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ABSTRACT

In practical applications, the underlying constraint knowledge is often unknown and
difficult to specify. To address this issue, recent advances in Inverse Constrained
Reinforcement Learning (ICRL) have focused on inferring these constraints from
expert demonstrations. However, the ICRL approach typically characterizes con-
straint learning as a tri-level optimization problem, which is inherently complex
due to its interdependent variables and multiple layers of optimization. Considering
these challenges, a critical question arises: Can we implicitly embed constraint sig-
nals into reward functions and effectively solve this problem using a classic reward
inference algorithm? The resulting method, known as Inverse Reward Correction
(IRC), merits investigation. In this work, we conduct a theoretical analysis com-
paring the sample complexities of both solvers. Our findings confirm that the IRC
solver achieves lower sample complexity than its ICRL counterpart. Nevertheless,
this reduction in complexity comes at the expense of generalizability. Specifically,
in the target environment, the reward correction terms may fail to guarantee the
safety of the resulting policy, whereas this issue can be effectively mitigated by
transferring the cost functions via the ICRL solver. Advancing our inquiry, we
investigate conditions under which the ICRL solver ensures ε-optimality when
transferring to new environments. Empirical results across various environments
validate our theoretical findings, underscoring the nuanced trade-offs between
complexity reduction and generalizability in safety-critical applications.

1 INTRODUCTION

Aligning the decision process with the underlying constraints in the environment is a crucial prerequi-
site for solving decision-making problems in safety-critical applications. To realize this vision, safe
Reinforcement Learning (RL) algorithms typically optimize a control policy based on a known or
manually-specified constraint (Liu et al., 2021; Gu et al., 2022). However, the ground truth constraints
are often unknown in many real-world applications. Moreover, given the inherent complexity of
environmental dynamics, safety constraints must accurately model the interdependencies among
numerous variables, which are difficult to capture solely with prior knowledge.

To resolve the above challenges, Inverse Constrained Reinforcement Learning (ICRL) designs a
data-driven constraint inference method to learn the constraints from expert demonstrations (Scobee
& Sastry, 2020). Specifically, an ICRL algorithm (Malik et al., 2021) typically addresses a tri-level
optimization problem involving the update of 1) the feasibility functions to represent constraints, 2)
the Lagrange parameters to balance reward maximization and constraint satisfaction, and 3) the policy
function to guide the agent’s behaviors. Under this setting, the variables subject to optimization
are interdependent, and the sub-optimality of one variable can influence the performance of the
others. To mitigate the complexity of this problem, Hugessen et al. (2024) proposed to simplify the
ICRL solver by incorporating the impact of both constraint and Lagrange parameters into a reward
correction term. This modification reduces the ICRL solver to a bi-level solver known as Inverse
Reward Correction (IRC) (Li et al., 2023). Hugessen et al. (2024) empirically demonstrated that

∗Corresponding author: Guiliang Liu

1



Published as a conference paper at ICLR 2025

such simplification does not compromise the performance of constraint learning. These observations
raise significant questions about the necessity of explicitly modeling constraints. It is still uncertain
whether the canonical reward learning framework is sufficient to capture an agent’s preferences within
a Constrained Markov Decision Process (CMDP).

To address this issue, in this work, we conduct a rigorous study to understand the impact of modeling
constraints. Specifically, we theoretically and empirically compare the performance of IRC and ICRL
from the following perspectives:

Training Efficiency. Unlike previous studies, which primarily compared IRC and ICRL through
empirical evaluations (Hugessen et al., 2024), we are the first to provide a theoretical quantification of
training efficiency for both IRC and ICRL solvers in capturing the safety preferences in expert agents’
decisions. However, achieving this objective is inherently challenging due to the unidentifiability
of the optimal solution, as multiple solutions can explain expert demonstrations (Ng et al., 2000).
To address this, rather than modeling pointwise solutions, we adopt the approach first proposed by
Metelli et al. (2021), which introduces a theoretical framework that characterizes a complete set of
feasible solutions. This approach enables us to determine the intrinsic sample complexity of both
IRC and ICRL without being obfuscated by further restrictions to ensure the uniqueness of optimal
solutions. Our results indicate that ICRL requires more training samples, consistent with the empirical
findings in Hugessen et al. (2024). Moreover, our theoretical analysis provides a deeper understanding
of the increased complexity. Specifically, we show that ICRL solvers capture constraint-violating
movements by leveraging known reward signals. During the update of a constrained RL policy, these
movements correspond to decision-making patterns that drive an increase in the Lagrange multipliers.

