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Abstract

Tandem spoken language understanding (SLU)
systems suffer from the so-called automatic
speech recognition (ASR) error propagation.
In this work, we investigate how such problem
impacts state-of-the-art NLU models such as
BERT (Bidirectional Encoder Representations
from Transformers) and RoBERTa. Moreover,
a multimodal language understanding (MLU)
system is proposed to mitigate SLU perfor-
mance degradation due to error present in ASR
transcripts. Our solution combines an encoder
network to embed audio signals and the state-
of-the-art BERT to process text transcripts. A
fusion layer is also used to fuse audio and
text embeddings. Two fusion strategies are
explored: a pooling average of probabilities
from each modality and a similar scheme with
a fine-tuning step. The first approach showed
to be the optimal solution to extract seman-
tic information when the text input is severely
corrupted whereas the second approach was
slightly better when the quality of ASR tran-
scripts was higher. We found that as the quality
of ASR transcripts decayed the performance
of BERT and RoBERTza also decayed, compro-
mising the overall SLU performance, whereas
the proposed MLU showed to be more robust
towards poor quality ASR transcripts. Our
model is evaluated on five tasks from three SLU
datasets with different complexity levels, and
robustness is tested using ASR outputs from
three ASR engines. Results show that the pro-
posed approach effectively mitigates the ASR
error propagation problem across all datasets.

1 Introduction

Speech signals carry out the linguistic message,
with speaker intentions, as well as his/her spe-
cific traits and emotions. As depicted in Figure 1-
a, to extract semantic meaning from audio, tan-
dem spoken language understanding (SLU) uses a
pipeline that starts with an automatic speech recog-
nizer (ASR) that transcribes the linguistic informa-
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Figure 1: Tandem SLU vs proposed SLU architectures.
The former relies solely on ASR transcripts to extract
semantics whereas the latter fuses audio and text data to
improve robustness of the SLU system.

tion into text, and a natural language understand-
ing (NLU) module that interprets the ASR textual
output. Such solutions offer several drawbacks
(Serdyuk et al., 2018)(Bastianelli et al., 2020).
First, the NLU relies on ASR transcripts to attain
the semantic information. Because the ASR is not
error-free, the NLU module needs to deal with ASR
errors while extracting the semantic information
(Simonnet et al., 2017)(Zhu et al., 2018)(Simon-
net et al., 2018)(Huang and Chen, 2020). This
is a major issue as error propagation significantly
affects the overall SLU performance as shown in
(Bastianelli et al., 2020).

Another drawback of such approaches is the
fact that the two modules (ASR and NLU) are
optimized independently with separate objectives
(Serdyuk et al., 2018)(Agrawal et al., 2020). While
the ASR is trained to transcribe the linguistic con-
tent, the NLU is optimized to extract the semantic
information, commonly from clean text (Huang
et al., 2020). Hence, the tandem approach is
not globally optimal for the SLU task. To over-
come this, end-to-end SLU (e2e SLU) solutions
have been proposed as an alternative to the ASR-
NLU pipeline (Haghani et al., 2018)(Lugosch et al.,
2019). As pointed out in (Bastianelli et al., 2020),
a recurrent problem of e2e SLU solutions is the
scarcity of publicly available resources which leads



to sub-optimal performance.

In this paper, we are interested in improving the
robustness of tandem SLU systems. As depicted in
Figure 1-b, this can be achieved by replacing the
NLU by the so-called multimodal language under-
standing (MLU) module. Such MLU-based solu-
tion fuses text transcripts with their corresponding
speech signal. We evaluate two fusion strategies.
One based on a pooling average of probabilities
from each modality and a similar approach with a
fine-tuning step. The fusion is performed on the
outputs of the text and speech encoders. Our re-
sults show that, for an error-free ASR, combining
text and speech while extracting meaning from the
user’s utterance provides results as good as the tan-
dem solution based on state-of-the-art NLUs. Ex-
periments also show that our solution leads to SLU
robustness as it mitigates performance degradation
caused by noisy ASR transcripts. To confirm that,
the SLU robustness was assessed on three SLU
datasets with different complexity: (1) the Fluent
Speech Command (FSC) dataset (Lugosch et al.,
2019); (2) the SNIPS dataset (Saade et al., 2019);
and (3) the recent released and challenging Spo-
ken Language Understanding Resource Package
(SLURP) dataset (Bastianelli et al., 2020). We also
tested our solution using ASR trascripts from three
off-the-shelf ASR engines. The contribution of this
work can be summarized as follows. First, we show
that state-of-the-art models, such as BERT (De-
vlin et al., 2018) and RoBERTa (Liu et al., 2019),
although very successfull, are susceptible to the
ASR error propagation problem. Second, to over-
come that, we propose a multimodal architecture
that uses speech information to leverage the perfor-
mance of traditional tandem SLU solutions. Third,
we show that such approach confers robustness to
SLU solutions in presence of low quality ASR text
transcription.

