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Abstract

Tandem spoken language understanding (SLU)001
systems suffer from the so-called automatic002
speech recognition (ASR) error propagation.003
In this work, we investigate how such problem004
impacts state-of-the-art NLU models such as005
BERT (Bidirectional Encoder Representations006
from Transformers) and RoBERTa. Moreover,007
a multimodal language understanding (MLU)008
system is proposed to mitigate SLU perfor-009
mance degradation due to error present in ASR010
transcripts. Our solution combines an encoder011
network to embed audio signals and the state-012
of-the-art BERT to process text transcripts. A013
fusion layer is also used to fuse audio and014
text embeddings. Two fusion strategies are015
explored: a pooling average of probabilities016
from each modality and a similar scheme with017
a fine-tuning step. The first approach showed018
to be the optimal solution to extract seman-019
tic information when the text input is severely020
corrupted whereas the second approach was021
slightly better when the quality of ASR tran-022
scripts was higher. We found that as the quality023
of ASR transcripts decayed the performance024
of BERT and RoBERTa also decayed, compro-025
mising the overall SLU performance, whereas026
the proposed MLU showed to be more robust027
towards poor quality ASR transcripts. Our028
model is evaluated on five tasks from three SLU029
datasets with different complexity levels, and030
robustness is tested using ASR outputs from031
three ASR engines. Results show that the pro-032
posed approach effectively mitigates the ASR033
error propagation problem across all datasets.034

1 Introduction035

Speech signals carry out the linguistic message,036

with speaker intentions, as well as his/her spe-037

cific traits and emotions. As depicted in Figure 1-038

a, to extract semantic meaning from audio, tan-039

dem spoken language understanding (SLU) uses a040

pipeline that starts with an automatic speech recog-041

nizer (ASR) that transcribes the linguistic informa-042

Figure 1: Tandem SLU vs proposed SLU architectures.
The former relies solely on ASR transcripts to extract
semantics whereas the latter fuses audio and text data to
improve robustness of the SLU system.

tion into text, and a natural language understand- 043

ing (NLU) module that interprets the ASR textual 044

output. Such solutions offer several drawbacks 045

(Serdyuk et al., 2018)(Bastianelli et al., 2020). 046

First, the NLU relies on ASR transcripts to attain 047

the semantic information. Because the ASR is not 048

error-free, the NLU module needs to deal with ASR 049

errors while extracting the semantic information 050

(Simonnet et al., 2017)(Zhu et al., 2018)(Simon- 051

net et al., 2018)(Huang and Chen, 2020). This 052

is a major issue as error propagation significantly 053

affects the overall SLU performance as shown in 054

(Bastianelli et al., 2020). 055

Another drawback of such approaches is the 056

fact that the two modules (ASR and NLU) are 057

optimized independently with separate objectives 058

(Serdyuk et al., 2018)(Agrawal et al., 2020). While 059

the ASR is trained to transcribe the linguistic con- 060

tent, the NLU is optimized to extract the semantic 061

information, commonly from clean text (Huang 062

et al., 2020). Hence, the tandem approach is 063

not globally optimal for the SLU task. To over- 064

come this, end-to-end SLU (e2e SLU) solutions 065

have been proposed as an alternative to the ASR- 066

NLU pipeline (Haghani et al., 2018)(Lugosch et al., 067

2019). As pointed out in (Bastianelli et al., 2020), 068

a recurrent problem of e2e SLU solutions is the 069

scarcity of publicly available resources which leads 070
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to sub-optimal performance.071

