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ABSTRACT
We aim to develop a model-based planning framework for world models that can
be scaled with increasing model and data budgets for general-purpose manipula-
tion tasks with only language and vision inputs. To this end, we present FLow-
CentrIc generative Planning (FLIP), a model-based planning algorithm on visual
space that features three key modules: 1) a multi-modal flow generation model
as the general-purpose action proposal module; 2) a flow-conditioned video gen-
eration model as the dynamics module; and 3) a vision-language representation
learning model as the value module. Given an initial image and language instruc-
tion as the goal, FLIP can progressively search for long-horizon flow and video
plans that maximize the discounted return to accomplish the task. FLIP is able to
synthesize long-horizon plans across objects, robots, and tasks with image flows
as the general action representation, and the dense flow information also provides
rich guidance for long-horizon video generation. In addition, the synthesized flow
and video plans can guide the training of low-level control policies for robot ex-
ecution. Experiments on diverse benchmarks demonstrate that FLIP can improve
both the success rates and quality of long-horizon video plan synthesis and has the
interactive world model property, opening up wider applications for future works.
Video demos are on our website: https://nus-lins-lab.github.io/flipweb/.

1 INTRODUCTION

World models refer to learning-based representations or models that learn to simulate the environ-
ment (LeCun, 2024; Ha & Schmidhuber, 2018). With world models, agents can imagine, reason,
and plan inside world models to solve tasks more safely and efficiently. Recent advancements in
generative models, especially in the area of video generation (Brooks et al., 2024; Blattmann et al.,
2023; Yang et al., 2023), have demonstrated the application of generating high-quality videos as
world simulators with internet-scale training data. World models have opened new avenues across
various fields, particularly in the domain of robotic manipulation (Yang et al., 2023; Mendonca et al.,
2023; Seo et al., 2023), which is the focus of this paper.

The intelligence of generalist robots involves two levels of abilities (Caucheteux & King, 2022;
Manto et al., 2012): 1) high-level planning of the abstraction sequence of the task with multi-modal
inputs, and 2) low-level execution of the plan by interacting with the real world. A well-designed
world model could serve as an ideal way to realize the first function, for which it should enable
model-based planning. This requires the world model to be interactive, i.e., can simulate the world
according to some given actions. The core of this framework is to find a scalable action repre-
sentation that serves as the connection between high-level planning and low-level control. This
representation should: 1) be able to represent various kinds of movements across diverse objects,
robots, and tasks in the whole scene; 2) be easy to obtain or label a large amount of training data
for scaling up. Regarding this, Yang et al. (2023); Du et al. (2023); Zhou et al. (2024) use lan-
guages from VLMs (Driess et al., 2023) as high-level actions, while Wu et al. (2024) directly use
low-level robot actions to interact with the world model. However, they either require extra datasets
or task-specific high-level action labeling processes for training the interactive world model, or their
representations cannot describe sophisticated subtle movements in the whole scene. For example,
they cannot describe the detailed movements of a dexterous hand spinning a pen. These limit their
application as a scalable interactive world model and inspire us to find other action representations.
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Figure 1: Overview of our method. Left: FLIP is trained on video datasets across different tasks,
objects, and robots, with only one language description for each video as the goal. Right: we train an
interactive world model consisting of an action module for flow generation, a dynamics module for
video generation, and a value module for assigning value at each step. These modules can perform
flow-centric model-based planning for manipulation tasks on the flow and video space.

Image flow, a dynamic representation of pixel-level changes over time, is a concise yet general
representation of all kinds of movements in images for different robots and objects and can describe
more subtle changes than language. More importantly, image flow can be completely obtained by
off-the-shelf trackers (Karaev et al., 2023) from pure video datasets. Meanwhile, recent works also
show that flows are effective representations for training low-level manipulation policies (Wen et al.,
2023; Xu et al., 2024a;b). These make flow a good choice for action representation of world models.
However, it remains unclear how to leverage flows for planning on manipulation tasks.

In this work, we present Flow-Centric General Planning (FLIP) for general-purpose robot manip-
ulation tasks. As shown in Figure 1, we train a flow-centric world model purely from language-
annotated video data from diverse tasks. This world model contains three modules: 1) a flow gener-
ation network as the action module, 2) a flow-conditioned video generation model as the dynamics
module, and 3) a visual-language representation learning model as the value module. Specifically,
we design our action and dynamics module based on CVAE (Kingma, 2013) and DiT (Peebles &
Xie, 2023) architectures respectively and propose a new training mechanism for leveraging LIV (Ma
et al., 2023) as our value module. The trained modules enable model-based planning by progres-
sively searching successful long-horizon plans on the flow and video spaces: given an initial image
and language instruction as the goal, the action module will propose several flow candidates, and the
dynamics module will generate the short-horizon future videos. The value module will access the fa-
vorability of generated videos that maximize the discounted returns and perform tree search (Selman
& Gomes, 2006) to synthesize long-horizon plans for solving the task.

In experiments, we show that FLIP can perform model-based planning to solve tasks for both sim-
ulation manipulation tasks (LIBERO (Liu et al., 2024a)) and real-world tasks (including FMB (Luo
et al., 2023), cloth folding, unfolding, and Bridge-V2 (Walke et al., 2023)). We also show that FLIP
can generate high-quality long-horizon videos for these tasks. Meanwhile, the generated flow and
video plans can guide the training of low-level policies. We also show that the three modules of FLIP
are superior to their respective baselines (Wen et al., 2023; Zhu et al., 2024; Ma et al., 2023). We
quantitatively show that FLIP can simulate diverse complex manipulation tasks across objects and
robots. The trained world model also demonstrates interactive properties, zero-shot transfer ability,
and scalability. In summary, our contributions are:

• We propose flow-centric generative planning (FLIP) as an interactive world model for
general-purpose model-based planning for manipulation tasks.

• We design a new flow generation network, a new flow-conditioned video generation net-
work, and a new training method for an existing vision-language representation learning
network as the three key modules of FLIP.

• In our experiments, we show FLIP can perform general-purpose model-based planning,
synthesize long-horizon videos, guide the training of low-level policy, and other promising
properties, as well as the superiority of the three modules of FLIP compared to baselines.
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2 RELATED WORKS

2.1 WORLD MODELS FOR DECISION MAKING

Early works of world models learn system dynamics in low dimensional state space (Lesort et al.,
2018; Ferns et al., 2004), perform planning in latent space (Nasiriany et al., 2019), or train networks
to predict the future observations (Finn & Levine, 2017) and actions (Kaiser et al., 2019). Modern
model-based reinforcement learning methods (Hafner et al., 2020; 2023; Hansen et al., 2023; Baker
et al., 2022; Micheli et al., 2022) focus on latent space imagination with coupled dynamics and action
modules. Recent works leverage powerful scalable video generation architectures like Diffusion
Transformer (Peebles & Xie, 2023) and large-scale training data (Grauman et al., 2022) to develop
video generation networks to simulate an interactive environment (Yang et al., 2023; Bruce et al.,
2024; Shridhar et al., 2024; Valevski et al., 2024; Wu et al., 2024; Zhu et al., 2024; Wu et al., 2024).
In this work, we build a world model with separate flow-centric action and dynamics modules as
well as a vision-language value model for model-based planning for robot manipulation tasks.

