
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

QUS: TOWARDS HIGH-PERFORMANCE
EFFICIENTVIT ON FPGA
BY QUANTIZATION AND STREAMLINE CO-DESIGN

Anonymous authors
Paper under double-blind review

ABSTRACT

Vision Transformer (ViT) has achieved significant success in computer vision, in
which EfficientViT is widely used because of its lightweight characteristics. How-
ever, EfficientViT is still difficult to deploy on edge devices like FPGA because
of its efficiency and accuracy concerns. First, from software perspective, existing
quantization approaches fail to consider the inter-channel distribution relationship,
which cause significant performance degradation under lower-bit setting. Second,
from hardware perspective, current DSP-packing methods struggle to support the
diverse kernel sizes and strides of convolutions used in EfficientViT, resulting in
redundant computation cycles or bit-width overflow. Moreover, due to the mis-
match in data layouts between convolution and linear attention, existing solutions
require substantial memory resources for data reordering, which often results in
pipeline stalling. In this paper, we propose a Quantization and Streamline Co-
Design (QuS) framework for lower-bit EfficientViT deployment on FPGA. It in-
cludes three main components: adaptive distribution-aware quantization strategy
to provide effective quantization, multi-computing in once packing strategy to im-
prove the DSP-packing efficiency, and low-buffer streamline for linear attention
scheme to eliminate pipeline stalling caused by mismatched layout. Experimental
results show that our QuS framework achieves over 2200 FPS on EfficientViT,
which represents a 3.6× speedup over Jetson AGX Orin and also up to a 24%
accuracy improvement under 4-bit quantization.

1 INTRODUCTION

Recently, Transformer achieves remarkable success in various scenarios, among which Vision Trans-
former Dosovitskiy (2020); Liu et al. (2021) is one of the representatives in computer vision tasks.
However, the computation and memory-intensive attention mechanism hinder its practical deploy-
ment on resource-limited hardware. As a lightweight architecture, EfficientViT Cai et al. (2023)
leverages a hybrid architecture including depthwise separable convolutions and linear attention,
which has been employed as the backbone of many widely used approaches like Ground DINO
Ren et al. (2024), EfficientViT-SAM Zhang et al. (2024), and diffusion models Xie et al. (2024).

Thanks to its inherent efficiency and hardware-friendly design, the deployment of EfficientViT has
been investigated by many works Shi et al. (2024); Shao et al. (2024). However, existing works only
focus on 8-bit quantization. Lower-bit quantization, which theoretically offers greater acceleration,
has not yet been explored. There are three main bottlenecks when deploying lower-bit EfficientViT.

First, from the software perspective, there is still a lack of effective low-bit quantization approaches
specifically tailored for EfficientViT. Unlike conventional architectures, lightweight models such as
EfficientViT Shi et al. (2024) are particularly sensitive to outliers due to their extensive use of depth-
wise separable convolutions. Although prior methods attempt to mitigate this issue by migrating
outliers from activations to weights, they typically determine the migration extent based solely on
per-channel maximum values and a fixed migration strength Xiao et al. (2023). This uniform strategy
overlooks the substantial variation in activation distributions across channels. As a result, the acti-
vation distribution of different channels after migration may suffer from either under-balancing or
over-balancing, leading to large tensor-wise activation range. This will cause suboptimal quantiza-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

40 50 60 70 80 90
0

500

1000

1500

2000

Accuracy/%

FPS
EfficientViT
DeiT

Ours
SmoothQuant+QDropOmniQuant

HG-PIPE

Trio-ViT
Jetson AGX Orin

HeatViT

W4A4
W8A8
FP16

Figure 1: The comparison of accuracy and efficiency of different quantization methods.

tion performance under the hardware efficient tensor-wise quantization scheme, which is commonly
used in many approaches Xiao et al. (2023); Shi et al. (2024). This problem is more significant for
lower-bit quantization. Therefore, it is desirable to develop a lower-bit quantization approach that
explicitly considers the intrinsic data distribution of each channel during outlier migration.

Second, from the hardware perspective, Digital Signal Processor (DSP) packing plays an impor-
tant role in network acceleration. Existing DSP-packing strategies Liu et al. (2022); Zhang et al.
(2023) are designed only for 3×3 convolutions with stride 1, and cannot well support operators
in EfficientViT such as 3×3 convolutions with stride 2 (Conv3×3s2) and 5×5 convolutions with
stride 1 (Conv5×5s1) under lower-bit settings. Due to the limitation of multiplier bit width (i.e.,
27bits×18bits), directly applying existing methods will cause bit width waste for stride > 2 or bit
width overflow for kernel size > 3, as illustrated in Fig. 3. Therefore, it is also desirable to design
new DSP-packing strategies for lower-bit EfficientViT deployment.

Moreover, the difference in data layouts between convolution and linear attention leads to costly
transpose operations, introducing significant memory overhead, stalling the pipeline, and adding
extra latency Guo et al. (2024). So, a new linear attention streamline is also required.

To solve the aforementioned problems, in this paper, we propose a systemic software-hardware co-
design framework, including an accurate low-bit Quantization algorithm and an efficient hybrid
Streamline for deploying EfficientViT on FPGA, dubbed QuS.

To address the first challenge, we propose Adaptive Distribution-Aware Quantization (ADAQ).
Specifically, we introduce Variation Coefficient (VC) as a key statistical metric to quantify the intra-
channel activation fluctuation. Instead of relying solely on the maximum value, we leverage the
VC to capture the distribution characteristics of each channel, and adaptively determine the out-
lier migration strength based on the VC information. By considering inter-channel distributional
difference, our method provides a more fine-grained control over activation balancing, effectively
avoiding the distribution mismatch among different channels for better tensor-wise quantization.

To solve the DSP-packing problem, we propose Multi-Computing in Once Packing (MuCO) strat-
egy. Specifically, to support larger strides, we selectively load the required data columns and only
perform the computation on selected data for better efficiency. To support larger kernels, we de-
composes weight parameters within a kernel into smaller computation groups and perform multiple
passes of computation, which effectively prevents multiplication overflow caused by the limited
bitwidth of DSP units. Our MuCO DSP-packing strategy is generalizable to arbitrary strides and
kernel sizes under 4-bit settings.

In addition, to mitigate the data layout difference between convolution and linear attention, we
propose Low-Buffer Streamline (LBS) for linear attention. Specifically, we preserve the original
data layout and redesign the computation dataflow, to avoid the costly transpose operations.

In summary, our main contributions include:

• We propose a quantization and streamline co-design framework called QuS. To the best
of our knowledge, QuS is the first framework to investigate lower-bit quantization and
deployment of EfficientViT on FPGA.