In this paper, we are interested in improving the072

robustness of tandem SLU systems. As depicted in073

Figure 1-b, this can be achieved by replacing the074

NLU by the so-called multimodal language under-075

standing (MLU) module. Such MLU-based solu-076

tion fuses text transcripts with their corresponding077

speech signal. We evaluate two fusion strategies.078

One based on a pooling average of probabilities079

from each modality and a similar approach with a080

fine-tuning step. The fusion is performed on the081

outputs of the text and speech encoders. Our re-082

sults show that, for an error-free ASR, combining083

text and speech while extracting meaning from the084

user’s utterance provides results as good as the tan-085

dem solution based on state-of-the-art NLUs. Ex-086

periments also show that our solution leads to SLU087

robustness as it mitigates performance degradation088

caused by noisy ASR transcripts. To confirm that,089

the SLU robustness was assessed on three SLU090

datasets with different complexity: (1) the Fluent091

Speech Command (FSC) dataset (Lugosch et al.,092

2019); (2) the SNIPS dataset (Saade et al., 2019);093

and (3) the recent released and challenging Spo-094

ken Language Understanding Resource Package095

(SLURP) dataset (Bastianelli et al., 2020). We also096

tested our solution using ASR trascripts from three097

off-the-shelf ASR engines. The contribution of this098

work can be summarized as follows. First, we show099

that state-of-the-art models, such as BERT (De-100

vlin et al., 2018) and RoBERTa (Liu et al., 2019),101

although very successfull, are susceptible to the102

ASR error propagation problem. Second, to over-103

come that, we propose a multimodal architecture104

that uses speech information to leverage the perfor-105

mance of traditional tandem SLU solutions. Third,106

we show that such approach confers robustness to107

SLU solutions in presence of low quality ASR text108

transcription.109

The remainder of this document is organized as110

follows. In Section 2, we review the related work111

on SLU and multimodal approaches. Section 3112

presents the proposed method. Section 4 describes113

our experimental setup and Section 5 discusses our114

results. Section 6 gives the conclusion and future115

works.116

2 Related Work117

Joint ASR+NLU optimization. One drawback118

of tandem SLU solutions is that the ASR and the119

NLU are optimized separately. The literature offers120

different approaches to mitigate this problem. For 121

example, in (Kim et al., 2017), the authors jointly 122

train an online SLU and a language model. They 123

show that a multi-task solution that learns to pre- 124

dict intent and slot labels together with the arrival 125

of new words can achieve good performance in in- 126

tent detection and language modeling with a small 127

degradation on the slot filling task when compared 128

to independently trained models. In (Haghani et al., 129

2018), the authors propose to jointly optimize both 130

ASR and NLU modules to improve performance. 131

Several e2e SLU encoder-decoder architectures are 132

explored. It is shown that better performance is 133

achieved when an e2e SLU solution that performs 134

domain, intent, and argument predictions is jointly 135

trained with an e2e model that learns to generate 136

transcripts from the same audio input. This study 137

provides two important considerations. First, joint 138

optimization induces the model to learn from er- 139

rors that matter more for SLU. Second, the authors 140

also found from their experimental results that di- 141

rect prediction of semantics from audio, neglecting 142

the ground truth transcript, leads to sub-optimal 143

performance. 144

End-to-end SLU. Recently, we have witnessed 145

an increasing interest in minimizing SLU latency 146

as well as the joint optimization problem with 147

end-to-end (e2e) SLU models. Such solutions 148

bypass the need of an ASR and extracts semantics 149

directly from the speech signal. In (Lugosch et al., 150

2019), for example, the authors introduce the 151

FSC dataset and present a pre-training strategy 152

for e2e SLU models. Their approach is based on 153

using ASR targets, such as words and phonemes, 154

that are used to pre-train the initial layers of 155

their final model. These classifiers once trained 156

are discarded and the embeddings from the 157

pre-trained layers are used as features for the 158

SLU task. The authors show that improved 159

performance on large and small SLU training 160

sets was achieved with the proposed pre-training 161

approach. Similarly, in (Chen et al., 2018), the 162

authors propose to fine-tune the lower layers of an 163

end-to-end CNN-RNN based model that learns 164

to predict graphemes. This pre-trained acoustic 165

model is optimized with the CTC loss and then 166

combined with a semantic model to predict intents. 167

A relevant and more recent research is presented 168

in (Mhiri et al., 2020). In this work, the proposed 169

speech-to-intent model is built based on a global 170

max-pooling layer that allows for processing 171
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speech signals of varied length, also with the172