2.2 FLOW AND VIDEO MODELS FOR MANIPULATION

Flows are the future trajectories of query points on images or point clouds. They are universal de-
scriptors for motions in the video, while video data contains rich knowledge of behaviors, physics,
and semantics, and have unparalleled scalability in terms of both content diversity and data acqui-
sition. For robotics, people have been trying to use flows as policy guidance (Wen et al., 2023;
Bharadhwaj et al., 2024), learn dense correspondence (Jiang et al., 2024b), tool using (Seita et al.,
2023), or cross-embodiment representations (Xu et al., 2024a; Zhu et al., 2024; Yuan et al., 2024).
Videos are usually used for learning inverse dynamics (Du et al., 2024; Finn & Levine, 2017; Brand-
fonbrener et al., 2024; Gao et al., 2021), rewards (Ma et al., 2022; 2023; Nair et al., 2022; Zakka
et al., 2022), transferrable visual representations such as latent embeddings (Sermanet et al., 2018;
Nair et al., 2022; Liu et al., 2024a), key points (Huang et al., 2024; Di Palo & Johns, 2024), affor-
dance (Bahl et al., 2023; Shu et al., 2017), flows (Wen et al., 2023; Xu et al., 2024a; Bharadhwaj
et al., 2024), scene graphs (Zhang et al., 2024; Jiang et al., 2024a; Kumar et al., 2023), or acquire
similar manipulation knowledge from human videos (Wang et al., 2023; Mendonca et al., 2023;
Shao et al., 2021; Liang et al., 2024). Recent works also use video generation techniques as visual
simulation (Yang et al., 2023; Liu et al., 2024b). In this work, we build our action, dynamics, and
value modules all based on video and language inputs, enabling the scalability of our framework.

3 THREE FUNDAMENTAL MODULES OF FLIP

3.1 PROBLEM FORMULATION

We model a manipulation task T as a goal-conditioned Partially Observable Markov Decision Pro-
cess (POMDP) parameterized by (S,O, ϕ,A, P,R, γ, g) where S,A,O are state, action, and ob-
servation spaces, ϕ : S → O is the state-observation mapping function, P : S × A → S is the
transition function, R : S × A → R is the reward function, γ is the discount factor, and g is the
goal state. In this work, the observation space is the image space: O = RH×W×3, where H and W
are the height and width of the image, and R(s, g) = I(s == g) − 1 is a goal-conditioned sparse
reward. The task is solved if the agent maximizes the return

∑T
t=0 γ

tR(st, g).

We aim to solve this problem by learning a world model and a low-level policy. The world model
performs model-based planning on image and flow spaces to maximize the return, synthesizing long-
horizon plans, and the low-level policy executes the plan in the real environment. We aim to train
the world model only on language-annotated video datasets to make it general-purpose and scalable,
and train the low-level policy on a few action-labeled datasets. To enable model-based planning, our
world model contains three key modules, as introduced in the following sections.

3.2 FLOW GENERATION NETWORK AS ACTION MODULE

Overview. The action module of FLIP is a flow generation network πf that generates image flows
(future trajectories on query points) as actions for planning. The reason why we use a generation
model rather than a predictive model is that we are doing model-based planning, where the action
module should give different action proposals for sampling-based planning. Formally, given h step
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Flow-conditioned Video Generation as Dynamics
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Figure 2: The action module and dynamics module of FLIP. Left: the tokenizing process of different
modalities in training data. Middle: we use a Conditional VAE to generate flows as actions. It sep-
arately generates the delta scale and directions on each query point for flow reconstruction. Right:
we use a DiT model with the spatial-temporal attention mechanism for flow-conditioned video gen-
eration. Flows (and observation history) are conditioned with cross attention, while languages and
timestep are conditioned with AdaLN-zero.

image observation history ot−h:t at timestep t, the language goal g, and a set of 2D query points
coordinates pt = {pkt }Kk=1, where pt,k = (u, v) is the k-th query point coordinate on ot, the flow
generation network πf generates coordinates of query points in future L timesteps (including the
current step): pt:t+L = πf (ot−h:t,pt, g) ∈ RL×K×2.

Training Data Annotation. The flows of query points can be extracted from pure video data by
the off-the-shelf point tracking models. The problem is how to select query points. Previous works
either use SAM (Ravi et al., 2024) to select query points on the region of interest or select query
points on active/stationary regions with a predefined ratio (Wen et al., 2023). These methods face
two problems: 1) for diverse kinds of videos with complex scenes, it is hard for modern segmentation
models (Ravi et al., 2024) to segment perfect regions of interest with no human assistance; 2) for
long-horizon videos, there may be objects appearing/disappearing in the video, and using query
points only from the initial frame become problematic. To this end, in this work, we uniformly
sample dense grid query points for the whole image (for the first problem) at each timestep, and
track them for only a short-horizon video clip, i.e., tracking on video clips starting from every frame
of the long-horizon video (for the second problem). This can mitigate the second problem because
even if some objects appear/disappear, their influences are restricted in a short horizon. Formally,
for each frame in the dataset, we uniformly sample a grid ofNq points, then use Co-Tracker (Karaev
et al., 2023) to generate the flows {pkt:t+L}

Nq

k=1 within a future video clip of L steps.

Model Design. We design a Conditional VAE (Kingma, 2013) with transformer (Vaswani, 2017)
architecture for flow generation, as illustrated in Figure 2. As opposed to previous flow prediction
works (Wen et al., 2023; Xu et al., 2024a; Bharadhwaj et al., 2024), we observe enhanced per-
formance when predicting relative displacements rather than absolute coordinates, i.e., we predict
∆pkt = pkt+1 − pkt for the k-th point at each time step.

For the VAE encoder, we encode ground truth flow {pt}Lt=1, patchify observation history ot−h:t,
and encode language embedding from Llama 3.1 8B (Dubey et al., 2024) to tokens, concatenate
them with a CLS token for gathering the information, and then send them to a transformer encoder
to extract the output at the CLS token position as the latent variable of VAE. For the VAE decoder,
we first encode the query points {pkt }

Nq

k=1 at only timestep t to query tokens, concatenate them with
image and language tokens as well as the sampled latent variable z from reparameterization, and
send them to another transformer encoder. We extract the output at the query tokens and use two
MLPs to predict the delta scale δs ∈ RL×K≥0 and delta direction δ⃗d ∈ R2L×K for L future horizons.

Thus we can get ∆pkt = δtks δ⃗
tk
d , and the whole future flow can be reconstructed step by step. We

also decode the output at the image token positions as an auxiliary image reconstruction task (Wen
et al., 2023; He et al., 2022a), which we find useful for improving the training accuracy.
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3.3 FLOW-CONDITIONED VIDEO GENERATION NETWORK AS DYNAMICS MODULE

Overview. The flow-conditioned video generation network D generates the following L frames
based on current image observation history ot−h:t, the language goal g, and the predicted flow
pt:t+L to enable iterative planning for the next planning step: ôt+1:t+L = D(ot−h:t, g,pt:t+L).

