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Abstract

Expressing natural language descriptions of001
structured facts or relations – data-to-text gen-002
eration – increases the accessibility of a di-003
verse range of structured knowledge reposito-004
ries. End-to-end neural models for this task005
require a large training corpus of relations and006
corresponding descriptions. While such re-007
sources are unrealistic for every domain, we do008
not fully understand how well different data-to-009
text generation models can generalize to new re-010
lations. This work presents an analysis of data-011
to-text models for unseen relations based on012
two pre-trained language models (PLMs): T5013
and GPT-2. We consider different strategies, in-014
cluding few-shot learning, prompt-tuning, and015
incorporating other domain knowledge (natural016
language description of the unseen relations) to017
identify effective strategies and remaining chal-018
lenges for improving performance of PLMs on019
new relations.020

1 Introduction021

Structured data repositories, or knowledge bases,022

contain a wealth of information organized to facil-023

itate automated access and analysis. Automated024

data-to-text systems can transform and organize025

this knowledge into natural language text snip-026

pets that broaden access (Gatt and Krahmer, 2018).027

The input to these systems takes the form of re-028

lations, or triples, and systems process triple sets029

that consist of sets of subject, predicate and ob-030

ject. Applications of this technology include story031

or dialogue generation (Moon et al., 2019), open-032

domain question-answering (Ma et al., 2021; Fan033

et al., 2019), and text summarization (Wiseman034

et al., 2017). Domains span journalism (Leppänen035

et al., 2017), weather forecasts (Ramos-Soto et al.,036

2014; Mei et al., 2015), financial and sport cast-037

ing (Plachouras et al., 2016; Chen and Mooney,038

2008; van der Lee et al., 2017), and summarizing039

patient medical histories (Portet et al., 2009).040

Historically, data-to-text systems included 041

pipeline approaches with customized models (Gar- 042

dent et al., 2017). In recent years, pretrained 043

Transformer-based language models (Devlin et al., 044

2018; Liu et al., 2019; Radford et al., 2019) have 045

come to dominate this task, just as they have other 046

NLP tasks. Recent examples include Mager et al. 047

(2020) and Kale and Rastogi (2020), who use mod- 048

els like GPT-2 (Radford et al., 2019) and T5 (Raf- 049

fel et al., 2019) to generate language descriptions 050

for relations. To support these types of systems, 051

Nan et al. (2020) introduce DART, an open-domain 052

and large data-to-text generation corpus. Models 053

trained on DART, both larger and more diverse 054

than previous corpora, improve the performance of 055

BART (Lewis et al., 2019) and T5 on the standard 056

WebNLG challenge (Gardent et al., 2017). 057

This approach requires a PLM to be fine-tuned 058

on a task-specific in-domain dataset (Howard and 059

Ruder, 2018; See et al., 2019; Keskar et al., 2019). 060

The promising results using this paradigm belie the 061

reality that in spite of its aspirations, most domains 062

and relations that one could express fail to appear 063

in DART. Furthermore, the extensive development 064

effort behind DART, and other similar datasets, 065

underscores the challenge of creating an in-domain 066

dataset for each task of interest. Unfortunately, 067

PLMs fine-tuned on a specific domain often do 068

not generalize to a new domain (Harkous et al., 069

2020). For example, a model trained to generate 070

text for sports relations (DEFEATED, COACHED) 071

is unlikely to generate sensible text for medical 072

relations (DIAGNOSED, INFLAMES). 073

A variety of methods have emerged within PLM 074

research to address domain or task adaptation. For 075

example, GPT style models have demonstrated 076

improved performance on a new task via few- 077

shot learning with a handful of examples (Chen 078

et al., 2019). Other strategies, such as prompt tun- 079

ing (Lester et al., 2021), by only updating a small 080

subset of model parameters, can adapt PLMs to 081
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perform specific down-stream tasks.082

