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ABSTRACT

Evaluating the cognitive abilities of Multi-modal Language Models (MLLMs) is
challenging due to their reliance on spurious correlations. To distinguish shortcut-
taking from genuine reasoning, we introduce Concept Hacking, a paradigm ma-
nipulating concept-relevant information to flip the ground-truth but preserving
concept-irrelevant confounds. For instance, in a perceptual constancy test, mod-
els must recognize that a uniformly wide bridge does not narrow in the distance;
the manipulated condition using concept hacking altered the bridge to actually
taper. We assessed 209 models across 45 experiment pairs spanning nine low-
level cognitive abilities, encompassing all five core knowledge domains. Compar-
ing performance on manipulated versus standard conditions revealed that models
fell into shortcut-reliant or illusory understanding types, with none approaching
human-level performance. Models of varying sizes appear in each category, indi-
cating that scaling neither imparts core knowledge nor reduces shortcut reliance.
These findings highlight fundamental limitations in current MLLMs, reinforcing
concerns about their ability to achieve genuine understanding.

1 INTRODUCTION

Multi-modal Language Models (MLLMs) have achieved unprecedented success by leveraging vast
web-scale training and modality alignment (Li et al., 2024; Fu et al., 2023; Wu & Xie, 2024; Xu
et al., 2024; Shao et al., 2024; Brown et al., 2020; Achiam et al., 2023; Bai et al., 2023; Touvron
et al., 2023; Jaech et al., 2024). Progressively, MLLMs have demonstrated competitive performance
in complex tasks involving high-level perception and reasoning (Li et al., 2024; Liu et al., 2024;
Team et al., 2023; Fu et al., 2023; OpenAI, 2023), such as spatial reasoning (Chen et al., 2024a;
Cai et al., 2024), character recognition (Mori et al., 1999), scene understanding (Cordts et al., 2016;
Chen et al., 2017), action recognition (Jhuang et al., 2013; Herath et al., 2017) and prediction (Lan
et al., 2014; Kong & Fu, 2022), reaching near-human performance. However, recent studies have
shown that even SOTA MLLMs face critical limitations as compared to human intelligence. To
begin with, said excellency often does not appear to translate to more generalized and real-world
contexts, with slight tweaks of the task conditions capable of causing collapses in performance
(Shiffrin & Mitchell, 2023; Zhang et al., 2024), highlighting persistent robustness challenges. At the
same time, they perform poorly on rudimentary reasoning tasks like counting Paiss et al. (2023) and
compositional reasoning Yuksekgonul et al. (2022) despite their excellence at high-level reasoning
tasks on similar domains (Paiss et al., 2023; Rahmanzadehgervi et al., 2024), demonstrating the
long-standing Moravec’s Paradox: tasks that are easy to humans could be extremely difficult to
machines and vice versa (Moravec, 1988).

An influential proposal in cognitive science posits that children first acquire basic reasoning abilities
about the physical world, which serve as a foundation for the development of more complex, abstract
cognitive skills as they mature (Barsalou, 2008; Samuelson & Smith, 2000; Barsalou, 2010; Pezzulo
et al., 2013). This grounding view of human cognitive development provides crucial insights into

∗This work is part of the project Growing AI Like A Child (website: growing-ai-like-a-child.github.io/).
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ManipulationControl
Continuity

Could the black line be continuous?

If both balls are dropped at the same 
time, will the bigger (red) ball land first? 
A. Yes B. No, the smaller ball first 
C. They will land at the same time

Physics

Does the actual width of the bridge 
remain the same from near to far?

Constancy

From a perspective rotated 90° clockwise, 
does it look like a duck or rabbit?
A. Duck B. Rabbit

Perspective

GT: No.                     GPT: YesGT: Yes.                   GPT: Yes

GT: A.                        GPT: CGT: C.                       GPT: C

GT: No.                   GPT: YesGT: Yes.                 GPT: Yes

GT: Duck             GPT: RabbitGT: Rabbit            GPT: Rabbit

Figure 1: Example Questions Using the Concept Hacking Manipulation

the limitations of MLLMs. Notably, because humans develop simple abilities before more com-
plex ones, they do not exhibit Moravec’s Paradox. Furthermore, since early, foundational abilities
are causally linked to later, higher-order reasoning skills, the grounding perspective suggests that
the absence of these simple abilities in early learning stages may hinder the development of com-
plex cognitive functions. This mechanistic connection offers a potential explanation for why both
Moravec’s Paradox and robustness challenges are observed in MLLMs (Luo et al., 2025). If com-
plex reasoning skills in MLLMs are not built upon a foundation of simpler domain-relevant abilities,
their capacity to generalize across conditions may be fundamentally compromised. Evaluating and
systematically implementing such foundational abilities in MLLMs is thus a critical step toward
improving their robustness and reasoning capabilities.