Model Design. We design a new latent video diffusion model that can effectively take as input dif-
ferent kinds of conditions such as images, flows, and language. This model is built on the DiT (Pee-
bles & Xie, 2023) architecture with spatial-temporal attention mechanism (Ma et al., 2024; Bruce
et al., 2024; Zhu et al., 2024). The background knowledge of latent video diffusion models is in
Appendix A.1. Here we introduce the design of the multi-modal condition mechanism.

In the original DiT (Peebles & Xie, 2023) and previous trajectory-conditional video diffusion pa-
per (Zhu et al., 2024), they use adaptive layer norm zero (AdaLN-Zero) blocks to process conditional
inputs (such as diffusion timestep and class labels), which regress the scale and shift parameters
of the layer norm layers from all conditions with a zero-initialized MLP. However, AdaLN will
compress all conditional information to scalars, and cannot enable fine-grained interaction between
different parts of conditions with the inputs. Thus, this mechanism is not suitable for complex con-
ditions such as image and flow (Zhang et al., 2023; Bao et al., 2023). To this end, we propose a
mixed conditioning mechanism for multi-modal conditional generation. We use cross attention for
fine-grained interactions between flow conditions (tokenized as Nq tokens) and observation condi-
tions and noisy frames. For image history conditions, we concatenate them on the Gaussian noise
frames. We use AdaLN-Zero to process the global conditions including the diffusion timestep and
language instruction, as shown in Figure 2. To keep the observation condition clean, we do not add
noise to ot−h:t during the diffusion process and do not perform denoising on them either.

3.4 VISION-LANGUAGE REPRESENTATION LEARNING AS VALUE MODULE

Vision-Language Similarity as Value Function
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Figure 3: Top: The value module of FLIP. We fol-
low the idea of (Ma et al., 2023) and use time-
contrastive learning for the visual-language rep-
resentation, but we treat each video clip (rather
than each frame) as a state. Bottom: the fine-tuned
value curves of Ma et al. (2023) and ours.

Overview. The value module V assigns an
estimated value V̂t for each frame ot to en-
able model-based planning on the image space,
based on the language goal g: V̂t = V(ot, g).
In this work, we adopt LIV (Ma et al., 2023) to
instantiate the value function. LIV first learns
a shared language-vision representation from
action-free videos with language annotations.
It then computes the similarity between current
frame ot and g as the value for timestep t: V̂t =
S(ψI(ot), ψL(g)) = 1

1−γ cos(ψI(ot), ψL(g)),
where ψI and ψL are the encoding network for
image and language respectively, and S is the
γ-weighted cosine similarity metric.

The pretrained LIV model needs to be fine-
tuned to give good value representation on new
tasks (Ma et al., 2023). The original fine-tuning
loss LLIV = LI(ψI) + LL(ψI , ψL) is cal-
culated on sampled sub-trajectory batch data{
ois, . . . , o

i
k, o

i
k+1, . . . , o

i
T , g

i
}B
i=1

from each task Ti, where s ∈ [0, Ti − 1] , s ≤ k < Ti. For
∀ task i, LI(ψI) will use time contrastive learning to increase the similarity S(ois, oiT ) between
the sampled start frame and the end frame and keep the embedding distance between two adjacent
frames as (γ-discounted) 1, and LL encourages the image goal oiT and language goal gi have the
same embedding for the same task i. Details of this process can be found in Appendix A.2.

Finetuning LIV on Long-Horizon Imperfect Videos. Finetuning LIV with the original training
objective works well on short-horizon perfect videos (about 50 frames in their original papers (Ma
et al., 2022; 2023)). However, we find that it does not work well for our long-horizon imperfect
videos, as shown in Figure 3, where the fine-tuned value curve exhibits numerous jagged peaks.
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Algorithm 1 Flow-Centric Generative Planning

1: Input: Current observation history o0−h:0, language goal g, query points p, flow prediction
network πf , flow-conditioned video generation network D, vision-language value module V .

2: Hyperparameters: Flow candidates number A, planning Beams B, planning horizon H .
3: Initialization: Flow plans fp ← [pi0−h:0, i ∈ 1 . . . B], video plans vp ← [oi0−h:0, i ∈ 1 . . . B].
4: for h = 1 . . . H do
5: for b = 1 . . . B do
6: o← vp[b][−h :] ▷ Get the Latest Observation History in the Plan Beam
7: a1:A ← π(o,P, g) ▷ Generate A Different Flow Actions
8: v1:A ← D(o, ai, g) for i in(1 . . . A) ▷ Generate Corresponding Different Video Clips
9: id← argmaxR(vi, g) for i in (1 . . . A)

10: fp[b].append(aid), vp[b].append(vid) ▷ Add Plans with Highest Value
11: end for
12: max idx,min idx← argmax(vp,V), argmin(vp,V)
13: fp[min idx]← fp[max idx], vp[min idx]← vp[max idx] ▷ Periodically Replace
14: end for
15: f ← fp[argmax(vp,V)], v ← vp[argmax(vp,V)] ▷ Return Highest Value Plan

This is disastrous for sampling-based planning algorithms since most planning algorithms expect a
smoothing value curve to be effective (Selman & Gomes, 2006; Ma et al., 2023).

We point out that this problem is caused by imperfect long-horizon videos, where the task does not
necessarily progress smoothly as the video progresses. For example, the robot arm may hesitate in
the air during the task. To mitigate this problem, we replace the concept of adjacent frames in the
original loss to adjacent states, where we define states as short-horizon video clips. Formally, we di-
vide a long-horizon video into small segments of fixed length and treat each clip sclip as the smallest
unit of the video. The original os, oT , ok, ok+1 are seamlessly replaced by sclips , sclipT , sclipk , sclipk+1 re-
spectively. As shown in Figure 3, this simple strategy is surprisingly useful and makes the fine-tuned
vale curve much smoother than the originally fine-tuned ones.

4 FLOW-CENTRIC GENERATIVE PLANNING

4.1 MODEL-BASED PLANNING WITH FLOWS, VIDEOS, AND VALUE FUNCTIONS

Directly generating long-horizon videos autoregressively is usually not accurate (Wen et al., 2023;
Yang et al., 2023; Du et al., 2024) due to compounding errors. In this work, we use model-based
planning to search for a sequence of flow actions and video plans that maximizes the discounted
return:

o∗0:L = argmax
o0:L∼πf ,D

L∑
i=0

γiR(oi, g). (1)

According to Bellman Equation (Sutton, 2018), this equals stepping towards the next state that max-
imizes rt + γV ∗(st+1, g) at each time step given an optimal value function V ∗. In our problem,
rt = −1 is a constant for every step before reaching the goal, and we assume our learned value
function V = V ∗, thus our problem is simplified to find the next state that maximizes V at each time
step. Note this reward design also encourages finding the shortest plan. We use hill climbing (Sel-
man & Gomes, 2006) to solve this problem. It initializes B plan beams. At each timestep t, given
current image history ot−h:t and the language goal g, it employs πf to generate multiple flow ac-
tions pt+1:t+L = πf (ot−h:t,pt, g) on uniformly sampled query points as candidates for tree search,
then use D to generate corresponding short-horizon videos ˆot+1:t+L = D(ot−h:t, g,pt+1:t+L). The
value module V is then used to select the generated video with the highest reward among A videos
to enable the next iteration of generation for each beam. In order to prevent exploitative planning
routes that over-exploit on an irregular state, we periodically replace the lowest value plan among
the beams with the beam with the highest value. The algorithm is summarized in Algorithm 1.
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LIBERO-LONG (Liu et al., 2024a) FMB-S (Luo et al., 2023) FMB-M Folding Unfolding

UniPi (Du et al., 2024) 2% 0% 0% 20% 10%
FLIP-NV 78% 52% 40% 100% 70%

FLIP(Ours) 100% 86% 78% 100% 90%

Table 1: Success rates of model-based planning on long-horizon tasks.

