Low-resource Data-to-Text Generation Using Pretrained Language Models

Anonymous ACL submission

Abstract

Expressing natural language descriptions of
structured facts or relations — data-to-text gen-
eration — increases the accessibility of a di-
verse range of structured knowledge reposito-
ries. End-to-end neural models for this task
require a large training corpus of relations and
corresponding descriptions. While such re-
sources are unrealistic for every domain, we do
not fully understand how well different data-to-
text generation models can generalize to new re-
lations. This work presents an analysis of data-
to-text models for unseen relations based on
two pre-trained language models (PLMs): T5
and GPT-2. We consider different strategies, in-
cluding few-shot learning, prompt-tuning, and
incorporating other domain knowledge (natural
language description of the unseen relations) to
identify effective strategies and remaining chal-
lenges for improving performance of PLMs on
new relations.

1 Introduction

Structured data repositories, or knowledge bases,
contain a wealth of information organized to facil-
itate automated access and analysis. Automated
data-to-text systems can transform and organize
this knowledge into natural language text snip-
pets that broaden access (Gatt and Krahmer, 2018).
The input to these systems takes the form of re-
lations, or triples, and systems process triple sets
that consist of sets of subject, predicate and ob-
ject. Applications of this technology include story
or dialogue generation (Moon et al., 2019), open-
domain question-answering (Ma et al., 2021; Fan
et al., 2019), and text summarization (Wiseman
et al., 2017). Domains span journalism (Leppédnen
et al., 2017), weather forecasts (Ramos-Soto et al.,
2014; Mei et al., 2015), financial and sport cast-
ing (Plachouras et al., 2016; Chen and Mooney,
2008; van der Lee et al., 2017), and summarizing
patient medical histories (Portet et al., 2009).

Historically, data-to-text systems included
pipeline approaches with customized models (Gar-
dent et al., 2017). In recent years, pretrained
Transformer-based language models (Devlin et al.,
2018; Liu et al., 2019; Radford et al., 2019) have
come to dominate this task, just as they have other
NLP tasks. Recent examples include Mager et al.
(2020) and Kale and Rastogi (2020), who use mod-
els like GPT-2 (Radford et al., 2019) and T5 (Raf-
fel et al., 2019) to generate language descriptions
for relations. To support these types of systems,
Nan et al. (2020) introduce DART, an open-domain
and large data-to-text generation corpus. Models
trained on DART, both larger and more diverse
than previous corpora, improve the performance of
BART (Lewis et al., 2019) and T5 on the standard
WebNLG challenge (Gardent et al., 2017).

This approach requires a PLM to be fine-tuned
on a task-specific in-domain dataset (Howard and
Ruder, 2018; See et al., 2019; Keskar et al., 2019).
The promising results using this paradigm belie the
reality that in spite of its aspirations, most domains
and relations that one could express fail to appear
in DART. Furthermore, the extensive development
effort behind DART, and other similar datasets,
underscores the challenge of creating an in-domain
dataset for each task of interest. Unfortunately,
PLMs fine-tuned on a specific domain often do
not generalize to a new domain (Harkous et al.,
2020). For example, a model trained to generate
text for sports relations (DEFEATED, COACHED)
is unlikely to generate sensible text for medical
relations (DIAGNOSED, INFLAMES).

A variety of methods have emerged within PLM
research to address domain or task adaptation. For
example, GPT style models have demonstrated
improved performance on a new task via few-
shot learning with a handful of examples (Chen
et al., 2019). Other strategies, such as prompt tun-
ing (Lester et al., 2021), by only updating a small
subset of model parameters, can adapt PLMs to

perform specific down-stream tasks.

While great progress has been made in utiliz-
ing PLMs for data-to-text generation, questions
regarding their adaptation to new domains are unan-
swered. More specifically, it is not clear how well
data-to-text models generalize to new relations and
how effective these adaptation strategies are at miti-
gating the challenges of adapting to a low-resource
setting. We conduct an evaluation of PLMs for
data-to-text generation focused on new (unseen)
relations (predicates). We consider how GPT-2
coupled with strategies such as few-shot training,
prompt tuning, and predicate description augmen-
tation performs on new domains as compared to
a baseline (state-of-the-art) TS model fine-tuned
on an open-domain dataset. We show that while
an out-of-the-box GPT-2 model performs poorly
on DART, its performance can be drastically im-
proved by these adaptation methods. We make the
following contributions:

* We evaluate GPT2-XL for data-to-text gen-
eration. While the zero-shot model performs
poorly, we evaluate several strategies to im-
prove performance, including few-shot learn-
ing and prompt tuning. Both provide signifi-
cant improvements on the DART dataset.

* We propose a post hoc re-ranking strategy for
GPT-2 that further improves results without
requiring additional training data.

* We show how T5 performance compares to
GPT2-XL depending on the amount of super-
vised training data available.

* We evaluate all models on unseen predicates
and show how various approaches enable gen-
eralization to new relations.

* We evaluate models separately on easy and
hard instances to highlight remaining chal-
lenges for this task.

* We conduct a qualitative evaluation of the
models to identify pathological behaviors.

We provide recommendations for future model
and dataset research.

2 Background and Related Work

In the task of data-to-text generation, we are pro-
vided a set of triples that include a predicate, sub-
ject, and object. The system then produces a text

snippet expressing the predicate in natural lan-
guage. Figure 2 shows examples of predicates
from sports domains. The system can be given
a set of triples with related predicates (e.g., CLUB,
LEAGUE, FORMER_TEAM) and must gener-
ate text that expresses the facts encoded by these
relations. The resulting text is typically evaluated
by comparison to a set of reference texts, which
represent various ways of expressing this triple set.

Variations in the formulation of this task depend
on the structure of the relations (e.g., tables, triples),
the domain of the task (single or open domain), and
the source of the data (manually created, automati-
cally derived).

Harkous et al. (2020) follow a generate-and-
rerank paradigm to improve the semantic fidelity
of the generated text by fine-tuned GPT-2 model.
More recently, Ribeiro et al. (2020) propose a
new task-adaptive pretraining strategy to adapt
BART (Lewis et al., 2019) and T5 (Raffel et al.,
2019) models for data-to-text generation. They
show that adding an intermediate task-adaptive pre-
training step between the task-independent pretrain-
ing and fine-tuning further improves the perfor-
mance of these models on data-to-text generation.

Creating a large enough dataset for fine-tuning
PLMs for data-to-text generation is not feasible
or cost-efficient.! Weakly supervised annotation
methods (e.g., based on identifying sentences in a
corpus that are likely to express a data record) also
include a significant amount of effort and often re-
sult in annotations that are low in fidelity between
data records and the corresponding textual expres-
sion (Mintz et al., 2009). Training NLG models on
such data can result in pathological outputs with
missing information or hallucination (Dusek et al.,
2019).

3 Model Adaptation

As a supervised task, data-to-text generation sys-
tems rely on previously observed examples to learn
the correct generation for a predicate. What hap-
pens when the model encounters a new predicate?
What about predicates from a new domain?
Previous work included separate evaluations for
“unseen” predicates (Gardent et al., 2017). How-
ever, strategies to improve unseen predicates fo-
cused on data augmentation: finding new training

"Throughout the paper we use the term low-resource do-
mains to refer to domains and applications for which a human
annotated data-to-text dataset is not readily available. This
includes domains such as finance and medicine.