While great progress has been made in utiliz-083

ing PLMs for data-to-text generation, questions084

regarding their adaptation to new domains are unan-085

swered. More specifically, it is not clear how well086

data-to-text models generalize to new relations and087

how effective these adaptation strategies are at miti-088

gating the challenges of adapting to a low-resource089

setting. We conduct an evaluation of PLMs for090

data-to-text generation focused on new (unseen)091

relations (predicates). We consider how GPT-2092

coupled with strategies such as few-shot training,093

prompt tuning, and predicate description augmen-094

tation performs on new domains as compared to095

a baseline (state-of-the-art) T5 model fine-tuned096

on an open-domain dataset. We show that while097

an out-of-the-box GPT-2 model performs poorly098

on DART, its performance can be drastically im-099

proved by these adaptation methods. We make the100

following contributions:101

• We evaluate GPT2-XL for data-to-text gen-102

eration. While the zero-shot model performs103

poorly, we evaluate several strategies to im-104

prove performance, including few-shot learn-105

ing and prompt tuning. Both provide signifi-106

cant improvements on the DART dataset.107

• We propose a post hoc re-ranking strategy for108

GPT-2 that further improves results without109

requiring additional training data.110

• We show how T5 performance compares to111

GPT2-XL depending on the amount of super-112

vised training data available.113

• We evaluate all models on unseen predicates114

and show how various approaches enable gen-115

eralization to new relations.116

• We evaluate models separately on easy and117

hard instances to highlight remaining chal-118

lenges for this task.119

• We conduct a qualitative evaluation of the120

models to identify pathological behaviors.121

We provide recommendations for future model122

and dataset research.123

2 Background and Related Work124

In the task of data-to-text generation, we are pro-125

vided a set of triples that include a predicate, sub-126

ject, and object. The system then produces a text127

snippet expressing the predicate in natural lan- 128

guage. Figure 2 shows examples of predicates 129

from sports domains. The system can be given 130

a set of triples with related predicates (e.g., CLUB, 131

LEAGUE, FORMER_TEAM) and must gener- 132

ate text that expresses the facts encoded by these 133

relations. The resulting text is typically evaluated 134

by comparison to a set of reference texts, which 135

represent various ways of expressing this triple set. 136

Variations in the formulation of this task depend 137

on the structure of the relations (e.g., tables, triples), 138

the domain of the task (single or open domain), and 139

the source of the data (manually created, automati- 140

cally derived). 141

Harkous et al. (2020) follow a generate-and- 142

rerank paradigm to improve the semantic fidelity 143

of the generated text by fine-tuned GPT-2 model. 144

More recently, Ribeiro et al. (2020) propose a 145

new task-adaptive pretraining strategy to adapt 146

BART (Lewis et al., 2019) and T5 (Raffel et al., 147

2019) models for data-to-text generation. They 148

show that adding an intermediate task-adaptive pre- 149

training step between the task-independent pretrain- 150

ing and fine-tuning further improves the perfor- 151

mance of these models on data-to-text generation. 152

Creating a large enough dataset for fine-tuning 153

PLMs for data-to-text generation is not feasible 154

or cost-efficient.1 Weakly supervised annotation 155

methods (e.g., based on identifying sentences in a 156

corpus that are likely to express a data record) also 157

include a significant amount of effort and often re- 158

sult in annotations that are low in fidelity between 159

data records and the corresponding textual expres- 160

sion (Mintz et al., 2009). Training NLG models on 161

such data can result in pathological outputs with 162

missing information or hallucination (Dušek et al., 163

2019). 164

3 Model Adaptation 165

As a supervised task, data-to-text generation sys- 166

tems rely on previously observed examples to learn 167

the correct generation for a predicate. What hap- 168

pens when the model encounters a new predicate? 169

What about predicates from a new domain? 170

Previous work included separate evaluations for 171

“unseen” predicates (Gardent et al., 2017). How- 172

ever, strategies to improve unseen predicates fo- 173

cused on data augmentation: finding new training 174

1Throughout the paper we use the term low-resource do-
mains to refer to domains and applications for which a human
annotated data-to-text dataset is not readily available. This
includes domains such as finance and medicine.
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Zero-shot Prompt

Translate Graph to English:

Graph: <H> Alan Martin (footballer) <R> CLUB
<T> Hamilton Academical F.C.
English:

Zero-shot Prompt + Relation Description

Translate Graph to English:

Definition: club is an organization of players and man-
agers associated with a particular football team.

Graph: <H> Alan Martin (footballer) <R> CLUB
<T> Hamilton Academical F.C.
English:

Figure 1: A customized 0-shot prompt for GPT

data that included the unseen predicates rather than175

different modeling techniques. Evaluation of dif-176

ferent models will be our focus.177

How should we conceptualize unseen predi-178

cates? Are these out of vocabulary tokens, where179

we could expect a model to generalize? For ex-180

ample, the new predication MANAGER can be in-181

formed by a seen predicate of COACH. Alterna-182

tively, unseen predicates may be a new task, e.g.,183

the predicate CLINICAL_DIAGNOSIS when training184

data included only sports relations.185

We study this problem using PLMs like GPT-186

2, which excel at adapting to new tasks. In con-187

trast to “supervised” models like T5,2 which expect188

task-specific training data, generative PLMs can ob-189

tain reasonable performance in a few shot setting.190

Therefore, we will evaluate their efficacy for data-191

to-text generation in a low-resource setting: unseen192

predicates.193

While PLMs can be fine-tuned on new data, their194

increasing size and training requirements disfavors195

this approach. Instead, current work assumes a196

single PLM capable of performing multiple down-197

stream tasks (Lester et al., 2021). We adopt GPT2-198

XL, a decoder-only Transformer (Vaswani et al.,199

2017) with 1.5B parameters pre-trained for lan-200

guage modeling (Radford et al., 2019).3 We utilize201

GPT2-XL as a data-to-text generation model in var-202

ious low-resource settings. Instead of fine-tuning203

2We note that new findings (Sanh et al., 2021) has demon-
strated T5 can handle zero-shot task adaptation with the right
prompts; this is an evolving issue.

3WebText (the training dataset) includes content of more
than 8 million documents with outbound links from Reddit, a
social media platform. Wikipedia (the main data source for
DART) is excluded.

Few-shot Prompt

Translate Graph to English:

Graph: <H> Paulo Sousa <R> CLUB <T> ACF
Fiorentina
English: Paulo Sousa plays for ACF Fiorentina.
###

Graph: <H> Dave Challinor <R> CLUB <T> Col-
wyn Bay F.C.
English: Dave Challinor plays for Colwyn Bay F.C.
###

Graph: <H> Alan Martin (footballer) <R> CLUB
<T> Hamilton Academical F.C.
English:

Figure 2: A customized 3-shot prompt for GPT

the language model to predict a textual description 204

given the input data record (Mager et al., 2020; Nan 205

et al., 2020; Ribeiro et al., 2020), we investigate 206

customized prompting and tuning GPT2-XL (Rad- 207

ford et al., 2019), which is better suited to applica- 208

tions for which little to no data is available. 209

3.1 Zero-shot Setting 210

We start by evaluating GPT2-XL in the zero-shot 211

setting, an especially challenging setting due to 212

a lack of coverage in the training data of pair- 213

ings between structured records and unstructured 214

text (Gong et al., 2020). Ribeiro et al. (2020) han- 215

dled this by including an additional pretraining step. 216

Our focus is on an off-the-shelf GPT2-XL model. 217

We format the input data using the data-to-text gen- 218

eration infix and prefix formatting of Ribeiro et al. 219

(2020) (example in Figure 1). We provide no addi- 220

tional context or task-specific training. 221

3.2 Few-shot Setting 222

We next consider a few-shot setting by augmenting 223

the format of the zero-shot input with reference 224

generations from the training corpus. We evaluate 225

inputs with three examples (3-shot). See Figure 2 226

for an example. For predicates “seen” in the train- 227

ing set, we select at random three examples of the 228

same predicate. For “unseen” predicates – not ex- 229

amples in the training set – we randomly select 230

three examples. Other work has found that careful 231

shot selection based on input text similarity can be 232

beneficial (Liu et al., 2021a). However, it’s less 233

clear how this would apply to unseen predicates. 234

We leave this for future work. 235
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3.3 Prompt Tuning236