ability to process a given speech segment while173

receiving an upcoming segment from the same174

speech. In (Potdar et al., 2021), an end-to-end175

streaming SLU framework is proposed. With a176

unidirectional LSTM architecture, optimized with177

the alignment-free CTC loss, and pre-trained with178

the cross-entropy criterion, the authors show that179

their solution can predict multiple intentions in180

an online and incremental way. Their results are181

comparable to the performance of start-of-the-art182

non-streaming models for single-intent and183

multi-intent classification.184

185

Multimodal SLU. A recurrent problem of e2e SLU186

solutions is the limited number of publicly avail-187

able resources (i.e. semantically annotated speech188

data) (Bastianelli et al., 2020). Because there are189

much more NLU resources (i.e. semantically an-190

notated text without speech), many efforts have191

been made towards transfer learning techniques192

that enable the extraction of acoustic embeddings193

that borrow knowledge from state-of-the-art lan-194

guage models such as BERT (Devlin et al., 2018).195

In (Huang et al., 2020), for instance, the authors196

propose two strategies to leverage performance of197

e2e speech-to-intent systems with unpaired text198

data. The first method consists of two losses: (1)199

one that optimizes the entire network based on text200

and speech embeddings, extracted from their re-201

spective pretrained models, and are used to classify202

intents; and (2) another loss that minimizes the203

mean square error between speech and text repre-204

sentations. This second loss only back-propagates205

to the speech branch as the goal is to make speech206

embeddings resemble text embeddings. The second207

method is based on a data augmentation strategy208

that uses a text-to-speech (TTS) system to convert209

annotated text to speech. In (Sarı et al., 2020), the210

authors show that the performance of a speech-only211

E2ESLU model can be improved by training the212

model with non-parallel audio-textual data. For213

that, the authors propose a multiview learning tech-214

nique based on two unimodal branches consisting215

of an encoder for each modality. The unimodal216

branches receive either text or speech as input in217

order to produce the output. The authors first train218

the text branch as more resources are available. Af-219

ter, the classifier is frozen and the speech encoder220

is trained. As the final step, both branches are fine-221

tuned using parallel data and the shared classifier.222

Figure 2: Diagram depicting the proposed multimodal
language understanding (MLU) architecture used to pre-
dict semantic labels from audio-textual data.

3 Methodology 223

In this section, we start formally describing our 224

task. We then present the proposed architecture and 225

finalize introducing two strategies for performing 226

the fusion of multimodal features. 227

3.1 General Principles 228

As a special case of SLU, spoken utterance classifi- 229

cation (SUC) aims at classifying the observed ut- 230

terance into one of the predefined semantic classes 231

L = {l1, ..., lk} (Masumura et al., 2018). Thus, 232

a semantic classifier is trained to maximize the 233

class-posterior probability for a given observation, 234

W = {w1, w2, ..., wj}, representing a sequence of 235

tokens. This is achieved by the following probabil- 236

ity: 237

L∗ = argmax
L

P (L|W, θ) (1) 238

where θ represents the parameters of the end-to- 239

end neural network model. In this work, our as- 240

sumption is that the robustness of such network 241

can be improved if an additional modality, X = 242

{x1, x2, ..., xn}, representing acoustic features, is 243

combined with the text transcript. Thus, Eq. (1) 244

can be re-written as follow: 245

L∗ = argmax
L

P (L|W,X, θ) (2) 246

3.2 Architecture Overview 247

The proposed architecture consists of a speech en- 248

coder based on the pre-trained speech model, a con- 249

volutional module and a LSTM layer. As shown 250

in Figure 2, the convolutional module and LSTM 251

layer receive wav2vec embedded features as input 252

and fine-tunes the speech representation for the 253
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Figure 3: Models architecture combines the pre-trained
wav2vec with a convolutional and lstm layers and a
linear classifier.

