000 001 002 003 FLIP: FLOW-CENTRIC GENERATIVE PLANNING FOR GENERAL-PURPOSE MANIPULATION TASKS

Anonymous authors

Paper under double-blind review

ABSTRACT

We aim to develop a model-based planning framework for world models that can be scaled with increasing model and data budgets for general-purpose manipulation tasks with only language and vision inputs. To this end, we present FLow-CentrIc generative Planning (FLIP), a model-based planning algorithm on visual space that features three key modules: 1) a multi-modal flow generation model as the general-purpose action proposal module; 2) a flow-conditioned video generation model as the dynamics module; and 3) a vision-language representation learning model as the value module. Given an initial image and language instruction as the goal, FLIP can progressively search for long-horizon flow and video plans that maximize the discounted return to accomplish the task. FLIP is able to synthesize long-horizon plans across objects, robots, and tasks with image flows as the general action representation, and the dense flow information also provides rich guidance for long-horizon video generation. In addition, the synthesized flow and video plans can guide the training of low-level control policies for robot execution. Experiments on diverse benchmarks demonstrate that FLIP can improve both the success rates and quality of long-horizon video plan synthesis and has the interactive world model property, opening up wider applications for future works. Video demos are on our website: [https://flow-planning.github.io/.](https://flow-planning.github.io/)

1 INTRODUCTION

032 033 034 035 036 037 038 039 World models refer to neural network-based representations or models that learn to simulate the environment (LeCun, 2024; Ha & Schmidhuber, 2018). With world models, agents can imagine, reason, and plan inside world models to solve tasks more safely and efficiently. Recent advancements in generative models, especially in the area of video generation (Brooks et al., 2024; Blattmann et al., 2023; Yang et al., 2023), have demonstrated the application of generating high-quality videos as world simulators with internet-scale training data. World models have opened new avenues across various fields, particularly in the domain of robotic manipulation (Yang et al., 2023; Mendonca et al., 2023; Seo et al., 2023), which is the focus of this paper.

040 041 042 043 044 045 046 047 048 049 050 051 052 053 The intelligence of generalist robots involves two levels of abilities (Caucheteux $\&$ King, 2022; Manto et al., 2012): 1) high-level planning of the abstraction sequence of the task with multi-modal inputs, and 2) low-level execution of the plan by interacting with the real world. A well-designed world model could serve as an ideal way to realize the first function, for which it should enable model-based planning. This requires the world model to be interactive, i.e., can simulate the world according to some given actions. The core of this framework is to find a *scalable action representation* that serves as the connection between high-level planning and low-level control. This representation should: 1) be able to represent various kinds of movements across diverse objects, robots, and tasks in the whole scene; 2) be easy to obtain or label a large amount of training data for scaling up. Regarding this, Yang et al. (2023); Du et al. (2023); Zhou et al. (2024) use languages from VLMs (Driess et al., 2023) as high-level actions, while Wu et al. (2024) directly use low-level robot actions to interact with the world model. However, they either require extra datasets or task-specific high-level action labeling processes for training the interactive world model, or their representations cannot describe sophisticated subtle movements in the whole scene. For example, they cannot describe the detailed movements of a dexterous hand spinning a pen. These limit their application as a scalable interactive world model and inspire us to find other action representations.

067 068 069 070 Figure 1: Overview of our method. Left: FLIP is trained on video datasets across different tasks, objects, and robots, with only one language description for each video as the goal. Right: we train an interactive world model consisting of an action module for flow generation, a dynamics module for video generation, and a value module for assigning value at each step. These modules can perform flow-centric model-based planning for manipulation tasks on the flow and video space.

072 073 074 075 076 077 078 Image flow, a dynamic representation of pixel-level changes over time, is a concise yet general representation of all kinds of movements in images for different robots and objects and can describe more subtle changes than language. More importantly, image flow can be completely obtained by off-the-shelf trackers (Karaev et al., 2023) from pure video datasets. Meanwhile, recent works also show that flows are effective representations for training low-level manipulation policies (Wen et al., 2023; Xu et al., 2024a;b). These make flow a good choice for action representation of world models. However, it remains unclear how to leverage flows for planning on manipulation tasks.

079 080 081 082 083 084 085 086 087 088 089 090 In this work, we present Flow-Centric General Planning (FLIP) for general-purpose robot manipulation tasks. As shown in Figure 1, we train a flow-centric world model purely from languageannotated video data from diverse tasks. This world model contains three modules: 1) a flow generation network as the action module, 2) a flow-conditioned video generation model as the dynamics module, and 3) a visual-language representation learning model as the value module. Specifically, we design our action and dynamics module based on CVAE (Kingma, 2013) and DiT (Peebles $\&$ Xie, 2023) architectures respectively and propose a new training mechanism for leveraging LIV (Ma et al., 2023) as our value module. The trained modules enable model-based planning by progressively searching successful long-horizon plans on the flow and video spaces: given an initial image and language instruction as the goal, the action module will propose several flow candidates, and the dynamics module will generate the short-horizon future videos. The value module will access the favorability of generated videos that maximize the discounted returns and perform tree search (Selman & Gomes, 2006) to synthesize long-horizon plans for solving the task.

