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ABSTRACT

Radiology Report Generation using AI has demonstrated significant potential in
modern clinical workflows. However, existing approaches have limited clinical
utility due to a lack of interactive capabilities and compromised factual reliability
because linguistic variations are prevalent in the training data and lead to overfitting.
We introduce QRad, a novel approach which reframes radiology report generation
from image captioning to a self-directed visual question-answering (VQA) process.
Specifically, we convert radiology reports into question-answer pairs and train
our model to first generate a chain of questions and then respond with answers.
The answers are concatenated to form the radiology report. Our approach offers
three advantages: First, quality is considerably improved because sentence-level
linguistic variations (such as the omission or ordering of medical topics) are
removed from the answer generation’s criterion, allowing the model to focus on
factual accuracy rather than presentation style. Second, the model provides an
intrinsic VQA capability that enables physicians to interact with the model for
details that may have been omitted in the initial output. Third, QRad derives
confidence scores from token probabilities through its ability to answer template
questions about specific medical conditions, a capability unavailable in previous
models, enabling Receiver Operating Characteristic (ROC) based evaluation to
facilitate regulatory approvals. Experiments show that QRad outperforms state-of-
the-art models with only 13% of their size, offering a promising path for clinical
adoption and regulatory validation in real-world settings.

1 INTRODUCTION

Medical imaging plays a crucial role in healthcare diagnostics. However, the worldwide shortage of
radiologists poses significant risks to patient care (Ganeshan et al., 2020; Parikh et al., 2020; Cao
et al., 2023). Automated radiology report generation using AI has emerged as a promising solution to
this challenge, with the potential to reduce radiologist burden to only the most complex cases.

Despite recent advances in radiology report generation, significant gaps remain towards clinical
adoption. First, current approaches, which typically follow an image captioning pipeline, struggle
with the inherent linguistic uncertainties (Tanno et al., 2025) in radiology reports. Unlike conventional
image captioning, radiology reports are longer documents that require precise factual accuracy while
exhibiting considerable sentence-level linguistic variation, such as whether a finding is mentioned
or omitted, and the order in which medical findings are presented. For example, if the ground
truth has three sentences [A, B, C], a prediction that reorders the same findings (e.g., [C, A,
B]) is clinically correct but is unfairly penalized (Huang et al., 2019) by the language modeling
loss because it requires exact token-by-token matches. Consequently, models tend to overfit such
linguistic variations at the expense of factual accuracy. In report generation datasets such as MIMIC-
CXR, each training sample contains one or multiple images and an associated text report. Image
captioning datasets like COCO (Lin et al., 2014) provide multiple reference texts to capture the
linguistic variances, however, this solution is not feasible in the collection of radiology report datasets.
Furthermore, conventional approaches that follow a direct image-to-text pipeline (Chaves et al., 2024;
Tu et al., 2024; Yang et al., 2024; Chen et al., 2024) offer no interactive mechanisms, preventing
physicians from requesting additional information about specific concerns omitted in the initial output
(Pal et al., 2025; Hu et al., 2024).
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Captioning-to-VQA

Reframing

  Reducing overfitting to stylistic variations

  Unified QA format enables data augmentation

  Template classification questions

  Post-inference refinements

  Topics control by chain-of-question editing

MechanismsQRad

Quality  
Improvements

ROC-based  
Evaluation

Interactivity

Enhancements

Figure 1: Overview of QRad’s captioning-to-VQA reframing approach. This question-driven frame-
work (the “Q” in QRad) enables five mechanisms that collectively enhance clinical utility across
three dimensions: report quality, regulatory-required evaluations, and interactivity.

Second, existing generative models lack the ability to produce continuous, numerical confidence
scores for individual medical findings. For clinical utilization of software, FDA device authorization
requires generating Receiver Operating Characteristic (ROC) curves and evaluating sensitivity and
specificity across clinical applications with differing tolerances for false positives and false negatives
(Food, 2007). For example, cancer screening prioritizes high sensitivity to avoid missed cases, while
cohort discovery systems for clinical research require high specificity to accurately identify patients
meeting strict inclusion criteria and reduce downstream noise. A model that produces confidence
scores for requested disease classes can therefore facilitate regulatory approval, moving one step
closer to real-world adoption.

To address these challenges, we introduce QRad, a novel approach that reframes radiology report
generation as a self-directed visual question-answering (VQA) process. QRad operates in two steps:
(1) Question Generation, which produces a chain of relevant clinical questions conditioned on the
input radiograph, effectively planning the report’s structure; (2) Answer Generation, which answers
those questions by examining visual features. The answers are concatenated to form the final report.
To facilitate training, we convert reference reports into QA pairs by segmenting each report into
contiguous topical spans (answers), and GPT-41 generates a single question that captures each span’s
topic. This design offers two immediate benefits: it operationalizes Chain-of-Thought (Wei et al.,
2022) via explicit planning-and-answering decomposition, and it provides an interactive capability,
allowing physicians to request specific information beyond the initial report by editing or issuing
follow-up questions—a feature unavailable in previous single-step models.