Zero-shot Prompt
Translate Graph to English:

Graph: Alan Martin (footballer)
Hamilton Academical F.C.

English:

CLUB

Zero-shot Prompt + Relation Description
Translate Graph to English:
Definition: club is an organization of players and man-
agers associated with a particular football team.

Graph: Alan Martin (footballer)
Hamilton Academical F.C.

English:

CLUB

Few-shot Prompt

Translate Graph to English:

Graph: Paulo Sousa CLUB ACF
Fiorentina

English: Paulo Sousa plays for ACF Fiorentina.

Graph: Dave Challinor CLUB Col-
wyn Bay E.C.

English: Dave Challinor plays for Colwyn Bay F.C.
Graph: Alan Martin (footballer) CLUB

Hamilton Academical F.C.
English:

Figure 1: A customized 0-shot prompt for GPT

data that included the unseen predicates rather than
different modeling techniques. Evaluation of dif-
ferent models will be our focus.

How should we conceptualize unseen predi-
cates? Are these out of vocabulary tokens, where
we could expect a model to generalize? For ex-
ample, the new predication MANAGER can be in-
formed by a seen predicate of COACH. Alterna-
tively, unseen predicates may be a new task, e.g.,
the predicate CLINICAL_DIAGNOSIS when training
data included only sports relations.

We study this problem using PLMs like GPT-
2, which excel at adapting to new tasks. In con-
trast to “supervised” models like T5,? which expect
task-specific training data, generative PLMs can ob-
tain reasonable performance in a few shot setting.
Therefore, we will evaluate their efficacy for data-
to-text generation in a low-resource setting: unseen
predicates.

While PLMs can be fine-tuned on new data, their
increasing size and training requirements disfavors
this approach. Instead, current work assumes a
single PLM capable of performing multiple down-
stream tasks (Lester et al., 2021). We adopt GPT2-
XL, a decoder-only Transformer (Vaswani et al.,
2017) with 1.5B parameters pre-trained for lan-
guage modeling (Radford et al., 2019).> We utilize
GPT2-XL as a data-to-text generation model in var-
ious low-resource settings. Instead of fine-tuning

2We note that new findings (Sanh et al., 2021) has demon-
strated T5 can handle zero-shot task adaptation with the right
prompts; this is an evolving issue.

3WebText (the training dataset) includes content of more
than 8 million documents with outbound links from Reddit, a
social media platform. Wikipedia (the main data source for
DART) is excluded.

Figure 2: A customized 3-shot prompt for GPT

the language model to predict a textual description
given the input data record (Mager et al., 2020; Nan
et al., 2020; Ribeiro et al., 2020), we investigate
customized prompting and tuning GPT2-XL (Rad-
ford et al., 2019), which is better suited to applica-
tions for which little to no data is available.

3.1 Zero-shot Setting

We start by evaluating GPT2-XL in the zero-shot
setting, an especially challenging setting due to
a lack of coverage in the training data of pair-
ings between structured records and unstructured
text (Gong et al., 2020). Ribeiro et al. (2020) han-
dled this by including an additional pretraining step.
Our focus is on an off-the-shelf GPT2-XL model.
We format the input data using the data-to-text gen-
eration infix and prefix formatting of Ribeiro et al.
(2020) (example in Figure 1). We provide no addi-
tional context or task-specific training.

3.2 Few-shot Setting

We next consider a few-shot setting by augmenting
the format of the zero-shot input with reference
generations from the training corpus. We evaluate
inputs with three examples (3-shot). See Figure 2
for an example. For predicates “seen” in the train-
ing set, we select at random three examples of the
same predicate. For “unseen” predicates — not ex-
amples in the training set — we randomly select
three examples. Other work has found that careful
shot selection based on input text similarity can be
beneficial (Liu et al., 2021a). However, it’s less
clear how this would apply to unseen predicates.
We leave this for future work.

3.3 Prompt Tuning

The expected task for a PLM is indicated by the
choice of prompt; ours (Figure 1) follows prior
work (Ribeiro et al., 2020; Nan et al., 2020). The
prompt includes a prefix (“Graph”) and infix token
(“English”) that indicate the start of the input and
the start of the expected output. Auto-regressive
language models are sensitive to the choice of
prompt, and significant effort is needed to craft
effective prompts (Liu et al., 2021b).

Lester et al. (2021) proposed an alternative
method: prompt tuning. Instead of using discrete
prompt tokens, “soft-prompts” are embeddings that
are learned through back-propagation. We follow
previous work (Lester et al., 2021; Chowdhury
et al., 2022) and use a generic sequence of tokens
to denote the prompt prefix p1.s = (p1,p2,....Ps)
and infix ¢1.4 = (q1, g2,q:). The model observes
input p1.s <H> 11 <R> x9 <T> x3 q1.4, Where 1,
x9 and x3 are strings from the example.

The objective during prompt-tuning is to maxi-
mize the probability of output sequence ¥;.,, given
input data record, prefix pi.s, and infix ¢.;. Dur-
ing training however, only the embedding of the
prompt tokens can be updated. Unlike fine-tuning
which updates all model parameters on the target
task, prompt tuning tunes a small number of param-
eters while keeping most of the language model
fixed. Prompt tuning updates less than 0.01% of
the model parameters, whereas other methods like
prefix tuning (Li and Liang, 2021) update 0.1-1%
of the model parameters. While this requires use
of the full training set, as opposed to few shot train-
ing, it illuminates the abilities of GPT2-XL given
access to such data.

3.4 Domain Knowledge

We explore another way of improving model per-
formance in a low resource setting: providing defi-
nitions for predicates. In many domains, we may
find a knowledge base containing many predicates,
and definitions for those relations, but no examples
of sentences expressing those relations. In these
cases, we want to enhance the context of the PLM
with predicate definitions. For examples, for the tu-
ple <H> Genuine Parts <R> DISTRIBUTOR <T>
automotive and industrial replacement parts we
may know that DISTRIBUTOR means "someone
who markets merchandise". This may be helpful to
a model that was never exposed to this predicate at
training time.

We source predicate definitions for our data from

WordNet, a lexical database in English (Miller,
1995), and WikiData.* We use WikiData since
Wikipedia was the source of many relations in the
DART data.’>. An example of the input prompt en-
hanced with the “definition™ appears in Figure 1.
We also consider using predicate descriptions in
combination with prompt tuning.

3.5 TS5

We compare various settings of GPT2-XL with
TSarge (Raffel et al., 2019), a Transformer encoder-
decoder architecture with 770M parameters for text
generation. The model is pretrained with a de-
noising objective on a variety of NLP tasks using
the web-extracted C4 corpus. Unlike a GPT style
model, the denoising objective means an off-the-
shelf model does poorly on unseen tasks, such as
data-to-text generation (Raffel et al., 2019; Lester
et al., 2021). Therefore, we follow Nan et al.
(2020) and fine-tune T5pyee on the task-specific
data. While this model requires a large amount
of supervised examples, it attains state of the art
performance on this task.