LIBERO-LONG (Liu et al., 2024a) FMB (Luo et al., 2023) Bridge-V2 (Walke et al., 2023)

Latent L2 ↓ FVD ↓ PSNR ↑ Latent L2 ↓ FVD ↓ PSNR ↑ Latent L2 ↓ FVD ↓ PSNR ↑
LVDM He et al. (2022b) 0.566 610.98 10.852 0.484 358.22 12.349 0.373 153.41 16.481

IRASim (Zhu et al., 2024) 0.407 206.28 12.205 0.395 172.45 13.157 0.325 138.97 16.796
FLIP(Ours) 0.217 35.62 26.452 0.264 43.712 25.531 0.173 36.15 33.485

Table 2: Quantitative results on long-horizon video generation.

4.2 PLAN-CONDITIONED LOW-LEVEL POLICY

The low-level policy πL are given the image observation history ot−h:t, the language goal g, and the
predicted flow plan pt:t+L as well as the video plan ˆot+1:t+L = D(ot−h:t, g,pt+1:t+L) to predict
the low-level robot action at:t+L that drive the robot to operate in the environment. We train different
policies that take as input different kinds of condition information, with all of them trained on a few
demonstrations with action labels. The policy architectures are similar to diffusion policy (Chi et al.,
2023). Details can be found in Appendix A.3.

5 EXPERIMENTS

In this section, we first demonstrate that FLIP can: 1) perform model-based planning for different
manipulation tasks; 2) synthesize long-horizon videos (≥ 200 frames); and 3) can guide the low-
level policy for executing the plan for both simulation and real-world tasks. We also evaluate the
action, dynamics, and value modules separately compared to corresponding baselines and show the
interactive, zero-shot, scalability properties of FLIP. More results and videos are on our website.

5.1 MODEL-BASED PLANNING FOR MANIPULATION TASKS

Setup. In this section, we train FLIP on four benchmarks to show its model-based planning ability.
The model is given an initial image and a language instruction, and it is required to search the flow
and video spaces to synthesize the plan for this task. The first one is LIBERO-LONG (Liu et al.,
2024a), a long-horizon table-top manipulation benchmark of 10 tasks in simulation. We train FLIP
on 50× 10 long-horizon videos with a resolution of 128× 128× 3 and test on 50× 10 new random
initializations. The second one is the FMB benchmark (Luo et al., 2023), a long-horizon object
manipulation and assembly benchmark with varying object shapes and appearances. We train FLIP
on 1K single-object multi-stage videos and 100 multi-object multi-stage videos with a resolution of
128×128×3 and test on 50 new initialization for each. The third and fourth suites are cloth folding
and cloth unfolding. These two datasets are collected by ourselves. We train each suite on 40 videos
with varying viewpoints and test on 10 new viewpoints for each with a resolution of 96× 128× 3.

We follow previous works(Du et al., 2023; Zhu et al., 2024) and evaluate our model-based planning
results by human evaluating the correctness of generated video plans. That is, we visually assess the
percentage of time the video successfully solved the given task. We compare FLIP to two baselines:
1) UniPi (Du et al., 2024), a text-to-video generation method with long-horizon text goals. 2) FLIP-
NV, an ablation of FLIP that performs the same beam search but with no value module as guidance.

Results. Table 1 shows the results. We can see that UniPi achieves low success rates across all
tasks, which shows that directly synthesizing long-horizon videos is difficult. FLIP-NV achieves
better results than UniPi. This shows that with dense flow information as guidance, the performance
of the video generation model is improved. FLIP outperforms all baselines, pointing out the ef-
fectiveness of using value functions for model-based planning. This can eliminate incorrect search
routes during planning. We show such incorrect search routes on our website.
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Figure 4: Model-based planning results on LIBERO-LONG, FMB, cloth folding, and cloth unfold-
ing. All of the flows, images, and values shown are generated by FLIP.

5.2 LONG-HORIZON VIDEO GENERATION EVALUATION

Setup. In this section, we quantitatively evaluate the long-horizon video generation quality of
FLIP compared to other video generation models. We choose the same datasets as in Section 5.1 as
well as Bridge-V2 (Walke et al., 2023) as the evaluation benchmarks. Here all videos are longer than
200 frames except for Bridge-V2. For Bridge-V2, we train on 10k videos and test on 256 videos with
a resolution of 96×128×3. We choose two baselines: 1) LVDM (He et al., 2022b), a state-of-the-art
text-to-video method for video generation; 2) IRASim (Zhu et al., 2024), a conditional video gen-
eration method with the end-effector trajectories as the condition. We use SAM2 (Ravi et al., 2024)
to label the end-effector trajectory for IRASim. We choose model-based metrics including Latent
L2 loss and FVD (Unterthiner et al., 2018) as well as a computation-based metric PSNR (Hore &
Ziou, 2010). Latent L2 loss and PSNR measure the L2 distance between the predicted video and the
ground-truth video in the latent space and pixel space, and FVD assess video quality by analyzing
the similarity of video feature distributions

Results. Table 2 shows the results. We can see that our method consistently outperforms baselines
in all datasets. LVDM performs badly on LIBERO-LONG and FMB, and better on Bridge-V2. This
is because the videos in Bridge-V2 are shorter than the previous two benchmarks. IRASim performs
better than LVDM, which shows the importance of trajectory guidance. However, it generates long-
horizon videos in an auto-regressive manner, which has worse results than our method, showing that
model-based planning can also help generate high-quality videos by concatenating short-horizon
videos generated with rich flow guidance. The results on the FMB benchmark are the worst for all
methods. This is because the training videos have many discontinuous transitions, where the robot
gripper instantly moves to where the next stage begins. Since our model leverages history observa-
tions as input conditions, it can sometimes overcome this discontinuous gap. We qualitatively show
the model-based planning results on the four tasks in Figure 4.

Since FLIP is a universal framework for all manipulation tasks as long as they have language-
annotated video datasets, here we qualitatively show FLIP can be used for complex long-horizon
video generation including the ALOHA tasks (Aldaco et al., 2024), pen spinning (Wang et al.,
2024), robot pilling (Chen et al., 2024), tying plastic bags (Gao et al., 2023), and human peeling
eggs, as shown in Figure 7. More video demos are on our website.