Formally, traditional approaches model report generation as Y = f(I), where an image I directly
maps to a report Y . Due to valid linguistic variations in the ground truth such as reordering of
sentences, this formulation suffers from a one-to-many mapping from I to multiple valid Y , causing
the learning process to overfit to surface phrasing at the expense of clinical accuracy. This limitation
arises from the language modeling loss which treats each token equally, allowing the model to shortcut
by producing a radiology report that achieves linguistic overlap with the ground truth on non-factual
tokens while differing in key tokens that determine factual accuracy, such as presence/absence,
severity, and location. QRad reframes the process as Y = fA(I,Q); , Q = fQ(I). By providing the
Answer Generator fA with a question Q, we explicitly demand the model to state a diagnosis for
the clinical topic. The ground truth for fA is a single-sentence topical span (answer), reducing the
space of linguistic variations and focusing on factual accuracy. The Question Generator fQ captures
linguistic variability—even when it produces questions that differ from the training data, these tend
to be clinically valid variations that preserve diagnostic utility. In essence, we isolate linguistic
variability in fQ and concentrate factual supervision in fA. Moreover, the VQA reframing allows
us to augment the training data with additional image classification questions; in these cases, the
ground truth is a single Yes/No token which further reduces linguistic variability and concentrates
supervision on diagnostic accuracy.

1We use a private, in-house deployment to satisfy data-usage requirements. The labeled data will be released.
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Furthermore, typical regulatory processes (e.g., FDA approval) require ROC-based validation, which
depends on class probabilities like those produced by perception models. QRad bridges this gap via
closed-vocabulary VQA: for each predefined disease class, we pose a binary, template-based query
(e.g., “Is this image classified as [CLASS]? (yes/no)”), extract the token logits
for pre-defined answers {Yes, No}, and compute the softmax as class probabilities. In contrast,
conventional report-generation models emit free-form sentences that may mention multiple diseases
or omit a disease entirely, so token-level probabilities are not class-specific and cannot serve as
per-class confidences to support ROC analysis. Meanwhile, image classifiers do not produce open-
vocabulary reports that describe medical findings with flexibility. Our VQA reframing approach
unifies both regimes, providing open-vocabulary narratives and closed-vocabulary class probabilities
within a single backbone to support ROC/AUC analysis, offering a practical path toward regulatory
clearance and real-world adoption.

In summary, we propose QRad, a captioning-to-VQA reframing approach that addresses key lim-
itations in radiology report generation. As illustrated in Figure 1, our question-driven framework
enables five core mechanisms that collectively enhance clinical utility across three critical dimensions:
improving report quality by reducing overfitting to stylistic variations, enabling ROC-based evaluation
through quantitative confidence scores, and providing interactivity enhancements via post-inference
refinements and topic control. Experiments show that QRad outperforms state-of-the-art models
(Chaves et al., 2024; Tu et al., 2024; Yang et al., 2024; Chen et al., 2024) while using less than 13%
of their model size.

2 RELATED WORK

2.1 IMAGE CAPTIONING

Image captioning aims to generate a sentence that describes a given image. The latest work benefits
from large scale vision-language pre-training (Chen et al., 2020a; Dou et al., 2021; Wang et al., 2021;
Kim et al., 2021). Encoder-decoder architectures (Li et al., 2023; Wang et al., 2022; Nguyen et al.,
2022) provide a unified implementation for various vision-language tasks.

While many radiology report generation methods are based on image captioning (Cornia et al.,
2020; Vinyals et al., 2015; Xu et al., 2015; You et al., 2016), there are key differences in the tasks
including (1) radiology reports are much longer than generic image captions such as those in COCO
Captions (Lin et al., 2014), and have multiple sentences covering different medical topics; (2) factual
correctness is critical for radiology reports, which requires close examination of fine visual details;
(3) image captioning datasets may provide multiple ground truths per image to capture linguistic
variations, however, this is not available in radiology report datasets.

2.2 RADIOLOGY REPORT GENERATION

Chest X-ray radiology reports lack a standardized order for presenting medical findings (Burbridge,
2017). For instance, the inside-out order (Smithuis & Otto, 2022) and the ABCDE order (each
letter represents an anatomical region) (Lopez-Cardona, 2023) are two approaches from clinical
guidelines. Additionally, medical conditions can be omitted from the report (Irvin et al., 2019).
These valid linguistic variations lead to Loss-Metric mismatch problems, creating challenges for both
training and evaluation (Gu et al., 2018b; Yi et al., 2020; Gu et al., 2018a). Existing state-of-the-art
methods use the original radiology reports as supervision and train the models in an image captioning
setup, differing primarily in datasets, architectures, and pretraining/fine-tuning regimes. Early work
connects a frozen image encoder to a pre-trained language model such as LLaMA (Li et al., 2024;
Chaves et al., 2024) and later work explores mimicking clinical setups (Bannur et al., 2024) and
leverages pre-training and fine-tuning techniques (Yang et al., 2024; Nath et al., 2024; Burbridge,
2017). Previous studies also demonstrated the value of generating reports using a two-step approach
(Nooralahzadeh et al., 2021; Liu et al., 2019; Yan et al., 2023), which are conceptually similar to ours.
However, due to the absence of sentence-level concept labels, these methods rely on unsupervised
topics or proxy targets.

Specifically, Liu et al. (2019) adopts a hierarchical framework that predicts sentence-level topics
as the first step. However, their topic generation module is not supervised with any labels, leaving
uncertainty in their actual meaning. Nooralahzadeh et al. (2021) first generates high-level context
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sentences and then refines them into the reports. The first step is trained to generate medical keywords
per sentence extracted with a text processing model. We differ from them in the supervision of the
first step. Yan et al. (2023) replaces full reports with serialized RadGraph representations (entities
and attributes) as supervision, thereby filtering out non-semantic words. In contrast, QRad addresses
sentence-level style variations, such as omission and reordering of findings, which RadGraph-based
supervision still encodes.