The remainder of this document is organized as
follows. In Section 2, we review the related work
on SLU and multimodal approaches. Section 3
presents the proposed method. Section 4 describes
our experimental setup and Section 5 discusses our
results. Section 6 gives the conclusion and future
works.

2 Related Work

Joint ASR+NLU optimization. One drawback
of tandem SLU solutions is that the ASR and the
NLU are optimized separately. The literature offers

different approaches to mitigate this problem. For
example, in (Kim et al., 2017), the authors jointly
train an online SLU and a language model. They
show that a multi-task solution that learns to pre-
dict intent and slot labels together with the arrival
of new words can achieve good performance in in-
tent detection and language modeling with a small
degradation on the slot filling task when compared
to independently trained models. In (Haghani et al.,
2018), the authors propose to jointly optimize both
ASR and NLU modules to improve performance.
Several e2e SLU encoder-decoder architectures are
explored. It is shown that better performance is
achieved when an e2e SLU solution that performs
domain, intent, and argument predictions is jointly
trained with an e2e model that learns to generate
transcripts from the same audio input. This study
provides two important considerations. First, joint
optimization induces the model to learn from er-
rors that matter more for SLU. Second, the authors
also found from their experimental results that di-
rect prediction of semantics from audio, neglecting
the ground truth transcript, leads to sub-optimal
performance.

End-to-end SLU. Recently, we have witnessed
an increasing interest in minimizing SL.U latency
as well as the joint optimization problem with
end-to-end (e2e) SLU models. Such solutions
bypass the need of an ASR and extracts semantics
directly from the speech signal. In (Lugosch et al.,
2019), for example, the authors introduce the
FSC dataset and present a pre-training strategy
for e2e SLU models. Their approach is based on
using ASR targets, such as words and phonemes,
that are used to pre-train the initial layers of
their final model. These classifiers once trained
are discarded and the embeddings from the
pre-trained layers are used as features for the
SLU task. The authors show that improved
performance on large and small SLU training
sets was achieved with the proposed pre-training
approach. Similarly, in (Chen et al., 2018), the
authors propose to fine-tune the lower layers of an
end-to-end CNN-RNN based model that learns
to predict graphemes. This pre-trained acoustic
model is optimized with the CTC loss and then
combined with a semantic model to predict intents.
A relevant and more recent research is presented
in (Mhiri et al., 2020). In this work, the proposed
speech-to-intent model is built based on a global
max-pooling layer that allows for processing



speech signals of varied length, also with the
ability to process a given speech segment while
receiving an upcoming segment from the same
speech. In (Potdar et al., 2021), an end-to-end
streaming SLU framework is proposed. With a
unidirectional LSTM architecture, optimized with
the alignment-free CTC loss, and pre-trained with
the cross-entropy criterion, the authors show that
their solution can predict multiple intentions in
an online and incremental way. Their results are
comparable to the performance of start-of-the-art
non-streaming models for single-intent and
multi-intent classification.