downstream SLU task. This is referred to as our254

E2ESLU.255

The text encoder, on the other hand, is based on256

the pretrained BERT. The encoders are trained sep-257

arately on the downstream task. After the models258

optimization, late fusion is adopt to combine the259

two modalities.260

3.3 Wav2vec Embeddings261

We use the wav2vec model to extract deep semantic262

features from speech. While state-of-the-art mod-263

els require massive amount of transcribed audio264

data to achieve optimal performance, wav2vec is an265

self-supervised pre-trained model trained on a large266

amount of unlabelled audio (Schneider et al., 2019).267

The motivation to adopt wav2vec relies on the fact268

that the model is able to learn a general audio rep-269

resentation that helps to leverage the performance270

of downstream tasks (Baevski et al., 2020). Thus,271

given an audio signal, xi ∈ X , a five-layer convo-272

lutional neural network, f : X → Z , is applied273

in order to obtain a low frequency feature repre-274

sentation, zi ∈ Z , which encodes about 30 ms of275

audio at every 10 ms. Following, a context network,276

g : Z → C, is applied to the encoded audio and277

adjacent embeddings, zi, ..., zv, are used to attain a278

single contextualized vector, ci = g(zi, ..., zv). A279

causal convolution of 512 channels is applied to280

the encoder and context networks and normaliza-281

tion is performed across the feature and temporal282

dimensions for each sample. Note that ci repre-283

sents roughly 210ms of audio context with each284

step i comprising a 512-dimensional feature vector285

(Baevski et al., 2020).286

3.4 Convolutional LSTM Speech Encoder287

In order to fine-tune the pre-trained wav2vec for288

the downstream task, a convolutional module and289

a LSTM layer is added on top of the context net- 290

work, followed by a linear classifier that projects 291

the hidden states from the LSTM into a set of L 292

semantic labels. The architecture is depicted in 293

Figure 3. Our convolution module is inspired in 294

(Gulati et al., 2020) and consists of a gating mech- 295

anism mechanism, a point-wise convolution and a 296

gated linear unit (GLU), which is followed by a sin- 297

gle 1-D depthwise convolution layer. Batchnorm is 298

deployed just after the convolution to aid training 299

deep models. A single-layer LSTM is also used 300

to further improve the speech representation and 301

was found to be relevant for the downstream SLU 302

task. The feature dimension in the LSRM layer is 303

controlled with a projection layer as shown bellow: 304

si = LSTM(ci), i ∈ {1...N} (3) 305

si = Wspsi (4) 306

307

where ci is the sequence of 512-dimensional fea- 308

ture representation from the convolutional layer, 309

with i being the frame index. The hidden states 310

of the unidirectional LSTM is represented by si 311

which is a 1024-dimensional representation that un- 312

dergoes a projection layer, Wsp, leading to si. The 313

projection layer is an alternative LSTM architec- 314

ture, proposed in (Sak et al., 2014), that minimizes 315

the computational complexity of LSTM models. In 316

our architecture, we project a 1024-dimensional 317

features to half of this dimension. Thus, during the 318

fine-tuning phase the speech encoder is optimized 319

to output semantic labels using wav2vec embed- 320

dings as input. 321

3.5 Probability aggregation 322

In order to classify semantic labels using both au- 323

dio and text information, we aggregate the output 324

probabilities given by each modality for each class. 325

Thus, multimodal predictions are attained based on 326

the class with the highest averaged confidence. To 327

achieve this, we first fine-tuned the speech encoder 328

described in Section 3.4 and the BERTlarge model 329

separately. We investigated two strategies. The first 330

one, referred to as MLUavg, is the cross entropy of 331

the avaraged probabilities as described below: 332

pl =
eol∑L

k=1 e
ok

(5) 333

where o is the averaged probability for each class. 334

In the second approach, we use the aggregated prob- 335
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Figure 4: Pipeline for generating ASR text transcripts.