The expected task for a PLM is indicated by the237

choice of prompt; ours (Figure 1) follows prior238

work (Ribeiro et al., 2020; Nan et al., 2020). The239

prompt includes a prefix (“Graph”) and infix token240

(“English”) that indicate the start of the input and241

the start of the expected output. Auto-regressive242

language models are sensitive to the choice of243

prompt, and significant effort is needed to craft244

effective prompts (Liu et al., 2021b).245

Lester et al. (2021) proposed an alternative246

method: prompt tuning. Instead of using discrete247

prompt tokens, “soft-prompts” are embeddings that248

are learned through back-propagation. We follow249

previous work (Lester et al., 2021; Chowdhury250

et al., 2022) and use a generic sequence of tokens251

to denote the prompt prefix p1:s = (p1, p2, ....ps)252

and infix q1:t = (q1, q2, ....qt). The model observes253

input p1:s <H> x1 <R> x2 <T> x3 q1:t, where x1,254

x2 and x3 are strings from the example.255

The objective during prompt-tuning is to maxi-256

mize the probability of output sequence y1:m given257

input data record, prefix p1:s, and infix q1:t. Dur-258

ing training however, only the embedding of the259

prompt tokens can be updated. Unlike fine-tuning260

which updates all model parameters on the target261

task, prompt tuning tunes a small number of param-262

eters while keeping most of the language model263

fixed. Prompt tuning updates less than 0.01% of264

the model parameters, whereas other methods like265

prefix tuning (Li and Liang, 2021) update 0.1–1%266

of the model parameters. While this requires use267

of the full training set, as opposed to few shot train-268

ing, it illuminates the abilities of GPT2-XL given269

access to such data.270

3.4 Domain Knowledge271

We explore another way of improving model per-272

formance in a low resource setting: providing defi-273

nitions for predicates. In many domains, we may274

find a knowledge base containing many predicates,275

and definitions for those relations, but no examples276

of sentences expressing those relations. In these277

cases, we want to enhance the context of the PLM278

with predicate definitions. For examples, for the tu-279

ple <H> Genuine Parts <R> DISTRIBUTOR <T>280

automotive and industrial replacement parts we281

may know that DISTRIBUTOR means "someone282

who markets merchandise". This may be helpful to283

a model that was never exposed to this predicate at284

training time.285

We source predicate definitions for our data from286

WordNet, a lexical database in English (Miller, 287

1995), and WikiData.4 We use WikiData since 288

Wikipedia was the source of many relations in the 289

DART data.5. An example of the input prompt en- 290

hanced with the “definition” appears in Figure 1. 291

We also consider using predicate descriptions in 292

combination with prompt tuning. 293

3.5 T5 294

We compare various settings of GPT2-XL with 295

T5large (Raffel et al., 2019), a Transformer encoder- 296

decoder architecture with 770M parameters for text 297

generation. The model is pretrained with a de- 298

noising objective on a variety of NLP tasks using 299

the web-extracted C4 corpus. Unlike a GPT style 300

model, the denoising objective means an off-the- 301

shelf model does poorly on unseen tasks, such as 302

data-to-text generation (Raffel et al., 2019; Lester 303

et al., 2021). Therefore, we follow Nan et al. 304

(2020) and fine-tune T5large on the task-specific 305

data. While this model requires a large amount 306

of supervised examples, it attains state of the art 307

performance on this task. 308

4 Dataset 309

For our experiments we use DART (Nan et al., 310

2020), the largest publicly available open-domain 311

data-to-text generation corpus. DART relies on 312

data from Wikipedia as well as two other com- 313

monly used data sets for this task: WebNLG (Gar- 314

dent et al., 2017) and E2E (Novikova et al., 2017). 315

Each instance includes a triple set (a set of one or 316

more predicates and their labels) and a text snip- 317

pet that expresses all relations in the triple set in 318

natural language. We choose DART due to its size 319

and wide coverage of predicate types. Relevant 320

DART statistics appear in Table 1. We use the 321

original train, development, and test splits for our 322

experiments.6 323

Data Splits: The DART test set includes 5097 324

examples, of which 4826 (94.4%) include at least 325

one relation type that appears in the training set. 326

We represent this subset as the SEEN partition. The 327

remaining 271 instances (5.3%) are considered UN- 328

SEEN. Note that the Nan et al. (2020) include an 329

4wikidata.org
5DART includes predicates such as

MARGIN_OF_VICTORY and INTERMEDI-
ATE_(SOUTH)_WINNERS Since descriptions for such
relations cannot be found verbatim in WordNet or WikiData,
no description is added to those cases.

6Nan et al. (2020) use version v1.0.0 of DART, whereas
we use the publicly available version, v1.1.1.
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Train Dev Test
Size 30,526 2768 5097
#Unique relation types 4221 419 494
#Ref per example min/avg/max 1/2.0/48 1/2.5/33 1/2.4/35
#Triples per record min/avg/max 1/3.3/10 1/3.7/8 1/3.6/7

Table 1: Descriptive statistics of the DART version 1.1.1

evaluation on the “unseen” portion of WebNLG.330

However, in that case “unseen” means that the rela-331

tions do not appear in the WebNLG training data,332

while they may still appear in the DART training333

data. Our splits ensure that the UNSEEN partition334

only contains predicates not seen during training.335

To support additional system analysis, we create336

an additional partition of the test data: EASY and337

HARD. We determine whether an instance is HARD338

based on the similarity of the input relation to the339

reference text. In many cases the generation has340

high lexical overlap with the input data, while in341

other cases the generation is non-trivial. Examples342

of these in shared in Appendix A. To identify these343

easy and hard cases, we use BERTScore (Zhang344

et al., 2019) to measure the similarity of the in-345

put data records with respect to the reference. We346

rank the input/output pairs based on the computed347

BertScore (F1) and include the top 10% (510 ex-348

amples) in the EASY partition and bottom 10% in349

the HARD partition.350

5 Experimental Setup351

Model Training Our experiments use the DART352

dataset with existing train/dev/test splits.7 Fol-353

lowing Harkous et al. (2020), we add special to-354

kens <H>, <R>, and <T> before the head entity,355

the predicate and tail entity of each triple respec-356

tively. In our experiments, we use the pretrained357

models GPT2-XL and T5large released by Hugging358

Face (Wolf et al., 2019).359

For the few-shot experiments, we use GPT-2360

tokenizer to split input data records into special361

symbols and subword units. We use beam search362

with beam size of three for decoding. We apply363

light post-processing to the generated text to re-364

move the input prompt from the newly generated365

tokens and truncate generated text at newline char-366

acters. We set maximum generated tokens to 100367

and repetition penalty to 1.01 for our experiments.368

7In the DART dataset, some data records are paired with
more than 30 references. Nan et al. (2020) do not report the
number of references used for their experiments. However in
their adaptation of Ribeiro et al’s fine-tuning script (Ribeiro
et al., 2020) they only use three references. We follow their
methodology and only use up to three references per example.