091 092 093 094 095 096 097 098 099 In experiments, we show that FLIP can perform model-based planning to solve tasks for both simulation manipulation tasks (LIBERO (Liu et al., 2024a)) and real-world tasks (including FMB (Luo et al., 2023), cloth folding, unfolding, and Bridge-V2 (Walke et al., 2023)). We also show that FLIP can generate high-quality long-horizon videos for these tasks. Meanwhile, the generated flow and video plans can guide the training of low-level policies. We also show that the three modules of FLIP are superior to their respective baselines (Wen et al., 2023; Zhu et al., 2024; Ma et al., 2023). We quantitatively show that FLIP can simulate diverse complex manipulation tasks across objects and robots. The trained world model also demonstrates interactive properties, zero-shot transfer ability, and scalability. In summary, our contributions are:

100 101

071

- We propose flow-centric generative planning (FLIP) as an interactive world model for general-purpose model-based planning for manipulation tasks.
- We design a new flow generation network, a new flow-conditioned video generation network, and a new training method for an existing vision-language representation learning network as the three key modules of FLIP.
- **106 107** • In our experiments, we show FLIP can perform general-purpose model-based planning, synthesize long-horizon videos, guide the training of low-level policy, and other promising properties, as well as the superiority of the three modules of FLIP compared to baselines.

108 109 2 RELATED WORKS

110 111 2.1 WORLD MODELS FOR DECISION MAKING

112 113 114 115 116 117 118 119 120 121 Early works of world models learn system dynamics in low dimensional state space (Lesort et al., 2018; Ferns et al., 2004), perform planning in latent space (Nasiriany et al., 2019), or train networks to predict the future observations (Finn & Levine, 2017) and actions (Kaiser et al., 2019). Modern model-based reinforcement learning methods (Hafner et al., 2020; 2023; Hansen et al., 2023; Baker et al., 2022; Micheli et al., 2022) focus on latent space imagination with coupled dynamics and action modules. Recent works leverage powerful scalable video generation architectures like Diffusion Transformer (Peebles & Xie, 2023) and large-scale training data (Grauman et al., 2022) to develop video generation networks to simulate an interactive environment (Yang et al., 2023; Bruce et al., 2024; Shridhar et al., 2024; Valevski et al., 2024; Wu et al., 2024; Zhu et al., 2024; Wu et al., 2024). In this work, we build a world model with separate flow-centric action and dynamics modules as well as a vision-language value model for model-based planning for robot manipulation tasks.

122

124

123 2.2 FLOW AND VIDEO MODELS FOR MANIPULATION

125 126 127 128 129 130 131 132 133 134 135 136 137 138 Flows are the future trajectories of query points on images or point clouds. They are universal descriptors for motions in the video, while video data contains rich knowledge of behaviors, physics, and semantics, and have unparalleled scalability in terms of both content diversity and data acquisition. For robotics, people have been trying to use flows as policy guidance (Wen et al., 2023; Bharadhwaj et al., 2024), learn dense correspondence (Jiang et al., 2024b), tool using (Seita et al., 2023), or cross-embodiment representations (Xu et al., 2024a; Zhu et al., 2024; Yuan et al., 2024). Videos are usually used for learning inverse dynamics (Du et al., 2024; Finn & Levine, 2017; Brandfonbrener et al., 2024; Gao et al., 2021), rewards (Ma et al., 2022; 2023; Nair et al., 2022; Zakka et al., 2022), transferrable visual representations such as latent embeddings (Sermanet et al., 2018; Nair et al., 2022; Liu et al., 2024a), key points (Huang et al., 2024; Di Palo & Johns, 2024), affordance (Bahl et al., 2023; Shu et al., 2017), flows (Wen et al., 2023; Xu et al., 2024a; Bharadhwaj et al., 2024), scene graphs (Zhang et al., 2024; Jiang et al., 2024a; Kumar et al., 2023), or acquire similar manipulation knowledge from human videos (Wang et al., 2023; Mendonca et al., 2023; Shao et al., 2021; Liang et al., 2024). Recent works also use video generation techniques as visual simulation (Yang et al., 2023; Liu et al., 2024b). In this work, we build our action, dynamics, and value modules all based on video and language inputs, enabling the scalability of our framework.

139 140 141

3 THREE FUNDAMENTAL MODULES OF FLIP

142 143 3.1 PROBLEM FORMULATION

144 145 146 147 148 149 150 We model a manipulation task $\mathcal T$ as a goal-conditioned Partially Observable Markov Decision Process (POMDP) parameterized by $(S, O, \phi, A, P, R, \gamma, g)$ where S, A, O are state, action, and observation spaces, $\phi : S \to \mathcal{O}$ is the state-observation mapping function, $P : S \times A \to S$ is the transition function, $R : S \times A \to \mathbb{R}$ is the reward function, γ is the discount factor, and g is the goal state. In this work, the observation space is the image space: $\mathcal{O} = \mathbb{R}^{H \times W \times 3}$, where H and W are the height and width of the image, and $R(s, g) = \mathbb{I}(s == g) - 1$ is a goal-conditioned sparse reward. The task is solved if the agent maximizes the return $\sum_{t=0}^{T} \gamma^t R(s_t, g)$.

151 152 153 154 155 156 We aim to solve this problem by learning a world model and a low-level policy. The world model performs model-based planning on image and flow spaces to maximize the return, synthesizing longhorizon plans, and the low-level policy executes the plan in the real environment. We aim to train the world model only on language-annotated video datasets to make it general-purpose and scalable, and train the low-level policy on a few action-labeled datasets. To enable model-based planning, our world model contains three key modules, as introduced in the following sections.