abilities to compute the cross-entropy loss in order336

to back-propagate it through our speech encoder.337

4 Experimental Setup338

In this section, the datasets used in our experiments339

are presented as well as the ASR engines adopted340

to investigate the impact of ASR error propagation341

on SLU. We then present our data augmentation342

strategy based on noise injection, followed by the343

experimental settings description.344

4.1 Datasets345

Three SLU datasets are used in our experiments.346

The reader is referred to Table 1 for partial statistics347

covering number of speakers, number of audio files,348

duration (in seconds), and utterance average length349

(in seconds). The first is the FSC dataset which350

comprises single-channel audio clips sampled at 16351

kHz. The data was collected using crowdsourcing,352

with participants requested to cite random phrases353

for each intent twice. It contains about 19 hours of354

speech, providing a total of 30,043 utterances cited355

by 97 different speakers. The data is split in such a356

way that the training set contains 14.7 hours of data,357

totaling 23,132 utterances from 77 speakers. Vali-358

dation and test sets comprise 1.9 and 2.4 hours of359

speech, leading to 3,118 utterances from 10 speak-360

ers and 3,793 utterances from other 10 speakers,361

respectively. The dataset has a total of 31 unique in-362

tent labels resulted in a combination of three slots363

per audio: action, object, and location. The lat-364

ter can be either “none”, “kitchen”, “bedroom”,365

“washroom”, “English”, “Chinese”, “Korean”, or366

“German”. More details about the dataset can be367

found in (Lugosch et al., 2019).368

SNIPS is the second dataset considered here. It369

contains a few thousand text queries. Recordings370

were crowdsourced and one spoken utterance was371

collected for each text query in the dataset. There372

are two domains available: smartlights (English)373

and smartspeakers (English and French). In our ex-374

periments only the former was used as it comprised375

only English sentences. With a reduced vocabulary376

size of approximately 400 words, the data contains377

Figure 5: Word error rate (WER) based on true ASR
engines (cmu, google, cloud and wit) for the three in-
vestigated datasets.

6 intents allowing to turn on or off the light, or 378

change its brightness or color (Saade et al., 2019). 379

The recent released SLURP dataset is also con- 380

sidered in our experiments. It is a multi-domain 381

dataset for end-to-end SLU and comprises approxi- 382

mately 72,000 audio recordings (58 hours of acous- 383

tic material), consisting of user interactions with a 384

home assistant. The data is annotated with three 385

levels of semantics: Scenario, Action and Intent, 386

having 18, 56 and 101 classes, respectively. The 387

dataset collection was performed by first annotat- 388

ing textual data, which was then used as golden 389

transcripts for audio data collection. For that, 100 390

participants were asked to read out the collected 391

prompts. This was performed in a typical home or 392

office environment. Although SLURP offers dis- 393

tant and close-talk recordings, only the latter were 394

used in our experiments. For more details about the 395

dataset, the reader can refer to (Bastianelli et al., 396

2020). 397

FSC SNIPS SLURP
# Speakers 97 69 177

# Audio files (headset) 30,043 2,943 34,603
# Audio files (Close-talk) - 2,943 37,674

Duration [hs] 19 5.5 58
Avg. length [s] 2.3 3.4 2.9

Table 1: Statistics of audio samples for SLURP, SNIPS
and FSC (Bastianelli et al., 2020).

Note that compared to other datasets, SLURP is 398

much more challenging. The authors in (Bastianelli 399

et al., 2020), directly compared SLURP to FSC and 400

SNIPS in different aspects. For instance, SLURP 401

contains 6x more sentences than SNIPS and 2.5x 402

more audio samples than FSC. It also covers 9 403

times more domains and is 10 times lexically richer 404

than both FSC and SNIPS. SLURP also provides 405
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FSC-I SNIPS-I SLURP-S SLURP-A SLURP-I

Model Modality Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
E2ESLU S 95.20 95.21 63.54 63.41 63.88 63.88 57.28 56.77 50.28 50.05
BERT T 99.99 100.00 98.26 98.26 91.98 92.07 90.24 90.19 86.59 86.38
RoBERTa T 99.99 100.00 98.26 98.26 92.76 92.67 91.27 91.22 86.59 86.38
MLUavg S+T 99.97 99.97 94.09 94.10 89.95 89.75 89.95 89.75 84.61 83.92
MLUft S+T 99.99 100.00 94.79 94.82 90.91 90.80 90.91 90.80 85.42 84.78

Table 2: Accuracy results for the SLURP, FSC and SNIPS datasets when gold transcripts are available for training
and testing the NLU, MLU and the MLU with the attention mechanism.