Cross-environment Transferability. While previous constraint learning methods primarily focus on
imitating experts’ behavior (Scobee & Sastry, 2020; Liu et al., 2023; Hugessen et al., 2024; Liu et al.,
2024), a key motivation for inferring experts’ safety preferences is to generalize this knowledge for
guiding policy learning in similar contexts (Feng et al., 2023; Zhang et al., 2024). In this study, we
compare IRC and ICRL in terms of guaranteeing safety and optimality of policies based on inferred
terms across different environments. We begin with an illustrative example to demonstrate situations
where IRC could potentially induce unsafe behaviors. We identify and summarize the conditions
under which IRC leads to such unsafe behaviors and explain why the performance of ICRL is more
robust by explicitly modeling constraints. Regarding the optimality of generalized policies, we
theoretically investigate how mismatches in environmental dynamics and reward signals influence
the acquisition of optimal policies based on learned cost functions by the ICRL solver. In the absence
of constraint satisfaction, these results cannot be extended to IRC.

Contributions. We compare the training efficiency and cross-environment transferability of IRC and
ICRL solvers to address the critical question: Can we implicitly embed constraint signals into reward
functions and effectively solve this problem using a classic reward inference algorithm?

• Following the theoretical framework from Metelli et al. (2021), we introduce the IRC solver
(Definition 3.3) to overcome the limitation of the IRL solver, which lacks a mechanism to
leverage existing reward signals and is not compatible with different rewards. Furthermore,
we analyze the sample complexity of IRC (Section 4.1) and compare it with existing results
for ICRL (Yue et al., 2024), showing that IRC achieves lower sample complexity than ICRL
under the same optimality criterion (Theorem 4.2).

• We conduct a formal study of transferability in safety to compare IRC and ICRL. We show
that transferred cost functions by ICRL are guaranteed to preserve safety in overlapping
critical regions (Lemma 5.2), whereas transferred reward correction terms by IRC can be
offset by the difference in reward functions and transition dynamics between source and
target environments (Theorem 5.3).

• We analyze the optimality of transferred cost functions in target environments, by extending
the transferability definition from Schlaginhaufen & Kamgarpour (2024, Definition 3.1) in
regular MDP settings to CMDP settings. Specifically, we define the suboptimality gap under
CMDP settings (Definition 5.5). Building on this, we derive a sufficient condition that limits
the similarity between source and target environments to guarantee ε-optimality for ICRL
(Theorem 5.7).

• Finally, we empirically validate our results on training efficiency and cross-environment
transferability in various environments (Section 6).
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2 RELATED WORK

Inverse Constrained Reinforcement Learning (ICRL). Unlike IRL, which focuses primarily on
recovering reward functions, ICRL seeks to align with expert agents’ preferences by inferring the
constraints they adhere to. The majority of existing ICRL algorithms update cost functions by
maximizing the likelihood of generating expert demonstrations under the maximum (casual) entropy
framework (Scobee & Sastry, 2020). Subsequent works have extended this approach from discrete
to continuous state-action spaces (Malik et al., 2021; Qiao et al., 2023; Xu & Liu, 2024b; Quan
et al., 2024; Zhao et al., 2025). To enhance training efficiency, Liu & Zhu (2022); Gaurav et al.
(2023) combined ICRL with bi-level optimization techniques. Towards theoretical groundings of
ICRL, Yue et al. (2024) recently proposed efficient constraint inference through exploration strategies,
achieving tractable sample complexity. However, these works primarily evaluate their performance by
applying inferred constraints within the same environment used for learning. While Xu & Liu (2024a)
proposed an approach to learning a robustly safe policy across a set of pre-defined and limitedly
varied transition dynamics, the challenge of transferring constraints to new environments remains
largely unexplored.

Transferability in Inverse Reinforcement Learning (IRL). A significant application of IRL al-
gorithms is to guide policy learning in similar environments. However, obtaining guarantees of
transferability in unregularized settings is more challenging than in entropy-regularized contexts. To
facilitate knowledge transfer in unregularied settings, Metelli et al. (2021) assumed that the feasible
reward functions recovered remain valid in target environments, and Amin et al. (2017) reduced the
dimension of the reward class to state-only rewards. In contrast, entropy-regularized settings have
been explored more extensively. Cao et al. (2021) and Skalse et al. (2023) demonstrated that under
entropy regularization, the expert’s reward can be identified up to potential shaping transformations
(Ng et al., 1999). In addition, Rolland et al. (2022) showed that to guarantee transferability across any
transition laws, the expert’s reward must be identified up to a constant. Building upon these insights,
Cao et al. (2021) and Rolland et al. (2022) learned the reward function from multiple experts who
shared rewards but had sufficiently different transition laws distinguished by a specific rank condition.
Continuing this line of research, Schlaginhaufen & Kamgarpour (2024) extended this approach to
an offline setting and derived a sufficient condition for transferability considering local changes in
the transition law when learning from a single expert. However, these methods focus on transferring
reward functions in regular MDPs, without addressing the generalization of constraints in CMDPs.

