openreview.net/forum?id=GUrhfTuf_3
https://openreview.net/forum?id=cpDhcsEDC2
https://openreview.net/forum?id=cpDhcsEDC2


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 GENERATING SUBCATEGORIES

The first step involves generating an initial list of subcategories for the dataset’s classes. A context
prompt is used to instruct the LLM to group the classes into subcategories, formatted as a Python
list.

Prompt:

The [DATASET_NAME] dataset is constructed from [NUMBER_OF_CLASSES]
classes. You will create at minimum [MIN_SUBCATEGORIES]
subcategories to group the classes by and assign at maximum
[MAX_CLASSES_PER_SUBCATEGORY] of the [DATASET_NAME] classes to each
subcategory. For an example of a subcategory and its classes, a
subcategory "kitchen utensil" may have the classes "fork", "knife",
"can opener" and "teaspoon" assigned to it. Every class must be
assigned to a subcategory, none can be missed.

First, create the list of subcategories to assign these [DATASET_NAME]
classes to, in the exact form of a Python list and nothing more, and
stop there before assigning the classes.

[DATASET_NAME] classes:
[CLASS_LIST]

A.2 REFINING SUBCATEGORIES

If the generated subcategories are too broad or lack specificity, they are refined to ensure better
granularity. The prompt requests LLM to break down broad categories into finer ones for better
differentiation among classes.

Prompt:

The subcategories in this list are too coarse and will not differentiate
the classes well. Break down the existing subcategories into more
specific subcategories to better group the classes, e.g. instead of
\"dog\" and \"cat\", use \"terrier\", \"retriever\", \"siamese\" and
\"persian\". Use as many as needed to allow the classes to be as
distinct as possible, and even removing overly broad subcategories
like \"dogs\" and \"cats\". Once again, do not assign classes yet.

Subcategories:
[CATEGORY_LIST]

A.3 ASSIGNING CLASSES TO SUBCATEGORIES

In this step, each class in the dataset is assigned to the most appropriate subcategory from the refined
list. LLM is instructed to select a subcategory for each class without introducing new categories.

Prompt:

Which of the subcategories in the above Python list should
’[CLASS_NAME]’ be assigned to? It must be one of the subcategories
in the list, not a new one. If a class could belong to multiple
subcategories, assign it to the most unique/least likely
subcategory. Respond with only the subcategory name.
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