Multimodal SLU. A recurrent problem of e2e SLU
solutions is the limited number of publicly avail-
able resources (i.e. semantically annotated speech
data) (Bastianelli et al., 2020). Because there are
much more NLU resources (i.e. semantically an-
notated text without speech), many efforts have
been made towards transfer learning techniques
that enable the extraction of acoustic embeddings
that borrow knowledge from state-of-the-art lan-
guage models such as BERT (Devlin et al., 2018).
In (Huang et al., 2020), for instance, the authors
propose two strategies to leverage performance of
e2e speech-to-intent systems with unpaired text
data. The first method consists of two losses: (1)
one that optimizes the entire network based on text
and speech embeddings, extracted from their re-
spective pretrained models, and are used to classify
intents; and (2) another loss that minimizes the
mean square error between speech and text repre-
sentations. This second loss only back-propagates
to the speech branch as the goal is to make speech
embeddings resemble text embeddings. The second
method is based on a data augmentation strategy
that uses a text-to-speech (TTS) system to convert
annotated text to speech. In (Sar1 et al., 2020), the
authors show that the performance of a speech-only
E2ESLU model can be improved by training the
model with non-parallel audio-textual data. For
that, the authors propose a multiview learning tech-
nique based on two unimodal branches consisting
of an encoder for each modality. The unimodal
branches receive either text or speech as input in
order to produce the output. The authors first train
the text branch as more resources are available. Af-
ter, the classifier is frozen and the speech encoder
is trained. As the final step, both branches are fine-
tuned using parallel data and the shared classifier.
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Figure 2: Diagram depicting the proposed multimodal
language understanding (MLU) architecture used to pre-
dict semantic labels from audio-textual data.

3 Methodology

In this section, we start formally describing our
task. We then present the proposed architecture and
finalize introducing two strategies for performing
the fusion of multimodal features.

3.1 General Principles

As a special case of SLU, spoken utterance classifi-
cation (SUC) aims at classifying the observed ut-
terance into one of the predefined semantic classes
L = {ly,...,l;} (Masumura et al., 2018). Thus,
a semantic classifier is trained to maximize the
class-posterior probability for a given observation,
W = {w1,ws, ..., w; }, representing a sequence of
tokens. This is achieved by the following probabil-
ity:

L* = argmLaxP(Lm/, 0) (1)

where 6 represents the parameters of the end-to-
end neural network model. In this work, our as-
sumption is that the robustness of such network
can be improved if an additional modality, X =
{z1,x9, ..., z, }, representing acoustic features, is
combined with the text transcript. Thus, Eq. (1)
can be re-written as follow:

L* =arg max P(LIW, X,0) (2)

3.2 Architecture Overview

The proposed architecture consists of a speech en-
coder based on the pre-trained speech model, a con-
volutional module and a LSTM layer. As shown
in Figure 2, the convolutional module and LSTM
layer receive wav2vec embedded features as input
and fine-tunes the speech representation for the
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Figure 3: Models architecture combines the pre-trained
wav2vec with a convolutional and Istm layers and a
linear classifier.

downstream SLU task. This is referred to as our
E2ESLU.

The text encoder, on the other hand, is based on
the pretrained BERT. The encoders are trained sep-
arately on the downstream task. After the models
optimization, late fusion is adopt to combine the
two modalities.

3.3 Wav2vec Embeddings

We use the wav2vec model to extract deep semantic
features from speech. While state-of-the-art mod-
els require massive amount of transcribed audio
data to achieve optimal performance, wav2vec is an
self-supervised pre-trained model trained on a large
amount of unlabelled audio (Schneider et al., 2019).
The motivation to adopt wav2vec relies on the fact
that the model is able to learn a general audio rep-
resentation that helps to leverage the performance
of downstream tasks (Baevski et al., 2020). Thus,
given an audio signal, x; € X, a five-layer convo-
lutional neural network, f : X — Z, is applied
in order to obtain a low frequency feature repre-
sentation, z; € Z, which encodes about 30 ms of
audio at every 10 ms. Following, a context network,
g : Z — C, is applied to the encoded audio and
adjacent embeddings, z;, ..., z,, are used to attain a
single contextualized vector, ¢; = g(z;, ..., 2y). A
causal convolution of 512 channels is applied to
the encoder and context networks and normaliza-
tion is performed across the feature and temporal
dimensions for each sample. Note that ¢; repre-
sents roughly 210ms of audio context with each
step ¢ comprising a 512-dimensional feature vector
(Baevski et al., 2020).

3.4 Convolutional LSTM Speech Encoder

In order to fine-tune the pre-trained wav2vec for
the downstream task, a convolutional module and

a LSTM layer is added on top of the context net-
work, followed by a linear classifier that projects
the hidden states from the LSTM into a set of L
semantic labels. The architecture is depicted in
Figure 3. Our convolution module is inspired in
(Gulati et al., 2020) and consists of a gating mech-
anism mechanism, a point-wise convolution and a
gated linear unit (GLU), which is followed by a sin-
gle 1-D depthwise convolution layer. Batchnorm is
deployed just after the convolution to aid training
deep models. A single-layer LSTM is also used
to further improve the speech representation and
was found to be relevant for the downstream SLU
task. The feature dimension in the LSRM layer is
controlled with a projection layer as shown bellow:

S; :LSTM(Ci),i S {IN} 3
S; = Wspsi “)

where c; is the sequence of 512-dimensional fea-
ture representation from the convolutional layer,
with ¢ being the frame index. The hidden states
of the unidirectional LSTM is represented by s;
which is a 1024-dimensional representation that un-
dergoes a projection layer, Wy, leading to s;. The
projection layer is an alternative LSTM architec-
ture, proposed in (Sak et al., 2014), that minimizes
the computational complexity of LSTM models. In
our architecture, we project a 1024-dimensional
features to half of this dimension. Thus, during the
fine-tuning phase the speech encoder is optimized
to output semantic labels using wav2vec embed-
dings as input.

3.5 Probability aggregation

In order to classify semantic labels using both au-
dio and text information, we aggregate the output
probabilities given by each modality for each class.
Thus, multimodal predictions are attained based on
the class with the highest averaged confidence. To
achieve this, we first fine-tuned the speech encoder
described in Section 3.4 and the BERT},;.4c model
separately. We investigated two strategies. The first
one, referred to as MLUy,g, is the cross entropy of
the avaraged probabilities as described below:

e

- jioy €
where 0 is the averaged probability for each class.
In the second approach, we use the aggregated prob-
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Figure 4: Pipeline for generating ASR text transcripts.

abilities to compute the cross-entropy loss in order
to back-propagate it through our speech encoder.

4 Experimental Setup

In this section, the datasets used in our experiments
are presented as well as the ASR engines adopted
to investigate the impact of ASR error propagation
on SLU. We then present our data augmentation
strategy based on noise injection, followed by the
experimental settings description.

4.1 Datasets

Three SLU datasets are used in our experiments.
The reader is referred to Table 1 for partial statistics
covering number of speakers, number of audio files,
duration (in seconds), and utterance average length
(in seconds). The first is the FSC dataset which
comprises single-channel audio clips sampled at 16
kHz. The data was collected using crowdsourcing,
with participants requested to cite random phrases
for each intent twice. It contains about 19 hours of
speech, providing a total of 30,043 utterances cited
by 97 different speakers. The data is split in such a
way that the training set contains 14.7 hours of data,
totaling 23,132 utterances from 77 speakers. Vali-
dation and test sets comprise 1.9 and 2.4 hours of
speech, leading to 3,118 utterances from 10 speak-
ers and 3,793 utterances from other 10 speakers,
respectively. The dataset has a total of 31 unique in-
tent labels resulted in a combination of three slots
per audio: action, object, and location. The lat-
ter can be either “none”, “kitchen”, “bedroom”,
“washroom”, “English”, “Chinese”, “Korean”, or
“German”. More details about the dataset can be
found in (Lugosch et al., 2019).

SNIPS is the second dataset considered here. It
contains a few thousand text queries. Recordings
were crowdsourced and one spoken utterance was
collected for each text query in the dataset. There
are two domains available: smartlights (English)
and smartspeakers (English and French). In our ex-
periments only the former was used as it comprised
only English sentences. With a reduced vocabulary
size of approximately 400 words, the data contains
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Figure 5: Word error rate (WER) based on true ASR
engines (cmu, google, cloud and wit) for the three in-
vestigated datasets.

6 intents allowing to turn on or off the light, or
change its brightness or color (Saade et al., 2019).

The recent released SLURP dataset is also con-
sidered in our experiments. It is a multi-domain
dataset for end-to-end SLU and comprises approxi-
mately 72,000 audio recordings (58 hours of acous-
tic material), consisting of user interactions with a
home assistant. The data is annotated with three
levels of semantics: Scenario, Action and Intent,
having 18, 56 and 101 classes, respectively. The
dataset collection was performed by first annotat-
ing textual data, which was then used as golden
transcripts for audio data collection. For that, 100
participants were asked to read out the collected
prompts. This was performed in a typical home or
office environment. Although SLURP offers dis-
tant and close-talk recordings, only the latter were
used in our experiments. For more details about the
dataset, the reader can refer to (Bastianelli et al.,
2020).

FSC  SNIPS SLURP
# Speakers 97 69 177
# Audio files (headset) | 30,043 2,943 34,603
# Audio files (Close-talk) - 2,943 37,674
Duration [hs] 19 5.5 58
Avg. length [s] 23 34 29

Table 1: Statistics of audio samples for SLURP, SNIPS
and FSC (Bastianelli et al., 2020).