A key challenge in assessing the cognitive abilities of language models is their tendency to exploit
spurious correlations. That is, their apparent proficiency in certain tasks may stem from shortcut
learning rather than genuine cognitive competence (Bender et al., 2021). Extensive research has
demonstrated this reliance on superficial cues in benchmarks designed to assess high-level reason-
ing in MLLMs. To examine whether evaluations of lower-level cognitive abilities are similarly
susceptible to such shortcuts, we introduce a control experiment designed to rigorously probe the
core knowledge present in MLLMs. Central to this experiment is a novel technique termed concept
hacking, which systematically tests whether the models genuinely understand fundamental cognitive
constructs or merely leverage statistical artifacts.

2 METHODS

2.1 THE CONCEPT HACKING DESIGN

Concept hacking systematically manipulates task-relevant details in core knowledge assessments
to completely invert the ground truth while preserving all task-irrelevant conditions. We illustrate
four examples in Fig.1. The comparison between an individual’s performance on a manipulation
task and their corresponding standard control is capable of revealing three distinctive strategies
for answering lower-level cognitive assessments: core knowledge understanding, shortcut-taking,
and illusory understanding. Individuals that possess core knowledge of respective domains (like
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humans) would not be misled by the manipulation, as they will evaluate both scenarios based on
a valid understanding of the world—acknowledging what information is task-relevant. In contrast,
individuals that rely on statistical correlations from their training data, rather than true conceptual
understanding, can be misled by the manipulations and fail the task. Finally, individuals with a
strong disposition against core knowledge in specific domains would consistently fail the standard
control and thereby answering the manipulation question correctly. In other words, they are “being
right for the wrong reason” due to an illusory understanding of the core knowledge domain.

For example, as shown in the third case of Fig.1, a standard probe of perceptual constancy assesses
whether a model understands that a bridge of uniform width extending into the ocean does not actu-
ally become narrower in the distance. In the manipulated condition, all task-irrelevant details—such
as the viewing angle and environmental textures—are kept identical to the standard task, but the
bridge itself is altered to genuinely taper as it extends outward. Models possessing the understand-
ing of perceptual constancy would have no difficulty answering both the manipulation task and
standard control correctly. On the contrary, a model relying on spurious correlations between the
task and previous examples of similar scenarios in the data would succeed in the original task but
fail the manipulated one. Finally, a model with a strong inclination toward the belief that objects
extending into the horizon are actually getting thinner physically would fail the control task while
correctly answering the manipulated version due to its misaligned knowledge about the world.

We applied the concept hacking method to 45 standard tasks, each designed to assess one of nine
low-level cognitive abilities, with five tasks per ability. For each standard task, we created a manip-
ulated counterpart, resulting in a total of 90 tasks (45 manipulated and 45 corresponding standard
control tasks). By comparing model performance between manipulated and standard conditions,
we systematically identify instances of shortcut-taking and illusory competence in core knowledge
assessments.

2.2 ASSESSING LOW-LEVEL COGNITIVE ABILITIES

A large body of work in cognitive science has demonstrated that humans possess a foundational
understanding of key domains of the world from a very young age, collectively referred to as core
knowledge (Spelke, 2003; Spelke & Kinzler, 2007). This set of knowledge comprises fundamental
principles about objects, actions, numbers, space, and social relations, including their interconnec-
tions. Core knowledge functions as children’s “developmental start-up software,” enabling them
to navigate, interpret, and learn from the rich and dynamic environment of early life (Lake et al.,
2017). To systematically investigate fundamental knowledge representations in MLLMs, we select
nine low-level cognitive abilities that collectively span all five core knowledge domains. These abil-
ities emerge at different stages of early cognitive development and serve as the building blocks for
more complex reasoning processes. We design tasks to assess these abilities by adapting classic
cognitive tasks from the developmental psychology literature, presenting them in a single-image
question format suitable for MLLMs. Below, we provide detailed descriptions of each included
low-level cognitive ability, along with an example type of classic cognitive task for assessing the
respective ability, illustrating how the concept is tested in our framework.