4 Dataset

For our experiments we use DART (Nan et al.,
2020), the largest publicly available open-domain
data-to-text generation corpus. DART relies on
data from Wikipedia as well as two other com-
monly used data sets for this task: WebNLG (Gar-
dent et al., 2017) and E2E (Novikova et al., 2017).
Each instance includes a triple set (a set of one or
more predicates and their labels) and a text snip-
pet that expresses all relations in the triple set in
natural language. We choose DART due to its size
and wide coverage of predicate types. Relevant
DART statistics appear in Table 1. We use the
original train, development, and test splits for our
experiments.®

Data Splits: The DART test set includes 5097
examples, of which 4826 (94.4%) include at least
one relation type that appears in the training set.
We represent this subset as the SEEN partition. The
remaining 271 instances (5.3%) are considered UN-
SEEN. Note that the Nan et al. (2020) include an

*wikidata.org

SDART includes predicates such as
MARGIN_OF_VICTORY and INTERMEDI-
ATE_(SOUTH)_WINNERS Since descriptions for such
relations cannot be found verbatim in WordNet or WikiData,
no description is added to those cases.

®Nan et al. (2020) use version v1.0.0 of DART, whereas
we use the publicly available version, v1.1.1.

Train Dev Test

Size 30,526 2768 5097
#Unique relation types 4221 419 494
#Ref per example min/avg/max ~ 1/2.0/48 1/2.5/33 1/2.4/35
#Triples per record min/avg/max 1/3.3/10 1/3.7/8 1/3.6/7

Table 1: Descriptive statistics of the DART version 1.1.1

evaluation on the “unseen” portion of WebNLG.
However, in that case “unseen” means that the rela-
tions do not appear in the WebNLG training data,
while they may still appear in the DART training
data. Our splits ensure that the UNSEEN partition
only contains predicates not seen during training.

To support additional system analysis, we create
an additional partition of the test data: EASY and
HARD. We determine whether an instance is HARD
based on the similarity of the input relation to the
reference text. In many cases the generation has
high lexical overlap with the input data, while in
other cases the generation is non-trivial. Examples
of these in shared in Appendix A. To identify these
easy and hard cases, we use BERTScore (Zhang
et al., 2019) to measure the similarity of the in-
put data records with respect to the reference. We
rank the input/output pairs based on the computed
BertScore (F1) and include the top 10% (510 ex-
amples) in the EASY partition and bottom 10% in
the HARD partition.

5 Experimental Setup

Model Training Our experiments use the DART
dataset with existing train/dev/test splits.” Fol-
lowing Harkous et al. (2020), we add special to-
kens <H>, <R>, and <T> before the head entity,
the predicate and tail entity of each triple respec-
tively. In our experiments, we use the pretrained
models GPT2-XL and TS5y released by Hugging
Face (Wolf et al., 2019).

For the few-shot experiments, we use GPT-2
tokenizer to split input data records into special
symbols and subword units. We use beam search
with beam size of three for decoding. We apply
light post-processing to the generated text to re-
move the input prompt from the newly generated
tokens and truncate generated text at newline char-
acters. We set maximum generated tokens to 100
and repetition penalty to 1.01 for our experiments.

"In the DART dataset, some data records are paired with
more than 30 references. Nan et al. (2020) do not report the
number of references used for their experiments. However in
their adaptation of Ribeiro et al’s fine-tuning script (Ribeiro

et al., 2020) they only use three references. We follow their
methodology and only use up to three references per example.

For our prompt tuning experiments we train the
GPT2-XL for auto-regressive language modeling
on one NVIDIA V100 GPU with 32GB of mem-
ory, for a single epoch on DART train set with
prefix and infix length of 8, respectively. We use
the Adam optimizer (Kingma and Ba, 2014) with
learning rate 0.1 and 100 warm up steps for the
linear learning rate scheduler. We use a training
batch size of 2, and accumulate the gradient for 32
steps before updating weights (effective batch size
of 64). For decoding, we use the same parameters
as the previous setting.

We use the scripts from Ribeiro et al. (2020) to
finetune TS5 on DART, using identical hyperparam-
eter settings.® We use the Adam optimizer with an
initial learning rate of 3e-5 and a linearly decreas-
ing learning rate schedule. We fine-tune the model
on four GPUs for a maximum of 100 epochs and
stop training if the performance does not improve
on the dev set for 15 epochs. We decode with beam
search with beam size 3. Each epoch of training
takes approximately 2 hours for each model.

Finally, we include a baseline system to bench-
mark performance of our machine learning models.
In a “copy baseline” we simply copy the input text
and remove the prefix tokens (<H>, <R>, <T>)
as well as special characters (e.g., underscores)
common in DART predicates. This method per-
forms well for examples with high lexical overlap
between triple set and reference generation.

Evaluation Metrics Following previous work,
we use automated metrics such as BLEU (Pap-
ineni et al., 2002), METEOR (Denkowski and
Lavie, 2014), TER (Snover et al., 2006), and
chrF++ (Popovié, 2015) for evaluating our gen-
eration results. In addition, we also report
BERTScore (Zhang et al., 2019) and BLEURT (Sel-
lam et al., 2020). These metrics go beyond surface
form similarities and use contextual embeddings to
measure semantic similarity between the generated
and reference text.”

6 Experiments

We evaluate GPT2-XL. with various input types
and TS5y, to answer several empirical questions.
First, how well does GPT2-XL perform on the data-

$https://github.com/UKPLab/
plms—graph2text (Apache 2.0 license)

"We use the evaluation scripts provided in the official
WebNLG challenge: https://github.com/WebNLG/
GenerationEval (MIT license)

https://huggingface.co/gpt2-xl
https://huggingface.co/t5-large
https://github.com/UKPLab/plms-graph2text
https://github.com/UKPLab/plms-graph2text
https://github.com/WebNLG/GenerationEval
https://github.com/WebNLG/GenerationEval

ID Model BLEU 1 METEOR 1 TER |
SEEN UNSEEN ALL SEEN UNSEEN ALL SEEN UNSEEN ALL
1 copy baseline 448 5.07 450 | 0.28 031 0.28 | 0.92 0.86 0.92
2 GPT2-XL (0-shot) 13.13 13.88 13.26 | 0.23 0.27 023 | 0.69 0.78 0.70
3 GPT2-XL(3-shot) 26.74 2372 26.65 | 0.29 0.28 0.29 | 0.85 0.78 0.84
4 GPT2-XL-PT 33.55 20.86 3341 | 0.24 0.28 0.24 | 0.65 0.61 0.65
5 GPT2-XL-PT + Reranking | 31.03 31.67 31.09 | 0.28 030 0.28 | 0.63 0.58 0.63
6 TS1arge 48.41 4348 4825 | 0.39 040 0.39 | 046 0.44 0.46
+Descriptions
7 GPT2-XL(0-shot) 11.45 8.05 114 | 0.20 0.19 0.20 | 0.70 1.00 0.72
8 GPT2-XL(3-shot) 26.32 21.30 26.14 | 0.28 027 0.28 | 0.83 0.89 0.83
9 GPT2-XL-PT 33.96 31.37 3385 | 0.24 0.28 0.24 | 0.66 0.59 0.66
10 TSiarge 48.56 4382 484 | 0.39 039 0.39| 046 045 0.46
Table 2: Model results on test set of the DART dataset. 1: Higher is better. |: Lower is better.