• We propose ADAQ strategy, which utilizes both intra-channel statistical information and
inter-channel variability for better tensor-wise quantization.

• We design MuCO to support lower-bit convolutions with diverse kernel sizes and strides.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(a) Distribution of Original Data (b) Distribution Comparation (c) Distribution after SmoothQuant (d) Distribution after Ours ADAB

Va
lu

e

Va
lu

e

Va
lu

e

Channel Channel Channel Value

Original
SmoothQuant
Ours ADAB
SmoothQuant MinMax
Ours ADAB MinMax

SmoothQuant
90% Data Distribution

Original
90% Data Distribution

Imbalanced
Distribution

avoid under-balancingavoid over-balancing

 More Compact Distribution
 Across Channels

Ours ADAB
90% Data Distribution

Figure 2: Activation distribution for depthconv in EfficientViT. (a) Original per-channel distribution.
(b) Whole tensor distribution of Original, SmoothQuant, and our ADAB. (c) Per-channel distribution
after SmoothQuant. (d) Per-channel distribution after our ADAB.

• We propose LBS for linear attention to eliminate memory usage and avoid pipeline stalls.

• Without whistles and bells, our QuS framework achieves over 3.6× speedup compared to
Jetson AGX Orin and also up to a 24% accuracy improvement under 4-bit quantization.

2 RELATED WORK

Low-bit Quantization. Model quantization Nagel et al. (2020; 2019); Wei et al. (2022) is widely
applied in the deployment on edge devices, among which DFQ, SmoothQuant, OmniQuant, and
Trio-ViT are representative methods. DFQ Nagel et al. (2019) performs equivalent rescaling of
the weight ranges across different channels in adjacent layers to achieve a more balanced weight
distribution. But it does not support piecewise non-linear activation functions like HardSwish used in
EfficientViT. SmoothQuant Xiao et al. (2023) migrates outliers from activations to weights to obtain
a quantization-friendly activation distribution. OmniQuant Shao et al. (2023) further introduces
learnable equivalent transformations to handle activation outliers. Trio-ViT Shi et al. (2024) adopts
channel-wise migration for activations and support depthwise convolution. However, these methods
ignore the inter-channel distribution variability, leading to distribution mismatch among different
channels and degraded performance. In contrast, our QuS adaptively adjusts the migration strength
based on inter-channel distribution variability, to yield more quantization-friendly activations.

DSP-Packing for Convolution. Recently, many studies Liu et al. (2022); Sommer et al. (2022);
Zhang et al. (2023); Lee et al. (2018); Luo et al. (2023) also focus on the data packing strategy to
make full use of Digital Signal Processor (DSP) unit and increase the throughput. For example, Lee
et al. (2018) proposed D-MAC for 8-bit quantization and achieve practical speedup. Sommer et al.
(2022) designs dsp-packing4 strategy, which packs and computes four 4-bit multiplications on a
single DSP in one clock cycle. HiKonv Liu et al. (2022) proposed DSP-packing6, which packs two
4-bit inputs and three 4-bit weights into one DSP. However, all of these approaches are designed for
3×3 convolutions with stride 1. The convolution with various kernel size and strides in EfficientViT
(e.g., Conv3×3s2) are not supported. So, we design MuCo in our QuS for more efficient inference.

Accelerator Architecture. Accelerator architectures are typically classified as fixed or stream-
based Chen et al. (2024). Due to the reuse of uniform compute units, fixed architectures Shi et al.
(2024); Shao et al. (2024) often rely on frequent off-chip memory accesses for intermediate result
storage. In contrast, the stream-based architecture Jiang et al. (2022), customizes computational
units for each layer, enabling pipelined dataflow for higher resource utilization and throughput.
Therefore, the stream-based architecture is widely studied and adopted. Uint-Packing Zhang et al.
(2023) is specifically designed for convolution with stride 1. HG-PIPE Guo et al. (2024), designed
for transformers, implements a caching mechanism for attention structure. Since EfficientViT adopts
a hybrid architecture of convolution and linear attention, the input layouts for convolution (e.g.,
NHWC) and attention (e.g., NCHW) differ. The overhead introduced by data layout transformations
should be considered. So our QuS introduces LBS strategy to avoid costly transpose operations.

3 METHODOLOGY

3.1 ADAPTIVE DISTRIBUTION-AWARE QUANTIZATION

Challenge. Due to the lightweight depthwise convolution(DW) and pointwise convolution(PW)
design, EfficientViT is more sensitive to outliers. Previous methods Xiao et al. (2023); Shi et al.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 3: Motivation of MuCO for convolutions to avoid redundant computation and data overflow.

(2024) reduce activation outliers by migrating them to weights via a balancing factor γ:

Y = fun (W,X) = fun (W · γ,X/γ) , (1)

where, X represents the activation and W represents the weight. γ is computed based on the maxi-
mum value of activations and weights in each channel, which is written as:

γ =
maxper−channel(X)α

maxper−channel(W)1−α
, (2)

where α serves as the migration strength, which controls how much of the activation distribution is
transferred to the weight. Existing methods use fixed migration strength α, but ignore the unique
statistical characteristic of each channels as shown in Fig. 2(a). Channels with high variation may
be underbalanced, leaving quantization-sensitive outliers; Stable channels may be overbalanced,
increasing weight quantization error, as shown in Fig. 2(c).And after applying SmoothQuant, 90%
of the data are confined within a narrow range, while the remaining 10% of outliers significantly
stretch the overall distribution. This channel-agnostic design leads to suboptimal results, especially
in lightweight architectures where per-channel differences are amplified.

To retain DW and PW quantization accuracy at low bitwidth, we propose adaptive distribution-aware
quantization to mitigate the unbalanced distribution of activation between channels, and minimize
the reconstruction error of weight by optimized approximation.