3 METHOD: REFRAMING LONG TEXT GENERATION TO CHAIN-OF-VQA

Conventional approaches to long text generation from visual inputs frame the task as direct image-
to-text mapping i.e., image captioning. As valid linguistic variations are prevalent in radiology
reports, amplified by their length, factual accuracy is hindered when the model attempts to overfit
the linguistic variations. We propose a general approach that reframes long text generation into
a self-directed visual question-answering process, where the self-generated questions serve as an
explicit plan akin to chain-of-thought (Wei et al., 2022) models.

The proposed Captioning-to-VQA reframing method is applicable to different model architectures. In
our experiments, it effectively elevates the performance of a small model to match those 10X larger.
In this section, we demonstrate our method with MIMIC-CXR (Johnson et al., 2023), one of the
largest radiology report dataset that is publically available.

3.1 DATASET PREPARATION

QRad leverages two types of question-answering datasets, including a report generation QA dataset
derived from the image-report dataset, and an image classification QA dataset converted from
image-class labels. Compared to training on the original full reports, the first dataset has reduced
linguistic variations at the sentence-level (such as the omission and ordering of sentences), while the
second dataset, being closed-vocabulary (the answers being {Yes, No}), further reduces linguistic
variations to the phrase level.

3.1.1 REPORT GENERATION QUESTION-ANSWER PAIRS

• [Q1] "What type of view is used in the chest X-ray?"
[A1] "Single AP view of the chest provided."

• [Q2] "Are there any support devices visible?"
[A2] "An endotracheal tube ends 2.0 cm above the Carina. A
transesophageal tube courses below the level of the diaphragm,
however the tip cannot be visualized."

• [Q3] "What is the condition of the lung volumes and clarity?"
[A3] "Lung volumes are low, however grossly clear."

• [Q4] "Is there any atelectasis?"
[A4] "Bibasilar atelectasis is moderately increased."

• [Q5] "Are there signs of pleural effusion or pneumothorax?"
[A5] "No pleural effusion or pneumothorax."

Figure 2: Example of the converted report generation QA dataset. We show the first five sentences
from a radiology report, where Qi and Ai are the ith question and answer, respectively.

To convert such datasets to VQA format, we ask GPT-4 (OpenAI, 2023) to split the reports into
sentence groups. Consecutive sentences in a report covering the same topic are treated as a cohesive
unit. Then, we use each sentence group as an answer, and compose a corresponding question with
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GPT-4 2. As shown in Figure 2, when generating the questions, we instruct the questions to be precise
enough to indicate the topics while not being too specific to leak the answer.

For the MIMIC-CXR (Johnson et al., 2019a) dataset, we generated a total of 818,867 question-answer
pairs across all radiology studies. There are 110,959 unique questions (based on string matches, not
semantic similarity). 91.3% of the reports have no more than 5 sentences, and 99.4% of the reports
have no more than 8 sentences. Typical answers contain only one sentence.

3.1.2 IMAGE CLASSIFICATION QUESTION-ANSWER PAIRS

One benefit of our Captioning-to-VQA reframing is the ability to unify different supervisions into
the same VQA format, allowing our model to seamlessly learn from both kinds of annotations
to achieve superior performance. Here we augment image-report data with image-class labels.
Specifically, in addition to the report generation QA pairs, we convert image class labels (obtained
from VisualCheXbert (Jain et al., 2021b)) into the VQA format. This integration not only enhances
our model’s image understanding capabilities but also improves its ability to handle diverse input
questions while providing a natural mechanism for confidence score extraction.

• [Q1] "Is this image classified as cardiomegaly? (yes/no)"
[A1] "Yes"

• [Q2] "Does this chest X-ray demonstrate edema? (yes/no)"
[A2] "No"

• [Q3] "Is pleural effusion evident in this chest X-ray?
(yes/no)"
[A3] "Yes"

• [Q4] "Does this radiograph indicate pneumothorax? (yes/no)"
[A4] "No"

• [Q5] "Does this chest X-ray reveal support devices? (yes/no)"
[A5] "No"

Figure 3: Example of question-answer pairs converted from image classification labels. The questions
are formulated using question templates and pre-defined class names, with a “(yes/no)” suffix that
distinguishes them from report generation QA pairs and indicates a single-token binary answer is
expected.

As shown in Figure 3, classification labels are transformed to closed-vocabulary QA pairs using the
14 categories from CheXpert (Irvin et al., 2019). Questions are constructed by randomly sampling
from a template pool. The closed-vocabulary nature of these QA pairs focuses on training the model’s
image classification capabilities like an image classifier. When training on such datasets, the model
gets no reward for writing a full sentence that has token-wise overlap with the ground truth sentence
but is factually incorrect.

3.2 VQA PIPELINE AND MODEL ARCHITECTURE

QRad decomposes the traditional image-to-text generation task from Y = f(I) into two distinct
components: a Question Generation Module Q = fQ(I) and an Answer Generation Module Y =
fA(I,Q), where I,Q, Y denote the input image, questions, and answers (sentences in the report),
respectively. Both modules utilize identical transformer architectures: a MI2-based (Codella et al.,
2024) visual backbone and a tiny text decoder of six transformer layers.

2We use a private, in-house deployment of GPT-4 to ensure compliance with the dataset usage requirements.
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3.2.1 QUESTION GENERATION MODULE

The question generation module conducts sequence generation autoregressively with reference to the
previously generated questions. Concretely, it generates m output tokens Q = (q1, q2, . . . , qm) by
modeling Equation 1:

P (Q | X) =

m+1∏
i=0

P (qi | X, q0, q1, . . . , qi−1), (1)

The ground truth Q is the concatenated questions. When providing inputs to the Answer Generator,
we split Q by the question mark (“?”) to obtain individual questions.