D Model BLEU 1 METEOR 1 chrF++ 1 TER | BERTScore(F1) T BLEURT ¢

EASY HARD EASY HARD EASY HARD EASY HARD EASY HARD EASY HARD
11 copy baseline 1800 201 041 023 045 032 079 099] 088 0,80 012 -1.00
12 GPT2-XL (0-shot) 2220 692 034 0.18| 047 031| 083 064 | 090 0.88 | -009 -0.54
13 GPT2-XL (3-shot) 34.97 188 | 034 006| 054 007| 08 038| 092 093 | -009 -0.11
14 GPT2-XL-PT 4281 3178 | 035 023| 057 039| 048 069 | 094 092 | 031 -0.17
15 GPT2-XL-PT + Reanking | 4335 2579 | 037 029 | 060 048 | 047 066 | 094 093 | 034 -004
16 T5juge 70.54 3834 | 051 035| 080 057| 023 059 | 097 094 | 070 020
+Descriptions
17 GPT2-XL (0-shot) 1900 643| 030 017 | 042 031] 093 065| 0.89 0.88 | -020 -0.54
18 GPT2-XL (3-shot) 3419 2054 | 038 026| 061 044 | 092 081 | 093 091 | 007 -026
19 GPT2-XL-PT 4252 331| 034 023| 056 039 05 069 093 091 | 028 -0.21
20 TSjuge 70.06 3849 | 0.1 034 | 080 057| 023 060 097 094 | 069 020

Table 3: Model results on EASY and HARD partitions of the DART test set. T: Higher is better. |: Lower is better.

to-text task? Second, how well do GPT2-XL and
T51arge do on relations that does not appear in the
training set? Third, can we improve GPT2-XL
through the strategies proposed in §3?

6.1 Results

Table 2 presents model performance on the SEEN
and UNSEEN partitions. For evaluation results
based on chrF++, BERTScore, and BLEURT see
Table 5 in the Appendix B. As expected, the copy
baseline (row 1) does poorly across all conditions,
but consistently in the SEEN and UNSEEN partitions.
As reported previously (Nan et al., 2020), TS5 (row
6) does well at this task. Performance drops signifi-
cantly on the UNSEEN data because the model does
not observe these predicates during training.

We now turn to GPT2-XL, which is evaluated
on this task without any training data. Follow-
ing previous work we find that GPT2-XL makes
an effective zero-shot model, with results easily
surpassing the copy baseline. Notably, GPT2-XL
does similarly on either partition, since it was not
trained on any task data. Examining the output
more closely, we find that GPT2-XL mostly copies
the input; while it outperforms the copy baseline,
its strategy is largely the same. We include exam-

ples in Appendix C.

Task Prompting GPT2-XL with a 3-shot prompt
(row 3) does much better than the O-shot case.
Differences between the SEEN and UNSEEN set-
tings are mixed across metrics, despite the unseen
prompts including unrelated predicates; the model
still benefits from multiple shots even if they do
not contain the same predicates. While few-shot
prompting leads to a boost in BLEU and METEOR,
the translation edit rate (TER) increases by 0.14
point. We conjecture that this is due to an increase
in hallucinated content in this setting. We take a
closer at these pathological behaviors in §7. Crit-
ically, the performance gap between TS5, which is
trained on thousands of examples, and GPT2-XL
(0-shot), which is trained on non, is noticeably re-
duced with just three shots of in-context examples.

We next consider prompt tuning, which utilizes
all of the available training data to tune prompts for
GPT2-XL. In contrast to TS training, which modi-
fies all model parameters, prompt tuning adapts
only a tiny fraction of the model’s parameters
(< 0.01%). Despite this difference, we still see
another gain in performance (row 4). Not surpris-
ingly, utilizing the training data does better than

using just a few examples in the prompt. Addi-
tionally, prompt tuning also hallucinates less, as
evidenced by a lower TER score (0.65 vs 0.84 for
ALL). The prompt tuned GPT2-XL achieves the
highest BLEU score (29.86) on UNSEEN predicates
in comparison to the other variations of prompt-
ing. Overall, it is clear that in resource limited
settings, GPT2-XL can be improved with even a
few training examples, and substantially improved
with prompt tuning, despite keeping most of the
model’s parameters unchanged.

Predicate Descriptions We next turn to evalu-
ating models with predicate descriptions. As de-
scribed in §3.4, we augment each prompt with a
description of the predicate. We evaluate this aug-
mentation in the 0-shot (row 7), 3-shot (row 8) and
prompt tuning (row 9) settings, as well as in TS
training (row 10). We observe very small improve-
ments on the UNSEEN partition and only in cases
where model parameters are updated (rows 9 and
10). We suspect that as descriptions are sourced
from WordNet and WikiData, their format may not
be helpful for this task or our predicates could be
largely self-explanatory already. We conjecture
that in the 0-shot setting, conditioning the genera-
tion on descriptions might distract the model from
the head and tail entity. However, we suspect that
specialized domains such as finance or medicine
would benefit from added descriptions.

Adding predicate descriptions in the few-shot
setting improves the BLEU score to 20.54 on the
HARD partition (Table 3, row 18). For the prompt
tuned GPT2-XL, BLEU score improves to 33.1
(row 19). However, we do not see any gains for
0-shot GPT or TS (row 17 and 20). Overall, GPT2-
XL benefits from predicate descriptions on exam-
ples where significant re-writing is needed, even
when additionally prompt tuned. GPT2-XL with
prompt tuning achieves competitive results with
benchmark TS5 on the HARD partition (33.1 vs
38.49 BLEU).

Generation Difficulty We now turn to a deeper
analysis of the models and their behavior. Ta-
ble 3 shows the performance of all models on the
EASY and HARD partitions. All models have notice-
ably worse performance on HARD examples, where
more abstraction is needed — the performance gaps
are very large. For example, the BLEU gap be-
tween the two partitions for T5 (row 16) is similar
to the gap between TS5 and GPT2-XL 0-shot. The

best performing model TS (row 16), has a gap of
0.16 METEOR between the EASY and HARD par-
tition, while the GPT2-XL prompt tuned (row 14)
has the smallest difference in performance between
the partitions. In terms of generalizing to new rela-
tion types and domains where more abstraction is
needed, prompt tuning may be a better approach. '’

It is clear that these models do well overall
in their ability to copy the input, but do poorly
when significant rewriting is required. In many
domains, we may prefer models with more “in-
teresting” rewrites, a task at which these models
do not do well. On the other hand, DART is a
mostly automatically derived dataset, with signifi-
cant errors in some examples. These examples may
pervade the HARD partition.

Reranking GPT2-XL prompt tuned is both pa-
rameter efficient and generalizes very well to new
predicates. It also comes closest to the performance
of the state-of-the-art fine-tuned T5jage. During
manual evaluation, we observe that this model
would often miss subject or object of the predicate
in its generations (see §7 for details). We can miti-
gate this problem without additional model training
through a reranking strategy to ensure that the se-
lected generation contains all relevant information.