157 158

3.2 FLOW GENERATION NETWORK AS ACTION MODULE

159 160 161 Overview. The action module of FLIP is a flow generation network π_f that generates image flows (future trajectories on query points) as *actions* for planning. The reason why we use a generation model rather than a predictive model is that we are doing model-based planning, where the action module should give different action proposals for sampling-based planning. Formally, given h step

174 175 176 177 178 Figure 2: The action module and dynamics module of FLIP. Left: the tokenizing process of different modalities in training data. Middle: we use a Conditional VAE to generate flows as actions. It separately generates the delta scale and directions on each query point for flow reconstruction. Right: we use a DiT model with the spatial-temporal attention mechanism for flow-conditioned video generation. Flows (and observation history) are conditioned with cross attention, while languages and timestep are conditioned with AdaLN-zero.

181 182 183 184 image observation history $o_{t-h:t}$ at timestep t, the language goal g, and a set of 2D query points coordinates $\mathbf{p}_t = \{p_t^k\}_{k=1}^K$, where $p_{t,k} = (u, v)$ is the k-th query point coordinate on o_t , the flow generation network π_f generates coordinates of query points in future L timesteps (including the current step): $\mathbf{p}_{t:t+L} = \pi_f(o_{t-h:t}, \mathbf{p}_t, g) \in \mathbb{R}^{L \times K \times 2}$.

186 187 188 189 190 191 192 193 194 195 196 197 198 Training Data Annotation. The flows of query points can be extracted from pure video data by the off-the-shelf point tracking models. The problem is how to select query points. Previous works either use SAM (Ravi et al., 2024) to select query points on the region of interest or select query points on active/stationary regions with a predefined ratio (Wen et al., 2023). These methods face two problems: 1) for diverse kinds of videos with complex scenes, it is hard for modern segmentation models (Ravi et al., 2024) to segment perfect regions of interest with no human assistance; 2) for long-horizon videos, there may be objects appearing/disappearing in the video, and using query points only from the initial frame become problematic. To this end, in this work, we uniformly sample dense grid query points for the whole image (for the first problem) at each timestep, and track them for only a short-horizon video clip, i.e., tracking on video clips starting from *every* frame of the long-horizon video (for the second problem). This can mitigate the second problem because even if some objects appear/disappear, their influences are restricted in a short horizon. Formally, for each frame in the dataset, we uniformly sample a grid of N_q points, then use Co-Tracker (Karaev et al., 2023) to generate the flows ${p_{t:t+L}^k}_{k=1}^{N_q}$ within a future video clip of L steps.

199

179 180

185

200 201 202 203 204 Model Design. We design a Conditional VAE (Kingma, 2013) with transformer (Vaswani, 2017) architecture for flow generation, as illustrated in Figure 2. As opposed to previous flow prediction works (Wen et al., 2023; Xu et al., 2024a; Bharadhwaj et al., 2024), we observe enhanced performance when predicting relative displacements rather than absolute coordinates, i.e., we predict $\Delta p_t^k = p_{t+1}^k - p_t^k$ for the k-th point at each time step.

205 206 207 208 209 210 211 212 213 214 215 For the VAE encoder, we encode ground truth flow $\{p_t\}_{t=1}^L$, patchify observation history $o_{t-h:t}$, and encode language embedding from Llama 3.1 8B (Dubey et al., 2024) to tokens, concatenate them with a *CLS* token for gathering the information, and then send them to a transformer encoder to extract the output at the *CLS* token position as the latent variable of VAE. For the VAE decoder, we first encode the query points $\{p_t^k\}_{k=1}^{N_q}$ at only timestep t to query tokens, concatenate them with image and language tokens as well as the sampled latent variable z from reparameterization, and send them to another transformer encoder. We extract the output at the query tokens and use two MLPs to predict the delta scale $\delta_s \in \mathbb{R}_{\geq 0}^{L \times K}$ and delta direction $\vec{\delta_d} \in \mathbb{R}^{2L \times K}$ for L future horizons. Thus we can get $\Delta p_t^k = \delta_s^{tk} \delta_d^{tk}$, and the whole future flow can be reconstructed step by step. We also decode the output at the image token positions as an auxiliary image reconstruction task (Wen et al., 2023; He et al., 2022a), which we find useful for improving the training accuracy.

216 217 3.3 FLOW-CONDITIONED VIDEO GENERATION NETWORK AS DYNAMICS MODULE

218 219 220 Overview. The flow-conditioned video generation network D generates the following L frames based on current image observation history $o_{t-h:t}$, the language goal g, and the predicted flow $\mathbf{p}_{t:t+L}$ to enable iterative planning for the next planning step: $\hat{o}_{t+1:t+L} = \mathcal{D}(o_{t-h:t}, g, \mathbf{p}_{t:t+L})$.

222 223 224 225 226 Model Design. We design a new latent video diffusion model that can effectively take as input different kinds of conditions such as images, flows, and language. This model is built on the DiT (Peebles & Xie, 2023) architecture with spatial-temporal attention mechanism (Ma et al., 2024; Bruce et al., 2024; Zhu et al., 2024). The background knowledge of latent video diffusion models is in Appendix A.1. Here we introduce the design of the multi-modal condition mechanism.