a larger number of speakers compared to FSC and406

SNIPS. Next, we describe three ASR engines used407

to generate text transcripts. We also present the408

performance of these engines in terms of WER for409

each SLU dataset.410

4.2 ASR engines411

In order to evaluate the performance of our model412

in a more realistic setting, we simulate the gen-413

eration of text transcripts from ASR engines as414

depicted in Figure 4. This is particularly impor-415

tant to assess the robustness of SLU models when416

golden transcripts are not available. The ASR417

systems adopted here are the open-source CMU418

SPHINX (Këpuska and Bohouta, 2017), developed419

at Carnegie Mellon University (CMU); the Google420

ASR API, which enables speech to text conversion421

in over 120 languages (Google, 2021); and the WIT422

engine (WIT, 2021), which is an online software423

platform that enables the development of natural424

language interfaces with support to more than 130425

languages.426

We evaluated the performance of these three427

ASR engines in terms of word error rate (WER)428

on three datasets and the results are presented in429

Figure 5. As expected, the SLURP revealed to430

be the most challenging dataset with the highest431

WER for all the three engines, followed by SNIPS432

and FSC. Note that, We chose datasets with differ-433

ent levels of complexity as well as ASR engines434

with diverse performance in order to evaluate our435

proposed MLU.436

4.3 Experimental Settings437

Our network is trained on mini-batches of 16 sam-438

ples over a total of 200 epochs. Early-stopping is439

used in order to avoid overffiting, thus training is440

interrupted if the accuracy on the validation set is441

not improved after 20 epochs. Our model is trained442

using the Adam optimizer (Kingma and Ba, 2014),443

with the initial learning rate set to 0.0001 and a444

cosine learning rate schedule (Loshchilov and Hut- 445

ter, 2016). Dropout probability was set to 0.3 and 446

the parameter for weight decay was set to 0.002. 447

Datasets are separated into training, validation and 448

test sets and the hyperparameters are selected based 449

on the performance on the validation set. All re- 450

ported results are based on the accuracy on the test 451

set. 452

Our experiments are based on 5 models: 453

two NLU baselines based on BERTlarge and 454

RoBERTalarge; an E2ESLU; and two MLU pro- 455

posed solutions, MLUavg and MLUft. These mod- 456

els are trained to predict semantic labels for 5 tasks 457

referred to as: FSC-I, SNIPS-I, SLURP-S, SLURP- 458

A and SLURP-I. SLURP-S and SLURP-A denote 459

scenario and action classification, respectively, and 460

the remainder refer to intent classification. 461

5 Results 462

In this section, we present our experimental results. 463

We start comparing the performance of the 5 afore- 464

mentioned models in presence of golden transcripts. 465

We then discuss the effects of ASR error propaga- 466

tion on the NLU baselines. Finally, we present the 467

benefits of combining speech and text to overcome 468

ASR transcript errors. 469

5.1 Combination of Speech and Text 470

In Table 2, we present the performance of the 471

NLU baselines, the E2ESLU and the two MLU 472

approaches. Performance is compared in terms of 473

accuracy and f1 scores. Across all datasets, the 474

E2ESLU approach provides the lowest accuracy 475

compared to the NLU and MLU solutions. This 476

is expected as models based solely on speech are 477

harder to train as speech signals carry out not just 478

variability due to the linguistic content, but also 479

intra- and inter-speaker variability (Bent and Holt, 480

2017), as well as information from the acoustic 481

ambience. The FSC-I showed to be the easiest 482

task with accuracy and f1 scores as high as 100 % 483
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20 % 40 % 60 % 80 % 100 %

Task Engine BERT RoBERTa BERT RoBERTa BERT RoBERTa BERT RoBERTa BERT RoBERTa

FSC-I
CMU 89.53 89.74 79.24 80.43 69.51 71.12 58.04 60.54 50.12 52.67
WIT 99.02 98.89 97.70 97.49 96.43 96.32 95.79 95.35 94.92 94.35
Google 99.24 99.29 98.53 98.63 97.89 98.01 97.10 97.17 96.47 96.65

SNIPS-I
CMU 88.87 89.32 79.18 80.11 71.29 72.16 60.62 61.41 53.43 56.21
WIT 97.22 96.52 95.15 95.82 93.07 94.48 91.33 91.46 89.27 90.04
Google 97.91 96.88 96.53 95.15 94.82 95.14 93.75 91.73 93.05 90.68