Boundary Boundary refers to the cognitive understanding of where one object ends and another
begins, an essential aspect of perceiving and understanding the physical world (Kestenbaum et al.,
1987). Without understanding boundaries, it seems very hard to construct a concept of the object
(Berkeley, 1709; Jackendoff, 1991).

Spatiality Spatiality, particularly demonstrated through the A-not-B task, involves a child’s under-
standing of the location of objects in relation to their environment (Bell & Adams, 1999). In a classic
A-not-B task, an object is hidden at location A (such as under a cup) and the child successfully finds
it several times. Then, the object is visibly moved to a different location B (under a different cup), in
full view of the child. Younger infants often make the error of searching for the object at the original
location A, indicating a developmental stage where their understanding of object spatiality is still
forming.

Perceptual Constancy Perceptual constancy is the cognitive ability to perceive objects as being
constant in their properties, such as size, shape, and color, despite changes in perspective, distance,
or lighting (Rutherford & Brainard, 2002; Khang & Zaidi, 2004; Green, 2023). For instance, con-
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sider a red ball being thrown in a park. To an observer, the ball appears smaller as it moves farther
away, yet the observer understands it remains the same size throughout its trajectory.

Object Permanence Permanence, or specifically object permanence, is the idea that objects con-
tinue to exist even when they are not visible (Baillargeon, 1986; Spelke et al., 1992). Imagine a
simple scene: a small child playing peek-a-boo. In the beginning, when the caregiver covers their
face with their hands, the child might seem surprised or even distressed, thinking the person has
disappeared. However, as children’s understanding of permanence develops, they begin to realize
that just because they can’t see the person’s face, it doesn’t mean the person is gone.

Continuity Continuity is the cognitive prior in humans that in our world, objects usually exist in a
consistent and continuous manner, even moving out of sight (Spelke et al., 1995; Le Poidevin, 2000;
Spelke et al., 1994; Yantis, 1995; Yi et al., 2008; Bertenthal et al., 2013). Picture a train moving
through a tunnel: as it enters one end, yet we naturally expect it to emerge from the other end, if the
train is long enough. This expectation demonstrates our understanding of object continuity. Even
though the train is not visible while it’s inside the tunnel, we know it continues to exist.

Conservation Conservation refers to the ability to understand that certain properties of physical
entities are conserved after an object undergoes physical transformation (Piaget & Inhelder, 1974).
This is instantiated in their ability to tell that quantities of physical entities across different domains,
such as number, length, solid quantity and liquid volume, will remain the same despite adjustments
of their arrangement, positioning, shapes, and containers (Halford, 2011; Craig et al., 1973; Piaget
& Inhelder, 1974; Houdé et al., 2011; Poirel et al., 2012; Marwaha et al., 2017; Viarouge et al.,
2019). For example, when a child watches water being poured from a tall, narrow glass into a short,
wide one, a grasp of liquid conservation would lead them to understand that the amount of water
remains the same even though its appearance has changed.

Perspective-taking Perspective-taking is the ability to view things from another’s perspective. This
ability has seminal importance both to the understanding of the physical world as well as to the com-
petence in social interactions (Wimmer & Perner, 1983; Wellman, 1992; Liu et al., 2008; Barnes-
Holmes et al., 2004). The Three Mountain Task first invented by Jean Piaget is widely used in
developmental psychology laboratories as the gold standard for testing perspective-taking abilities
in children (Piaget & Inhelder, 1969)

Hierarchical Relation Hierarchical relation refers to the ability to organize objects or concepts
into structured categories and subcategories, which are supported by the development of mental
operations marked by class inclusion and transitivity (Shipley, 1979; Winer, 1980; Chapman &
McBride, 1992). Class inclusion refers to the ability to recognize that some classes or groups of
objects are subsets of a larger class. For example, a child in the concrete operational stage is able to
understand that all roses are flowers, but not all flowers are roses (Borst et al., 2013; Politzer, 2016).
Transitivity refers to the ability to understand logical sequences and relationships between objects
(Andrews & Halford, 1998; Wright & Smailes, 2015). For instance, if a child knows that Stick A is
longer than Stick B, and Stick B is longer than Stick C, they can deduce that Stick A is longer than
Stick C.