Adaptive Distribution-Aware Balancing (ADAB). Using a fixed α in Eq. 2 fails to account for the
distributional differences across channels, potentially resulting in under or overbalanced. To address
this, we introduce the Variation Coefficient (VC) as a key metric to measure the fluctuation within
each channel. It can be defined as:

V Cper−channel =

∣∣∣∣ std (Xper−channel)

mean (Xper−channel)

∣∣∣∣ , (3)

where Xper−channel denotes the set of activation values of each channel, std() denotes the standard
deviation, and mean() represents the average. A larger VC indicates that the activations in that
channel are more dispersed and deviate more significantly from the mean, which implies a higher
sensitivity to quantization. Based on this observation, we propose a method to adaptively compute
the migration strength α for each channel, enabling fine-grained control over the balancing process:

α = clamp (σ (κ · V Cper−channel), a, b) . (4)

Here, σ(·) denotes the sigmoid function, which maps the VC values into the range (0.5, 1). The
hyperparameter κ controls the sensitivity of the mapping, while the clamp(·) function restricts the
resulting α values within the interval [a, b], preventing excessive or insufficient balancing. This
formulation allows us to compute the per-channel fluctuation statistics using only a small calibra-
tion set, and directly derive an appropriate migration strength α for each channel. As a result, we
achieve a more precise per-channel balancing operation, improving quantization accuracy while still
maintaining the hardware-friendly per-tensor quantization framework, as shown in Fig. 2(d).

Multi-level Soft Approximation (MSA). Since the challenge of activation quantization is migrated
to the weights, directly applying AdaRound Nagel et al. (2020), which only allows upward or down-
ward rounding for weight, may limit optimization and lead to suboptimal quantized values. Inspired
by DSQ Gong et al. (2019), we utilize the differentiable soft quantization function into the weight
calibration:

Wq =
tanh

(
β ·

(
W
sW

−
⌊

W
sW

⌋
− 1

2

))
2 · tanh(β2)

+

⌊
W

sW

⌋
+

1

2
, (5)

where W = W ′ + δW , W ′ and Wq are the full-precision and quantized weights, and sW is the
corresponding scaling factor, δW is the parameter to be optimized. β is a hyper-parameter that

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

add

()
x ()

Cycle 0 ()
x ()

Cycle 1 ()
x ()

Cycle 2 ()Cycle 3
x ()

……

(b)

add add add
result0

add
result1

add add add

conv5x5s1

()
Cycle 0

()
x ()

result0

Cycle 1
()

Cycle 2
()

result3

Cycle 3

x ()
……

(a)

result1 result4

conv3x3s2
weight

input
weight

input
weight

input
weight

input
… … … …

weight
input

…

weight
input

…

weight
input

…

weight
input

…

x () x ()

means zero is used as the default padding value. means the data is fed into the DSP during this cycle. means the value has been computed and will no longer be used.

Feature Map

Weight Kernel

Feature Map

Weight Kernel

F
ir

st
 R

ow
 a

s
E

xa
m

p
le

result2 result5

add add add add

add add addadd add add add add

Figure 4: Illustrations of Multi-Computing in Once DSP-packing for different convolutions. (a)
Conv3x3, stride 2; (b) Conv5x5, stride 1. Taking one row in feature and kernel as an example.

PESIMD

IN
PE

di
m

width

he
ig
ht
IN
PE

width he
ad
#0

dim

PE

SI
M
D

dim

w
id
th

he
ig
ht

width he
ad
#0

dim

× =
dim

di
mIN
PE

store &
accum.

PE

dim

w
id
thPE

𝑉 𝐾 he
ig
ht

width he
ad
#0

dim

𝑄
dim

he
ad
#0

dim

𝑉𝐾!

transpose =
dim

w
id
th

PE

IN
PE

read

×

(1) 𝑉×𝐾!, store in BRAM (2) Read from BRAM, 𝑄×(𝑉𝐾!)

BRAM Storage

Stream output
[height, head, dim, width]

PE

Stream input

PE

Stream input Stream input
Iterate along height &
accumulate in 𝑉𝐾!

Figure 5: Low-Buffer Streamline for linear attention, which first calculates V ×K⊤ and stores the
results in BRAM with a layout of (head, dim, dim), then reads from BRAM and computes the
multiplication with Q, avoiding huge on-chip memory usage to store the entire Q,K and V . Each
step multiplies an (INPE × SIMD) matrix with a (SIMD × PE) matrix.

controls the shape and range of the approximation function. It is set to a small value at the beginning
of the reconstruction, allowing the weights to be fine-tuned across a wider range rather than being
limited to [0, 1). As the reconstruction progresses, we gradually increase β, making the weights
converge to the nearest integers. Thus, weight can be flexibly fine-tuned and gradually converge.

3.2 MULTI-COMPUTING IN ONCE PACKING FOR CONVOLUTION

Challenge. Existing low-bit DSP-packing methods are mainly tailored for 3× 3 convolutions with
stride 1, which limits their applicability to broader architectures. As shown in Fig. 3(a), directly
applying these methods to convolutions with stride S > 1 leads to inefficiency due to mismatched
dataflow. For convolutions with stride S > 1, each input column does not need to multiply with
all weight elements. However, prior designs assume S = 1 and compute all input–weight pairs,
resulting in redundant operations when S > 1. For kernel sizes that are greater than 3, computing
them in a single cycle may exceed the bitwidth of DSP48E. For example, Conv5x5 operator in
Fig. 3(b) requires five weights (w0, . . . , w4) for each row of W , and four inputs as (x0, . . . , x3) a
group Liu et al. (2022) to be loaded. It demands 37bits for activation while 48bits for weights under
4-bit setting(See Appendix for details). While directly separating them into fragments and loading
in multiple cycles causes lots of idle bits in DSP and inference latency.

We design a computation paradigm tailored for 4-bit setting to fully utilize DSP resources, named
MuCO. It splits the original one-cycle computation process into multi-cycles after once data packing,
avoiding redundant computations or overflow. As a general strategy, it is widely applicable to diverse
convolutions with various kernel sizes and strides, extending the potential to implement on FPGA.

For Larger Strides: Selective Fetch. Assume the input matrix of a convolution is X =
(X0, . . . , XN−1) with N columns, and the convolution kernel is W = (W0, . . . ,WK−1) with ker-
nel size K and stride S. We first group the inputs and weights according to their residues modulo
S: X(s) = {Xi | i mod S = s},W(s) = {Wj | j mod S = s}, where ∀s ∈ [0, S − 1]. Therefore,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

both the input and the kernel are divided into S groups. Convolution can be performed separately
on each of the S groups, resulting in M output groups:

Ym =

S−1∑
s=0

(X(m−s⌈N/S⌉) ∗W(s)), ∀s ∈ [0, S − 1], (6)

where m ∈ [0,
⌊
N−K

S

⌋
] is the output length. ∗ represents the convolution computation. ⌈N/S⌉

indicates the length of each segment when partitioning a sequence of length N into S subsequences.
The final output Y is computed as the shift-and-sum of the M partial results Ym.