3.2.2 ANSWER GENERATION MODULE

The Answer Generation learns to generate a sentence of n tokens Yi = (yi1 , yi2 , . . . , yin) conditioned
on the image and a question Qi. Mathematically, the module models the following:

P (Yi | X,Qi) =

n+1∏
j=0

P (yij | X,Qi, yi0 , yi1 , . . . , yij−1
), (2)

where Yi denotes the ith answer corresponding to question Qi. By iterating Qi through all questions,
the Answer Generator generates n sentences Y = (Y1, Y2, . . . , Yn) and composes the whole radiology
report. In the interactive VQA mode, Qi is replaced by the tokenized user-entered question.

3.2.3 TRAINING RECIPE

Training Stages. We use MedImageInsight (MI2) (Codella et al., 2024) as the vision encoder, a
0.36B-parameter model trained on medical images. For text decoders, we use a six-layer, randomly
initialized transformer text decoder of 0.07B parameters. The encoder and decoder are connected via
a linear projection layer. The total model size is 0.9B, around 13% of current state-of-the-art models
that are based on 7B parameter models. We pre-train the encoder and decoder (the encoder is frozen)
on CXR-697K, an image-text pre-training dataset used in existing work (Chaves et al., 2024). Then,
we duplicate the model and fine-tune for question and answer generation tasks, where the full model
is made trainable.

Mixture of VQA Data. As discussed in subsection 3.1, our training data contain both report
generation QA data and image classification QA to improve model performance. The data mixture
ratio is discussed in Table 5.

Prompt Templates. Following existing studies, we use a short instruction which includes the
Indication section when generating the questions and corresponding answers. The Indication section
specifies the goal of the radiology study. We use the ground truth questions as input when training
the Answer Generator.

Attention Masks for Training Efficiency. After converting the training data from image-report to
image-QA pairs, the number of training samples increases by the number of sentences per report,
which significantly increases training cost. To improve training efficiency, we concatenate all QA
pairs for the same image and construct attention masks to control context visibility, thereby enabling
us to run forward in one pass.

3.3 NUMERICAL CLASS PROBABILITY EXTRACTION

QRad enables producing numerical class probabilities for medical findings, a capability absent in
conventional report generation models. The method is agnostic to model architectures, however,
the proposed captioning-to-VQA reframing is a prerequisite to dedicate classification to a single
[yes]/[no] token. In contrast, prior approaches represent binary classifications with free-text
sentences that can span multiple tokens and display a high degree of stylistic variance, which makes
extraction of confidence technically challenging.
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To extract these class probabilities, we leverage our VQA architecture by sending template classifi-
cation questions to the model and request binary ”yes” or ”no” answers. We deliberately designed
these responses to be single-token outputs, allowing us to extract clean probabilities directly from the
model’s output distribution. The confidence score for each class is computed using:

P (Ci = 1) =
exyes

exyes + exno
, (3)

where P (Ci = 1) represents the probability of the ith class, calculated from the softmax over logits
xyes and xno, the logits of [yes] and [no] being generated as the next token. This approach
effectively transforms text generation over a binary vocabulary into a proxy for image classification,
while sharing the same model weights with the report generation mode.

The resulting class probabilities accurately reflect the model’s intrinsic image understanding capa-
bilities, though generated separately with the reports. (Kadavath et al., 2022) validates the method
of using P (True) to assess a language model’s intrinsic capability. We make one step forward to
use the softmax concerning no other tokens but only [yes] and [no]. A ROC evaluation based on
these class probabilities is provided in Appendix C.

3.4 EXPERIMENTS AND ABLATION STUDIES

We conduct experiments on MIMIC-CXR (Johnson et al., 2019b; 2023), the largest radiology report
generation dataset. It has 227,835 image-report pairs. We use only the frontal view radiograph from
each training sample. Following recent studies (Chaves et al., 2024; Hyland et al., 2023), we use
the IU X-ray dataset (Demner-Fushman et al., 2016) as a fully held-out evaluation set. All 3198
frontal-view X-rays are used as the testing split unseen during training.

3.4.1 RADIOLOGY REPORT GENERATION

In Table 4 and Table 2, we evaluate our method on the official testing split of MIMIC-CXR using
both lexical metrics and clinical efficacy (CE) metrics following existing work. With our VQA-based
pipeline and the training recipe, we outperform existing state of the arts with only 13% the model
size while providing medical VQA as an additional feature (Table 4); Results on the IU X-ray dataset
is available in Appendix D. We include model training details and introduction to evaluation metrics
in Appendix A.

The ROC-based evaluation per class is provided in Appendix C. Qualitative examples of generated
questions and answers are included in Appendix B.

3.4.2 ABLATION STUDY AND HYPER-PARAMETERS

Effectiveness of each component: In Table 3, we conduct an ablation study on a MI2-based small
model with 0.9B parameters. We first reframe the report generation task as a VQA process (”Caption-
to-VQA”), and then augment the training data with image classification QA pairs (”Classification
QA”). The table shows that each method brings consistent performance gains. The largest improve-
ments are observed on Clinical Efficacy metrics (CheXbert, RadGraph), which reflect factual accuracy
in the medical domain.