We first create multiple candidate generations by
increasing beam size during decoding. Next, we
compute the percentage of head and tail entities
covered in the text. Finally, we pick the candidate
with the highest score.!! Row 5 and 15 show the re-
sults of reranking a GPT2-XL prompt tuned model.
Reranking moderately improves performance on
all partitions, and across all metrics except BLEU.

Training Curves Our experiments so far have
focused on GPT2-XL, demonstrating how effective
this model can be at utilizing small amounts of data
to improve on this task. We now turn to TS5 and
ask a similar question: how much data does T5
require to do well on this task? Specifically, how
many examples are required for T5 to exceed the
performance of GPT2-XL with just three shots?
We fine-tune T5 on increasingly larger amounts
of training data. We start off with an off-the-shelf
T5 model with no additional training. We then vary

'Note that our goal here is not to beat the previous state-
of-the-art but rather to make recommendations for adapting
PLMs for low-resource data-to-text generation

""We use a beam size of 20 during decoding. Prior to
measuring the entity coverage in the candidates, we normalize
the text by lower casing and removing special characters.

— T5
copy baseline

GPT (0-shot)
--== GPT (3-shot)

—— GPTPT

40

3311
30

0 100 200 300 400 500
Training Examples

Figure 3: Impact of fine-tuning data size on performance
of T5. Numbers reflect average performance over 5
different data samples, with standard error of the mean
indicated by bars.

the number of training examples in {10, 20, 50, 100,
200, 500}.'> We repeat each setting five times by
resampling a training set and fine-tuning TS, and
report results for each training set size averaged
cross all test partitions. Figure 3 shows the BLEU
performance (y-axis) of TS as a function of number
of training examples (x-axis). Performance of the
copy baseline, 0-shot, 3-shot, and prompt tuned
GPT2-XL are indicated by horizontal lines. With-
out any task-specific fine-tuning, TS5 does slightly
worse than the copy baseline, easily outperformed
by 0-shot GPT2-XL. In settings without training
data, GPT2-XL is the clear choice. TS5 continues
to lag behind GPT2-XL 3-shot until trained on at
least 200 examples, and meets the performance of
GPT2-XL prompt tuned after training on 500.

7 Error Analysis

To further examine the pathological behaviors of
the models, we randomly sampled 50 examples
from the DART test set for manual evaluation.
For each example, the output of TS5 and GPT2-
XL in the 3-shot, prompt tuned, and reranked set-
tings were presented to two annotators.'3 We also
showed the reference text as another candidate,
with the generating model identity hidden. An-
notators evaluated output quality based on three
criteria: (1) whether it contains hallucinated con-
tent (hallucination) (2) whether the text is missing
information from the input records (missing info),
and (3) fluency. Annotators indicated agreement
with each of these Likert items on an ordinal scale

'2We use the same hyper-parameters as before except for
the number of training epochs and batch size. To avoid over-
fitting on small data, we only fine-tune for 1 epoch. We use

batch size of 2.
Bperformed by two of the paper authors.

Source Hallucination | Missing Info | Fluency 1

Reference 1.53 1.19 4.51
GPT2-XL(3-shot) 3.26 3.61 3.17
GPT2-XL-PT 1.73 3.35 4.64
GPT2-XL-PT + Ranking 1.73 2.79 4.75
T5 targe 1.16 1.23 4.79
Agreement 0.64 0.77 0.50

Table 4: Results of the qualitative evaluation. |: Lower
is better. 1: Higher is better. Inter-annotator agreement
is measured by Kendall’s 7 rank correlation coefficient.

from 1 (strongly disagree) to 5 (strongly agree).

Table 4 presents average annotator score accord-
ing to each of these Likert items. GPT2-XL in
the 3-shot setting often misses information. No-
tably, both variations of the prompt-tuned generate
very fluent text. Reranking improves the quality of
the generations by decreasing the amount of miss-
ing information and improving fluency. While the
best GPT2-XL model does very similar to T5jree
in terms of fluency, on average it hallucinates or
misses information more often.

8 Conclusion and Future Work

We systematically analyze the performance of a
generative language model (GPT2-XL) for data-to-
text generation in a low-resource setting by exam-
ining performance on unseen examples. Custom
prompting and domain knowledge (predicate de-
scriptions) can improve the performance of off-the-
shelf GPT2-XL in a data- and parameter-efficient
manner. We conduct experiments with varying
training set sizes to make recommendations on a
suitable approach for data-to-text generation de-
pending on the amount of available training data.

When training data is unavailable, GPT2-XL
(0-shot) is better than T5age. With a small num-
ber of examples (3-shot), GPT2-XL outperforms
TSarge until at least 200 training examples are avail-
able. We also perform an error analysis and find
that prompt tuned GPT2-XL generations can be
improved by decreasing the incidence of missing
information. We also find that the performance gap
between easy and hard DART examples is massive
for T5jaree. These findings suggest that future work
should consider more challenging examples, and
should consider ways in which to generate larger
variations for expressing a predicate type. This
should include considerations of more challenging
and disparate domains, such as finance or medicine.
In these cases, we may see benefits from our pro-
posed predicate descriptions, which did best in the
low-resource, hard examples.

References

David L Chen and Raymond J Mooney. 2008. Learning
to sportscast: a test of grounded language acquisition.
In Proceedings of the 25th international conference
on Machine learning, pages 128—135.

Zhiyu Chen, Harini Eavani, Wenhu Chen, Yinyin
Liu, and William Yang Wang. 2019. Few-shot nlg
with pre-trained language model. arXiv preprint
arXiv:1904.09521.

Jishnu Ray Chowdhury, Yong Zhuang, and Shuyi Wang.
2022. Novelty Controlled Paraphrase Generation
with Retrieval Augmented Conditional Prompt Tun-
ing. In Association for the Advancement of Artificial
Intelligence (AAAI). AAAL

Michael Denkowski and Alon Lavie. 2014. Meteor
universal: Language specific translation evaluation
for any target language. In Proceedings of the ninth

workshop on statistical machine translation, pages
376-380.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Ondfej Dusek, David M Howcroft, and Verena Rieser.
2019. Semantic noise matters for neural natural lan-
guage generation. arXiv preprint arXiv:1911.03905.

Angela Fan, Claire Gardent, Chloé Braud, and Antoine
Bordes. 2019. Using local knowledge graph con-
struction to scale seq2seq models to multi-document
inputs. arXiv preprint arXiv:1910.08435.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. The webnlg chal-
lenge: Generating text from rdf data. In Proceedings
of the 10th International Conference on Natural Lan-
guage Generation, pages 124-133.

Albert Gatt and Emiel Krahmer. 2018. Survey of the
state of the art in natural language generation: Core
tasks, applications and evaluation. Journal of Artifi-
cial Intelligence Research, 61:65-170.

Heng Gong, Yawei Sun, Xiaocheng Feng, Bing Qin,
Wei Bi, Xiaojiang Liu, and Ting Liu. 2020. Tablegpt:
Few-shot table-to-text generation with table structure
reconstruction and content matching. In Proceedings
of the 28th International Conference on Computa-
tional Linguistics, pages 1978—1988.