Taking Conv3x3 with stride 2 (Conv3x3s2) as an example, the pipelined process is illustrated in
Fig. 4(a) by clocks. As the operation of each row is similar, we take one row in convolution op-
eration for illustration. As the kernel slides, we first compute (x0, x2, x4) with (w1) at Cycle#0,
and compute the other three inputs (x1, x3, x5) with (w0, w2) at Cycle#1. Then, we accumulate the
intermediate results and get 3 outputs. Cycle#2 and Cycle#3 repeat the above computations with
the next 6 inputs, and the intermediate result from the last two cycles remains to be added (such as
w0x4 in Cycle#0 and w1x5 in Cycle#1). Therefore, for a convolution with an input size of 256, it
only requires ⌈256/6 ∗ 2⌉ cycles to get the results in our paradigm, fewer than the original practice
(⌈256/2⌉ cycles).

For Larger Kernel Sizes: Progressive Accumulation. We further adopt the progressive accumu-
lation strategy. For the general case with S = 1, we suppose K > 3. Due to the bitwidth limitation
of DSP, at most three 4-bit multiplier and two 4-bit multiplicand can be packed. Therefore, for
K > 3, we split weights into segments following K = 3A + 2B, where A and B represent the
number of 3-element and 2-element weight segments, respectively. Since convolution can be com-
puted by shifting and accumulating the results of sub-segment convolutions, we divide the input into
fragments of length 2. This ensures each 2-element input fragment can be paired with either a 3-
element or a 2-element weight segment without exceeding the DSP-packing limit. After computing
the dot products between one input fragment and all weight segments, we slide to the next 2-element
input fragment and repeat the process. A unified formula for arbitrary strides and kernel size can be
written as:

Ym =

S−1∑
s=0

(

2−1∑
l=0

(X(m−s⌈N/S⌉−l⌈(⌈N/S⌉)/2⌉) ∗W(s)))

=

S−1∑
s=0

2−1∑
l=0

[

A−1∑
a=0

(X(m−s⌈N/S⌉−l⌈(⌈N/S⌉)/2⌉) ∗W(s−3a))

+

B−1∑
b=0

(X(m−s⌈N/S⌉−l⌈(⌈N/S⌉)/2⌉) ∗W(s−2b))],

(7)

where l denotes dividing each subsequence of length ⌈N/S⌉ into segments of size 2, and ⌈⌈N/S⌉/2⌉
indicates the total number of resulting segments. The input is processed in groups of two elements.
Each 2-element input segment is convolved with a 3-element weight segments and b 2-element
weight segments. The results of these partial convolutions are accumulated to produce the final
output value.

An illustration of Conv5x5 stride 1 is shown in Fig. 4(b). We divide the kernel size into two groups,
and calculate them separately by four cycles. In Cycle#0 and Cycle#1, we first take two input values
(x0, x1) and multiply them with three weights (w0, w1, w2) and two weights (w3, w4), separately.
The intermediate results are stored. In Cycle#2 and Cycle#3, we calculate the other two inputs
(x2, x3) with the five weights, then accumulate and output two results. In this way, it only requires
⌈256/2 ∗ 2⌉ cycles with an input size of 256, much fewer than previous practice.

3.3 LOW-BUFFER STREAMLINE FOR LINEAR ATTENTION (LBS)

Challenge. EfficientViT applies linear attention which eliminates softmax operation:

Oi =
ReLU(Qi)(

∑N
j=1 ReLU(Kj)

⊤Vj)

ReLU(Qi)
∑N

j=1(ReLU(Kj)⊤)
. (8)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Accuracy Comparison of different quantization across various model sizes of EfficientViT.

Bitwidth Method Avg. Bitwidth b1-r224 b1-r256 b1-r288 b2-r224 b2-r256 b2-r288
FP32 - 32 79.39 79.92 80.41 82.10 82.70 83.09

W8A8QKV8

SmoothQuant 8 74.91 77.80 78.07 40.00 78.01 54.75
SmoothQuant+QDrop 8 78.08 79.00 79.51 81.09 80.93 80.97

OmniQuant 8 78.62 79.33 79.89 79.96 81.14 81.19
Trio-Vit 8 78.64 78.94 79.48 80.62 81.53 81.77

QuS (Ours) 8 78.84 79.48 80.04 81.96 82.01 82.41

W4A4QKV8

SmoothQuant 4.7 nan nan nan nan nan nan
SmoothQuant+QDrop 4.7 65.51 68.24 66.92 70.89 71.25 71.83

OmniQuant 4.7 43.52 53.04 44.25 65.66 69.02 69.63
Trio-ViT 4.7 nan nan nan nan nan nan

QuS (Ours) 4.7 68.22 70.07 69.99 72.50 72.92 73.46

Q,K, V are query, key and value matrices in Linear Attention, N presents the feature dimen-
sions, and Oi denotes the output of the i-th row of matrix O. Owing to the inherent differ-
ences in data layouts between convolution and linear attention computations, the data blocking
issue occurs when storing the intermediate results of V and K. Following the streamline of Uint-
packing Zhang et al. (2023), the data layout of Q,K and V received from the convolution layers
follows (height, channel, width), where the number of channel equals (head × dim). How-
ever, the expected data layout in the attention computation is (head, dim, height×width). There-
fore, to read the elements along the (height × width) dimension, it requires the storage of all
V and K matrices, first reshaping them to (height, head, dim,width), and then permuting to
(head, dim, height, width), which results in substantial on-chip memory consumption.

We design LBS strategy for linear attention to reorganize data layout during the computation of
Attention structure, mitigate the extensive buffer usage of the intermediate outputs. Meanwhile,
the computed results can be directly fed into the next layer without transposing, increasing the
pipeline throughput by reducing data blocking. The overall process is illustrated in Fig. 51. Our
LBS maintains the original data layout of Q,K and V output from convolution layers, and allocates
a buffer of (head, dim, dim) in BRAM to store the intermediate results of V K⊤ (purple block).

Step1: V × K⊤. First, we multiply a (dim,width) slice of V and a (width, dim) slice of K at the
head#0. We get (dim, dim) results and store them in the BRAM. According to the data layout of the
input stream, we iterate along the head dimension and store the results in BRAM. Then, we iterate
along the height and accumulate the output with the previous results in the corresponding index of
head. In this way, we conduct the multiplication of V K⊤ and get a matrix of (head, dim, dim)
without storing the entire V and K. It only requires a small space for V K⊤, which is (height ∗
width)/dim smaller than storing them entirely.