For our prompt tuning experiments we train the 369

GPT2-XL for auto-regressive language modeling 370

on one NVIDIA V100 GPU with 32GB of mem- 371

ory, for a single epoch on DART train set with 372

prefix and infix length of 8, respectively. We use 373

the Adam optimizer (Kingma and Ba, 2014) with 374

learning rate 0.1 and 100 warm up steps for the 375

linear learning rate scheduler. We use a training 376

batch size of 2, and accumulate the gradient for 32 377

steps before updating weights (effective batch size 378

of 64). For decoding, we use the same parameters 379

as the previous setting. 380

We use the scripts from Ribeiro et al. (2020) to 381

finetune T5 on DART, using identical hyperparam- 382

eter settings.8 We use the Adam optimizer with an 383

initial learning rate of 3e-5 and a linearly decreas- 384

ing learning rate schedule. We fine-tune the model 385

on four GPUs for a maximum of 100 epochs and 386

stop training if the performance does not improve 387

on the dev set for 15 epochs. We decode with beam 388

search with beam size 3. Each epoch of training 389

takes approximately 2 hours for each model. 390

Finally, we include a baseline system to bench- 391

mark performance of our machine learning models. 392

In a “copy baseline” we simply copy the input text 393

and remove the prefix tokens (<H>, <R>, <T>) 394

as well as special characters (e.g., underscores) 395

common in DART predicates. This method per- 396

forms well for examples with high lexical overlap 397

between triple set and reference generation. 398

Evaluation Metrics Following previous work, 399

we use automated metrics such as BLEU (Pap- 400

ineni et al., 2002), METEOR (Denkowski and 401

Lavie, 2014), TER (Snover et al., 2006), and 402

chrF++ (Popović, 2015) for evaluating our gen- 403

eration results. In addition, we also report 404

BERTScore (Zhang et al., 2019) and BLEURT (Sel- 405

lam et al., 2020). These metrics go beyond surface 406

form similarities and use contextual embeddings to 407

measure semantic similarity between the generated 408

and reference text.9 409

6 Experiments 410

We evaluate GPT2-XL with various input types 411

and T5large to answer several empirical questions. 412

First, how well does GPT2-XL perform on the data- 413

8https://github.com/UKPLab/
plms-graph2text (Apache 2.0 license)

9We use the evaluation scripts provided in the official
WebNLG challenge: https://github.com/WebNLG/
GenerationEval (MIT license)
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ID Model BLEU ↑ METEOR ↑ TER ↓
SEEN UNSEEN ALL SEEN UNSEEN ALL SEEN UNSEEN ALL

1 copy baseline 4.48 5.07 4.50 0.28 0.31 0.28 0.92 0.86 0.92
2 GPT2-XL (0-shot) 13.13 13.88 13.26 0.23 0.27 0.23 0.69 0.78 0.70
3 GPT2-XL(3-shot) 26.74 23.72 26.65 0.29 0.28 0.29 0.85 0.78 0.84
4 GPT2-XL-PT 33.55 29.86 33.41 0.24 0.28 0.24 0.65 0.61 0.65
5 GPT2-XL-PT + Reranking 31.03 31.67 31.09 0.28 0.30 0.28 0.63 0.58 0.63
6 T5large 48.41 43.48 48.25 0.39 0.40 0.39 0.46 0.44 0.46
+Descriptions
7 GPT2-XL(0-shot) 11.45 8.05 11.4 0.20 0.19 0.20 0.70 1.00 0.72
8 GPT2-XL(3-shot) 26.32 21.30 26.14 0.28 0.27 0.28 0.83 0.89 0.83
9 GPT2-XL-PT 33.96 31.37 33.85 0.24 0.28 0.24 0.66 0.59 0.66
10 T5large 48.56 43.82 48.4 0.39 0.39 0.39 0.46 0.45 0.46

Table 2: Model results on test set of the DART dataset. ↑: Higher is better. ↓: Lower is better.

ID Model BLEU ↑ METEOR ↑ chrF++ ↑ TER ↓ BERTScore(F1) ↑ BLEURT ↑
EASY HARD EASY HARD EASY HARD EASY HARD EASY HARD EASY HARD

11 copy baseline 18.00 2.01 0.41 0.23 0.45 0.32 0.79 0.99 0.88 0,80 0.12 -1.00
12 GPT2-XL (0-shot) 22.20 6.92 0.34 0.18 0.47 0.31 0.83 0.64 0.90 0.88 -0.09 -0.54
13 GPT2-XL (3-shot) 34.97 1.88 0.34 0.06 0.54 0.07 0.82 0.38 0.92 0.93 -0.09 -0.11
14 GPT2-XL-PT 42.81 31.78 0.35 0.23 0.57 0.39 0.48 0.69 0.94 0.92 0.31 -0.17
15 GPT2-XL-PT + Reanking 43.35 25.79 0.37 0.29 0.60 0.48 0.47 0.66 0.94 0.93 0.34 -0.04
16 T5large 70.54 38.34 0.51 0.35 0.80 0.57 0.23 0.59 0.97 0.94 0.70 0.20
+Descriptions
17 GPT2-XL (0-shot) 19.00 6.43 0.30 0.17 0.42 0.31 0.93 0.65 0.89 0.88 -0.20 -0.54
18 GPT2-XL (3-shot) 34.19 20.54 0.38 0.26 0.61 0.44 0.92 0.81 0.93 0.91 0.07 -0.26
19 GPT2-XL-PT 42.52 33.1 0.34 0.23 0.56 0.39 0.5 0.69 0.93 0.91 0.28 -0.21
20 T5large 70.06 38.49 0.51 0.34 0.80 0.57 0.23 0.60 0.97 0.94 0.69 0.20

Table 3: Model results on EASY and HARD partitions of the DART test set. ↑: Higher is better. ↓: Lower is better.