Intuitive Physics Intuitive physics refers to the ability of humans to predict, interact with, and make
assumptions about the physical behavior of objects in their world (Michotte, 1963). As children
grow, they transition from simplistic understandings, such as expecting unsupported objects to fall,
to more complex theories, such as grasping the principles of inertia (Spelke et al., 1994; Kim &
Spelke, 1999) and gravity (Vasta & Liben, 1996; Kim & Spelke, 1999; Li et al., 1999).

2.3 MODEL INFERENCE SETUP AND HUMAN BASELINE

To thoroughly assess the cognitive capabilities of MLLMs, we selected and evaluated a diverse
set of models spanning various architectures and scales. Among the 209 evaluated models, 30 are
proprietary models, and 179 are open-source models. This selection features prominent commer-
cial models such as the ChatGPT and Claude series, high-performance open-source models like
InternVL and the Qwen series, and vision series by the DeepSeek team (OpenAI, 2023; Wu et al.,
2024; Anthropic, 2024; Bai et al., 2023; Chen et al., 2024b). The open-source models range in size
from 1 billion to 110 billion parameters. For proprietary models, inference was performed via API
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Core Illusion

Core Knowledge

Illusion Bias

Shortcut Bias

Core Shortcut

Figure 2: Control vs. Manipulation on Concept Hacking Evaluation.

calls on a personal computer, while open-source models were deployed and executed locally on
GPU clusters. Further details regarding the model inference process is provided in Appendix A.1.

In the purpose of comparing model performance with humans, we recruited a total of 7 participants,
all of whom were college students proficient in English. Participants were instructed to skip any
question that was ambiguously phrased or too complex to answer within 90 seconds. For such
questions, we modified them and submitted for a supplementary round of testing.

3 RESULTS

3.1 MODEL DISTRIBUTIONS

We probed the models’ strategies for answering the assessment of low-level abilities by assessing
their performance on manipulation tasks derived from concept hacking and their respective controls.
The results demonstrated a clear segregation of models relying on shortcut-taking and illusory un-
derstanding (Fig. 2). A significant proportion of models clustered within the left section of the
chart (below-chance control accuracy), suggesting that these models extensively employed illusory
understanding for problem-solving. In other words, they have a “core illusion” exemplified by a
strong disposition toward a false understanding of the world. In contrast, a smaller portion of the
models clustered within the bottom right section (high control accuracy, below-chance manipula-
tion accuracy). These models were highly susceptible to manipulation, thereby revealing substantial
reliance on shortcuts. Finally, a major proportion of models demonstrated both above-chance per-
formance on manipulation and control tasks, but fall significantly behind humans on both, as shown
in the top right section. Unlike humans, essentially none of the models demonstrate roughly equal
accuracy on both tasks, a sign of immunity to concept hacking provided by the robust availability
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Proprietary Models Open Source Models

Model Name Control
Accuracy

Manipulation
Accuracy Serie Model Name Control

Accuracy
Manipulation

Accuracy Serie

claude-3-5-sonnet 44.44% 62.22% claude3 5 llava next 110b 35.56% 62.22% llava next
claude-3-sonnet 31.11% 48.89% claude3 llava next 72b 46.67% 57.78% llava next
claude-3-opus 53.33% 60.00% claude3 llava next mistral 7b 44.44% 53.33% llava next
claude-3-haiku 20.00% 73.33% claude3 llava next llama3 40.00% 60.00% llava next
gemini-1.5-pro 64.44% 55.56% gemini Qwen2.5-VL-3B-Instruct 33.33% 62.22% qwen2 5 vl
gemini-1.5-flash 53.33% 37.78% gemini Qwen2-VL-72B-Instruct 66.67% 51.11% qwen2vl
gemini-1.5-flash-8b 55.56% 42.22% gemini Qwen2-VL-7B-Instruct 48.89% 44.44% qwen2vl
gpt-4-turbo 66.67% 44.44% gpt Qwen2-VL-2B-Instruct 35.56% 51.11% qwen2vl
gpt-4o 68.89% 37.78% gpt mPLUG-Owl3 62.22% 46.67% mplug3
reka-core 31.11% 60.00% reka NVLM-D-72B 40.00% 75.56% nvlm
reka-flash 26.67% 62.22% reka deepseek-vl2 26.67% 71.11% deepseek2
reka-edge 22.22% 64.44% reka deepseek-vl2-small 17.78% 71.11% deepseek2
qwen-vl-plus 64.44% 44.44% qwen vl deepseek-vl2-tiny 17.78% 66.67% deepseek2
qwen-vl-max 57.78% 60.00% qwen vl 360VL-70B 28.89% 64.44% 360vl-series