3 PRELIMINARIES AND PROBLEM FORMULATION

Notation. Let X and Y be two sets. The notation YX represents the set of functions f : X → Y .
The set of probability measures over X is denoted as ∆X = {ν ∈ [0, 1]X :

∑
x∈X ν(x) = 1} and we

denote ∆X
Y as the set of functions: Y → ∆X . We define min+x∈X f(x) returns the minimum positive

value of f overX . For a linear operator T , its image is denoted by im(T ). Let cE represent the ground-
truth cost function obeyed by the expert, and µE denote the expert occupancy measure. Let 1(·)
denote the indicator function. The expansion operator E : RS → RS×A satisfies (Ef)(s, a) = f(s).
The complete notation is provided in Appendix Table 1.

Constrained Markov Decision Process (CMDP). The environment is modeled as a stationary CMDP
Mc := (S,A, PT , r, c), where S and A are the finite state and action spaces, with cardinalities
S = |S| and A = |A|; PT (s

′|s, a) ∈ ∆S
S×A defines the transition dynamic; r ∈ [0, Rmax]

S×A and
c ∈ [0, Cmax]

S×A denote the reward and cost functions. The set {ϵ, µ0, γ} represents additional
environmental configurations, where ϵ defines the threshold of the constraint, µ0 ∈ ∆S denotes the
initial state distribution, and γ ∈ [0, 1) is the discount factor. The agent’s policy π ∈ ∆A

S . We focus
on the infinity planning horizon, and our theoretical results are based on a discrete state-action space.

Value and advantage functions. We denote action value functions in a CMDPMc for costs and
rewards as Qc,π

Mc
and Qr,π

Mc
. The superscript c or r specifies the actual costs or rewards evaluated.

The reward action-value function Qr,π
Mc

(s, a) = Eπ,PT

[∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a
]
, and the

reward advantage function Ar,π
Mc

(s, a)=Qr,π
Mc

(s, a)−V r,π
Mc

(s), where the reward state-value function
V r,π
Mc

(s) = Eπ[Q
r,π
Mc

(s, a)]. The same notation scheme applies to cost value functions in Mc by

3



Published as a conference paper at ICLR 2025

replacing the superscript r with c, i.e., Qc,π
Mc

and V c,π
Mc

. This scheme also applies to CMDP without
knowing the cost, i.e.,M=Mc\c by replacing the subscriptMc withM, i.e., Qr,π

M , V r,π
M and Ar,π

M .

Constrained Reinforcement Learning (CRL). Within a CMDP environment, CRL learns a policy
π that maximizes the cumulative rewards subject to a known constraint:

CRL(r, c) = max
π

Eµ0,π,PT

[ ∞∑
t=0

γtr(st, at)
]

s.t. Eµ0,π,PT

[ ∞∑
t=0

γtc(st, at)
]
≤ ϵ, (PI)

where ϵ = 0 indicates a hard constraint and ϵ > 0 represents a soft constraint.

Inverse Constraint Inference (ICI). In many practical applications, constraints are not readily
available, so we need to infer the constraints followed by expert agents based on their behaviors. An
ICI problem is a pair P = (M, πE) where πE ∈ ∆A

S is the expert’s policy.

A common solver for this ICI problem under the RL setting is known as Inverse Constrained
Reinforcement Learning (ICRL), which is formally defined as follows:
Definition 3.1. (ICRL solver for ICI (Malik et al., 2021)). An ICRL solver is denoted as SICRL. A
cost function c is a feasible solution for an ICI problem P if and only if πE is an optimal policy for
CMDPMc. We denote by CP the set of feasible cost functions derived by SICRL(P).

Previous ICRL solvers (Scobee & Sastry, 2020; Malik et al., 2021) explicitly model constraints and
infer the cost function by alternatively optimizing the policy and the cost function. In the phase of
policy optimization, they commonly solve a CRL problem (PI) by studying its Lagrangian dual:

D [CRL(r, c)] = min
λ>0

max
π
J (π, r − λc) + λϵ, (DI)

where J (π, r − λc) = Eµ0,π,PT

[∑∞
t=0 γ

t
(
r(st, at)− λc(st, at)

)]
.

Theorem 3.2. (CRL has zero duality gap (Paternain et al., 2019)). Suppose that r and c are bounded
and the Slater’s condition holds for (PI), then strong duality holds for (PI), i.e., PI∗ = DI∗.