Step2: Q × (VK⊤). Second, we read the V K⊤ from BRAM and multiply it with Q matrix. Since
the data flow of V , K and Q are input almost simultaneously, Q is also stored in BRAM during the
calculation of V K⊤. As shown in Fig. 5(2), we read a (width, dim) slice from Q and a (dim, dim)
slice from V K⊤, resulting in an output of size (width, dim). We iterate the division operation along
the dim dimension, and finally iterate along the head and then the height dimensions to collect the
output with (height, head, dim,width) layout, which can be input to the next computation unit.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Model and Implementation. We evaluate the accuracy of the quantized EfficientViT-b series based
on the ImageNet dataset Deng et al. (2009) and ADE20K semantic segmentation dataset Zhou et al.
(2019). We conducted a comparison of four quantization methods: SmoothQuant Xiao et al. (2023),
QDrop Wei et al. (2022) combined with SmoothQuant, OmniQuant Shao et al. (2023) and Trio-
ViT Shi et al. (2024). For fair comparison, we compare all quantization methods under both 4-bit
and 8-bit settings. For 4-bit setting, we keep Q,K, and V of linear attention in Eq. 8 as 8-bit for
better accuracy. The parameter κ in Eq. 4 is set to 0.5, so that the σ function outputs a value near 0.5

1For better presentation, we omit the padding to V Cai et al. (2023).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: The efficiency comparisons of throughput, memory usage, and energy consumptions.

Metric GPU Baseline HeatViT ISCAS Trio-ViT HG-PIPE QuS
HPCA2023 2024 TCAS-I 2024 ICCAD2024 (Ours)

Dong et al. (2023) Shao et al. (2024) Shi et al. (2024) Guo et al. (2024)
Device Jetson AGX Orin ZCU102 ZCU102 ZCU102 ZCU102 ZCU102

Frequency 930 MHz 150MHz 200MHz 200MHz 375MHz 300MHz
Architecture GPU Fixed-Arch Fixed-Arch Fixed-Arch Stream-based Stream-based

Network EfficientViT-B1 Deit-tiny EfficientViT-B1 EfficientViT-B1 Deit-tiny EfficientViT-B1
Bitwidth fp16 W8A8 W8A8 W8A8 W4A4 W4A4QKV8
Precision 79.9 72.2 - 79.3 74.4 70.1
Method - QAT - PTQ QAT PTQ

FPS 636.9 183.4 - 447 1579 2257
GOPs - 366.8 780.2 769 3947.5 3069.5
Power - 9.45W 7.43W 7.32W 21.9W 20.2W
LUTs - 137.6k 104.5k 130.6k 212.7k 198.6K
DSPs - 1968 1024 1024 78 1911

BRAMs - 355.5 160 912 324.5 470.5
GOPs/kLUT - 2.67 7.47 5.89 18.56 15.46
GOPs/DSP1 - 0.058 0.182 0.151 0.587 0.455
GOPs/W - 38.80 105.1 105 180.25 151.96

1 Following Shi et al. (2024), we normalize to a DSP-only setting for fair comparison, assuming that one DSP is equivalent to 32 LUTs.

0 100 200 300 400

(a) Computation Cycles

Conv3×3
Stride 2

Conv5×5
Stride 1

Linear
Attention

Cycles 0 5 10 25 35

(b) Resource of Conv3x3s2

DSP

LUT

BRAM

15 20 30 40 0 10 20 30 40

(d) Resource of Linear Attention

DSP

LUT

BRAM

50 600 10 20 30 40

(c) Resource of Conv5x5s1

DSP

LUT

BRAM

50 60 70 80

15%

30% 9.0%66.6%

4% LBS-Ours
Transpose-Operation

22.5%

30.1%

71.7%

132.2
111.3

459.0
328.7

102.5
98.7

x103

x103

x103

x103

x103

x103

192
192

38.8
35.4

12
20

x103

x103

80
80

16.0
19.6

12
12

x103
x103

15
15

31.2
21.8

17.2
60.8

x103
x103

x101
x101

DSP-packing4

MuCO-Ours
DSP-packing6 LBS-Ours

Transpose-Operation

DSP-packing4
MuCO-Ours

MuCO-Ours
DSP-packing6

Figure 6: Comparison of (a) computation cycles and (b-d) resource.
when V C = 1. The parameters a and b are set to 0.5 and 0.9, respectively. For Eq. 5, the parameter
β is initialized to 2 and linearly increased to 100 over iterations.

Architecture and Design. For the accelerator implementation, we follow the Uint-Packing Zhang
et al. (2023); Bao et al. (2021) and utilize Vitis High-Level Synthesis (HLS) for development, de-
ploying on the Xilinx ZCU102 platform at a frequency of 300 MHz. We use our MuCO for con-
volutions with stride > 1 or kernel size > 3, and use DSP-packing6 for remained conv3×3s1. In
addition, Conv1x1 and MatMul are implemented using DSP-packing4 and DSP-packing2, respec-
tively. Linear attention adopts ours LBS design.

4.2 END-TO-END EVALUATION

Accuracy Performance of Low-bit EfficientViT. The comparison of our method with other meth-
ods on the Efficient models is shown in Table.1. Under the W8A8QKV8 setting, Our QuS method
reduces the quantization accuracy drop to within 1% across all models, and even below 0.5% in some
cases. Under the W4A4QKV8 setting, QuS avoids the severe accuracy degradation observed with
SmoothQuant and TrioViT. Compared to OmniQuant, it improves accuracy by nearly 25% on the
more compact b1-r224 model. Even against strong baselines combining SmoothQuant and QDrop,
QuS achieves an average improvement of 1.86%, demonstrating the effectiveness of our method.

Efficiency Comparison with SOTA Accelerators. We compared our stream-based FPGA acceler-
ator in QuS with other state-of-the-art implementations on various hardware. Table 2 showcases the
settings, capabilities and efficiency performances of different hardware. In terms of throughput, our
QuS with the W4A4QKV8 bitwidth setting achieves 2257 FPS, which is 3.5× faster than the GPU
baseline of Jetson AGX Orin, and also surpasses the SOTA FPGA implementations by 1.4×. The
substantial FPS improvement benefits from our optimized MuCO DSP-packing design and the LBS
implementation. Additionally, thanks to the optimized DSP packing strategy, our implementation
outperforms other works in terms of GOPs/DSP.

4.3 ABLATION STUDY

Effectiveness of ADAQ for Quantization. We evaluate the individual and combined effects of the
two core components in ADAQ through ablation studies (Table. 5). For EfficientViT-b2-224 under
the W8A8QKV8 setting, applying ADAB alone to balance activations improves the quantized accu-
racy by 44.04%. Using MSA alone to reconstruct weights yields a 43.01% improvement. Combined,
the accuracy increases by 47.99%, showing the complementary benefits of both techniques.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

100 20 30

 QDrop&
SmoothQuant

OmniQuant

FP32 38.38

SmoothQuant 9.01

19.80

30.02

QuS (ours) 35.34

mIoU

3.04

29.37

18.58

8.36

Figure 7: Quantization Accuracy Comparisons
of EfficientViT-b1 on ADE20K dataset

Table 3: Quantization and acceleration.