227 228 229 230 231 232 233 234 235 236 237 238 In the original DiT (Peebles $\&$ Xie, 2023) and previous trajectory-conditional video diffusion paper (Zhu et al., 2024), they use adaptive layer norm zero (AdaLN-Zero) blocks to process conditional inputs (such as diffusion timestep and class labels), which regress the scale and shift parameters of the layer norm layers from all conditions with a zero-initialized MLP. However, AdaLN will compress all conditional information to scalars, and cannot enable fine-grained interaction between different parts of conditions with the inputs. Thus, this mechanism is not suitable for complex conditions such as image and flow (Zhang et al., 2023; Bao et al., 2023). To this end, we propose a mixed conditioning mechanism for multi-modal conditional generation. We use cross attention for fine-grained interactions between flow conditions (tokenized as N_q tokens) and observation conditions and noisy frames. For image history conditions, we concatenate them on the Gaussian noise frames. We use AdaLN-Zero to process the global conditions including the diffusion timestep and language instruction, as shown in Figure 2. To keep the observation condition clean, we do not add noise to $o_{t-h:t}$ during the diffusion process and do not perform denoising on them either.

239 240 241

221

3.4 VISION-LANGUAGE REPRESENTATION LEARNING AS VALUE MODULE

242 243 244 245 246 247 248 249 250 251 252 253 254 255 Overview. The value module V assigns an estimated value \hat{V}_t for each frame o_t to enable model-based planning on the image space, based on the language goal g: $\hat{V}_t = V(o_t, g)$. In this work, we adopt LIV (Ma et al., 2023) to instantiate the value function. LIV first learns a shared language-vision representation from action-free videos with language annotations. It then computes the similarity between current frame o_t and g as the value for timestep t: \hat{V}_t = $\mathcal{S}(\psi_I(o_t), \psi_L(g)) = \frac{1}{1-\gamma} cos(\psi_I(o_t), \psi_L(g)),$ where ψ_I and ψ_L are the encoding network for image and language respectively, and S is the γ -weighted cosine similarity metric.

256 257 258 259 260 The pretrained LIV model needs to be finetuned to give good value representation on new tasks (Ma et al., 2023). The original fine-tuning loss $\mathcal{L}_{LIV} = \mathcal{L}_I(\psi_I) + \mathcal{L}_L(\psi_I, \psi_L)$ is calculated on sampled sub-trajectory batch data

Figure 3: Top: The value module of FLIP. We follow the idea of (Ma et al., 2023) and use timecontrastive learning for the visual-language representation, but we treat each video clip (rather than each frame) as a state. Bottom: the fine-tuned value curves of Ma et al. (2023) and ours.

261 262 263 264 265 $\left\{o_s^i, \ldots, o_k^i, o_{k+1}^i, \ldots, o_T^i, g^i\right\}_{i=1}^B$ from each task \mathcal{T}_i , where $s \in [0, T_i - 1]$, $s \leq k < T_i$. For \forall task i, $\mathcal{L}_I(\psi_I)$ will use time contrastive learning to increase the similarity $\mathcal{S}(o_s^i, o_T^i)$ between the sampled start frame and the end frame and keep the embedding distance between two adjacent frames as (γ -discounted) 1, and \mathcal{L}_L encourages the image goal o_T^i and language goal g^i have the same embedding for the same task i . Details of this process can be found in Appendix A.2.

266

267 268 269 Finetuning LIV on Long-Horizon Imperfect Videos. Finetuning LIV with the original training objective works well on short-horizon perfect videos (about 50 frames in their original papers (Ma et al., 2022; 2023)). However, we find that it does not work well for our long-horizon imperfect videos, as shown in Figure 3, where the fine-tuned value curve exhibits numerous jagged peaks.

This is disastrous for sampling-based planning algorithms since most planning algorithms expect a smoothing value curve to be effective (Selman & Gomes, 2006; Ma et al., 2023).

291 292 293 294 295 296 297 298 We point out that this problem is caused by imperfect long-horizon videos, where the task does not necessarily progress smoothly as the video progresses. For example, the robot arm may hesitate in the air during the task. To mitigate this problem, we replace the concept of *adjacent frames* in the original loss to *adjacent states*, where we define states as short-horizon video clips. Formally, we divide a long-horizon video into small segments of fixed length and treat each clip s^{clip} as the smallest unit of the video. The original o_s, o_T, o_k, o_{k+1} are seamlessly replaced by $s_s^{clip}, s_T^{clip}, s_k^{clip}, s_{k+1}^{clip}$ respectively. As shown in Figure 3, this simple strategy is surprisingly useful and makes the fine-tuned vale curve much smoother than the originally fine-tuned ones.

299 300 301

302 303 304

306 307

288 289 290

4 FLOW-CENTRIC GENERATIVE PLANNING

4.1 MODEL-BASED PLANNING WITH FLOWS, VIDEOS, AND VALUE FUNCTIONS

305 308 Directly generating long-horizon videos autoregressively is usually not accurate (Wen et al., 2023; Yang et al., 2023; Du et al., 2024) due to compounding errors. In this work, we use model-based planning to search for a sequence of flow actions and video plans that maximizes the discounted return:

$$
o_{0:L}^{*} = \underset{o_{0:L} \sim \pi_f, \mathcal{D}}{\arg \max} \sum_{i=0}^{L} \gamma^{i} R(o_i, g). \tag{1}
$$