Note that compared to other datasets, SLURP is
much more challenging. The authors in (Bastianelli
et al., 2020), directly compared SLURP to FSC and
SNIPS in different aspects. For instance, SLURP
contains 6x more sentences than SNIPS and 2.5x
more audio samples than FSC. It also covers 9
times more domains and is 10 times lexically richer
than both FSC and SNIPS. SLURP also provides



FSC-1 SNIPS-I SLURP-S SLURP-A SLURP-I
Model Modality  Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
E2ESLU S 9520 95.21 63.54 63.41 63.88 63.88 57.28 56.77 50.28 50.05
BERT T 99.99  100.00 98.26 98.26 91.98 92.07 90.24 90.19 86.59 86.38
RoBERTa T 99.99  100.00 98.26 98.26 9276  92.67 91.27 91.22 86.59 86.38
MLUgyy  S+T 99.97  99.97 94.09 94.10 89.95 89.75 89.95 89.75 84.61 83.92
MLU S+T 99.99  100.00 94.79 94.82 90.91 90.80 90.91 90.80 85.42 84.78

Table 2: Accuracy results for the SLURP, FSC and SNIPS datasets when gold transcripts are available for training
and testing the NLU, MLU and the MLU with the attention mechanism.

a larger number of speakers compared to FSC and
SNIPS. Next, we describe three ASR engines used
to generate text transcripts. We also present the
performance of these engines in terms of WER for
each SLU dataset.

4.2 ASR engines

In order to evaluate the performance of our model
in a more realistic setting, we simulate the gen-
eration of text transcripts from ASR engines as
depicted in Figure 4. This is particularly impor-
tant to assess the robustness of SLU models when
golden transcripts are not available. The ASR
systems adopted here are the open-source CMU
SPHINX (Képuska and Bohouta, 2017), developed
at Carnegie Mellon University (CMU); the Google
ASR API, which enables speech to text conversion
in over 120 languages (Google, 2021); and the WIT
engine (WIT, 2021), which is an online software
platform that enables the development of natural
language interfaces with support to more than 130
languages.

We evaluated the performance of these three
ASR engines in terms of word error rate (WER)
on three datasets and the results are presented in
Figure 5. As expected, the SLURP revealed to
be the most challenging dataset with the highest
WER for all the three engines, followed by SNIPS
and FSC. Note that, We chose datasets with differ-
ent levels of complexity as well as ASR engines
with diverse performance in order to evaluate our
proposed MLU.

4.3 Experimental Settings

Our network is trained on mini-batches of 16 sam-
ples over a total of 200 epochs. Early-stopping is
used in order to avoid overffiting, thus training is
interrupted if the accuracy on the validation set is
not improved after 20 epochs. Our model is trained
using the Adam optimizer (Kingma and Ba, 2014),
with the initial learning rate set to 0.0001 and a

cosine learning rate schedule (Loshchilov and Hut-
ter, 2016). Dropout probability was set to 0.3 and
the parameter for weight decay was set to 0.002.
Datasets are separated into training, validation and
test sets and the hyperparameters are selected based
on the performance on the validation set. All re-
ported results are based on the accuracy on the test
set.

Our experiments are based on 5 models:
two NLU baselines based on BERT,.4. and
RoBERTa;4;4¢; an E2ESLU; and two MLU pro-
posed solutions, MLU ;4 and MLU ;. These mod-
els are trained to predict semantic labels for 5 tasks
referred to as: FSC-1I, SNIPS-I, SLURP-S, SLURP-
A and SLURP-I. SLURP-S and SLURP-A denote
scenario and action classification, respectively, and
the remainder refer to intent classification.

5 Results

In this section, we present our experimental results.
We start comparing the performance of the 5 afore-
mentioned models in presence of golden transcripts.
We then discuss the effects of ASR error propaga-
tion on the NLU baselines. Finally, we present the
benefits of combining speech and text to overcome
ASR transcript errors.