Appendix E - Table 5 compares implementation details of QRad across three dimensions, including
the data mixture ratio, the source of pseudo-labels for the classification QA data and whether previous
QA pairs are provided as input context. The conclusions drawn from comparing experiments (a) to
(e) are:

• Performance is robust to data mixture ratios between 20% and 40%; From comparison: (a)
vs. (b)

• Using P+U as the positive label, which aligns with the ”CheXbert: uncertain as positive”
evaluation, leads to consistent performance gains across metrics. This is likely due to
uncertain labels being corresponded to diseases mentioned in prior studies but ambiguously
stated in current reports; From comparison: (e) vs. (b), (c)

7
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Table 1: Report Generation Performance on MIMIC-CXR

Model

CheXbert
RadGraph BLEU ROUGE

(“uncertain” as negative) (“uncertain” as positive)

Micro-avg Macro-avg Micro-avg Macro-avg
F1-14 F1-5 F1-14 F1-5 F1-14 F1-5 F1-14 F1-5 ER (1) (4) (L)

Multi-Image w/ Prior Study
MAIRA-2 (Bannur et al., 2024) a 58.1 59.1 41.6 50.4 58.5 61.3 45.8 54.6 39.6 46.0 23.1 38.4

Single Image, Model size ≥ 7B
LLaVA-Rad (Chaves et al., 2024) F 57.3 57.4 39.5 47.7 57.3 60.2 44.0 53.3 29.4 38.1 15.4 30.6
Med-Gemini (Yang et al., 2024) F - - - - - - - - - - 20.5 28.3
VILA-M3 40B (Nath et al., 2024) - - - - - - - - - - 21.6 32.2
Med-PaLM M (Tu et al., 2024) 53.6 57.9 39.8 51.6 - - - - - 32.3 11.3 27.3
MAIRA-1 (Hyland et al., 2023) F 55.7 56.0 38.6 47.7 55.3 58.8 42.3 51.7 29.6 39.2 14.2 28.9
GPT-4V 35.5 25.8 20.4 19.6 35.6 33.3 25.3 29.6 13.2 16.4 1.9 13.2
CheXagent (Chen et al., 2024) 39.3 41.2 24.7 34.5 39.4 42.1 27.3 35.8 20.5 16.9 4.7 21.5
LLaVA-Med (Li et al., 2024) F 27.2 22.0 15.5 16.6 27.3 24.4 18.7 20.5 6.5 22.2 1.0 13.3
LLaVA (Liu et al., 2024) F 22.9 23.4 15.4 17.5 23.7 26.9 17.0 20.3 4.5 21.0 1.3 13.8

Single Image, Model size = 4B
Baseline b 54.3 55.2 36.9 46.6 54.1 57.4 40.4 50.5 31.1 40.1 17.8 32.7
QRad (ours, 4B) b 57.6 59.0 40.8 51.0 57.1 61.4 44.3 54.4 31.1 40.6 17.5 32.5

Single Image, Model size <1B
PromptMRG (Jin et al., 2024) - - - - - - - - - - 11.2 26.8
Flamingo (Alayrac et al., 2022) - - - - 51.9 56.5 - - - - 10.1 29.7
CvT2Dist. (Nicolson et al., 2023) 44.2 - 30.7 - - - - - - 39.3 12.7 28.6
M2 trans (Miura et al., 2020) - - - - - 56.7 - - - - 11.4 -
RGRG (Tanida et al., 2023) - - - - - 54.7 - - - 37.3 12.6 26.4
R2Gen (Chen et al., 2020b) - - - - 22.8 34.6 - - - 35.3 10.3 27.7
TieNet (Wang et al., 2018) - - - - - 27.1 - - - - 8.1 -
MI2 (Codella et al., 2024) 56.3 57.9 38.4 49.3 55.7 59.3 43.2 52.1 28.5 37.3 15.3 31.7
QRad F (ours, 0.9B) 58.4 59.5 41.5 51.8 57.9 62.2 45.1 55.2 31.5 40.0 16.9 32.5
* We highlight the best score under each model size category.
F The testing set includes only frontal-view images.
a The MAIRA-2 benchmark is redesigned to reflect clinical scenarios by combining multiple images from the
same case into a single instance. Therefore, direct comparisons to other approaches cannot be made.
b The 4B models use BiomedCLIP (Zhang et al., 2023) as the vision encoder and Phi-3-mini (Abdin et al., 2024)
as the text decoder.

• Providing previous QA pairs as context improves performance; From comparison: (d) vs.
(b), (c), (e)

Benefits of the Question Generator: Appendix E - Table 6 demonstrates the importance of using
a learned Question Generator over fixed template questions. The key challenge in medical report
generation is the vast and complex space of possible medical conditions that can appear in an
image. It is infeasible to enumerate all potential diseases as a predefined set of template questions.
Moreover, even if such an exhaustive list existed, requiring the model to answer questions about every
possible condition would be computationally prohibitive and inefficient. Our Question Generator
addresses this by dynamically predicting relevant questions based on the input image, focusing only
on conditions likely to be present.

Quality of generated questions: We observe that when given oracle questions that clearly specify
each sentence’s topic, the model shows substantial performance gains (Appendix E - Table 6).
This demonstrates that stylistic variations (omissions, reordering) in the training data create noisy
supervision signals, causing prior models to memorize surface patterns rather than learn medical
content. Our model’s strong performance with oracle questions proves it generates factually accurate
answers. The differences between oracle and predicted questions represent legitimate stylistic choices
rather than errors—these variations are natural in clinical practice.
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Table 2: Performance on the ReXrank Benchmark