313 314 315 316 317 318 319 320 321 322 323 According to Bellman Equation (Sutton, 2018), this equals stepping towards the next state that maximizes $r_t + \gamma V^*(s_{t+1}, g)$ at each time step given an optimal value function V^* . In our problem, $r_t = -1$ is a constant for every step before reaching the goal, and we assume our learned value function $V = V^*$, thus our problem is simplified to find the next state that maximizes V at each time step. Note this reward design also encourages finding the shortest plan. We use hill climbing (Selman & Gomes, 2006) to solve this problem. It initializes B plan beams. At each timestep t , given current image history $o_{t-h:t}$ and the language goal g, it employs π_f to generate multiple flow actions $\mathbf{p}_{t+1:t+L} = \pi_f(o_{t-h:t}, \mathbf{p}_t, g)$ on uniformly sampled query points as candidates for tree search, then use D to generate corresponding short-horizon videos $o_{t+1:t+L} = \mathcal{D}(o_{t-h:t}, g, \mathbf{p}_{t+1:t+L})$. The value module $\mathcal V$ is then used to select the generated video with the highest reward among A videos to enable the next iteration of generation for each beam. In order to prevent exploitative planning routes that over-exploit on an irregular state, we periodically replace the lowest value plan among the beams with the beam with the highest value. The algorithm is summarized in Algorithm 1.

Table 1: Success rates of model-based planning on long-horizon tasks.

Table 2: Quantitative results on long-horizon video generation.

4.2 PLAN-CONDITIONED LOW-LEVEL POLICY

The low-level policy π_L are given the image observation history $o_{t-h:t}$, the language goal g, and the predicted flow plan $\mathbf{p}_{t:t+L}$ as well as the video plan $o_{t+1:t+L} = \mathcal{D}(o_{t-h:t}, g, \mathbf{p}_{t+1:t+L})$ to predict the low-level robot action $a_{t:t+L}$ that drive the robot to operate in the environment. We train different policies that take as input different kinds of condition information, with all of them trained on a few demonstrations with action labels. The policy architectures are similar to diffusion policy (Chi et al., 2023). Details can be found in Appendix A.3.

344 345 346

5 EXPERIMENTS

In this section, we first demonstrate that FLIP can: 1) perform model-based planning for different manipulation tasks; 2) synthesize long-horizon videos (\geq 200 frames); and 3) can guide the lowlevel policy for executing the plan for both simulation and real-world tasks. We also evaluate the action, dynamics, and value modules separately compared to corresponding baselines and show the interactive, zero-shot, scalability properties of FLIP. More results and videos are on our [website.](https://flow-planning.github.io/)

5.1 MODEL-BASED PLANNING FOR MANIPULATION TASKS

356 357 358 359 360 361 362 363 364 365 366 Setup. In this section, we train FLIP on four benchmarks to show its model-based planning ability. The model is given an initial image and a language instruction, and it is required to search the flow and video spaces to synthesize the plan for this task. The first one is LIBERO-LONG (Liu et al., 2024a), a long-horizon table-top manipulation benchmark of 10 tasks in simulation. We train FLIP on 50×10 long-horizon videos with a resolution of $128 \times 128 \times 3$ and test on 50×10 new random initializations. The second one is the FMB benchmark (Luo et al., 2023), a long-horizon object manipulation and assembly benchmark with varying object shapes and appearances. We train FLIP on 1K single-object multi-stage videos and 100 multi-object multi-stage videos with a resolution of $128 \times 128 \times 3$ and test on 50 new initialization for each. The third and fourth suites are cloth folding and cloth unfolding. These two datasets are collected by ourselves. We train each suite on 40 videos with varying viewpoints and test on 10 new viewpoints for each with a resolution of $96 \times 128 \times 3$.

367 368 369 370 371 We follow previous works(Du et al., 2023; Zhu et al., 2024) and evaluate our model-based planning results by human evaluating the correctness of generated video plans. That is, we visually assess the percentage of time the video successfully solved the given task. We compare FLIP to two baselines: 1) UniPi (Du et al., 2024), a text-to-video generation method with long-horizon text goals. 2) FLIP-NV, an ablation of FLIP that performs the same beam search but with no value module as guidance.

372

373 374 375 376 377 Results. Table 1 shows the results. We can see that UniPi achieves low success rates across all tasks, which shows that directly synthesizing long-horizon videos is difficult. FLIP-NV achieves better results than UniPi. This shows that with dense flow information as guidance, the performance of the video generation model is improved. FLIP outperforms all baselines, pointing out the effectiveness of using value functions for model-based planning. This can eliminate incorrect search routes during planning. We show such incorrect search routes on our website.

WITH

378 379 380

381

382 383

384 385

- **386**
- **387**

388 389 390

391 392 393

405

H

車

5.2 LONG-HORIZON VIDEO GENERATION EVALUATION

394 395 396 397 398 399 400 401 402 403 404 Setup. In this section, we quantitatively evaluate the long-horizon video generation quality of FLIP compared to other video generation models. We choose the same datasets as in Section 5.1 as well as Bridge-V2 (Walke et al., 2023) as the evaluation benchmarks. Here all videos are longer than 200 frames except for Bridge-V2. For Bridge-V2, we train on 10k videos and test on 256 videos with a resolution of $96 \times 128 \times 3$. We choose two baselines: 1) LVDM (He et al., 2022b), a state-of-the-art text-to-video method for video generation; 2) IRASim (Zhu et al., 2024), a conditional video generation method with the end-effector trajectories as the condition. We use SAM2 (Ravi et al., 2024) to label the end-effector trajectory for IRASim. We choose model-based metrics including Latent L2 loss and FVD (Unterthiner et al., 2018) as well as a computation-based metric PSNR (Hore & Ziou, 2010). Latent L2 loss and PSNR measure the L2 distance between the predicted video and the ground-truth video in the latent space and pixel space, and FVD assess video quality by analyzing the similarity of video feature distributions