5.3 PLAN-GUIDED LOW-LEVEL POLICY

Setup. In this evaluation we explore how the generated flow and video plans can be used as con-
ditions for training a manipulation policy to accomplish the task. We aim to answer the question:
which one, flow or video (or both at the same time), is more suitable to be used as the condition to
guide the learning of the underlying strategy? We use LIBERO-LONG (Liu et al., 2024a) for evalu-
ation, where for each task in LIBERO-LONG, we use 10 demonstrations with action labels and 50
demonstrations without action labels, as done in the baseline method ATM (Wen et al., 2023). Dur-
ing inference, FLIP is a close-loop policy that will replan after every action chunking. We compare
FLIP to ATM Wen et al. (2023) and its diffusion-policy version. We also compare OpenVLA Kim
et al. (2024) (with both zeros-shot and fine-tuned version) and policies with pretrained FLIP on
LIBERO-90 as the planner. Please see Appendix B.2 for these results.
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Figure 5: Success rates of different low-level
policies on LIBERO-LONG.
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Figure 6: Value curves from the pretrained LIV, fine-
tuned by LIV, and fine-tuned by FLIP.

LIBERO-10 Language-Table Bridge-V2

Latent L2 ↓ FVD ↓ PSNR ↑ Latent L2 ↓ FVD ↓ PSNR ↑ Latent L2 ↓ FVD ↓ PSNR ↑
LVDM He et al. (2022b) 0.366 109.41 18.852 0.364 124.75 19.943 0.328 111.34 18.104

IRASim (Zhu et al., 2024) 0.307 92.76 19.205 0.335 132.56 18.156 0.318 107.89 19.967
FLIP-SC 0.271 89.77 20.089 0.304 137.89 18.904 0.316 127.65 18.375

FLIP(Ours) 0.197 27.62 28.602 0.159 21.23 33.632 0.171 38.41 34.576

Table 3: Quantitative results on short-horizon video generation.

Results. The results are in Figure 5. We can see that our plan-guided policies achieve higher
success rates than diffusion policies and ATM-DP, showing that dense flow information and high-
quality future videos are better to be used as conditions than sparse flow information. The flow-
video-guided policy (Ours-FV) achieves the best average success rates across all methods, showing
the advantage of using multi-modality information as conditions. Although video-guided policies
(Ours-V) achieve a competitive mean success rate, they have a high variance, showing that using
videos as conditions is unstable. This may come from that the generated future videos can become
low-quality if the robot deviates from the trained trajectories. Instead, with the flow as extra condi-
tions, the variance becomes lower, showing the stability of dense image flow predictions.

5.4 EXPERIMENTS ON FUNDAMENTAL MODULES OF FLIP

LIBERO-10 Bridge-V2

ADE ↓ LTDR ↑ ADE ↓ LTDR ↑
ATM (Wen et al., 2023) 19.6 53.8% 18.4 66.1%

Ours-ABS 20.5 57.3% 17.9 59.3%
Ours-NoAUX 14.5 73.2% 12.7 75.6%

Ours 12.7 76.5% 11.9 80.2%

Table 4: Quantitative results of the action model.

Action Module Experiments. We use two
metrics to assess the flow generation model πf
quantitatively (Jiang et al., 2024b): 1) Average
Distance Error (ADE) between the generated
and the ground truth flows in pixel units on all
query points; 2) Less Than Delta Ratio (LTDR):
the average percentage of points within the dis-
tance threshold of 1, 2, 4, and 8 pixels between the reconstructed and the ground truth flows at
each time step. Since most of the points are stationary points, in order to better demonstrate the
results, we only calculate points with δs ≥ 1. We also do experiments that compare using CVAE
and diffusion models as the action module in Appendix B.3.

We use LIBERO-LONG (Liu et al., 2024a) and Bridge-V2 (Walke et al., 2023) for evaluation. We
compare our method with 3 baselines: 1) ATM (Wen et al., 2023), the state-of-the-art flow prediction
module for manipulation tasks; 2) Ours-ABS: directly generating absolute flow coordinates at each
timestep rather than generating the scale and direction; 3) Ours-NoAUX: the same architecture of
ours with no auxiliary training losses (the flow and image reconstruction losses).

From Table 4, we can see that Ours-ABS generally achieves the same results as ATM, and predicting
the scale and directions are better than ATM and Ours-ABS, showing that directly regressing the
absolute coordinates is worse than predicting the delta of flows at each timestep. We can also see
that the auxiliary losses can help improve the final results.

Dynamics Module Experiments. We evaluate our dynamics module separately with the ground
truth flows as conditions on short-horizon video generation. We use PSNR (Hore & Ziou, 2010),
latent L2 loss, and FVD (Unterthiner et al., 2018) as metrics. We use LIBERO-LONG (Liu et al.,
2024a), Bridge-V2 (Walke et al., 2023), and Language-Table (Lynch et al., 2023) as the evaluation
datasets. We use three baselines (as introduced in Section 5.2): 1) LVDM (He et al., 2022b); 2)
IRAsim (Zhu et al., 2024); 3) Ours-SC: using AdaLN-Zero for all kinds of conditions.

Results are in Table 3. The result trends across methods are generally consistent with the long-
horizon video generation results in Table 2. FLIP-SC generally achieves the same performance with
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Figure 7: FLIP is a general framework for diverse kinds of manipulation tasks across objects and
robots, even for human hands. All of the flows and images are generated.

Figure 8: Interactive ability. Figure 9: Zero-shot transfer. Figure 10: Scalability.

IRASim, showing that even if the model is given dense flow information, it requires a fine-grained
mechanism to leverage the condition for video generation.

Value Module Experiments. We here qualitatively show the fine-tuned value curves of our
method compared to the original LIV (Ma et al., 2023) method on two different tasks consisting
of Language-Table (Lynch et al., 2023) and cloth folding in Figure 6. We also show the value curves
before fine-tuning. We can see our method consistently gets smoother value curves than the original
LIV method, where the value curves have violent oscillations.

5.5 APPLICATIONS AND SCALING

Finally, we train FLIP on LIBERO-90, a large-scale simulation manipulation dataset to show three
properties of FLIP. We use 50 videos for each task in the resolution of 3× 64× 64.

Interactive World Model. We first show that the trained dynamics module is interactive: it can
generate corresponding videos given image flows specified by humans. We use SAM2 (Ravi et al.,
2024) to select the region of the robot arm and manually give flows in different directions. Results
are shown in Figure 8. We can see the robot arm can move left or right according to the given flow.

Zero-Shot Generation. Secondly, we show that the trained FLIP has zero-shot transfer ability.
We test the trained model on LIBERO-LONG. Results are shown in Figure 9. Interestingly, we can
see that the pretrained model, without fine-tuning, can generate natural movement for the robot arm
with unseen observations and instructions. This shows FLIP has a certain knowledge transfer ability.