Model 1/RadCliQ-v1 BLEU BertScore SembScore RadGraph RaTEScore GREEN

UniRG-CXR3 1.217 0.248 0.493 0.487 0.265 0.596 0.352
QRad-0.9B, ours 1.143 0.264 0.482 0.479 0.243 0.596 0.362
MedVersa (Zhou et al., 2024) 1.103 0.209 0.448 0.466 0.273 0.550 0.374
Libra (Zhang et al., 2025) 0.898 0.232 0.402 0.403 0.218 0.523 0.356
RadPhi3.5Vision (Ranjit et al., 2024) 0.888 0.223 0.386 0.431 0.207 0.534 0.294
CXRMate-ED (Nicolson et al., 2025) 0.872 0.208 0.383 0.396 0.223 0.531 0.327
CXRMate-RRG24 (Nicolson et al., 2024) 0.870 0.198 0.367 0.423 0.220 0.521 0.338
CheXpertPlus-CheX (Chambon et al., 2024) 0.805 0.142 0.367 0.379 0.181 0.490 0.305
DD-LLava-X3 0.801 0.154 0.348 0.402 0.182 0.505 0.301
RaDialog (Pellegrini et al., 2025) 0.799 0.127 0.363 0.387 0.172 0.485 0.273
CheXpertPlus-MIMIC (Chambon et al., 2024) 0.788 0.145 0.361 0.375 0.170 0.485 0.311
RGRG (Tanida et al., 2023) 0.755 0.130 0.348 0.344 0.168 0.491 0.273
MedGemma (Sellergren et al., 2025) 0.744 0.165 0.346 0.339 0.159 0.549 0.293
CheXagent (Chen et al., 2024) 0.741 0.113 0.346 0.347 0.148 0.474 0.257
MoERad 3 0.726 0.163 0.341 0.334 0.143 0.465 0.240
Cvt2distilgpt2 (Nicolson et al., 2023) 0.719 0.126 0.331 0.329 0.149 0.432 0.268
1 Results shown are for the Findings Generation task on the MIMIC-CXR dataset.
2 Models are ranked by 1/RadCliQ-v1 (higher is better for all metrics).
3 UniRG-CXR, DD-LLava-X and MoERad from the leaderboard have no publications available yet.

Table 3: Ablation Study on MIMIC-CXR

Model

CheXbert
RadGraph BLEU ROUGE(“uncertain” as negative) (“uncertain” as positive)

Micro-avg Macro-avg Micro-avg Macro-avg
F1-14 F1-5 F1-14 F1-5 F1-14 F1-5 F1-14 F1-5 ER (1) (4) (L)

Baseline (MI2)
median 56.2 57.8 38.3 49.2 55.7 59.2 42.1 52.0 31.1 37.3 15.3 31.7
ci l 55.1 56.2 36.7 47.1 54.7 57.8 40.6 50.6 30.5 36.8 14.9 31.2
ci h 57.3 59.4 40.0 51.3 56.7 60.7 43.5 53.7 31.8 37.8 15.7 32.1

Baseline + Captioning-to-VQA
median 57.9 59.8 40.0 50.7 57.6 62.7 44.2 55.5 31.4 39.9 16.5 32.4
ci l 56.8 58.3 38.1 48.9 56.6 61.3 42.6 53.9 30.8 39.3 16.0 31.8
ci h 59.0 61.3 41.6 52.5 58.7 64.0 45.8 57.2 32.1 40.6 17.1 32.9

Baseline + Captioning-to-VQA + Classification QA (QRad)
median 58.3 59.5 41.5 51.8 57.9 62.2 45.1 55.2 31.6 40.2 16.7 32.5
ci l 57.3 57.9 39.8 49.7 56.9 60.8 43.7 53.6 30.9 39.4 16.2 32.0
ci h 59.4 61.0 42.97 53.7 59.0 63.5 46.6 57.0 32.2 40.9 17.2 33.1

1. The baseline ablates Captioning-to-VQA reframing, while keeping model architecture and pre-training the
same. It is equivalent to the previous work in MedImageInsight (MI2) Codella et al. (2024).
2. To demonstrate statistical significance, we report the median and 95% confidence intervals (ci l and ci h) over
500 bootstrap replicates for all metrics.

4 CONCLUSION

In this paper, we introduce QRad, a novel approach that reframes long text generation, such as
radiology reports, from captioning to a chain of VQA process. Our problem reformulation improves
the factual quality, enables user interaction, and allows probability-based evaluation such as ROC
curves. QRad improves the clinical utility of report generation with 13% of the model size. Beyond
radiology, our approach offers a novel framework for high-stakes domains where both factual
correctness and interactive capabilities are essential.
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5 ETHICAL CONSIDERATIONS

Medical datasets often contain sensitive patient information. To ensure the ethical use of such data,
this study adheres to strict guidelines. All participants who accessed the MIMIC-CXR dataset,
including the authors and radiologists involved in this research, completed the required onboarding
process through PhysioNet3. For the IU X-ray dataset, we complied with the license4.

To maintain compliance with PhysioNet’s policy on the use of large language model APIs during the
automatic evaluation, we utilized a secure, private, in-house deployment of GPT-4. This approach
guarantees that no sensitive information is shared with external parties.

Furthermore, to protect patient privacy, X-ray images presented in this paper were carefully selected
from open, compliance-free sources, ensuring that no identifiable patient information is disclosed.
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A IMPLEMENTATION DETAILS AND EVALUATION METRICS

Training Parameters. We use an image size of 512x512. During the pre-training on CXR-697K
(consistent with existing work LLaVA-Rad (Chaves et al., 2024)), we freeze the image encoder and
updates the text decoder with a learning rate of 2E-5 for 400 epochs. The batch size is 2048, and
no instruction is used in this phase. When fine-tuning the model on MIMIC-CXR VQA, we use a
learning rate of 1E-5 for the image encoder and 5E-5 for the text decoders. The training takes 5 hours
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with 128 V100 GPUs, using a batch size is 512 and set for 60 epochs. We mixed the report generation
QA and image classification QA by a ratio of 6:4.