Hamza Harkous, Isabel Groves, and Amir Saffari. 2020.
Have your text and use it too! end-to-end neural
data-to-text generation with semantic fidelity. arXiv
preprint arXiv:2004.06577.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146.

Mihir Kale and Abhinav Rastogi. 2020. Text-to-text
pre-training for data-to-text tasks. In Proceedings of
the 13th International Conference on Natural Lan-
guage Generation, pages 97-102, Dublin, Ireland.
Association for Computational Linguistics.

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney,
Caiming Xiong, and Richard Socher. 2019. Ctrl: A
conditional transformer language model for control-
lable generation. arXiv preprint arXiv:1909.05858.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Leo Leppidnen, Myriam Munezero, Mark Granroth-
Wilding, and Hannu Toivonen. 2017. Data-driven
news generation for automated journalism. In Pro-
ceedings of the 10th International Conference on
Natural Language Generation, pages 188—197.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021a. What
makes good in-context examples for gpt-3? arXiv
preprint arXiv:2101.06804.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021b. Gpt
understands, too. arXiv preprint arXiv:2103.10385.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Kaixin Ma, Hao Cheng, Xiaodong Liu, Eric Nyberg,
and Jianfeng Gao. 2021. Open domain question an-
swering over virtual documents: A unified approach
for data and text. arXiv preprint arXiv:2110.08417.

Manuel Mager, Ramén Fernandez Astudillo, Tahira
Naseem, Md Arafat Sultan, Young-Suk Lee, Radu
Florian, and Salim Roukos. 2020. Gpt-too: A
language-model-first approach for amr-to-text gener-
ation. arXiv preprint arXiv:2005.09123.

Hongyuan Mei, Mohit Bansal, and Matthew R Walter.
2015. What to talk about and how? selective genera-
tion using Istms with coarse-to-fine alignment. arXiv
preprint arXiv:1509.00838.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39-41.

Mike Mintz, Steven Bills, Rion Snow, and Dan Juraf-
sky. 2009. Distant supervision for relation extraction
without labeled data. In Proceedings of the Joint Con-
ference of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural
Language Processing of the AFNLP, pages 1003—
1011.

Seungwhan Moon, Pararth Shah, Anuj Kumar, and Ra-
jen Subba. 2019. Opendialkg: Explainable conver-
sational reasoning with attention-based walks over
knowledge graphs. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 845-854.

Linyong Nan, Dragomir Radev, Rui Zhang, Amrit
Rau, Abhinand Sivaprasad, Chiachun Hsieh, Xiangru
Tang, Aadit Vyas, Neha Verma, Pranav Krishna, et al.
2020. Dart: Open-domain structured data record to
text generation. arXiv preprint arXiv:2007.02871.

Jekaterina Novikova, Ondfej Dusek, and Verena Rieser.
2017. The e2e dataset: New challenges for end-to-
end generation. arXiv preprint arXiv:1706.09254.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311-318.

Vassilis Plachouras, Charese Smiley, Hiroko Bretz, Ola
Taylor, Jochen L Leidner, Dezhao Song, and Frank
Schilder. 2016. Interacting with financial data using
natural language. In Proceedings of the 39th Inter-
national ACM SIGIR conference on Research and
Development in Information Retrieval, pages 1121—
1124.

Maja Popovié. 2015. chrf: character n-gram f-score for
automatic mt evaluation. In Proceedings of the Tenth
Workshop on Statistical Machine Translation, pages
392-395.

Francois Portet, Ehud Reiter, Albert Gatt, Jim Hunter,
Somayajulu Sripada, Yvonne Freer, and Cindy Sykes.
2009. Automatic generation of textual summaries
from neonatal intensive care data. Artificial Intelli-
gence, 173(7-8):789-816.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

10

Alejandro Ramos-Soto, Alberto Jose Bugarin, Senén
Barro, and Juan Taboada. 2014. Linguistic descrip-
tions for automatic generation of textual short-term
weather forecasts on real prediction data. [EEE
Transactions on Fuzzy Systems, 23(1):44-57.

Leonardo FR Ribeiro, Martin Schmitt, Hinrich Schiitze,
and Iryna Gurevych. 2020. Investigating pretrained
language models for graph-to-text generation. arXiv
preprint arXiv:2007.08426.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun
Raja, et al. 2021. Multitask prompted training en-
ables zero-shot task generalization. arXiv preprint
arXiv:2110.08207.

Abigail See, Aneesh Pappu, Rohun Saxena, Akhila
Yerukola, and Christopher D Manning. 2019. Do
massively pretrained language models make better
storytellers? arXiv preprint arXiv:1909.10705.

Thibault Sellam, Dipanjan Das, and Ankur P Parikh.
2020. Bleurt: Learning robust metrics for text gener-
ation. arXiv preprint arXiv:2004.04696.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study
of translation edit rate with targeted human annota-
tion. In Proceedings of the 7th Conference of the
Association for Machine Translation in the Americas:
Technical Papers, pages 223-231.

Chris van der Lee, Emiel Krahmer, and Sander Wubben.
2017. Pass: A dutch data-to-text system for soccer,
targeted towards specific audiences. In Proceedings
of the 10th International Conference on Natural Lan-
guage Generation, pages 95-104.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998-6008.

Sam Wiseman, Stuart M Shieber, and Alexander M
Rush. 2017. Challenges in data-to-document genera-
tion. arXiv preprint arXiv:1707.08052.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

A Data Splits

Examples from the EASY and HARD partitions are
shown in Figure 4. The copy baseline achieves
good results on the EASY examples. On the other
hand, the examples from the HARD partition are
more abtractive — generating descriptions for these
examples requires substantial rewriting. In several
cases, the reference text has a low fidelity with
respect to the input record. For example, when one
or more triples in the input are not described in the
reference text. This is a data quality issue and is a
common occurrence in DART.

B Results

Experimental results on SEEN and UNSEEN parti-
tions are presented in Table 5. As reported in § 6,
T5 performs well on this task (row 6). The 0-shot
GPT2-XL outperforms the copy baseline in terms
of all metrics except for chrF++ (row 2). GPT2-XL
with a 3-shot prompt does much better than the 0-
shot case. Prompt tuning improves the results both
in terms of BertScore and BLEURT (row 4). We
see another gain in the performance by adding re-
ranking (row 5). These trends are consistent with
what we observed for BLEU, METEOR, and TER
in Table 2.

We do not see a consistent performance drop
going from SEEN to the UNSEEN partition when
looking at chrF++, BertScore, and BLEURT. This
is somewhat surprising, but also hard to interpret
given that chrF++ relies on character n-gram and
BertScore and BLEU rely in contextualized embed-
dings.

C Sample Model Output

In this section, we share a few samples from the
DART test set as well as outputs generated by dif-
ferent models. We qualitatively compare different
models and highlight a few of their common errors.