Model Scaling. We show that the action and dynamics module are scalable with increasing model
sizes. Figure 10 shows the smoothed ADE and Latent L2 loss on the validation set. It shows that
increasing the model size can consistently help achieve better performance for both modules.

6 CONCLUSION AND LIMITATION

In this work, we present FLIP, a flow-centric generative planning method for general-purpose manip-
ulation tasks. FLIP is trained on only video and language data, can perform model-based planning on
the trained world model to synthesize long-horizon plans, and can guide low-level policy learning.
FLIP has the potential to scale up with increasing data and computation budgets in the future.

A major limitation of FLIP is the slow speed of planning, which is restricted by extensive video gen-
eration processes during the planning phase. This restricts our method on quasi-static manipulation
tasks. Another limitation is that FLIP does not use physical properties and 3D information of the
scene. Future works can develop physical 3D world models and extend FLIP to 3D scenarios.
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Charlotte Caucheteux and Jean-Rémi King. Brains and algorithms partially converge in natural
language processing. communications biology, 5 (1), 134, 2022.

Tao Chen, Eric Cousineau, Naveen Kuppuswamy, and Pulkit Agrawal. Vegetable peeling: A case
study in constrained dexterous manipulation. arXiv preprint arXiv:2407.07884, 2024.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The Inter-
national Journal of Robotics Research, pp. 02783649241273668, 2023.

Norman Di Palo and Edward Johns. Keypoint action tokens enable in-context imitation learning in
robotics. arXiv preprint arXiv:2403.19578, 2024.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multi-
modal language model. arXiv preprint arXiv:2303.03378, 2023.

Yilun Du, Mengjiao Yang, Pete Florence, Fei Xia, Ayzaan Wahid, Brian Ichter, Pierre Sermanet,
Tianhe Yu, Pieter Abbeel, Joshua B Tenenbaum, et al. Video language planning. arXiv preprint
arXiv:2310.10625, 2023.

Yilun Du, Sherry Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Josh Tenenbaum, Dale Schuurmans, and
Pieter Abbeel. Learning universal policies via text-guided video generation. Advances in Neural
Information Processing Systems, 36, 2024.

11

https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators


Published as a conference paper at ICLR 2025

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite markov decision processes.
In UAI, volume 4, pp. 162–169, 2004.

Chelsea Finn and Sergey Levine. Deep visual foresight for planning robot motion. In 2017 IEEE
International Conference on Robotics and Automation (ICRA), pp. 2786–2793. IEEE, 2017.

Chongkai Gao, Haichuan Gao, Shangqi Guo, Tianren Zhang, and Feng Chen. Cril: Continual
robot imitation learning via generative and prediction model. In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 6747–5754. IEEE, 2021.

Chongkai Gao, Zekun Li, Haichuan Gao, and Feng Chen. Iterative interactive modeling for knotting
plastic bags. In Conference on Robot Learning, pp. 571–582. PMLR, 2023.

Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit Gird-
har, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d: Around the world in
3,000 hours of egocentric video. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 18995–19012, 2022.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. Advances
in neural information processing systems, 31, 2018.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with dis-
crete world models. arXiv preprint arXiv:2010.02193, 2020.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for contin-
uous control. arXiv preprint arXiv:2310.16828, 2023.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022a.

Yingqing He, Tianyu Yang, Yong Zhang, Ying Shan, and Qifeng Chen. Latent video diffusion
models for high-fidelity long video generation. arXiv preprint arXiv:2211.13221, 2022b.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Alain Hore and Djemel Ziou. Image quality metrics: Psnr vs. ssim. In 2010 20th international
conference on pattern recognition, pp. 2366–2369. IEEE, 2010.

Wenlong Huang, Chen Wang, Yunzhu Li, and Fei-fei Li. Rekep: Spatio-temporal reasoning of
relational keypoint constraints for robotic manipulation. 2024.

Hanxiao Jiang, Binghao Huang, Ruihai Wu, Zhuoran Li, Shubham Garg, Hooshang Nayyeri, Shen-
long Wang, and Yunzhu Li. Roboexp: Action-conditioned scene graph via interactive exploration
for robotic manipulation. arXiv preprint arXiv:2402.15487, 2024a.

Zhenyu Jiang, Hanwen Jiang, and Yuke Zhu. Doduo: Learning dense visual correspondence from
unsupervised semantic-aware flow. In 2024 IEEE International Conference on Robotics and
Automation (ICRA), pp. 12420–12427. IEEE, 2024b.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.

Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia Neverova, Andrea Vedaldi, and Christian
Rupprecht. Cotracker: It is better to track together. arXiv preprint arXiv:2307.07635, 2023.

12



Published as a conference paper at ICLR 2025

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Sateesh Kumar, Jonathan Zamora, Nicklas Hansen, Rishabh Jangir, and Xiaolong Wang. Graph
inverse reinforcement learning from diverse videos. In Conference on Robot Learning, pp. 55–
66. PMLR, 2023.

Yann LeCun. A path towards autonomous machine intelligence. 2022. URL https://openreview.
net/pdf, 2024.

Timothée Lesort, Natalia Dı́az-Rodrı́guez, Jean-Franois Goudou, and David Filliat. State represen-
tation learning for control: An overview. Neural Networks, 108:379–392, 2018.

Junbang Liang, Ruoshi Liu, Ege Ozguroglu, Sruthi Sudhakar, Achal Dave, Pavel Tokmakov, Shuran
Song, and Carl Vondrick. Dreamitate: Real-world visuomotor policy learning via video genera-
tion. arXiv preprint arXiv:2406.16862, 2024.

Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
Benchmarking knowledge transfer for lifelong robot learning. Advances in Neural Information
Processing Systems, 36, 2024a.

Shaowei Liu, Zhongzheng Ren, Saurabh Gupta, and Shenlong Wang. Physgen: Rigid-body physics-
grounded image-to-video generation. In European Conference on Computer Vision, 2024b.

Jianlan Luo, Charles Xu, Fangchen Liu, Liam Tan, Zipeng Lin, Jeffrey Wu, Pieter Abbeel, and
Sergey Levine. Fmb: A functional manipulation benchmark for generalizable robotic learning.
The International Journal of Robotics Research, pp. 02783649241276017, 2023.

Corey Lynch, Ayzaan Wahid, Jonathan Tompson, Tianli Ding, James Betker, Robert Baruch, Travis
Armstrong, and Pete Florence. Interactive language: Talking to robots in real time. IEEE Robotics
and Automation Letters, 2023.

Xin Ma, Yaohui Wang, Gengyun Jia, Xinyuan Chen, Ziwei Liu, Yuan-Fang Li, Cunjian Chen,
and Yu Qiao. Latte: Latent diffusion transformer for video generation. arXiv preprint
arXiv:2401.03048, 2024.

Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy
Zhang. Vip: Towards universal visual reward and representation via value-implicit pre-training.
arXiv preprint arXiv:2210.00030, 2022.

Yecheng Jason Ma, Vikash Kumar, Amy Zhang, Osbert Bastani, and Dinesh Jayaraman. Liv:
Language-image representations and rewards for robotic control. In International Conference
on Machine Learning, pp. 23301–23320. PMLR, 2023.