Evaluation Metrics. CheXbert (Smit et al., 2020) is a Clinical Efficacy (CE) metric that classifies
generated reports into 14 disease categories and evaluates them based on classification performance,
focusing on factual accuracy rather than textual overlap. RadGraph (Jain et al., 2021a) is designed
specifically for radiology reports and assesses the correctness of extracted entities and their attributes.
BLEU and ROUGE are standard lexical metrics that measure n-gram similarity to evaluate text
overlap. We use results from (Chaves et al., 2024) if not available in the original papers.

B QUALITATIVE RESULTS

Qualitative examples illustrating the QRad pipeline are shown in Figure 4. The figure highlights three
key aspects:

• Intrinsic VQA capability: The predicted answers are directly relevant to the input questions,
demonstrating the model’s ability to perform visual question answering.

• Factual correctness: The model generates factually accurate answers, although there may
be stylistic differences such as sentence structure or order.

• Interactive refinement: When provided with ground-truth questions (simulating a scenario
where a radiologist requests specific information), the model produces answers that are both
reasonable and closely aligned with the ground-truth responses.

C ROC-BASED EVALUATION FOR REGULATORY VALIDATION

QRad is the first report generation model to produce class probabilities scores for defined disease
directly from its text generation components. Unlike multi-task models that use separate modules
for classification and text generation, QRad generates both outputs from the same component. This
design enables the evaluation of confidence scores to directly reflect the model’s intrinsic classification
capability.

The class probabilities are used to generate Receiver Operating Characteristic (ROC) and sensitivity-
specificity curves, which are typical in FDA approval studies for diagnostic systems. As shown in
Figure 5, this confidence-based evaluation provides more granular insights into clinical utility, such
as the characteristics of the sensitivity and specificity trade-off. This is especially valuable because
clinical applications often have different costs for false positives and false negatives.

From Figure 5, we observe that QRad performs reliably on classes such as Enlarged Cardiome-
diastinum, Cardiomegaly, and Lung Opacity, but is less reliable on Pleural Other, Fracture, and
Pneumothorax. We attribute this difference to two main factors. First, conditions like fracture require
detection of subtle details and are rare in the dataset. Second, some classes (e.g., Pleural Other)
aggregate many rare disease names, making it challenging for our prompts to comprehensively elicit
the expected output.

The ROC curve enables more comprehensive guidance for clinical adoption by illustrating the model’s
characteristics across different sensitivity-specificity operating points, rather than relying solely on
binary predictions as in existing CheXbert-based metrics. For example, in a copilot system that alerts
radiologists to potential missed findings, maximizing sensitivity may be prioritized to ensure that
as few true cases as possible are overlooked. Conversely, in automated triage systems that escalate
only the most critical or certain cases for urgent review, higher specificity may be preferred to avoid
unnecessary interruptions and reduce alarm fatigue. The ROC curve allows stakeholders to evaluate
the model’s behavior on disease classes relevant to the clinical context and risk tolerance, thereby
assessing its practical utility more faithfully.

D RESULTS ON IU X-RAY

Following recent studies Chaves et al. (2024); Bannur et al. (2024), we use the IU X-ray dataset
Demner-Fushman et al. (2016) as a fully held-out evaluation set. All 3198 frontal-view X-rays are
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used as the testing split unseen during training. Results in Appendix D shows that QRad generates
well on unseen data.

Table 4: Report Generation Performance on IU-XRay

Model

CheXbert
RadGraph BLEU ROUGE

(“uncertain” as negative) (“uncertain” as positive)

Micro-avg Macro-avg Micro-avg Macro-avg
F1-14 F1-5 F1-14 F1-5 F1-14 F1-5 F1-14 F1-5 ER (1) (4) (L)

R2Gen (Chen et al., 2020b) - - 13.6 - - - - - - 32.5 5.9 25.3
CvT2Dist. (Nicolson et al., 2023) - - 16.8 - - - - - - 38.3 8.2 27.7
RGRG (Tanida et al., 2023) - - 18.0 - - - - - - 26.6 6.3 18.0
LLaVA-Rad (Chaves et al., 2024) 53.5 - - - - - - - - - - 25.3
QRad 46.5 36.9 27.0 27.2 44.3 38.8 28.7 31.2 29.4 41.9 10.8 25.3

E ADDITIONAL TABLES FOR ABLATION STUDY AND HYPER-PARAMETERS

We provide additional tables for ablation studies and hyper-parameters such as dataset mixture ratios
in Table 5 and Table 6.
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Table 5: Comparison of Dataset Hyper-parameters on MIMIC-CXR

Model

CheXbert
RadGraph BLEU ROUGE

(“uncertain” as negative) (“uncertain” as positive)

Micro-avg Macro-avg Micro-avg Macro-avg
F1-14 F1-5 F1-14 F1-5 F1-14 F1-5 F1-14 F1-5 ER (1) (4) (L)

(a) Classification QA = 20%, Label={P}
median 57.9 59.6 40.4 51.2 57.4 61.8 44.6 54.7 31.4 40.5 16.6 32.4
ci l 56.8 57.8 38.8 49.1 56.4 60.5 43.1 53.2 30.7 39.8 16.1 31.8
ci h 59.0 61.1 42.0 53.1 58.5 63.3 46.2 56.4 32.0 41.2 17.2 32.9

(b) Classification QA = 40%, Label={P}
median 57.8 59.5 40.2 50.9 57.3 61.7 44.5 54.4 31.4 40.0 16.6 32.5
ci l 56.7 58.0 38.6 48.9 56.4 60.2 43.0 52.9 30.8 39.3 16.1 31.9
ci h 58.9 61.0 41.9 52.7 58.4 63.1 46.2 56.2 32.1 40.8 17.1 33.1