Quantization on W4A4 setting
model QDrop Ours

MobileNetV2 46.63 58.23(+11.6)

Acceleration Comparisons
model DSP-packing6 Ours

MobileNetV2 151 179(1.19×)
UltraNet 331 520(1.57×)

Table 4: Parameter Analysis of Migration
Strength α in the ADAB Strategy of QuS.

b2-r224 W8A8QKV8 W4A4QKV8
α 82.12 82.12

0.25 81.20(-0.92) 69.59(-12.53)
0.5 81.58(-0.54) 71.48(-10.64)

0.75 81.70(-0.42) 72.11(-10.01)
ADAB (Ours) 81.96(-0.16) 72.50(-9.62)

Table 5: Ablation of ADAQ method. ADAB
means Adaptive Distribution-Aware Balancing,
and MSA means multi-level soft approximation.

ADAB MSA Bitwidth b2-r224
- - FP32 82.12

W8A8QKV8 33.96
! W8A8QKV8 78.01

! W8A8QKV8 76.97
! ! W8A8QKV8 81.96

Generalization Ability of our QuS. As shown in Fig. 7, we compare QuS approach with other
methods under the 8-bit setting on the ADE20K semantic segmentation dataset. Our method out-
performs existing techniques on EfficientViT-b1, achieving a 26.33% mIoU improvement over
SmoothQuant, and a 5.32% gain over OmniQuant, demonstrating the generality of our approach.
As shown in Table. 3, our ADAQ quantization method also benefits MobileNetV2, and MuCo im-
proves deployment FPS by 1.19× on MobileNetV2 and 1.57× on Ultranet Zhang et al. (2023). This
further highlights the broad applicability of our QuS framework.

Efficiency of MuCO for Diverse Convolutions. In Fig. 6(a)(b)(c), we conduct detailed evaluations
of our approach compared with previous DSP-packing methods on a layer with Conv3x3s2 and
Conv5x5s1. For Conv3×3s2, our MuCO strategy reduces computation cycles by nearly 15% over
DSP-packing6 with similar storage and compute resource usage. The increase in BRAM is negligi-
ble compared to the available on-chip resources. For Conv5x5s1, the computation is more compact
and efficient compared to DSP-packing4, which reduces about 30% of the computation cycles with
a slight increase in LUT resources. This increase is negligible for on-chip resources.

Efficiency of LBS for Linear Attention. In Fig. 6(d), taking a single linear attention layer as an
example, we compare the resource usage and computation cycles between the attention computation
method adopted from HG-PIPE and our LBS design. Our LBS design achieves slightly better com-
putation cycles compared to the Transpose method. In addition, LBS which reduces BRAM usage
by 71.7% and LUT consumption by 30.1%. Therefore, LBS significantly alleviates the memory
pressure caused by the data transpose.

4.4 PARAMETER ANALYSIS

We analyze the migration strength α in Eq. 2, and the results are shown in Table 4. We observe
that using ADAB strategy in our QuS framework can outperform the fixed α under different values,
which demonstrates the effectiveness of our ADAB strategy.

5 CONCLUSION

In this paper, we propose a systemic software-hardware co-design framework by quantization and
streamline approaches (QuS), achieving accurate and efficient deployment of EfficientViT. It in-
cludes an an adaptive distribution-aware quantization method for model quantization and a hybrid
structured stream-based FPGA accelerator with Multi-Computing in Once Packing strategy and
Low-Buffer Streamline design. Experiments validate the practical performance of deployment for
EfficientViT, revealing the potential usage in the real-world edge scenarios.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Zhenshan Bao, Kang Zhan, Wenbo Zhang, and Junnan Guo. Lsfq: A low precision full integer
quantization for high-performance fpga-based cnn acceleration. In 2021 IEEE Symposium in
Low-Power and High-Speed Chips (COOL CHIPS), pp. 1–6. IEEE, 2021.

Han Cai, Junyan Li, Muyan Hu, Chuang Gan, and Song Han. Efficientvit: Lightweight multi-scale
attention for high-resolution dense prediction. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 17302–17313, 2023.

Hongzheng Chen, Jiahao Zhang, Yixiao Du, Shaojie Xiang, Zichao Yue, Niansong Zhang, Yaohui
Cai, and Zhiru Zhang. Understanding the potential of fpga-based spatial acceleration for large
language model inference. ACM Transactions on Reconfigurable Technology and Systems, 18
(1):1–29, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Peiyan Dong, Mengshu Sun, Alec Lu, Yanyue Xie, Kenneth Liu, Zhenglun Kong, Xin Meng, Zhen-
gang Li, Xue Lin, Zhenman Fang, et al. Heatvit: Hardware-efficient adaptive token pruning for
vision transformers. In 2023 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pp. 442–455. IEEE, 2023.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li, Peng Hu, Jiazhen Lin, Fengwei Yu, and
Junjie Yan. Differentiable soft quantization: Bridging full-precision and low-bit neural networks.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 4852–4861,
2019.

Qingyu Guo, Jiayong Wan, Songqiang Xu, Meng Li, and Yuan Wang. Hg-pipe: Vision transformer
acceleration with hybrid-grained pipeline. In Proceedings of the 43rd IEEE/ACM International
Conference on Computer-Aided Design, pp. 1–9, 2024.

Weixiong Jiang, Heng Yu, and Yajun Ha. A high-throughput full-dataflow mobilenetv2 accelerator
on edge fpga. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
42(5):1532–1545, 2022.

Sugil Lee, Daewoo Kim, Dong Nguyen, and Jongeun Lee. Double mac on a dsp: Boosting the
performance of convolutional neural networks on fpgas. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 38(5):888–897, 2018.

Xinheng Liu, Yao Chen, Prakhar Ganesh, Junhao Pan, Jinjun Xiong, and Deming Chen. Hikonv:
High throughput quantized convolution with novel bit-wise management and computation. In
2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 140–146.
IEEE, 2022.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Erjing Luo, Haitong Huang, Cheng Liu, Guoyu Li, Bing Yang, Ying Wang, Huawei Li, and Xi-
aowei Li. Deepburning-mixq: An open source mixed-precision neural network accelerator design
framework for fpgas. In 2023 IEEE/ACM International Conference on Computer Aided Design
(ICCAD), pp. 1–9. IEEE, 2023.

Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. Data-free quantization
through weight equalization and bias correction. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 1325–1334, 2019.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
down? adaptive rounding for post-training quantization. In Proceedings of the 37th International
Conference on Machine Learning, pp. 7197–7206, 2020.

Tianhe Ren, Qing Jiang, Shilong Liu, Zhaoyang Zeng, Wenlong Liu, Han Gao, Hongjie Huang,
Zhengyu Ma, Xiaoke Jiang, Yihao Chen, et al. Grounding dino 1.5: Advance the” edge” of
open-set object detection. arXiv preprint arXiv:2405.10300, 2024.

Haikuo Shao, Huihong Shi, Wendong Mao, and Zhongfeng Wang. An fpga-based reconfigurable ac-
celerator for convolution-transformer hybrid efficientvit. arXiv preprint arXiv:2403.20230, 2024.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for
large language models. arXiv preprint arXiv:2308.13137, 2023.

Huihong Shi, Haikuo Shao, Wendong Mao, and Zhongfeng Wang. Trio-vit: Post-training quantiza-
tion and acceleration for softmax-free efficient vision transformer. IEEE Transactions on Circuits
and Systems I: Regular Papers, 2024.

Jan Sommer, M Akif Özkan, Oliver Keszocze, and Jürgen Teich. Dsp-packing: Squeezing
low-precision arithmetic into fpga dsp blocks. In 2022 32nd International Conference on
Field-Programmable Logic and Applications (FPL), pp. 160–166. IEEE, 2022.

Xiuying Wei, Ruihao Gong, Yuhang Li, Xianglong Liu, and Fengwei Yu. Qdrop: Ran-
domly dropping quantization for extremely low-bit post-training quantization. arXiv preprint
arXiv:2203.05740, 2022.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Haotian Tang, Yujun Lin, Zhekai Zhang, Muyang
Li, Ligeng Zhu, Yao Lu, et al. Sana: Efficient high-resolution image synthesis with linear diffu-
sion transformers. arXiv preprint arXiv:2410.10629, 2024.

Jingwei Zhang, Meng Zhang, Xinye Cao, and Guoqing Li. Uint-packing: Multiply your dnn acceler-
ator performance via unsigned integer dsp packing. In 2023 60th ACM/IEEE Design Automation
Conference (DAC), pp. 1–6. IEEE, 2023.

Zhuoyang Zhang, Han Cai, and Song Han. Efficientvit-sam: Accelerated segment anything model
without performance loss. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 7859–7863, 2024.

Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio Torralba.
Semantic understanding of scenes through the ade20k dataset. International Journal of Computer
Vision, 127(3):302–321, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 QUANTIZATION IMPLEMENTATION DETAILS

All quantization experiments were conducted on a single NVIDIA A800 80G GPU. The initial
scale and zero-point for weights were computed using mean squared error (MSE), while those for
activations were estimated via an averaged MSE (AvgMSE) over a calibration set of 256 images.

For our ADAQ method, weight reconstruction was performed using a batch size of 32 on a calibra-
tion set of 1024 images. The optimization ran for 20000 iterations, with a learning rate of 4.0×10−4

for weights, and 4.0× 10−5 for both weight and activation scales. The parameter κ is set to 0.5, so
that the σ function outputs a value near 0.5 when V C = 1. Because the variation coefficient (VC)
of 1 is generally taken to indicate a fairly uniform distribution, we set κ to around 0.5 so that the
migration strengths of activations and weights remain comparable. The parameters a and b are set
to 0.5 and 0.9, respectively. The parameter β is initialized to 2 and linearly increased to 100 over
iterations. Other hyper-parameters followed the default settings of QDrop.

In our ADAQ method, the balancing process Adoptive Distribution-Aware Balancing(ADAB) can
be found in the file adab.py, while the Multi-Level Soft Approximation(MSA) is implemented in
msa recon.py.

A.2 DSP-PACKING METHOD DETAILS

Block Convolution. The idea of bloack convolution is to divide a long input sequence into shorter
segments whose lengths are comparable to that of the kernel, perform convolution on each segment
individually, and then combine the results. Here, we adopt the overlap-add method for aggregation.
Taking one-dimensional convolution as an example, given a sequence h of length N and a sequence
g of length K, their convolution output y can be computed as follows:

h[n] =

{
f [n], 0 ≤ n < N

0, n < 0 or n ≥ N
, (9)

y[m] = (h ∗ g)[m] =

K−1∑
k=0

h[m− k]g[k], (10)

Specifically, assume the input sequence h and kernel g contain X×N ′ and K elements, respectively.
The input h can be partitioned into X segments, each of length N ′:

hx = h[xN ′ : (x+ 1)N ′ − 1], (11)

The convolution result of h and g can then be computed according to the following equation:

y[n] =

X−1∑
x=0

(yx[n− xN ′]), (12)

yx[n− xN ′] =

K−1∑
k=0

hx[n− xN ′ − k]g[k]. (13)

For example, consider two 1D sequences: h[n] = {1, 2, 3, 4, 5, 6} and g[k] = {1, 2, 3}, con-
volved with a stride of 1. We first divide h[n] into segments of length N ′ = 2: {1, 2}, {3, 4},
{5, 6}. Each segment is then circularly convolved with g[k], result in {3, 8, 5, 2}, {9, 18, 11, 4} and
{15, 28, 17, 6}. Finally, overlapping positions are summed to obtain the final convolution result:
{14, 20, 27, 32}.

DSP-Packing method. As shown in Fig. 8(a), the DSP48E2, widely used in FPGAs, supports up
to 27 − bit × 18 − bit multiplication. DSP-packing2, as shown in Fig. 8(b), is widely used for
8-bit matrix multiplication. It packs two weights and one input into a DSP to perform two 8-bit
multiplications in a single operation. Similarly, as shown in Fig. 8(c), DSP-packing4 is extensively
used for 4-bit matrix multiplication, where two weights and two inputs are packed to perform four
4-bit multiplications per DSP operation, significantly improving the multiplication efficiency at 4-bit
precision. To fully utilize the bit-width of the DSP under 4-bit convolution, DSP-packing6 packs

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Combined
Weight

Combined
Input

Psum

DSP48E
Output

Combined Weight

Combined Input

w2w3

x2

w1

w1x2w2x2
+w1x1

w3x2
+w2x1

w3x1

x1

(d)DSP-packing6

x+

{11bit

4bit

3bit

{

{

27bit

18bit

45bit

45bit

(a)DSP48E2

Combined Weight

Combined Input

w2

x2

w1

w1x2w1x1w2x2w2x1

x1

(c)DSP-packing4

{11bit

4bit

3bit

{

{

Combined Weight

Input

w2

x1

w1

w1x1

(b)DSP-packing2{ 19bit

8bit

3bit

{

{

w2x1Output

Output Output

Figure 8: Structure of DSP48E2 and Different DSP-Packing Methods.