Mario Manto, James M Bower, Adriana Bastos Conforto, José M Delgado-Garcı́a, Suzete Nasci-
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A METHOD DETAILS

A.1 LATENT DIFFUSION MODELS

Diffusion Models. Diffusion models (Song et al., 2020; Ho et al., 2020) typically contain a
forward nosing process and a reverse denoising process. During the forward process, we grad-
ually apply noise to real data x0: q(xt|x0) = N (xt;

√
atx0, (1 − at)I) over T timesteps,

where constants at are hyperparameters. By applying the reparameterization trick, we can sam-
ple xt =

√
atx0 +

√
1− atϵt, where ϵt ∼ N (0, I). During the reverse process, it starts from

Gaussian noise xT ∼ N (0, I) and gradually removes noises to recover x0: pθ(xt−1|xt) =
N (µθ(xt),Σθ(xt)). With reparameterizing µθ as a noise prediction network ϵθ, the model can
be trained with Lsimple(θ) = ||ϵθ(xt)− ϵt||22. We also learn the covariance Σθ following Nichol &
Dhariwal (2021); Peebles & Xie (2023) with the full KL loss.

Latent Diffusion and Tokenization. Latent diffusion models (Rombach et al., 2022; Ma et al.,
2024) perform diffusion process in a low-dimensional latent space zld rather than the original pixel
space. We leverage the pre-trained VAE in SDXL (Podell et al., 2023) to compress each frame ot
to latent representations: zldt = Enc(ot), and after the denoising process, the latent representation
can be decoded back to the pixel space with the VAE decoder: ot = Dec(zldt ). For each zld, it is
divided into image patches and tokenized by convolutional networks to P tokens withD dimensions
(hidden size). Sequencing the image tokens of all T frames, we get the video token in the shape of
T × P ×D.

Spatial-Temporal Attention Mechanism. We leverage transformers (Vaswani, 2017) to imple-
ment the dynamics module, and use the memory-efficient spatial-temporal attention mechanism (Ma
et al., 2024; Bruce et al., 2024; Zhu et al., 2024), where each attention block consists of a spatial
attention block and a temporal attention block. The spatial attention operates on the 1 × P tokens
within each frame, and the temporal attention operates on the T ×1 tokens across T timesteps at the
same location.

A.2 LANGUAGE-VISION REPRESENTATION

The original fine-tuning loss LLIV = LI(ψI)+LL(ψI , ψL) is calculated on sampled sub-trajectory
batch data

{
ois, . . . , o

i
k, o

i
k+1, . . . , o

i
T , g

i
}B
i=1

from each task Ti, where s ∈ [0, Ti − 1] , s ≤ k < Ti.
They have the following forms:

LI(ψI) =
1− γ
B

B∑
i=1

[−S(ψI(ois), ψI(oiT ))]+ log
1

B

B∑
i=1

exp[S(ψI(oik), ψI(oiT )) + 1− γS(ψI(oik+1), ψI(o
i
T ))],

LL(ψI , ψL) =
1− γ
B

B∑
i=1

− log
e(1−γ)S(ψI(oiT ),ψL((gi))

1
B

∑B
j=1

[
e (1−γ)S(ψI(ojT ),ψL(gi))]

]
 ,

(2)

A.3 LOW-LEVEL POLICY

In this work, we use a low-level policy with a similar structure to diffusion policy (Chi et al., 2023).
We show the architecture of this policy in Figure 11. We employ a spatial-temporal attention mech-
anism. Specifically, the input contains the agent view observation history oat−12:t ∈ R12×3×128×128

and the eye in hand observation history oet−12:t ∈ R12×3×128×128 at timestep t, the proprioception
state history st−12:t ∈ R12×123, the language tokens extracted from Meta Llama 3.1 8B (Dubey
et al., 2024) g ∈ RTg×4096, the predicted flow for both the agent view pat:t+16 ∈ R16×529×2 and
eye in hand view pet:t+16 ∈ R16×529×2, and the predicted future videos for both the agent view
ôat:t+16 ∈ R16×3×128×128 and eye in hand view ôet:t+16 ∈ R16×3×128×128. The low-level policies
are a denoising model that will predict the gradient field of the action chunking ∇E(At), and after
500 denoising steps, we can get the future action sequences a ∈ R16×7 where 7 is the action size.
We use the action in a receding horizon manner where we only execute 8 steps and we replan the
future flow and videos and predict another 16 action steps iteratively.
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Figure 11: Low-level policy architecture. This is Ours-FV. Ours-F and Ours-V are in the same
architecture without corresponding input conditions.

B EXPERIMENT DETAILS

B.1 TRAINING DETAILS

We report the hyperparameters of the models we trained in Table 5 and Table 6. We train all data
with observation history equals to 16 and future flow horizon equals to 16.

CVAE-S CVAE-B CVAE-L

Encoder Layer 4 6 8
Decoder Layer 6 8 12

Hideen Size 384 768 1024
Learning Rate 1e-4 5e-5 1e-5

Image Patch Size 8 8 8
Head Number 4 8 12

Table 5: Hyperparameters of CVAE.

D-S D-B D-L

Layers 8 12 16
Hideen Size 384 768 1024

Learning Rate 1e-4 1e-4 1e-4
Head Number 6 12 16

Table 6: Hyperparameters of the dynamics module.

B.2 MORE POLICIES RESULTS

Besides the low-level experiments in Section 5.3, we also perform experiments in the LIBERO-
LONG task suite with two other models:

1. OpenVLA Kim et al. (2024): this is a large-scale retained that is designed for general-
purpose vision-language-action prediction. We use the pretrained checkpoint from the of-
ficial paper and test with both zero-shot and fine-tuned models. We use 50 demonstrations
for each task in LIBERO-LONG to fine-tune the OpenVLA model. For consistency, we use
a resolution of 128×128 for fine-tuning. For fair comparisons, we only use the agent view
images as input because the original OpenVLA is only trained with third-view images.

2. Pretrained FLIP on LIBERO-90 and fine-tuned on LIBERO-10 as the high-level planner.
In this setting, we train FLIP on 50×90 action-less demonstrations with a resolution of
64×64 from LIBERO-90, and finetune it with 50×10 from LIBERO-LONG, and use this
FLIP model as the planner to train the same low-level policy as in the main paper. Here we
only test the flow-conditioned policy version, and call it Ours-90.
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Results. We show the results together with the main paper results in Figure 12. We can see that
OpenVLA cannot handle the long-horizon tasks of LIBERO-LONG either with zero-shot or fine-
tuned models, showing there is still a long way to go for general-purpose vision-language-action
models. Ours-90 performs similarly to Ours-F and Ours-FV, showing that pretraining in other tasks
may not bring significant improvement for low-level policy learning. This comforts with the life-
long learning results in the original LIBERO paper (Liu et al., 2024a), where they also show that
pretraining cannot help (sometimes even hurt) the policy training results.