Task Prompting As seen in Examples 1 and 2,
GPT2-XL in the O-shot setting often copies the
input. GPT2-XL with a 3-shot prompt generates a
much more fluent text than the 0-shot case. This
can be seen in Examples 2, 4, and 5. Although
GPT2-XL with few-shot prompting generates more
fluent text, it often generates hallucinated content
(see Example 3).

We see that prompt tuning further boosts our
performance and generates a more coherent text in
comparison to few-shot GPT2-XL (see Example 1

11

and 3). Moreover, it hallucinates much less than
the few-shot setting (e.g. see Example 3). We also
saw this previously in Table 2, as the prompt tuned
GPT2-XL achieved lower TER score. In contrast
to TS training, in which all model parameters are
updated, prompt tuning adapts only a small fraction
of the model parameters. However, in many cases
the generated text is as good as the benchmark T5
(see Example 2). Despite generating very fluent
text, prompt tuned GPT2-XL often misses infor-
mation from one or more relations (Examples 1, 3,
and 4).

Reranking Reranking based on entity coverage
solves the missing information issue in several
cases. For example, in Example 3, the entity Alvis
Speed 25 which is missed by the prompt tuned
GPT2-XL, is covered after reranking. The benefit
of reranking also can be seen in Example 4. On the
other hand, in Example 2, ranking does not solve
the missing information issue. This is because argu-
ment "yes" of "family-friendly" probably would not
naturally appear in generated text (e.g., "Yes, this
is a family-friendly restaurant"). For such cases,
the reranking heuristic will not provide useful feed-
back.

Predicate Descriptions As mentioned in Sec-
tion 6.1, in several cases, the description extracted
from WordNet and WikiData are trivial. In Exam-
ple 2, the definition of relations food, area, and
near add no information beyond the word itself,
and therefore not helpful for the model. On the
other hand, it seems like defining relation MAN-
UFACTURER in Example 3 has improved genera-
tions of GPT2-XL in both the few-shot and prompt-
tuned settings. In some cases, while the predicate
description can be potentially useful, the model ig-
nores the augmented description. For example, in 4,
the definition of relation GENRE is not covered in
the generated text of any of models.

ID Model chrF++ 17 BERTScore(F1) 1 BLEURT 1
SEEN UNSEEN ALL SEEN UNSEEN ALL SEEN UNSEEN ALL

1 copy baseline 0.33 034 033 0.83 0.85 0.83 | -0.59 -0.29 -0.58
2 GPT2-XL (0-shot) 0.34 0.34 034] 0.88 0.87 0.88 | -0.46 -0.30 -0.46
3 GPT2-XL (3-shot) 0.48 044 048 | 091 091 091 | -0.19 -0.17 -0.19
4 GPT2-XL-PT 0.40 044 040 | 092 092 092 | -0.11 0.06 -0.10
5 GPT2-XL-PT + Reranking | 0.46 047 046 | 092 092 0.92 | -0.01 0.12 0.00
6 TSiarge 0.64 0.64 0.64 | 095 095 095 | 038 044 0.39
+ Description
7 GPT2-XL (0-shot) 0.31 023 030 | 0.88 0.86 0.88 | -0.46 -0.54 -0.46
8 GPT2-XL (3-shot) 0.47 042 046 | 091 090 0.91 | -0.19 -0.16 -0.19
9 GPT2-XL-PT 0.39 045 039 | 091 092 091 | -0.14 0.09 -0.13
10 TSparge 0.64 0.63 0.64 | 095 095 095 | 038 043 0.38

Table 5: Performance on the DART test set, partitioned by whether predicates are SEEN, UNSEEN, and overall. 1:
Higher is better.

12

EAsy Examples

<H> Adolfo Sudrez Madrid-Barajas Airport <R> LOCATION <T> Madrid, Paracuellos de Jarama, San Sebastidn de
los Reyes and Alcobendas

Reference: Adolfo Sudrez Madrid—Barajas Airport can be found in Madrid, Paracuellos de Jarama, San Sebastidn de los
Reyes and Alcobendas.’

<H> Alaa Abdul-Zahra <R> CLUB <T> Sanat Mes Kerman F.C.
Reference: Alaa Abdul-Zahra’s club is Sanat Mes Kerman F.C.

<H> Alderney Airport <R> RUNWAY_NAME <T> "14/32"

Reference: Alderney Airport runway name is 14/32

<H> Asuncion <R> IS_PART_OF <T> Gran Asuncion

Reference: Asuncién is a part of Gran Asuncidn.

<H> Airey Neave <R> AWARD <T> Military Cross

Reference: Airey Neave was awarded the Military Cross.

HARD Examples

<H> 2004 <R> MOVEMENTS <T> Promotion Playoffs - Promoted <H> 2004 <R> POSITION <T> Ist
Reference: Sports stats for Ljungskile SK

<H> Khokhan Sen <R> MATCHES <T> 14 <H> Khokhan Sen <R> INNINGS <T> 21 <H> Khokhan Sen <R>
RANK <T> 9 <H> Khokhan Sen <R> CAUGHT <T> 20 <H> Khokhan Sen <R> STUMPED <T> 11 <H> Khokhan Sen
<R> DISMISSALS <T> 31

Reference: The innings when caught was 20 was 21

<H> thierry morin <R> POSITION <T> defender <H> [TABLECONTEXT] <R> NAME <T> thierry morin <H>
[TABLECONTEXT] <R> [TITLE] <T> Players

Reference: Thierry Morin was a defender for Paris Saint-Germain.

<H> ALV X-1 <R> COUNTRY_ORIGIN <T> United States <H> United States <R> ETHNIC_GROUP <T>
African Americans <H> United States <R> DEMONYM <T> Americans

Reference: Originating in the United States and by Americans, some of African decent is the ALVX-1.",’ALVX-1 comes
from the US where Americans live and African Americans are an ethnic group

<H> past tense <R> SEASON_# <T> 4 <H> past tense <R> ORIGINAL_AIR_DATE <T> october29,2008 <H> past
tense <R> NO._IN_SERIES <T> 13 <H> past tense <R> U.S._VIEWERS_(MILLIONS) <T> 7.93 <H> past tense <R>
DIRECTED_BY <T> michael pressman <H> past tense <R> WRITTEN_BY <T> craig turk

Reference: Past Tense was the 13th episode in the series.

Figure 4: Examples from the EASY and HARD partition

13

Example #1

<H> Aleksey Chirikov (icebreaker) <R> SHIP_BEAM <T> 21.2 <H> Aleksey Chirikov (icebreaker) <R> STATUS
<T> ""In service"" <H> Aleksey Chirikov (icebreaker) <R> BUILDER <T> Helsinki <H> Aleksey Chirikov (icebreaker)
<R> BUILDER <T> Arctech Helsinki Shipyard

Reference: The icebreaker Aleksey Chirikov was built at the Arctech Helsinki Shipyard in Helsinki. The Aleksey Chirikov
(icebreaker) is in service and its ship beam is 21.2

Description: BUILDER means a person who constructs something

GPT2-XL (0-shot): <H> Aleksey Chirikov (icebreaker) <R> SHIP_BEAM <T> 21.2 <H> Aleksey Chirikov (icebreaker)
<R> STATUS <T> "In service" <H> Aleksey Chirikov (icebreaker) <R> BUILDER <T> Helsinki <H> Aleksey Chirikov
(icebreaker) <R> BUILDER <T>

GPT2-XL (3-shot): Aleksey Chirikov (icebreaker) is of type 21.2.