to-text task? Second, how well do GPT2-XL and414

T5large do on relations that does not appear in the415

training set? Third, can we improve GPT2-XL416

through the strategies proposed in §3?417

6.1 Results418

Table 2 presents model performance on the SEEN419

and UNSEEN partitions. For evaluation results420

based on chrF++, BERTScore, and BLEURT see421

Table 5 in the Appendix B. As expected, the copy422

baseline (row 1) does poorly across all conditions,423

but consistently in the SEEN and UNSEEN partitions.424

As reported previously (Nan et al., 2020), T5 (row425

6) does well at this task. Performance drops signifi-426

cantly on the UNSEEN data because the model does427

not observe these predicates during training.428

We now turn to GPT2-XL, which is evaluated429

on this task without any training data. Follow-430

ing previous work we find that GPT2-XL makes431

an effective zero-shot model, with results easily432

surpassing the copy baseline. Notably, GPT2-XL433

does similarly on either partition, since it was not434

trained on any task data. Examining the output435

more closely, we find that GPT2-XL mostly copies436

the input; while it outperforms the copy baseline,437

its strategy is largely the same. We include exam-438

ples in Appendix C. 439

Task Prompting GPT2-XL with a 3-shot prompt 440

(row 3) does much better than the 0-shot case. 441

Differences between the SEEN and UNSEEN set- 442

tings are mixed across metrics, despite the unseen 443

prompts including unrelated predicates; the model 444

still benefits from multiple shots even if they do 445

not contain the same predicates. While few-shot 446

prompting leads to a boost in BLEU and METEOR, 447

the translation edit rate (TER) increases by 0.14 448

point. We conjecture that this is due to an increase 449

in hallucinated content in this setting. We take a 450

closer at these pathological behaviors in §7. Crit- 451

ically, the performance gap between T5, which is 452

trained on thousands of examples, and GPT2-XL 453

(0-shot), which is trained on non, is noticeably re- 454

duced with just three shots of in-context examples. 455

We next consider prompt tuning, which utilizes 456

all of the available training data to tune prompts for 457

GPT2-XL. In contrast to T5 training, which modi- 458

fies all model parameters, prompt tuning adapts 459

only a tiny fraction of the model’s parameters 460

(< 0.01%). Despite this difference, we still see 461

another gain in performance (row 4). Not surpris- 462

ingly, utilizing the training data does better than 463
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using just a few examples in the prompt. Addi-464

tionally, prompt tuning also hallucinates less, as465

evidenced by a lower TER score (0.65 vs 0.84 for466

ALL). The prompt tuned GPT2-XL achieves the467

highest BLEU score (29.86) on UNSEEN predicates468

in comparison to the other variations of prompt-469

ing. Overall, it is clear that in resource limited470

settings, GPT2-XL can be improved with even a471

few training examples, and substantially improved472

with prompt tuning, despite keeping most of the473

model’s parameters unchanged.474

Predicate Descriptions We next turn to evalu-475

ating models with predicate descriptions. As de-476

scribed in §3.4, we augment each prompt with a477

description of the predicate. We evaluate this aug-478

mentation in the 0-shot (row 7), 3-shot (row 8) and479

prompt tuning (row 9) settings, as well as in T5480

training (row 10). We observe very small improve-481

ments on the UNSEEN partition and only in cases482

where model parameters are updated (rows 9 and483

10). We suspect that as descriptions are sourced484

from WordNet and WikiData, their format may not485

be helpful for this task or our predicates could be486

largely self-explanatory already. We conjecture487

that in the 0-shot setting, conditioning the genera-488

tion on descriptions might distract the model from489

the head and tail entity. However, we suspect that490

specialized domains such as finance or medicine491

would benefit from added descriptions.492

Adding predicate descriptions in the few-shot493

setting improves the BLEU score to 20.54 on the494

HARD partition (Table 3, row 18). For the prompt495

tuned GPT2-XL, BLEU score improves to 33.1496

(row 19). However, we do not see any gains for497

0-shot GPT or T5 (row 17 and 20). Overall, GPT2-498

XL benefits from predicate descriptions on exam-499

ples where significant re-writing is needed, even500

when additionally prompt tuned. GPT2-XL with501

prompt tuning achieves competitive results with502

benchmark T5 on the HARD partition (33.1 vs503

38.49 BLEU).504

Generation Difficulty We now turn to a deeper505

analysis of the models and their behavior. Ta-506

ble 3 shows the performance of all models on the507

EASY and HARD partitions. All models have notice-508

ably worse performance on HARD examples, where509

more abstraction is needed – the performance gaps510

are very large. For example, the BLEU gap be-511

tween the two partitions for T5 (row 16) is similar512

to the gap between T5 and GPT2-XL 0-shot. The513

best performing model T5 (row 16), has a gap of 514

0.16 METEOR between the EASY and HARD par- 515

tition, while the GPT2-XL prompt tuned (row 14) 516

has the smallest difference in performance between 517

the partitions. In terms of generalizing to new rela- 518

tion types and domains where more abstraction is 519

needed, prompt tuning may be a better approach.10 520

It is clear that these models do well overall 521

in their ability to copy the input, but do poorly 522

when significant rewriting is required. In many 523

domains, we may prefer models with more “in- 524

teresting” rewrites, a task at which these models 525

do not do well. On the other hand, DART is a 526

mostly automatically derived dataset, with signifi- 527

cant errors in some examples. These examples may 528

pervade the HARD partition. 529

Reranking GPT2-XL prompt tuned is both pa- 530

rameter efficient and generalizes very well to new 531

predicates. It also comes closest to the performance 532

of the state-of-the-art fine-tuned T5large. During 533

manual evaluation, we observe that this model 534

would often miss subject or object of the predicate 535

in its generations (see §7 for details). We can miti- 536

gate this problem without additional model training 537

through a reranking strategy to ensure that the se- 538

lected generation contains all relevant information. 539

We first create multiple candidate generations by 540

increasing beam size during decoding. Next, we 541

compute the percentage of head and tail entities 542

covered in the text. Finally, we pick the candidate 543

with the highest score.11 Row 5 and 15 show the re- 544

sults of reranking a GPT2-XL prompt tuned model. 545

Reranking moderately improves performance on 546

all partitions, and across all metrics except BLEU. 547

Training Curves Our experiments so far have 548

focused on GPT2-XL, demonstrating how effective 549

this model can be at utilizing small amounts of data 550

to improve on this task. We now turn to T5 and 551

ask a similar question: how much data does T5 552

require to do well on this task? Specifically, how 553

many examples are required for T5 to exceed the 554

performance of GPT2-XL with just three shots? 555

We fine-tune T5 on increasingly larger amounts 556

of training data. We start off with an off-the-shelf 557

T5 model with no additional training. We then vary 558

10Note that our goal here is not to beat the previous state-
of-the-art but rather to make recommendations for adapting
PLMs for low-resource data-to-text generation

11We use a beam size of 20 during decoding. Prior to
measuring the entity coverage in the candidates, we normalize
the text by lower casing and removing special characters.
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Figure 3: Impact of fine-tuning data size on performance
of T5. Numbers reflect average performance over 5
different data samples, with standard error of the mean
indicated by bars.