(c) Classification QA = 40%, Label={P, Random U}
median 57.9 59.2 40.5 50.8 57.5 61.6 44.5 54.5 31.3 40.1 16.6 32.4
ci l 57.0 57.7 38.8 48.8 56.5 60.3 42.9 53.0 30.7 39.4 16.1 31.9
ci h 59.1 60.7 42.0 52.6 58.5 63.1 46.0 56.3 31.9 40.8 17.2 33.0

(d) Classification QA = 40%, Label={P, U}, w/o QA Context
median 56.6 58.8 39.6 50.7 56.3 61.3 43.4 54.1 28.0 41.8 13.8 27.9
ci l 55.5 57.4 38.2 48.7 55.4 59.9 42.1 52.6 27.5 41.3 13.5 27.5
ci h 58.0 60.3 41.1 52.5 57.4 62.7 44.8 55.8 28.6 42.3 14.2 28.3

(e) Classification QA = 40%, Label={P, U}
median 58.3 59.5 41.5 51.8 57.9 62.2 45.1 55.2 31.6 40.2 16.7 32.5
ci l 57.3 57.9 39.8 49.7 56.9 60.8 43.7 53.6 30.9 39.4 16.2 32.0
ci h 59.4 61.0 42.97 53.7 59.0 63.5 46.6 57.0 32.2 40.9 17.2 33.1

1. The Classification QA ratio (0%, 20%, 40%) indicates the proportion of classification QA pairs in the training
data.
2. The Label field defines which CheXbert classes are mapped to the positive classes in the Classification QA
data: P (positive only), U (positive and uncertain), Random U (uncertain randomly used as positive)
3. QA Context represents that whether previous QA pairs are provided as input context. The w/o QA Context
ablates this feature.

Table 6: Ablation of the Question Generator

Model

CheXbert
RadGraph BLEU ROUGE

(“uncertain” as negative) (“uncertain” as positive)

Micro-avg Macro-avg Micro-avg Macro-avg
F1-14 F1-5 F1-14 F1-5 F1-14 F1-5 F1-14 F1-5 ER (1) (4) (L)

Template Questions a 44.7 52.1 28.5 37.5 46.6 56.3 34.2 45.5 23.5 31.1 8.2 20.9
Predicted Questions b 58.4 59.5 41.5 51.8 57.9 62.2 45.1 55.2 31.5 40.0 16.9 32.5

Oracle Questions c 74.7 78.0 60.5 72.2 76.1 79.8 66.0 74.9 48.0 54.4 30.5 52.8
a. We use the template questions for all input images composed from the 14 widely used CheXbert classes
b. We use the Question Generator to learn and predict the questions per input image (the QRad method)
c. Oracle questions are ChatGPT-generated directly from the ground truth reports. This is the ground truth used
to train the Question Generator
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(a) QRad Predicted Questions-Answer Pairs

• [Q1] "What is the position of the endotracheal tube?"
[A1] "The endotracheal tube is 3.5 cm above the carina."

• [Q2] "Where does the right-sided picc line terminate?"
[A2] "A right-sided picc line terminates in the mid
svc."

• [Q3] "What is the course of the enteric tube?"
[A3] "An enteric tube courses below the diaphragm with
the tip out of the field of view."

• [Q4] "Are there any changes in the lung opacities
compared to previous studies?"
[A4] "Since the prior study, there has been improvement
in the bilateral parenchymal opacities. "

• [Q5] "What is the status of the lung volumes and the
cardiomediastinal silhouette?"
[A5] "Lung volumes are low and the cardiomediastinal
silhouette is enlarged, but stable."

(b) QRad Prediction Compared with Ground-truth

• [GT-Q1] "Are there any support devices present?"
[GT-A1] "An endotracheal tube, NG tube, and right upper
extremity PICC with its tip at the cavoatrial junction
are unchanged."
[Pred-A1] "An endotracheal tube is in place with the
tip terminating 3.5 cm above the carina. A nasogastric
tube is seen coursing below the diaphragm with the tip
terminating in the left upper quadrant. A right picc
is unchanged in position with the tip terminating in the
mid-to-low svc."

• [GT-Q2] "Is there any change in lung opacity?"
[GT-A2] "There is no change in left lower lobe opacity."
[Pred-A2] "There has been interval improvement in the
right basilar opacity."

• [GT-Q3] "Are there signs of pleural effusion or
pneumothorax?"
[GT-A3] "There is no large pleural effusion, or
pneumothorax."
[Pred-A3] "No pleural effusion or pneumothorax is
detected. "

• [GT-Q4] "What is the condition of the cardiac silhouette
and mediastinal contours?"
[GT-A4] "The cardiac silhouette remains moderately
enlarged, mediastinal contours are notable for
calcification of the aortic arch."
[Pred-A4] "The cardiac silhouette is mildly enlarged
but stable, the mediastinal contours are prominent but
stable."

Figure 4: Qualitative example of question-answer generation by QRad. (a) displays a set of questions
(Qn) generated by QRad for a given image, along with their corresponding answers (An). (b)
compares GPT-generated questions (GT-Qn), ground-truth answers from the reference report (GT-
An), and QRad’s predicted answers (Pred-An) for each question. QRad demonstrates factually
reliable outputs, even if the order of information differs.
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Figure 5: Receiver Operating Characteristic (ROC) curves for QRad across multiple disease classes.
The x-axis shows the False Positive Rate (1-specificity), and the y-axis shows the True Positive Rate
(sensitivity). Each curve illustrates the trade-off between sensitivity and specificity. The ROC analysis
enables a nuanced assessment of QRad’s clinical utility across different operating points and disease
categories.
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