5.1 Combination of Speech and Text

In Table 2, we present the performance of the
NLU baselines, the E2ESLU and the two MLU
approaches. Performance is compared in terms of
accuracy and f1 scores. Across all datasets, the
E2ESLU approach provides the lowest accuracy
compared to the NLU and MLU solutions. This
is expected as models based solely on speech are
harder to train as speech signals carry out not just
variability due to the linguistic content, but also
intra- and inter-speaker variability (Bent and Holt,
2017), as well as information from the acoustic
ambience. The FSC-I showed to be the easiest
task with accuracy and f1 scores as high as 100 %



20 % 40 % 60 % 80 % 100 %
Task Engine BERT RoBERTa BERT RoBERTa BERT RoBERTa BERT RoBERTa BERT RoBERTa
CMU 89.53 89.74 79.24 80.43 69.51 71.12 58.04 60.54 50.12 52.67
FSC-1 WIT 99.02 98.89 97.70 97.49 96.43 96.32 95.79 95.35 94.92 94.35
Google 99.24 99.29 98.53 98.63 97.89 98.01 97.10 97.17 96.47 96.65
CMU 88.87 89.32 79.18 80.11 71.29 72.16 60.62 61.41 53.43 56.21
SNIPS-I WIT 97.22 96.52 95.15 95.82 93.07 94.48 91.33 91.46 89.27 90.04
Google 9791 96.88 96.53 95.15 94.82 95.14 93.75 91.73 93.05 90.68
CMU 81.85 81.92 71.31 71.73 59.68 60.19 48.77 49.73 38.70 40.32
SLURP-S WIT 90.26 90.97 88.65 89.09 87.06 87.73 85.43 86.08 83.96 84.63
Google 90.31 90.77 88.74 89.32 87.07 87.60 85.70 86.46 84.51 85.01
CMU 80.02 80.56 69.53 69.79 58.02 59.03 46.06 47.03 36.05 37.27
SLURP-A WIT 88.02 89.17 86.06 86.84 83.00 84.64 81.33 82.75 79.70 80.99
Google 87.82 88.67 85.92 86.96 83.28 84.37 81.71 82.83 79.81 81.05
CMU 76.14 76.66 64.82 65.34 52.99 53.22 41.69 41.95 30.91 31.43
SLURP-I ~ WIT 84.48 84.88 82.33 82.72 80.54 80.78 78.57 79.01 77.06 71.57
Google 84.14 84.65 82.58 82.91 80.54 80.72 78.91 79.12 77.52 77.98

Table 3: Effect of mixing golden transcripts with varying amount of ASR transcript output on our NLU model. We
investigate SLURP, FSC and SNIPS datasets as well as three ASR engines: CMU, WIT and Google.

for all modalities, with a slight decay for speech-
only, achieving 95.20 % and 95.21 % in terms of
accuracy and f1 scores, respectively. The gap be-
tween the E2ESLU performance and the other solu-
tions is more significant for the SNIPS and SLURP
tasks. For instance, BERT and RoBERTa are able
to achieve 98.26 % accuracy and f1 scores for intent
classification on the SNIPS dataset while E2ESLU
model achieves only 63.54 % and 63.41. Similar
trend is observed for the SLURP tasks. Note that
the MLU f; provides better performance when com-
pared to the MLU,,4. One explanation is that the
speech features are noisier (comprising much more
variability as discussed above), the fine-tuning ap-
proach tends to rely more on text rather than on
complementary information from the speech signal.
These results show that, when golden transcripts
are available, BERT and RoBERTa will provide
optimal performance compared to the E2ESLU
and the MLU proposed in this work. Results also
show that the MLU will not compromise the perfor-
mance, providing slight decay in terms of accuracy
and f1 score, specially for the datasets with more
hours of training data, such as the FSC and SLURP.

5.2 Impact of ASR Error Propagation on
NLU

In Table 3, we investigate the impact of ASR er-
ror propagation into the NLU baselines, BERT
and RoBERTa. For this, transcripts sampled from
CMU, WIT and Google ASR engines were mixed
with golden transcript samples. This was per-
formed only for the test set as we assume no access
to golden transcripts in realistic scenarios (i.e., be-
yond laboratory settings). We can observe a similar