Table 1: Selected Evaluation of MLLM Series Across Manipulation and Control Datasets. In gen-
eral, larger models did not perform better on the benchmark, even comparing to smaller models from
the same series.

of core knowledge. Such a pattern suggested that while many models are not completely reliant
on either shortcut-taking or illusions, these misleading strategies still significantly influence their
decision-making.

3.2 RELATIONSHIP BETWEEN MODEL STRATEGY AND MODEL SIZE

A common assumption in machine learning is that increasing a model’s scale—typically measured
by the number of parameters—leads to systematic improvements in reasoning abilities (Sutton,
2019; Kaplan et al., 2020). We investigated how this principle applies to models’ reliance on
shortcut-taking and their illusory understanding of core knowledge. Notably, a model’s suscepti-
bility to concept hacking is not strictly determined by its size or overall performance on the main
benchmark. While strong shortcut-taking behavior was predominantly observed in smaller, weaker-
performing models, some of the largest and best-performing models, such as GPT-4o, also appeared
in the bottom-right section, indicating a significant reliance on spurious correlations. Similarly,
models exhibiting “core illusion” effects—where they appear to understand core knowledge but fail
under controlled manipulations—were found across a wide range of model sizes and performance
levels, as seen in the top-left section. A majority of models in the top-right section were relatively
large and high-performing, likely reflecting a closer alignment between their training data and the
main benchmark tasks. Taken together with the lack of scaling effects observed in low-level abilities
(as noted in previous sections), our results suggest that increasing model size does not necessarily
lead to a better grasp of core knowledge. Instead, larger models primarily develop more effec-
tive shortcut-taking strategies or illusory competence, reinforcing the limitations of scale alone in
achieving genuine cognitive-like reasoning.

4 DISCUSSIONS

Our findings support the hypothesis that MLLMs lack core knowledge, which may underlie both
their deficits in low-level cognitive abilities (Kaplan et al., 2020) and their fragility in real-world
scenarios (Mitchell, 2020; Shiffrin & Mitchell, 2023). Moreover, we demonstrate that, at least
under current state-of-the-art conditions, core knowledge cannot be acquired through scaling alone.
Instead, increased model size reinforces existing biases, either leading to illusory understanding
in core knowledge domains or amplifying reliance on spurious correlations in the dataset. This
limitation presents a fundamental challenge to MLLMs as a pathway toward human-like general
intelligence (Summerfield, 2022).

Moving forward, it is crucial to develop training approaches that cultivate genuine competence in
low-level cognitive abilities, ensuring the acquisition of core knowledge rather than reinforcing re-
liance on spurious correlations or fostering illusory understanding. A key distinction between human
and machine learning lies in the temporal dynamics of data exposure. Humans follow a structured
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developmental trajectory, initially constrained by cognitive and representational limitations. As they
mature, they gradually build upon foundational core knowledge, integrating increasingly complex
abstractions through incremental learning. This process allows high-level reasoning to emerge as a
natural extension of well-grounded, low-level cognitive abilities (Pezzulo et al., 2013).

In contrast, LLMs do not follow this developmental scaffolding. Instead, they are exposed to an
overwhelming breadth of knowledge from the outset, processing highly abstract and low-level con-
cepts simultaneously without a structured progression. Unlike humans—who acquire intuitive prin-
ciples through direct sensorimotor experience before developing abstract reasoning—LLMs lack a
hierarchical learning framework, leading to brittle generalization and poor adaptability across varied
contexts (Mitchell & Krakauer, 2023).

However, this difference in learning trajectories does not necessarily preclude LLMs from acquir-
ing core knowledge. If trained on data that mirrors the structured inputs available to a child, they
might develop a more coherent conceptual foundation. Multimodal learning, particularly with richer
perceptual input that emphasizes low-level cognitive principles, could offer a pathway toward more
grounded representations. By integrating symbolic processing with embodied learning principles,
future models may begin to approximate the structured knowledge acquisition seen in human devel-
opment.
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Appendix

A EVALUATION METHODOLOGY

A.1 MODEL INFERENCE

We evaluated a total of 209 models, including both commercial closed-source models and open-
source models. For closed-source models, we conducted experiments on personal computers via
API calls. For open-source models, we loaded them onto servers from Hugging Face or GitHub for
inference.