It is worth noting that, in the original OpenVLA paper, they also fine-tuned the pretrained model
on LIBERO-LONG tasks and archived a 53.7 ± 1.3% success rate. We think the success of their
results comes from two aspects, which cannot be true in our setting: 1) we are using a resolution
of 128×128, which may not be large enough to represent the details in the scene. In comparison,
OpenVLA uses a resolution of 256×256. 2) We are using the official demonstrations provided by
the LIBERO paper, which may not be as good as the re-collected demonstrations in their demon-
strations.

Figure 12: Low-level policy results in LIBERO-LONG.

B.3 ABLATION STUDIES OF ACTION MODULE

To verify if diffusion models can generate better results for image flow prediction (the action module
of FLIP) than a CVAE model, here we design a diffusion model for the flow generation task. We use
the same architecture as the CVAE decoder for the diffusion model (as illustrated in Figure 2, where
a transformer encoder takes as input the query points tokens, the image history tokens, the language
embedding tokens, and noisy inputs, and outputs the scale and direction gradient fields for each
query point. The network structure is shown in Figure 13. We perform comparison experiments in
both LIBERO-LONG and Bridge-V2 data.

Results. Table 7 shows the results. We can see that CVAE performs better on LIBERO-LONG
tasks and the diffusion model performs better on Bridge-V2 tasks, but their performance difference
is minor. We can see the main improvement of the action module comes from: 1) predicting the
delta action (scale and direction) rather than predicting the absolute coordinates of the image flows;
2) auxiliary losses as stated in our main paper.

Although using the diffusion model may perform better in some tasks, the inference speed is slower
than CVAE models. Given that their performance is not too different, we still use CVAE as our
default action module.

B.4 REAL WORLD EXPERIMENTS

In order to show the application of FLIP on real-world tasks, here we design two long-horizon
real-world manipulation tasks for testing. We use a 6-DOF X-arm as the robot arm, and use two
RealSense D435i cameras to get the visual inputs. We put one camera on the other robot arm as the
third-view camera and another camera on the wrist of the robot arm as the eye-in-hand camera. The
control frequency of both tasks is set to 10Hz. We also train a diffusion policy and an ATM (Wen
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Figure 13: Using diffusion model for the action module. The model also generates the scale and
directions for each query point and the full flow trajectory can be reconstructed by them.

LIBERO-LONG Bridge-V2

ADE ↓ LTDR ↑ ADE ↓ LTDR ↑
ATM (Wen et al., 2023) 19.6 53.8% 18.4 66.1%

Ours-ABS 20.5 57.3% 17.9 59.3%
Ours-NoAUX 14.5 73.2% 12.7 75.6%

Ours(CVAE) 12.7 76.5% 11.9 80.2%
Diffusion 13.4 75.9% 10.2 82.7%

Table 7: Comparison results of CVAE and Diffusion models as the action module for FLIP.

et al., 2023) policy as the baseline for each task. We perform experiments in a table-top setting, as
shown in Figure 14. We test both tasks with 20 random initialized episodes. The two tasks are:

1. Tea Scooping Task. In this task, there is a white bowl of dry tea leaf (Tieguanyin), a yellow
bowl with an iron spoon, and an empty cup on the table, as shown in Figure 15. The robot is
trained to first pick up the spoon from the yellow bowl, then use the spoon to scoop the tea

Figure 14: Our real-world experiment setting. We use the right X-arm as the manipulator, and use
two RealSense D435i cameras as visual inputs.
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Figure 15: Two tasks in our real-world experiments.

leaf from the white bowl pour the tea leaf into the cup, and finally put back the spoon into
the yellow bowl. The positions of both the bowls and the cup are randomized in the space
that the robot arm can reach. The task is successful if all three stages are accomplished. The
action space of the robot is 7-dim, including the 6-DOF pose and the gripper action. We
collect 40 demonstrations with a scripted policy to train FLIP and a flow-guided low-level
policy. We choose this task because it is both long-horizon and requires precise grasping
and manipulation. It also requires tool use and interaction between rigid body and granular
objects.

2. Cloth Unfolding Task. In this task, a pair of denim shorts was randomly thrown on the
table, and the robot is trained to unfold it to make it flat, as shown in Figure 15. The
task is successful if the projection area of the jeans on the table is greater than 85% of its
maximum area. The action space of the robot is 6-dim, which consists of a 2-dim end-
effector coordinate in the x-y plane, a 1-dim grasping orientation angle, a 2-dim dragging
coordinate in the x-y plane, and the gripper aperture. We fix the grasping height to 22 mm
for this task. We collect 50 demonstrations for this task with a scripted policy. We choose
this task because it is both long-horizon and difficult because of the deformation of the
jeans, which requires a long-horizon task planning ability for the policy. The robot has to
finish the task in 15 grasps and drags.

Results. Table 8 shows the results of both tasks. We can see that our policy is significantly better
than the baselines. These two tasks are very difficult in out setting since we only use no more than
50 demonstrations for each of them, while modern image-based imitation learning algorithms (such
as Diffusion Policy (Chi et al., 2023)) usually require more than 500 demonstrations for such kinds
of long-horizon tasks. In contrast, our method benefits from the high-level model-based planning
advantages and can correct back to the good trajectory when it deviates from it, thus the success
rates are improved.

Diffusion Policy (Chi et al., 2023) ATM (Wen et al., 2023) Ours

Tea Scooping 15.0% 25% 55%
Cloth Unfolding 0.0% 0.0% 50.0%

Table 8: Success rates of real robot experiments over 20 evaluations.

B.5 DATA SCALABILITY

To show the performance change of FLIP along with different amounts of training data, here we
perform an experiment on LIBERO-LONG to show the planning success rates change with different
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amount of demonstrations. Results are shown in Table 9. From the results, we can see that with
more data for each task, the planning success rates become better.

LIBERO-LONG (Liu et al., 2024a)

FLIP-10 0%
FLIP-20 5%
FLIP-30 40%
FLIP-40 90%
FLIP-50 100%

Table 9: Planning results change along with data amounts for LIBERO-LONG. The number shown
in the left column is the demonstration number for each task during training.

B.6 GENERATIVE PLANNING WITH VISUAL DISTRACTION

In this section, we perform a qualitative experiment to see how will our FLIP be affected in the
presence of noise or visual obstructions. To this end, we manually add an image of an apple in the
initial image of the LIBERO-LONG tasks, as shown in Figure 16 and Figure 17, and see how FLIP
performs generative planning in this setting.

Results. We add the visual distraction image in different areas of the initial image, and we can see
that, the video generation model will first fail after several planning steps and generative distorted
cups and make the whole image grey. However, before the model fails, the flow generation model
still performs very well, which shows that the flow generation model can resist visual distractions,
while the video generation model is susceptible to visual distractions.

Figure 16: The apple is put on the target cup, and the generative planning fails in 7 steps (the cup
is distorted, by which we call the planning fails). Note, the flow model performs well before the
image is distorted and turns to grey, which shows that the flow model can capture the geometry of
the objects and understand the physical movement requirements of the task.
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Figure 17: The apple is put away from the target object, and the generative planning can exist more
steps.
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