406 407 408 409 410 411 412 413 414 415 Results. Table 2 shows the results. We can see that our method consistently outperforms baselines in all datasets. LVDM performs badly on LIBERO-LONG and FMB, and better on Bridge-V2. This is because the videos in Bridge-V2 are shorter than the previous two benchmarks. IRASim performs better than LVDM, which shows the importance of trajectory guidance. However, it generates longhorizon videos in an auto-regressive manner, which has worse results than our method, showing that model-based planning can also help generate high-quality videos by concatenating short-horizon videos generated with rich flow guidance. The results on the FMB benchmark are the worst for all methods. This is because the training videos have many discontinuous transitions, where the robot gripper instantly moves to where the next stage begins. Since our model leverages history observations as input conditions, it can sometimes overcome this discontinuous gap. We qualitatively show the model-based planning results on the four tasks in Figure 4.

416 417 418 419 420 Since FLIP is a universal framework for all manipulation tasks as long as they have languageannotated video datasets, here we qualitatively show FLIP can be used for complex long-horizon video generation including the ALOHA tasks (Aldaco et al., 2024), pen spinning (Wang et al., 2024), robot pilling (Chen et al., 2024), tying plastic bags (Gao et al., 2023), and human peeling eggs, as shown in Figure 7. More video demos are on our website.

421 422

5.3 PLAN-GUIDED LOW-LEVEL POLICY

423 424 425 426 427 428 429 430 431 Setup. In this evaluation we explore how the generated flow and video plans can be used as conditions for training a manipulation policy to accomplish the task. We aim to answer the question: which one, flow or video (or both at the same time), is more suitable to be used as the condition to guide the learning of the underlying strategy? We use LIBERO-LONG (Liu et al., 2024a) for evaluation, where for each task in LIBERO-LONG, we use 10 demonstrations with action labels and 50 demonstrations without action labels, as done in the baseline method ATM (Wen et al., 2023). During inference, FLIP is a close-loop policy that will replan after every action chunking. We compare FLIP to ATM Wen et al. (2023) and its diffusion-policy version. We also compare OpenVLA Kim et al. (2024) (with both zeros-shot and fine-tuned version) and policies with pretrained FLIP on LIBERO-90 as the planner. Please see Appendix B.2 for these results.

Figure 5: Success rates of different low-level Figure 6: Value curves from the pretrained LIV, finepolicies on LIBERO-LONG. tuned by LIV, and fine-tuned by FLIP.

	LIBERO-10			Language-Table			Bridge-V2		
	Latent L2 \perp	$FVD \perp$	$PSNR \uparrow$	Latent L2 \downarrow		$FVD \downarrow$ PSNR \uparrow	Latent L2 \downarrow	$FVD \perp$	PSNR ⁺
LVDM He et al. $(2022b)$	0.366	109.41	18.852	0.364	124.75	19.943	0.328	111.34	18.104
IRASim $(Zhu et al., 2024)$	0.307	92.76	19.205	0.335	132.56	18.156	0.318	107.89	19.967
FLIP-SC	0.271	89.77	20.089	0.304	137.89	18.904	0.316	127.65	18.375
FLIP(Ours)	0.197	27.62	28.602	0.159	21.23	33.632	0.171	38.41	34.576

Table 3: Quantitative results on short-horizon video generation.

448 450 455 Results. The results are in Figure 5. We can see that our plan-guided policies achieve higher success rates than diffusion policies and ATM-DP, showing that dense flow information and highquality future videos are better to be used as conditions than sparse flow information. The flowvideo-guided policy (Ours-FV) achieves the best average success rates across all methods, showing the advantage of using multi-modality information as conditions. Although video-guided policies (Ours-V) achieve a competitive mean success rate, they have a high variance, showing that using videos as conditions is unstable. This may come from that the generated future videos can become low-quality if the robot deviates from the trained trajectories. Instead, with the flow as extra conditions, the variance becomes lower, showing the stability of dense image flow predictions.

457 5.4 EXPERIMENTS ON FUNDAMENTAL MODULES OF FLIP

458 459 460 461 462 463 464 Action Module Experiments. We use two metrics to assess the flow generation model π_f quantitatively (Jiang et al., 2024b): 1) Average Distance Error (ADE) between the generated and the ground truth flows in pixel units on all query points; 2) Less Than Delta Ratio (LTDR): the average percentage of points within the dis-

Table 4: Quantitative results of the action model.

465 466 467 468 tance threshold of 1, 2, 4, and 8 pixels between the reconstructed and the ground truth flows at each time step. Since most of the points are stationary points, in order to better demonstrate the results, we only calculate points with $\delta_s \geq 1$. We also do experiments that compare using CVAE and diffusion models as the action module in Appendix B.3.

469 470 471 472 473 We use LIBERO-LONG (Liu et al., 2024a) and Bridge-V2 (Walke et al., 2023) for evaluation. We compare our method with 3 baselines: 1) ATM (Wen et al., 2023), the state-of-the-art flow prediction module for manipulation tasks; 2) Ours-ABS: directly generating absolute flow coordinates at each timestep rather than generating the scale and direction; 3) Ours-NoAUX: the same architecture of ours with no auxiliary training losses (the flow and image reconstruction losses).