trend across all three datasets and five tasks. Per-
formance decays as the number of ASR transcript
samples increases. The performance on the FSC
dataset is the least affected by ASR outputs. This
is due to the fact that the FSC is a much less chal-
lenging dataset compared to SNIPS and SLURP,
as discussed in (Bastianelli et al., 2020) and also
shown in Figure 5. Comparing the performance of
BERT and RoBERTa when golden transcripts are
available and when 100 % of transcripts are from
the ASR engines, we observe a decay of roughly 50
% for the academic ASR and 3 % when using the
two commercial ASR engines. The NLU perfor-
mance is also evaluated on the SNIPS-I task. We
notice lower f1 score compared to the FSC-I, which
is due to the characteristic of SNIPS, i.e., less sam-
ples available to train the model and overall a more
challenging dataset as observed in Figure 5. The
performance on the SLURP dataset is the most af-
fected by noisy ASR transcripts. For the academic
ASR engine, for example, performance in terms
of f1 scores can get as low as 30.91 %, for the
SLURP-I task, and as low as 37.27 % and 40.32
% for SLURP-S and SLURP-A tasks, respectively.
When compared to the performance attained with
golden transcripts, this represents a decay of 65 %,
59 % and 56 %, respectively. As shown in Figure 4
and discussed in (Bastianelli et al., 2020), SLURP
is a more challenging SLU dataset. For the other
two comercial ASR engines, the impact of ASR
transcripts are much lower but still exists for the
SLURP dataset, representing a decay in terms of
accuracy of roughly 15 %, 11 % and 12 % for the
SLURP-I, ALURP-S and SLURP-A tasks, respec-
tively.
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Figure 6: SLU performance when ASR transcripts from
the CMU ASR engine is used during test.

5.3 SLU Robustness Towards ASR Error
Propagation

In this section, we evaluate the robustness of the
proposed MLU towards ASR error generated by the
academic ASR engine, CMU, and by the commer-
cial engine from Google. The results are presented
respectively on Figures 6 and 7. As the commercial
ASR engines have similar performance, we only
present results from one of them. To evaluate a
more realistic scenario, we assume no access to
the golden transcripts during test. For all tasks,
we observed that our model was more valuable for
low quality ASR transcripts attained from the aca-
demic ASR (i.e. CMU engine), with the MLU,,,
providing better performance than the MLU ;;. We
hypothesize that by finetuning the model tends to
rely more on the text information. For the com-
mercial ASR engine, which provide higher quality
transcripts, performance of the proposed MLU is
equivalent to text-only showing that it can be an
alternative solution to mitigate the ASR error prop-
agation without compromising performance when
text transcripts are attained with high quality.

5.4 Limitations and Future Work

A limitation of this work is its results towards the
more challenging SLURP dataset. Although we
achieve competitive performance compared to the
baseline results shared by the authors in (Bastianelli
et al., 2020), results of our E2E SLU are way below.
This corroborates with the findings in (Bastianelli
et al., 2020), where several SOTA E2E SLU were
tested and were not able to surpass the proposed
modular (ASR+NLU) baselines as well. Note that
the two baselines presented in (Bastianelli et al.,
2020), are way more complex than our single-layer
LSTM combined with word2vec embeddings. As
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Figure 7: SLU performance when ASR transcripts from
the google ASR engine.

for our MLU on the SLURP dataset, it was severely
affected by the quality of the text transcripts.

As future work, we plan to propose a low-latency
MLU architecture. We will adapt and evaluated
the proposed MLU model for a streaming scenario
where chunks of speech and text are processed in
an online fashion and predictions of semantic labels
are incrementally performed.

6 Conclusion

In this paper, we propose a multimodal language
understanding (MLU) architecture, which com-
bines speech and text to predict semantic infor-
mation. Our main goal is to mitigate ASR error
propagation into traditional NLU. The proposed
model combines an encoder network to embed au-
dio signals and the state-of-the-art BERT to pro-
cess text transcripts. Two fusion approaches are
explored and compared. A pooling average of prob-
abilities from each modality and a similar scheme
with a fine-tuning step. Performance is evaluated
on 5 SLU tasks from 3 dataset, namely, SLURP,
FSC and SNIPS. We also used three ASR engines
to investigate the impact of transcript errors and
the robustness of the proposed model when golden
transcripts are not available. We first show that
our model can achieve comparable performance
to state-of-the-art NLU models. We evaluated the
robustness of our towards ASR transcripts. Re-
sults show that the proposed approach can robustly
extract semantic information from audio-textual
data, outperforming BERT},,4. and ROBERTa;4;¢¢
for low quality text transcripts from the academic
CMU ASR engine. For the commercial ASR en-
gines, we show that the MLU can be an alternative
solution as it does not compromise the overall SLU
performance.
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