()
x ()

result0 result1
add add

Cycle 0
()
x ()

result2

Cycle 1

result3

()
x ()

result4

Cycle 2

add add
result5

()

result6

Cycle 3

addadd add add

x ()
……

(a)

conv3x3s1
weight

input

weight

input

weight

input

weight

input… … …

means zero is used as the default padding value. means the data is fed into the DSP during this cycle. means the value has been computed and will no longer be used.

Feature Map

Weight Kernel

F
ir

st
 R

ow
 a

s
E

xa
m

p
le

Figure 9: Illustrations of DSP-packing6 for Conv3x3 with stride 1. Taking one row in feature and
kernel as an example.

three 4-bit weights into the multiplier input and two 4-bit activations into the multiplicand input. In
Fig. 8(d), each segment occupies 11 bits, including 3 guard bits for overflow prevention and 8 bits
(from 4-bit weights and 4-bit activations) for the multiplication. Since a 4-bit × 4-bit multiplication
produces an 8-bit result, each segment corresponds to a single partial product. As a result, a single
DSP multiplication yields a 45-bit output composed of 4 such segments, each representing a circular
convolution result of 3 packed weights and 2 packed inputs.

As illustrated in Fig. 9, the computation process of a 3 × 3 convolution with stride 1 using DSP-
packing6 is detailed for a single row, assuming zero-padding. In the first cycle Cycle #0, the packed
inputs (x0, x1) and weights (w0, w1, w2) are fed into the DSP for computation. In the next cycle
Cycle #1, (x2, x3) are packed and processed, and partial results from Cycle #0 are accumulated and
output. Subsequent cycles proceed in the same manner, performing convolution by shifting the input
window and accumulating intermediate results.

Directly applying the above DSP-packing6 scheme, which is tailored for Conv3×3 with stride
1, to convolutions with stride 2 or larger leads to unnecessary computations and resource
waste. For example, if we use the layout in Fig. 9 for a Conv3×3 with stride 2, only
result0, result2, result4, result6, ... correspond to valid outputs, while the odd-indexed results
are redundant.

For a convolution between a feature map of length 256 and a kernel of size 3, the DSP-packing6
method processes two input fragments per cycle, requiring ⌈256/2⌉ cycles in total. In contrast,
our proposed MuCO splits the input into even- and odd-indexed sequences, and further divides
each into length-3 segments fed into the DSP. As a result, MuCO only requires ⌈256/6 ∗ 2⌉ cycles,
significantly improving computational efficiency.

For Conv5×5 with stride 1, if five 4-bit weights are to be packed into a single operation, four 4-
bit inputs should also be packed to match the typical requirement in block convolution that weight
and input fragment lengths be comparable. As a result, the packed weight requires a bit-width
of 48 bits: 4 bits for the first (highest) weight, and 4bit + 4 × (3bit + 4bit + 4bit) bits for the
remaining four weights, where 3 bits are guard bits and 8 bits (4bit + 4bit) are needed to store the

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

V

K

MAT0
Q

MAT1

OUT

x10 Cycle

...
...
...

...
...
...

33.8

34.9

36.3

16.1 20.2

34.9

34.9

0.5

3

{
Delay of feature1: 67.6x10

32.7

32.7 {

Interval: 36.3x10

36.3

36.3

36.3

16.1

36.3

36.3

20.2

33

{Input feature1 {Input feature2

feature shape
height=8

head=16

dim=16

width=8

Figure 10: The timing diagram of Linear Attention. Taking
(height, head, dim,width)=(8,16,16,8) as an example.

Table 6: The efficiency comparisons of throughput, memory usage, and energy consumptions on
KV260.

Metric SEUer2 QuS
Device KV260 KV260

Frequency 200MHz 200MHz
Network UltraNet UltraNet

FPS 867 1043
Power 5.3W 5.25W
kLUTs 49.3k 49.2K
DSPs 296 296

BRAMs 126.5 136.5

4-bit multiplication result. Similarly, the packed input requires 37 bits: 4 bits for the first input and
4bit + 3 × (3bit + 4bit + 4bit) bits for the remaining inputs. However, the resulting operand size
of 48-bit × 37-bit far exceeds the 27-bit × 18-bit multiplication capacity of a single DSP. Therefore,
Conv5×5s1 is typically lowered to matrix multiplication and implemented using DSP-packing4,
which is more compatible with the DSP’s bit-width constraints.

To further improve parallelism, three rows of inputs and three rows of weights can be processed
simultaneously in each computation step. Our method, MuCO, similarly supports multi-row parallel
computation to enhance throughput.

A.3 LOW-BUFFER STREAMLINE PIPELINE ANALYSIS

As shown in Fig. 10, we simulated the timing diagram of the linear attention. When the first feature
is received, V, K, and Q start processing data simultaneously. Since V and K continuously generate
data to be sent to MAT0 for the V KT multiplication, their processing time is longer than that of
Q. Q caches the data and waits for MAT0 to complete before performing the MAT1 operation with
MAT0’s result. Finally, OUT divides MAT1’s result and outputs it. Once the first feature is fully
processed, the second follows immediately. The overall process aligns with the design expectations,
confirming the effectiveness of our Low-Buffer Streamline design.

A.4 PERFORMANCE ANALYSIS OF ULTRANET ON KV260 FPGA

As shown in Tab. 6, we compare the throughput, memory usage, and energy consumptions of Ultra-
Net on KV260 FPGA. Under the same settings, thanks to our MuCO design, our method achieves a
1.2× improvement in inference speed with similar resources.

2https://github.com/AiArtisan/dac_sdc_2022_champion/tree/master

14

https://github.com/AiArtisan/dac_sdc_2022_champion/tree/master

	Introduction
	Related Work
	Methodology
	Adaptive Distribution-Aware Quantization
	Multi-Computing in Once Packing for Convolution
	Low-Buffer Streamline for Linear Attention (LBS)

	Experiment
	Experiment Setup
	End-to-End Evaluation
	Ablation Study
	Parameter Analysis

	Conclusion
	Appendix
	Quantization Implementation Details
	DSP-packing Method Details
	Low-Buffer Streamline Pipeline Analysis
	Performance analysis of Ultranet on kv260 fpga