the number of training examples in {10, 20, 50, 100,559

200, 500}.12 We repeat each setting five times by560

resampling a training set and fine-tuning T5, and561

report results for each training set size averaged562

cross all test partitions. Figure 3 shows the BLEU563

performance (y-axis) of T5 as a function of number564

of training examples (x-axis). Performance of the565

copy baseline, 0-shot, 3-shot, and prompt tuned566

GPT2-XL are indicated by horizontal lines. With-567

out any task-specific fine-tuning, T5 does slightly568

worse than the copy baseline, easily outperformed569

by 0-shot GPT2-XL. In settings without training570

data, GPT2-XL is the clear choice. T5 continues571

to lag behind GPT2-XL 3-shot until trained on at572

least 200 examples, and meets the performance of573

GPT2-XL prompt tuned after training on 500.574

7 Error Analysis575

To further examine the pathological behaviors of576

the models, we randomly sampled 50 examples577

from the DART test set for manual evaluation.578

For each example, the output of T5 and GPT2-579

XL in the 3-shot, prompt tuned, and reranked set-580

tings were presented to two annotators.13 We also581

showed the reference text as another candidate,582

with the generating model identity hidden. An-583

notators evaluated output quality based on three584

criteria: (1) whether it contains hallucinated con-585

tent (hallucination) (2) whether the text is missing586

information from the input records (missing info),587

and (3) fluency. Annotators indicated agreement588

with each of these Likert items on an ordinal scale589

12We use the same hyper-parameters as before except for
the number of training epochs and batch size. To avoid over-
fitting on small data, we only fine-tune for 1 epoch. We use
batch size of 2.

13Performed by two of the paper authors.

Source Hallucination ↓ Missing Info ↓ Fluency ↑
Reference 1.53 1.19 4.51
GPT2-XL(3-shot) 3.26 3.61 3.17
GPT2-XL-PT 1.73 3.35 4.64
GPT2-XL-PT + Ranking 1.73 2.79 4.75
T5 large 1.16 1.23 4.79
Agreement 0.64 0.77 0.50

Table 4: Results of the qualitative evaluation. ↓: Lower
is better. ↑: Higher is better. Inter-annotator agreement
is measured by Kendall’s τ rank correlation coefficient.

from 1 (strongly disagree) to 5 (strongly agree). 590

Table 4 presents average annotator score accord- 591

ing to each of these Likert items. GPT2-XL in 592

the 3-shot setting often misses information. No- 593

tably, both variations of the prompt-tuned generate 594

very fluent text. Reranking improves the quality of 595

the generations by decreasing the amount of miss- 596

ing information and improving fluency. While the 597

best GPT2-XL model does very similar to T5large 598

in terms of fluency, on average it hallucinates or 599

misses information more often. 600

8 Conclusion and Future Work 601

We systematically analyze the performance of a 602

generative language model (GPT2-XL) for data-to- 603

text generation in a low-resource setting by exam- 604

ining performance on unseen examples. Custom 605

prompting and domain knowledge (predicate de- 606

scriptions) can improve the performance of off-the- 607

shelf GPT2-XL in a data- and parameter-efficient 608

manner. We conduct experiments with varying 609

training set sizes to make recommendations on a 610

suitable approach for data-to-text generation de- 611

pending on the amount of available training data. 612

When training data is unavailable, GPT2-XL 613

(0-shot) is better than T5large. With a small num- 614

ber of examples (3-shot), GPT2-XL outperforms 615

T5large until at least 200 training examples are avail- 616

able. We also perform an error analysis and find 617

that prompt tuned GPT2-XL generations can be 618

improved by decreasing the incidence of missing 619

information. We also find that the performance gap 620

between easy and hard DART examples is massive 621

for T5large. These findings suggest that future work 622

should consider more challenging examples, and 623

should consider ways in which to generate larger 624

variations for expressing a predicate type. This 625

should include considerations of more challenging 626

and disparate domains, such as finance or medicine. 627

In these cases, we may see benefits from our pro- 628

posed predicate descriptions, which did best in the 629

low-resource, hard examples. 630
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A Data Splits841