474 475 476 477 From Table 4, we can see that Ours-ABS generally achieves the same results as ATM, and predicting the scale and directions are better than ATM and Ours-ABS, showing that directly regressing the absolute coordinates is worse than predicting the delta of flows at each timestep. We can also see that the auxiliary losses can help improve the final results.

478

449

456

479 480 481 482 483 484 Dynamics Module Experiments. We evaluate our dynamics module separately with the ground truth flows as conditions on *short-horizon* video generation. We use PSNR (Hore & Ziou, 2010), latent L2 loss, and FVD (Unterthiner et al., 2018) as metrics. We use LIBERO-LONG (Liu et al., 2024a), Bridge-V2 (Walke et al., 2023), and Language-Table (Lynch et al., 2023) as the evaluation datasets. We use three baselines (as introduced in Section 5.2): 1) LVDM (He et al., 2022b); 2) IRAsim (Zhu et al., 2024); 3) Ours-SC: using AdaLN-Zero for all kinds of conditions.

485 Results are in Table 3. The result trends across methods are generally consistent with the longhorizon video generation results in Table 2. FLIP-SC generally achieves the same performance with

5.5 APPLICATIONS AND SCALING properties of FLIP. We use 50 videos for each task in the resolution of $3 \times 64 \times 64$.

 Interactive World Model. We first show that the trained dynamics module is interactive: it can generate corresponding videos given image flows specified by humans. We use SAM2 (Ravi et al., 2024) to select the region of the robot arm and manually give flows in different directions. Results are shown in Figure 8. We can see the robot arm can move left or right according to the given flow.

 Zero-Shot Generation. Secondly, we show that the trained FLIP has zero-shot transfer ability. We test the trained model on LIBERO-LONG. Results are shown in Figure 9. Interestingly, we can see that the pretrained model, without fine-tuning, can generate natural movement for the robot arm with unseen observations and instructions. This shows FLIP has a certain knowledge transfer ability.

 Model Scaling. We show that the action and dynamics module are scalable with increasing model sizes. Figure 10 shows the smoothed ADE and Latent L2 loss on the validation set. It shows that increasing the model size can consistently help achieve better performance for both modules.

6 CONCLUSION AND LIMITATION

 In this work, we present FLIP, a flow-centric generative planning method for general-purpose manipulation tasks. FLIP is trained on only video and language data, can perform model-based planning on the trained world model to synthesize long-horizon plans, and can guide low-level policy learning. FLIP has the potential to scale up with increasing data and computation budgets in the future.

 A major limitation of FLIP is the slow speed of planning, which is restricted by extensive video generation processes during the planning phase. This restricts our method on quasi-static manipulation tasks. Another limitation is that FLIP does not use physical properties and 3D information of the scene. Future works can develop physical 3D world models and extend FLIP to 3D scenarios.

Figure 7: FLIP is a general framework for diverse kinds of manipulation tasks across objects and robots, even for human hands. All of the flows and images are generated.

IRASim, showing that even if the model is given dense flow information, it requires a fine-grained mechanism to leverage the condition for video generation.

 Value Module Experiments. We here qualitatively show the fine-tuned value curves of our method compared to the original LIV (Ma et al., 2023) method on two different tasks consisting of Language-Table (Lynch et al., 2023) and cloth folding in Figure 6. We also show the value curves before fine-tuning. We can see our method consistently gets smoother value curves than the original LIV method, where the value curves have violent oscillations.

 Finally, we train FLIP on LIBERO-90, a large-scale simulation manipulation dataset to show three

540 541 REFERENCES

548

559

567 568 569

576

582

- **542 543 544** Jorge Aldaco, Travis Armstrong, Robert Baruch, Jeff Bingham, Sanky Chan, Kenneth Draper, Debidatta Dwibedi, Chelsea Finn, Pete Florence, Spencer Goodrich, et al. Aloha 2: An enhanced low-cost hardware for bimanual teleoperation. *arXiv preprint arXiv:2405.02292*, 2024.
- **545 546 547** Shikhar Bahl, Russell Mendonca, Lili Chen, Unnat Jain, and Deepak Pathak. Affordances from human videos as a versatile representation for robotics. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 13778–13790, 2023.
- **549 550 551 552** Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching unlabeled online videos. *Advances in Neural Information Processing Systems*, 35:24639–24654, 2022.
- **553 554 555** Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth words: A vit backbone for diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 22669–22679, 2023.
- **556 557 558** Homanga Bharadhwaj, Roozbeh Mottaghi, Abhinav Gupta, and Shubham Tulsiani. Track2act: Predicting point tracks from internet videos enables diverse zero-shot robot manipulation. *arXiv preprint arXiv:2405.01527*, 2024.
- **560 561 562** Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling latent video diffusion models to large datasets. *arXiv preprint arXiv:2311.15127*, 2023.
- **563 564 565** David Brandfonbrener, Ofir Nachum, and Joan Bruna. Inverse dynamics pretraining learns good representations for multitask imitation. *Advances in Neural Information Processing Systems*, 36, 2024.
- **566 570** Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video generation models as world simulators. 2024. URL [https://openai.com/research/](https://openai.com/research/video-generation-models-as-world-simulators) [video-generation-models-as-world-simulators](https://openai.com/research/video-generation-models-as-world-simulators).
- **571 572 573** Jake Bruce, Michael D Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes, Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, et al. Genie: Generative interactive environments. In *Forty-first International Conference on Machine Learning*, 2024.
- **574 575** Charlotte Caucheteux and Jean-Remi King. Brains and algorithms partially converge in natural ´ language processing. communications biology, 5 (1), 134, 2022.
- **577 578** Tao Chen, Eric Cousineau, Naveen Kuppuswamy, and Pulkit Agrawal. Vegetable peeling: A case study in constrained dexterous manipulation. *arXiv preprint arXiv:2407.07884*, 2024.
- **579 580 581** Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake, and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *The International Journal of Robotics Research*, pp. 02783649241273668, 2023.
- **583 584** Norman Di Palo and Edward Johns. Keypoint action tokens enable in-context imitation learning in robotics. *arXiv preprint arXiv:2403.19578*, 2024.
- **585 586 587** Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multimodal language model. *arXiv preprint arXiv:2303.03378*, 2023.
- **588 589 590 591** Yilun Du, Mengjiao Yang, Pete Florence, Fei Xia, Ayzaan Wahid, Brian Ichter, Pierre Sermanet, Tianhe Yu, Pieter Abbeel, Joshua B Tenenbaum, et al. Video language planning. *arXiv preprint arXiv:2310.10625*, 2023.
- **592 593** Yilun Du, Sherry Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Josh Tenenbaum, Dale Schuurmans, and Pieter Abbeel. Learning universal policies via text-guided video generation. *Advances in Neural Information Processing Systems*, 36, 2024.