GPT2-XL (3-shot) + Description: Aleksey Chirikov (icebreaker) was a Russian icebreaker.
GPT2-XL-PT: Aleksey Chirikov (icebreaker) was built by Arctech Helsinki Shipyard.

GPT2-XL-PT + Description: Aleksey Chirikov (icebreaker) was built by Arctech Helsinki Shipyard.
GPT2-XL-PT + Reranking: Aleksey Chirikov (icebreaker) is in service at Arctech Helsinki Shipyard.

TSiarge: The ship Aleksey Chirikov was built by Arctech, Helsinki Shipyard and has a ship beam of 21.2 metres. It is currently

in service.

Example #2

<H> The Mill <R> eatType <T> pub <H> The Mill <R> food <T> Fast food <H> The Mill <R> area <T> city centre
<H> The Mill <R> familyFriendly <T> no <H> The Mill <R> near <T> Café Sicilia

Reference: The Mill pub is near Café Sicilia in the city centre that isn’t family friendly, is average and has Fast food.

Description: eatType means type of food served by a restaurant or restaurant chain. food means any substance that can be
metabolized by an animal to give energy and build tissue. area means area occupied by an object. near means move towards.

GPT2-XL (0-shot): Graph: <H> The Mill <R> eatType <T> pub <H> The Mill <R> food <T> Fast food <H> The Mill <R>
area <T> city centre <H> The Mill <R> familyFriendly <T> no <H> The Mill <R> near <T> Caf¢ Sicilia

English:

GPT2-XL (3-shot): The Mill is located in the city centre near Café Sicilia. It serves fast food in the price range of £20-25
with a moderate customer rating

GPT2-XL (3-shot) + Description: The fast food restaurant, The Mill, has an average rating of 3 out of 5 perhaps as it is not
friendly to kids. The Mill is located in the city centre area near Café Sicilia.

GPT2-XL-PT: The Mill is a fast food pub in the city centre near Café Sicilia.
GPT2-XL-PT + Description: The Mill is a family friendly pub near Cafe Sicilia.
GPT2-XL-PT + Reranking: The Mill is a fast food pub in the city centre near Café Sicilia.
TSiarge: The Mill is a fast food pub in the city centre near Café Sicilia.

Example #3
<H> Alvis Speed 25 <R> MANUFACTURER <T> Alvis Car and Engineering Company <H> Alvis Car and
Engineering Company <R> LOCATION_CITY <T> Coventry
Reference: Alvis Speed 25 was made by the Alvis Car and Engineering Company of Coventry.
Description: MANUFACTURER means manufacturer or producer of this product.

GPT2-XL (0-shot): <H> Alvis Speed 25 <R> MANUFACTURER <T> Alvis Car and Engineering Company <H> Alvis
Car and Engineering Company <R> LOCATION_CITY <T> Coventry

GPT2-XL (3-shot): Alvis Speed 25 won the race in Coventry on April 25, 1996.

GPT2-XL (3-shot) + Description: Alvis Speed 25 is a car manufactured by Alvis Car and Engineering Company in Coventry,
England

GPT2-XL-PT: Alvis Car and Engineering Company is located in Coventry.
GPT2-XL-PT + Description: Alvis Speed 25 is manufactured in Coventry.
GPT2-XL-PT + Reranking: Alvis Speed 25 is manufactured by Alvis Car and Engineering Company in Coventry.

TS5jarge: Alvis Car and Engineering Company is located in Coventry and manufactures the Alvis Speed 25.

14

Example #4

<H> Anders Osborne <R> ASSOCIATED_BAND_ASSOCIATED_MUSICAL_ARTIST <T> Galactic <H> Anders
Osborne <R> ASSOCIATED_BAND_ASSOCIATED_MUSICAL_ARTIST <T> Tab Benoit <H> Anders Osborne <R>
GENRE <T> Blues <H> Anders Osborne <R> ASSOCIATED_BAND_ASSOCIATED_MUSICAL_ARTIST <T> Billy Iuso
<H> Anders Osborne <R> ACTIVE_YEARS_START_YEAR <T> 1989

Reference: Anders Osborne musical career began in 1989. His career began in the blue’s genre. He has been associated
with the band, Galactic as well as Tab Benoit. Osborne also has ties to fellow musician Billy Iuso.

Description: GENRE means creative work’s genre or an artist’s field of work

GPT2-XL (0-shot): <H> Anders Osborne <R> ASSOCIATED_BAND_ASSOCIATED_MUSICAL_ARTIST <T> Galactic
<H> Anders Osborne <R> ASSOCIATED_BAND_ASSOCIATED_MUSICAL_ARTIST <T> Tab Benoit <H> Anders
Osborne <R> GENRE <T> Blues <H> Anders Osborne <R> ASSOCIATED_BAND_ASSOCIATED M

GPT2-XL (3-shot): Anders Osborne is an English singer, songwriter and guitarist.

GPT2-XL (3-shot) + Description: Anders Osborne is an active musician and composer.

GPT2-XL-PT: Tab Benoit and Anders Osborne are associated with Galactic.

GPT2-XL-PT + Description: Tab Benoit and Anders Osborne are associated with Galactic.

GPT2-XL-PT + Reranking: Tab Benoit is associated with Galactic and Anders Osborne is associated with Billy Iuso.

TSiarge: Anders Osborne is associated with the band Galactic, Billy Iuso, Tab Benoit and the genre of Blues. His active years
start in 1989.

Example #5

<H> Nurburgring <R> FASTEST_LAP <T> PSV Eindhoven <H> Nurburgring <R> WINNING_CLUB <T> A.C.
Milan

Reference: PSV Eindhoven had the fastest lab on the Nurburgring, and A.C. Milan was the winning club at that race.
Description: FASTEST_LAP means person who does the fastest lap during a motorsport race.

GPT2-XL (0-shot): <H> Nurburgring <R> FASTEST_LAP <T> PSV Eindhoven <H> Nurburgring <R> WINNING_CLUB
<T> A.C. Milan

GPT2-XL (3-shot): A.C. Milan had the fastest lap in the race won by PSV Eindhoven.

GPT2-XL (3-shot) + Description: A.C. Milan set the fastest lap at the Nurburgring when the winning team was PSV
Eindhoven.

GPT2-XL-PT: Nurburgring is the fastest lap at A.C. Milan.

GPT2-XL-PT + Description: PSV Eindhoven is the winning club at the Nurburgring.
GPT2-XL-PT + Reranking: Nurburgring is the fastest lap at A.C. Milan

T5)arge: A.C. Milan won the race where PSV Eindhoven had the fastest lap.

15

	Introduction
	Background and Related Work
	Model Adaptation
	Zero-shot Setting
	Few-shot Setting
	Prompt Tuning
	Domain Knowledge
	T5

	Dataset
	Experimental Setup
	Experiments
	Results

	Error Analysis
	Conclusion and Future Work
	Data Splits
	Results
	Sample Model Output