Our tested models exhibit diversity in architecture and size, ranging from 1B to 110B parameter size
(only open-source models included). Inference was performed on clusters equipped with 8×NVIDIA
A100 80 GB GPUs. In most cases, models between 1B and 13B in size could be inferred on a single
GPU. Models ranging from 13B to 32B required two GPUs, those from 32B to 70B required four
GPUs, and larger models required all eight GPUs in the server.

A.2 CHOICE MATCHING AND FAILURE CUTOFF

Evaluating the performance of language models requires a robust methodology that matches their
outputs to valid choices. However, the diversity of prompt formats and the complexity of genera-
tive models’ raw output pose challenges. To address these issues, we investigated various match-
ing methods and proposed a hybrid approach that combines the strengths of template-based and
semantic-based matching. We initially explored four matching methods:

1. Exact Match: After cleaning out special characters, this method matches MLLM output
to a choice only when they exactly match, ignoring cases.

2. “In” Match: After cleaning out special characters, this method matches MLLM output
to a choice only when the MLLM output split by spaces/punctuations contains only one
choice.

3. Template Match: After cleaning out special characters, this method matches the whole
MLLM output to templated output formats, such as “Answers: [choice]” or “[choice]. [sen-
tences of explanation without references to another choice]”.

4. LLM Match: We employed Large Language Model (LLM)-as-a-judge with Llama3.1-
70B, providing it with the complete original question and choice prompt, including textual
summaries of images and videos, and the VLM output to determine which choice the output
inclined toward.

We 1) randomly sampled data points and examined their matching accuracy using each method, and
2) aggregated the overall rate of “failing to match” for each approach, yielding a fail rate (fail rate)
of:

fail rate =

∑
(number of data points matched to a valid choice)∑

(total number of data points)

Exact match and “in” match methods exhibited high fail rates, struggling to handle output formats
from specialized models – like reasoning models – and complex prompt requirements – like ones that
require explanation. Template match captured more scenarios but required iterative template adap-
tation to account for exceptions. After maximum reasonable template adaptation, despite achieving
high accuracy for successfully matched data points, its overall fail rate remained significant. In con-
trast, LLM match excelled in deciphering MLLM output’s underlying choice behind explanation-
only outputs, even when the explanation underwent concession processes. However, LLMs were
prone to hallucinations when the output was short and simple choices were buried among lengthy
background information.

To address these limitations and exploit different matchers’ advantages, we created a Merge Match
mechanism that preferentially used template match results and imputed with LLM match’s re-
sult when template matching failed. This harmonization of accurate regular-format matching and
semantic-based matching yielded improved performance.
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Figure 3: Fail rate of model output choice-matching, including model failure cut-off threshold

In Figure 3, as expected, the by-model fail rate distribution of the merge match approach exhibited
a long-tail phenomenon – with a small proportion of models performing significantly worse than
the majority. To differentiate between detrimental/systematic failures (e.g., all-illegal-character-
output) and innate model failures (e.g., successful information reception but inadequate response),
we conducted a manual examination of all models with a matching fail rate of ≥ 17%. This
thorough review enabled us to establish a clear cut-off point between these two categories. Based
on this analysis, a final cut-off rate of ≥ 20% fail rate was applied, resulting in the removal of
12 detrimentally failing models from our results. The remaining 219 models exhibited reasonable
performance and were retained for further analysis.

A.3 CIRCULAR EVALUATION

The zero-shot prompting setup follows the format of Q(M)T → A, where the input includes the
question text (Q), task description (T), and multiple options (M) concatenated as tokens, with the
output being the predicted answer (A). Given that model predictions can exhibit bias in multiple-
choice settings, we implemented circular evaluation as the baseline. In circular evaluation, all answer
options are shifted one position at a time, ensuring that the correct answer appears in each option
slot. Only when the model correctly predicts all shifted answers is it considered accurate (Liu et al.,
2023).
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B DETAILED EXAMPLE QUESTIONS FROM THE CONCEPT HACKING
EVALUATION

ManipulationControl

Continuity

Could the black line be continuous?