SLURP-S
CMU 81.85 81.92 71.31 71.73 59.68 60.19 48.77 49.73 38.70 40.32
WIT 90.26 90.97 88.65 89.09 87.06 87.73 85.43 86.08 83.96 84.63
Google 90.31 90.77 88.74 89.32 87.07 87.60 85.70 86.46 84.51 85.01

SLURP-A
CMU 80.02 80.56 69.53 69.79 58.02 59.03 46.06 47.03 36.05 37.27
WIT 88.02 89.17 86.06 86.84 83.00 84.64 81.33 82.75 79.70 80.99
Google 87.82 88.67 85.92 86.96 83.28 84.37 81.71 82.83 79.81 81.05

SLURP-I
CMU 76.14 76.66 64.82 65.34 52.99 53.22 41.69 41.95 30.91 31.43
WIT 84.48 84.88 82.33 82.72 80.54 80.78 78.57 79.01 77.06 77.57
Google 84.14 84.65 82.58 82.91 80.54 80.72 78.91 79.12 77.52 77.98

Table 3: Effect of mixing golden transcripts with varying amount of ASR transcript output on our NLU model. We
investigate SLURP, FSC and SNIPS datasets as well as three ASR engines: CMU, WIT and Google.

for all modalities, with a slight decay for speech-484

only, achieving 95.20 % and 95.21 % in terms of485

accuracy and f1 scores, respectively. The gap be-486

tween the E2ESLU performance and the other solu-487

tions is more significant for the SNIPS and SLURP488

tasks. For instance, BERT and RoBERTa are able489

to achieve 98.26 % accuracy and f1 scores for intent490

classification on the SNIPS dataset while E2ESLU491

model achieves only 63.54 % and 63.41. Similar492

trend is observed for the SLURP tasks. Note that493

the MLUft provides better performance when com-494

pared to the MLUavg. One explanation is that the495

speech features are noisier (comprising much more496

variability as discussed above), the fine-tuning ap-497

proach tends to rely more on text rather than on498

complementary information from the speech signal.499

These results show that, when golden transcripts500

are available, BERT and RoBERTa will provide501

optimal performance compared to the E2ESLU502

and the MLU proposed in this work. Results also503

show that the MLU will not compromise the perfor-504

mance, providing slight decay in terms of accuracy505

and f1 score, specially for the datasets with more506

hours of training data, such as the FSC and SLURP.507

5.2 Impact of ASR Error Propagation on508

NLU509

In Table 3, we investigate the impact of ASR er-510

ror propagation into the NLU baselines, BERT511

and RoBERTa. For this, transcripts sampled from512

CMU, WIT and Google ASR engines were mixed513

with golden transcript samples. This was per-514

formed only for the test set as we assume no access515

to golden transcripts in realistic scenarios (i.e., be-516

yond laboratory settings). We can observe a similar517

trend across all three datasets and five tasks. Per- 518

formance decays as the number of ASR transcript 519

samples increases. The performance on the FSC 520

dataset is the least affected by ASR outputs. This 521

is due to the fact that the FSC is a much less chal- 522

lenging dataset compared to SNIPS and SLURP, 523

as discussed in (Bastianelli et al., 2020) and also 524

shown in Figure 5. Comparing the performance of 525

BERT and RoBERTa when golden transcripts are 526

available and when 100 % of transcripts are from 527

the ASR engines, we observe a decay of roughly 50 528

% for the academic ASR and 3 % when using the 529

two commercial ASR engines. The NLU perfor- 530

mance is also evaluated on the SNIPS-I task. We 531

notice lower f1 score compared to the FSC-I, which 532

is due to the characteristic of SNIPS, i.e., less sam- 533

ples available to train the model and overall a more 534

challenging dataset as observed in Figure 5. The 535

performance on the SLURP dataset is the most af- 536

fected by noisy ASR transcripts. For the academic 537

ASR engine, for example, performance in terms 538

of f1 scores can get as low as 30.91 %, for the 539

SLURP-I task, and as low as 37.27 % and 40.32 540

% for SLURP-S and SLURP-A tasks, respectively. 541

When compared to the performance attained with 542

golden transcripts, this represents a decay of 65 %, 543

59 % and 56 %, respectively. As shown in Figure 4 544

and discussed in (Bastianelli et al., 2020), SLURP 545

is a more challenging SLU dataset. For the other 546

two comercial ASR engines, the impact of ASR 547