Rupprecht. Cotracker: It is better to track together. *arXiv preprint arXiv:2307.07635*, 2023.

- **648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700** Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair, Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source vision-language-action model. *arXiv preprint arXiv:2406.09246*, 2024. Diederik P Kingma. Auto-encoding variational bayes. *arXiv preprint arXiv:1312.6114*, 2013. Sateesh Kumar, Jonathan Zamora, Nicklas Hansen, Rishabh Jangir, and Xiaolong Wang. Graph inverse reinforcement learning from diverse videos. In *Conference on Robot Learning*, pp. 55– 66. PMLR, 2023. Yann LeCun. A path towards autonomous machine intelligence. 2022. *URL https://openreview. net/pdf*, 2024. Timothée Lesort, Natalia Díaz-Rodríguez, Jean-Franois Goudou, and David Filliat. State representation learning for control: An overview. *Neural Networks*, 108:379–392, 2018. Junbang Liang, Ruoshi Liu, Ege Ozguroglu, Sruthi Sudhakar, Achal Dave, Pavel Tokmakov, Shuran Song, and Carl Vondrick. Dreamitate: Real-world visuomotor policy learning via video generation. *arXiv preprint arXiv:2406.16862*, 2024. Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero: Benchmarking knowledge transfer for lifelong robot learning. *Advances in Neural Information Processing Systems*, 36, 2024a. Shaowei Liu, Zhongzheng Ren, Saurabh Gupta, and Shenlong Wang. Physgen: Rigid-body physicsgrounded image-to-video generation. In *European Conference on Computer Vision*, 2024b. Jianlan Luo, Charles Xu, Fangchen Liu, Liam Tan, Zipeng Lin, Jeffrey Wu, Pieter Abbeel, and Sergey Levine. Fmb: A functional manipulation benchmark for generalizable robotic learning. *The International Journal of Robotics Research*, pp. 02783649241276017, 2023. Corey Lynch, Ayzaan Wahid, Jonathan Tompson, Tianli Ding, James Betker, Robert Baruch, Travis Armstrong, and Pete Florence. Interactive language: Talking to robots in real time. *IEEE Robotics and Automation Letters*, 2023. Xin Ma, Yaohui Wang, Gengyun Jia, Xinyuan Chen, Ziwei Liu, Yuan-Fang Li, Cunjian Chen, and Yu Qiao. Latte: Latent diffusion transformer for video generation. *arXiv preprint arXiv:2401.03048*, 2024. Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy Zhang. Vip: Towards universal visual reward and representation via value-implicit pre-training. *arXiv preprint arXiv:2210.00030*, 2022. Yecheng Jason Ma, Vikash Kumar, Amy Zhang, Osbert Bastani, and Dinesh Jayaraman. Liv: Language-image representations and rewards for robotic control. In *International Conference on Machine Learning*, pp. 23301–23320. PMLR, 2023. Mario Manto, James M Bower, Adriana Bastos Conforto, José M Delgado-García, Suzete Nascimento Farias Da Guarda, Marcus Gerwig, Christophe Habas, Nobuhiro Hagura, Richard B Ivry, Peter Mariën, et al. Consensus paper: roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement. *The Cerebellum*, 11:457–487, 2012. Russell Mendonca, Shikhar Bahl, and Deepak Pathak. Structured world models from human videos. *arXiv preprint arXiv:2308.10901*, 2023. Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample-efficient world models. *arXiv preprint arXiv:2209.00588*, 2022. Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A universal visual representation for robot manipulation. *arXiv preprint arXiv:2203.12601*, 2022.
- **701** Soroush Nasiriany, Vitchyr Pong, Steven Lin, and Sergey Levine. Planning with goal-conditioned policies. *Advances in neural information processing systems*, 32, 2019.

755 Estruch, Andre Wang He, Vivek Myers, Moo Jin Kim, Max Du, et al. Bridgedata v2: A dataset for robot learning at scale. In *Conference on Robot Learning*, pp. 1723–1736. PMLR, 2023.