If both balls are dropped at the same time, 
will the bigger (red) ball land first? 
A. Yes B. No, the smaller ball first 
C. They will land at the same time

Physics

Does the actual width of the bridge remain the 
same from near to far?

Constancy

From a perspective rotated 90° clockwise, does 
it look like a duck or rabbit?
A. Duck B. Rabbit

Perspective

GT: No GPT: YesGT: Yes GPT: Yes

GT: A GPT: CGT: C GPT: C

GT: No.                   GPT: YesGT: Yes GPT: Yes

GT: Duck             GPT: RabbitGT: Rabbit            GPT: Rabbit

GPT Reasoning: In the image, the converging lines of the bridge create an illusion of decreasing width, but 
in physical terms, the bridge's width is uniform throughout its length.

GPT Reasoning: Since the only force acting on them is gravity, they will experience identical accelerations 
and thus hit the ground simultaneously if dropped from the same height. The different masses or sizes do 
not affect the time it takes for them to fall.

GPT Reasoning: the black line in the image appears visually continuous despite being partially obscured 
by the blue bars. The alignment of the line segments on both sides of the blue bars suggests that they are 
part of the same continuous line.

GPT Reasoning:
• The rounded head of the duck can resemble the rabbit’s face.
• The overall simplicity and shape of the drawing allow for ambiguity when the image is rotated, similar to the 

classic duck-rabbit illusion.
• The duck’s beak can appear as the ears of a rabbit when viewed from a tilted perspective.
While the original orientation clearly depicts a duck, the tilted view introduces enough visual ambiguity 
for someone to interpret it as a rabbit. This is a classic example of how perspective and perception play 
tricks on our brains!

Spatiality

Is there only one level of surface?

Can you identify a man with the ghillie suit?

Boundary

The image represents a duck passing 
through a block. Please answer: is the 
situation represented by the image 
plausible?

Permanence

The top and bottom section of the image 
represents the before and after of a process, 
respectively. Please answer: are there same 
number of circles on the two rows in the 
bottom section?

Conservation

GT: Yes GPT: NoGT: No GPT: No

GT: No GPT: YesGT: Yes GPT: Yes

GT: No.                   GPT: YesGT: Yes GPT: Yes

GT: No           GPT: YesGT: Yes            GPT: Yes

GPT Reasoning: In the image, there appear to be two distinct surface levels separated by a visual pattern. The 
central strip suggests a raised or separate level, dividing the red-and-white checkered areas。

GPT Reasoning: Yes, I can identify the man in the ghillie suit. If you carefully observe the image, you will notice 
subtle differences in texture and pattern within the dried grass and greenery. The ghillie suit camouflages the 
person effectively, but you can spot: A slightly darker patch with rounded shapes, resembling a head and 
shoulders near the lower left-center area of the image.
Differences in the lines and shadows where the suit blends with the surrounding vegetation

GPT Reasoning: To answer your question, we can analyze the two rows in the bottom section of the image.
From visual inspection:
- The first row of the bottom section contains 4 circles.
- The second row of the bottom section contains 4 circles.

GPT Reasoning: The image illustrates a duck passing through a block with a gap, emerging as two ducks on the 
other side. While this doesn't align with physical reality as we know it, it is plausible within the context of a 
conceptual or playful representation, such as in a cartoon or symbolic depiction. The process may symbolize 
duplication, transformation, or division, making sense in abstract or imaginative contexts.

ManipulationControl

Figure 4: Detailed Example Questions from the Concept Hacking Evaluation. Each example is
presented with GPT-4o’s explanation of its answer to the Manipulation task.

We probed the models’ reasoning behind their performance by asking them to provide an expla-
nation for their answers. The explanations revealed that models performing below chance on ma-
nipulation tasks but above chance on control tasks, such as GPT-4o, are indeed strongly reliant on
shortcut reasoning. When answering manipulation tasks, they reproduce statements that correspond
to the correct reasoning for answering the control tasks while totally ignoring the differences in
task-relevant conditions. For example, in the perceptual constancy task illustrated above, GPT-4o
correctly produced reasoning that seemingly reflects the understanding of perceptual constancy (”the
converging lines of the bridge create an illusion of decreasing width”) when answering the manipu-
lation task, even though the width of the bridge is actually decreasing, signaling that its reasoning is
not based on the visual information presented in the image.
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