Examples from the EASY and HARD partitions are842

shown in Figure 4. The copy baseline achieves843

good results on the EASY examples. On the other844

hand, the examples from the HARD partition are845

more abtractive – generating descriptions for these846

examples requires substantial rewriting. In several847

cases, the reference text has a low fidelity with848

respect to the input record. For example, when one849

or more triples in the input are not described in the850

reference text. This is a data quality issue and is a851

common occurrence in DART.852

B Results853

Experimental results on SEEN and UNSEEN parti-854

tions are presented in Table 5. As reported in § 6,855

T5 performs well on this task (row 6). The 0-shot856

GPT2-XL outperforms the copy baseline in terms857

of all metrics except for chrF++ (row 2). GPT2-XL858

with a 3-shot prompt does much better than the 0-859

shot case. Prompt tuning improves the results both860

in terms of BertScore and BLEURT (row 4). We861

see another gain in the performance by adding re-862

ranking (row 5). These trends are consistent with863

what we observed for BLEU, METEOR, and TER864

in Table 2.865

We do not see a consistent performance drop866

going from SEEN to the UNSEEN partition when867

looking at chrF++, BertScore, and BLEURT. This868

is somewhat surprising, but also hard to interpret869

given that chrF++ relies on character n-gram and870

BertScore and BLEU rely in contextualized embed-871

dings.872

C Sample Model Output873

In this section, we share a few samples from the874

DART test set as well as outputs generated by dif-875

ferent models. We qualitatively compare different876

models and highlight a few of their common errors.877

Task Prompting As seen in Examples 1 and 2,878

GPT2-XL in the 0-shot setting often copies the879

input. GPT2-XL with a 3-shot prompt generates a880

much more fluent text than the 0-shot case. This881

can be seen in Examples 2, 4, and 5. Although882

GPT2-XL with few-shot prompting generates more883

fluent text, it often generates hallucinated content884

(see Example 3).885

We see that prompt tuning further boosts our886

performance and generates a more coherent text in887

comparison to few-shot GPT2-XL (see Example 1888

and 3). Moreover, it hallucinates much less than 889

the few-shot setting (e.g. see Example 3). We also 890

saw this previously in Table 2, as the prompt tuned 891

GPT2-XL achieved lower TER score. In contrast 892

to T5 training, in which all model parameters are 893

updated, prompt tuning adapts only a small fraction 894

of the model parameters. However, in many cases 895

the generated text is as good as the benchmark T5 896

(see Example 2). Despite generating very fluent 897

text, prompt tuned GPT2-XL often misses infor- 898

mation from one or more relations (Examples 1, 3, 899

and 4). 900

Reranking Reranking based on entity coverage 901

solves the missing information issue in several 902

cases. For example, in Example 3, the entity Alvis 903

Speed 25 which is missed by the prompt tuned 904

GPT2-XL, is covered after reranking. The benefit 905

of reranking also can be seen in Example 4. On the 906

other hand, in Example 2, ranking does not solve 907

the missing information issue. This is because argu- 908

ment "yes" of "family-friendly" probably would not 909

naturally appear in generated text (e.g., "Yes, this 910

is a family-friendly restaurant"). For such cases, 911

the reranking heuristic will not provide useful feed- 912

back. 913

Predicate Descriptions As mentioned in Sec- 914

tion 6.1, in several cases, the description extracted 915

from WordNet and WikiData are trivial. In Exam- 916

ple 2, the definition of relations food, area, and 917

near add no information beyond the word itself, 918

and therefore not helpful for the model. On the 919

other hand, it seems like defining relation MAN- 920

UFACTURER in Example 3 has improved genera- 921

tions of GPT2-XL in both the few-shot and prompt- 922

tuned settings. In some cases, while the predicate 923

description can be potentially useful, the model ig- 924

nores the augmented description. For example, in 4, 925

the definition of relation GENRE is not covered in 926

the generated text of any of models. 927
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ID Model chrF++ ↑ BERTScore(F1) ↑ BLEURT ↑
SEEN UNSEEN ALL SEEN UNSEEN ALL SEEN UNSEEN ALL

1 copy baseline 0.33 0.34 0.33 0.83 0.85 0.83 -0.59 -0.29 -0.58
2 GPT2-XL (0-shot) 0.34 0.34 0.34 0.88 0.87 0.88 -0.46 -0.30 -0.46
3 GPT2-XL (3-shot) 0.48 0.44 0.48 0.91 0.91 0.91 -0.19 -0.17 -0.19
4 GPT2-XL-PT 0.40 0.44 0.40 0.92 0.92 0.92 -0.11 0.06 -0.10
5 GPT2-XL-PT + Reranking 0.46 0.47 0.46 0.92 0.92 0.92 -0.01 0.12 0.00
6 T5large 0.64 0.64 0.64 0.95 0.95 0.95 0.38 0.44 0.39

+ Description
7 GPT2-XL (0-shot) 0.31 0.23 0.30 0.88 0.86 0.88 -0.46 -0.54 -0.46
8 GPT2-XL (3-shot) 0.47 0.42 0.46 0.91 0.90 0.91 -0.19 -0.16 -0.19
9 GPT2-XL-PT 0.39 0.45 0.39 0.91 0.92 0.91 -0.14 0.09 -0.13
10 T5large 0.64 0.63 0.64 0.95 0.95 0.95 0.38 0.43 0.38

Table 5: Performance on the DART test set, partitioned by whether predicates are SEEN, UNSEEN, and overall. ↑:
Higher is better.
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EASY Examples

Input: <H> Adolfo Suárez Madrid–Barajas Airport <R> LOCATION <T> Madrid, Paracuellos de Jarama, San Sebastián de
los Reyes and Alcobendas

Reference: Adolfo Suárez Madrid–Barajas Airport can be found in Madrid, Paracuellos de Jarama, San Sebastián de los
Reyes and Alcobendas.’

###
Input: <H> Alaa Abdul-Zahra <R> CLUB <T> Sanat Mes Kerman F.C.

Reference: Alaa Abdul-Zahra’s club is Sanat Mes Kerman F.C.

###
Input: <H> Alderney Airport <R> RUNWAY_NAME <T> "14/32"

Reference: Alderney Airport runway name is 14/32

###
Input: <H> Asunción <R> IS_PART_OF <T> Gran Asunción

Reference: Asunción is a part of Gran Asunción.

###
Input: <H> Airey Neave <R> AWARD <T> Military Cross

Reference: Airey Neave was awarded the Military Cross.

HARD Examples

Input: <H> 2004 <R> MOVEMENTS <T> Promotion Playoffs - Promoted <H> 2004 <R> POSITION <T> 1st

Reference: Sports stats for Ljungskile SK

###
Input: <H> Khokhan Sen <R> MATCHES <T> 14 <H> Khokhan Sen <R> INNINGS <T> 21 <H> Khokhan Sen <R>
RANK <T> 9 <H> Khokhan Sen <R> CAUGHT <T> 20 <H> Khokhan Sen <R> STUMPED <T> 11 <H> Khokhan Sen
<R> DISMISSALS <T> 31

Reference: The innings when caught was 20 was 21

###
Input: <H> thierry morin <R> POSITION <T> defender <H> [TABLECONTEXT] <R> NAME <T> thierry morin <H>
[TABLECONTEXT] <R> [TITLE] <T> Players

Reference: Thierry Morin was a defender for Paris Saint-Germain.

###
Input: <H> ALV X-1 <R> COUNTRY_ORIGIN <T> United States <H> United States <R> ETHNIC_GROUP <T>
African Americans <H> United States <R> DEMONYM <T> Americans

Reference: Originating in the United States and by Americans, some of African decent is the ALVX-1.’, ’ALVX-1 comes
from the US where Americans live and African Americans are an ethnic group

###
Input: <H> past tense <R> SEASON_# <T> 4 <H> past tense <R> ORIGINAL_AIR_DATE <T> october29,2008 <H> past
tense <R> NO._IN_SERIES <T> 13 <H> past tense <R> U.S._VIEWERS_(MILLIONS) <T> 7.93 <H> past tense <R>
DIRECTED_BY <T> michael pressman <H> past tense <R> WRITTEN_BY <T> craig turk

Reference: Past Tense was the 13th episode in the series.

Figure 4: Examples from the EASY and HARD partition
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Example #1

Input: <H> Aleksey Chirikov (icebreaker) <R> SHIP_BEAM <T> 21.2 <H> Aleksey Chirikov (icebreaker) <R> STATUS
<T> ""In service"" <H> Aleksey Chirikov (icebreaker) <R> BUILDER <T> Helsinki <H> Aleksey Chirikov (icebreaker)
<R> BUILDER <T> Arctech Helsinki Shipyard
Reference: The icebreaker Aleksey Chirikov was built at the Arctech Helsinki Shipyard in Helsinki. The Aleksey Chirikov
(icebreaker) is in service and its ship beam is 21.2
Description: BUILDER means a person who constructs something

GPT2-XL (0-shot): <H> Aleksey Chirikov (icebreaker) <R> SHIP_BEAM <T> 21.2 <H> Aleksey Chirikov (icebreaker)
<R> STATUS <T> "In service" <H> Aleksey Chirikov (icebreaker) <R> BUILDER <T> Helsinki <H> Aleksey Chirikov
(icebreaker) <R> BUILDER <T>
GPT2-XL (3-shot): Aleksey Chirikov (icebreaker) is of type 21.2.
GPT2-XL (3-shot) + Description: Aleksey Chirikov (icebreaker) was a Russian icebreaker.
GPT2-XL-PT: Aleksey Chirikov (icebreaker) was built by Arctech Helsinki Shipyard.
GPT2-XL-PT + Description: Aleksey Chirikov (icebreaker) was built by Arctech Helsinki Shipyard.
GPT2-XL-PT + Reranking: Aleksey Chirikov (icebreaker) is in service at Arctech Helsinki Shipyard.