transcripts are much lower but still exists for the 548

SLURP dataset, representing a decay in terms of 549

accuracy of roughly 15 %, 11 % and 12 % for the 550

SLURP-I, ALURP-S and SLURP-A tasks, respec- 551

tively. 552
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Figure 6: SLU performance when ASR transcripts from
the CMU ASR engine is used during test.

5.3 SLU Robustness Towards ASR Error553

Propagation554

In this section, we evaluate the robustness of the555

proposed MLU towards ASR error generated by the556

academic ASR engine, CMU, and by the commer-557

cial engine from Google. The results are presented558

respectively on Figures 6 and 7. As the commercial559

ASR engines have similar performance, we only560

present results from one of them. To evaluate a561

more realistic scenario, we assume no access to562

the golden transcripts during test. For all tasks,563

we observed that our model was more valuable for564

low quality ASR transcripts attained from the aca-565

demic ASR (i.e. CMU engine), with the MLUavg566

providing better performance than the MLUft. We567

hypothesize that by finetuning the model tends to568

rely more on the text information. For the com-569

mercial ASR engine, which provide higher quality570

transcripts, performance of the proposed MLU is571

equivalent to text-only showing that it can be an572

alternative solution to mitigate the ASR error prop-573

agation without compromising performance when574

text transcripts are attained with high quality.575

5.4 Limitations and Future Work576

A limitation of this work is its results towards the577

more challenging SLURP dataset. Although we578

achieve competitive performance compared to the579

baseline results shared by the authors in (Bastianelli580

et al., 2020), results of our E2E SLU are way below.581

This corroborates with the findings in (Bastianelli582

et al., 2020), where several SOTA E2E SLU were583

tested and were not able to surpass the proposed584

modular (ASR+NLU) baselines as well. Note that585

the two baselines presented in (Bastianelli et al.,586

2020), are way more complex than our single-layer587

LSTM combined with word2vec embeddings. As588

Figure 7: SLU performance when ASR transcripts from
the google ASR engine.

for our MLU on the SLURP dataset, it was severely 589

affected by the quality of the text transcripts. 590

As future work, we plan to propose a low-latency 591

MLU architecture. We will adapt and evaluated 592

the proposed MLU model for a streaming scenario 593

where chunks of speech and text are processed in 594

an online fashion and predictions of semantic labels 595

are incrementally performed. 596

6 Conclusion 597

In this paper, we propose a multimodal language 598

understanding (MLU) architecture, which com- 599

bines speech and text to predict semantic infor- 600

mation. Our main goal is to mitigate ASR error 601

propagation into traditional NLU. The proposed 602

model combines an encoder network to embed au- 603

dio signals and the state-of-the-art BERT to pro- 604

cess text transcripts. Two fusion approaches are 605

explored and compared. A pooling average of prob- 606

abilities from each modality and a similar scheme 607

with a fine-tuning step. Performance is evaluated 608

on 5 SLU tasks from 3 dataset, namely, SLURP, 609

FSC and SNIPS. We also used three ASR engines 610

to investigate the impact of transcript errors and 611

the robustness of the proposed model when golden 612

transcripts are not available. We first show that 613

our model can achieve comparable performance 614

to state-of-the-art NLU models. We evaluated the 615

robustness of our towards ASR transcripts. Re- 616

sults show that the proposed approach can robustly 617

extract semantic information from audio-textual 618

data, outperforming BERTlarge and RoBERTalarge 619

for low quality text transcripts from the academic 620

CMU ASR engine. For the commercial ASR en- 621

gines, we show that the MLU can be an alternative 622

solution as it does not compromise the overall SLU 623

performance. 624
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