T5large: The ship Aleksey Chirikov was built by Arctech, Helsinki Shipyard and has a ship beam of 21.2 metres. It is currently

in service.

Example #2

Input: <H> The Mill <R> eatType <T> pub <H> The Mill <R> food <T> Fast food <H> The Mill <R> area <T> city centre
<H> The Mill <R> familyFriendly <T> no <H> The Mill <R> near <T> Café Sicilia
Reference: The Mill pub is near Café Sicilia in the city centre that isn’t family friendly, is average and has Fast food.
Description: eatType means type of food served by a restaurant or restaurant chain. food means any substance that can be
metabolized by an animal to give energy and build tissue. area means area occupied by an object. near means move towards.

GPT2-XL (0-shot): Graph: <H> The Mill <R> eatType <T> pub <H> The Mill <R> food <T> Fast food <H> The Mill <R>
area <T> city centre <H> The Mill <R> familyFriendly <T> no <H> The Mill <R> near <T> Café Sicilia
English:
GPT2-XL (3-shot): The Mill is located in the city centre near Café Sicilia. It serves fast food in the price range of £20-25
with a moderate customer rating
GPT2-XL (3-shot) + Description: The fast food restaurant, The Mill, has an average rating of 3 out of 5 perhaps as it is not
friendly to kids. The Mill is located in the city centre area near Café Sicilia.
GPT2-XL-PT: The Mill is a fast food pub in the city centre near Café Sicilia.
GPT2-XL-PT + Description: The Mill is a family friendly pub near Cafe Sicilia.
GPT2-XL-PT + Reranking: The Mill is a fast food pub in the city centre near Café Sicilia.
T5large: The Mill is a fast food pub in the city centre near Café Sicilia.

Example #3

Input: <H> Alvis Speed 25 <R> MANUFACTURER <T> Alvis Car and Engineering Company <H> Alvis Car and
Engineering Company <R> LOCATION_CITY <T> Coventry
Reference: Alvis Speed 25 was made by the Alvis Car and Engineering Company of Coventry.
Description: MANUFACTURER means manufacturer or producer of this product.

GPT2-XL (0-shot): <H> Alvis Speed 25 <R> MANUFACTURER <T> Alvis Car and Engineering Company <H> Alvis
Car and Engineering Company <R> LOCATION_CITY <T> Coventry
GPT2-XL (3-shot): Alvis Speed 25 won the race in Coventry on April 25, 1996.
GPT2-XL (3-shot) + Description: Alvis Speed 25 is a car manufactured by Alvis Car and Engineering Company in Coventry,
England
GPT2-XL-PT: Alvis Car and Engineering Company is located in Coventry.
GPT2-XL-PT + Description: Alvis Speed 25 is manufactured in Coventry.
GPT2-XL-PT + Reranking: Alvis Speed 25 is manufactured by Alvis Car and Engineering Company in Coventry.

T5large: Alvis Car and Engineering Company is located in Coventry and manufactures the Alvis Speed 25.
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Example #4

Input: <H> Anders Osborne <R> ASSOCIATED_BAND_ASSOCIATED_MUSICAL_ARTIST <T> Galactic <H> Anders
Osborne <R> ASSOCIATED_BAND_ASSOCIATED_MUSICAL_ARTIST <T> Tab Benoit <H> Anders Osborne <R>
GENRE <T> Blues <H> Anders Osborne <R> ASSOCIATED_BAND_ASSOCIATED_MUSICAL_ARTIST <T> Billy Iuso
<H> Anders Osborne <R> ACTIVE_YEARS_START_YEAR <T> 1989
Reference: Anders Osborne musical career began in 1989. His career began in the blue’s genre. He has been associated
with the band, Galactic as well as Tab Benoit. Osborne also has ties to fellow musician Billy Iuso.
Description: GENRE means creative work’s genre or an artist’s field of work

GPT2-XL (0-shot): <H> Anders Osborne <R> ASSOCIATED_BAND_ASSOCIATED_MUSICAL_ARTIST <T> Galactic
<H> Anders Osborne <R> ASSOCIATED_BAND_ASSOCIATED_MUSICAL_ARTIST <T> Tab Benoit <H> Anders
Osborne <R> GENRE <T> Blues <H> Anders Osborne <R> ASSOCIATED_BAND_ASSOCIATED_M
GPT2-XL (3-shot): Anders Osborne is an English singer, songwriter and guitarist.
GPT2-XL (3-shot) + Description: Anders Osborne is an active musician and composer.
GPT2-XL-PT: Tab Benoit and Anders Osborne are associated with Galactic.
GPT2-XL-PT + Description: Tab Benoit and Anders Osborne are associated with Galactic.
GPT2-XL-PT + Reranking: Tab Benoit is associated with Galactic and Anders Osborne is associated with Billy Iuso.
T5large: Anders Osborne is associated with the band Galactic, Billy Iuso, Tab Benoit and the genre of Blues. His active years
start in 1989.

Example #5

Input: <H> Nurburgring <R> FASTEST_LAP <T> PSV Eindhoven <H> Nurburgring <R> WINNING_CLUB <T> A.C.
Milan
Reference: PSV Eindhoven had the fastest lab on the Nurburgring, and A.C. Milan was the winning club at that race.
Description: FASTEST_LAP means person who does the fastest lap during a motorsport race.

GPT2-XL (0-shot): <H> Nurburgring <R> FASTEST_LAP <T> PSV Eindhoven <H> Nurburgring <R> WINNING_CLUB
<T> A.C. Milan
GPT2-XL (3-shot): A.C. Milan had the fastest lap in the race won by PSV Eindhoven.
GPT2-XL (3-shot) + Description: A.C. Milan set the fastest lap at the Nurburgring when the winning team was PSV
Eindhoven.
GPT2-XL-PT: Nurburgring is the fastest lap at A.C. Milan.
GPT2-XL-PT + Description: PSV Eindhoven is the winning club at the Nurburgring.
GPT2-XL-PT + Reranking: Nurburgring is the fastest lap at A.C. Milan
T5large: A.C. Milan won the race where PSV Eindhoven had the fastest lap.
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