Accordingly, the optimal policy in CRL objective (PI) can be equivalently solved by utilizing an
unconstrained objective (DI). Based on the dual representation of CRL problem, ICRL solvers are
essentially solving a tri-level optimization problem (Kim et al., 2023):

max
c

max
λ

min
π
J (πE , r − λc)− J (π, r − λc). (1)

Given the complexity of tri-level optimization, Hugessen et al. (2024) recently explored whether we
can 1) apply an IRL algorithm to recover r̃ = r − λc = r − c̃ by optimizing λ and c collectively in
c̃ = λc if the range of c̃ is a convex cone, and 2) learn an imitation policy by directly maximizing the
cumulative rewards E[

∑∞
t=0 γ

tr̃(st, at)] without considering the constrained optimization objective.
In this work, we formally define this method as Inverse Reward Correction (IRC) as follows:
Definition 3.3. (IRC solver for ICI (Li et al., 2023)). An IRC solver is denoted as SIRC. A reward
correction term ∆r is a feasible solution for an ICI problem P if and only if πE is an optimal policy
for (M\r) ∪ rc, where corrected rewards rc(s, a) = r(s, a) +∆r(s, a),∀(s, a). We denote byRP

the set of feasible reward correction terms derived by SIRC(P).

For the sake of clarity, we simplify (M\r) ∪ rc toM∪ rc in the remainder of the paper. Under this
setting, the correction term can play the role of negative collective cost function such that ∆r = −c̃.
If the negative optimal c̃ can be represented within the bounded range of the correction term, i.e.,
−c̃∗ = −λ∗c∗ ∈ range(∆r), where λ∗ and c∗ are optimal solutions of (1), the tri-level optimization
can be transferred to a bi-level one as defined in the following:

max
∆r

min
π
J (πE , r +∆r)− J (π, r +∆r). (2)

Hugessen et al. (2024) demonstrated that this simplification results in a more performant solver. In
the following sections, we will provide a more formal comparison of these solvers, focusing on their
sample complexity and transferability, i.e., performance in transferring to new environments.

4 TRAINING EFFICIENCY: A FORMAL STUDY OF SAMPLE COMPLEXITY

In this section, we compare the training efficiency of ICRL and IRC solvers by deriving their sample
complexity and analyzing their performance gaps.
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4.1 SAMPLE COMPLEXITY OF IRC SOLVER

To compute the sample complexity of the IRC solver, we adopt the theoretical framework from
Metelli et al. (2021) and define the feasible set of reward correction terms as follows:

Lemma 4.1. (Feasible reward correction set implicit). Let P be an ICI problem and SIRC be the IRC
solver. ∆r is a feasible reward correction term, i.e., ∆r ∈ RP if and only if ∀(s, a) ∈ S ×A:

(i) if πE(a|s) > 0, then Qr+∆r ,πE

M∪(r+∆r)(s, a) = V r+∆r ,πE

M∪(r+∆r)(s),

(ii) if πE(a|s) = 0, then Qr+∆r ,πE

M∪(r+∆r)(s, a) ≤ V r+∆r ,πE

M∪(r+∆r)(s).

Intuitively, in a CMDP, reward function r alone does not align with the expert policy πE due to
potential constraint violations, i.e. πE(a|s) = 0 but Qr,πE

M (s, a) > V r,πE

M (s). The correction term
∆r adjusts the reward r so that r +∆r collectively ensures the optimality of the expert policy. This
approach differs from the IRL solver (Metelli et al., 2021; Lindner et al., 2022) in two key aspects: 1)
IRL lacks a mechanism to leverage the known reward function r for constraint inference, and 2) IRL
is not compatible with different reward signals in new environments.

To provide a fair comparison of sample complexity between the two solvers, we study a uniform
sampling strategy, detailed in Appendix Algorithm 1. This strategy queries the generative model to
sample the state-action space, enabling the estimation of the transition dynamics and the expert policy
as P̂ = (M̂, π̂E), where M̂ = (M\PT )∪ P̂T . Let δ ∈ (0, 1) be the significance level. This strategy
guarantees that with probability greater than 1− δ, the Hausdorff distance dH between the ground
truth and estimated feasible set is upper bounded by an amount related to the number of samples.

In the case of the IRC solver, this Hausdorff distance betweenRP andRP̂ is upper bounded by

dH(RP,RP̂) ≤ max
(s,a)∈S×A

I∆r
k+1(s, a),with I∆r

k+1(s, a) =
2γRmax

1− γ

√
2ℓk+1(s, a)

N+
k+1(s, a)

, (3)

where N+
k+1(s, a) is the positive cumulative count of visitations to (s, a) (formally defined in

Appendix B.2) and ℓk+1(s, a) = log
(
12SA(N+

k+1(s, a))
2/δ

)
. Towards reducing this upper bound

below a targeted accuracy, we derive the sample complexity of the IRC solver.

Theorem 4.2. (Sample Complexity of IRC Solver). If the IRC solver stops at iteration K with updated
accuracy εK , then with probability at least 1 − δ it converges, with the number of samples upper
bounded by n ≤ Õ

(
4γ2R2

maxSA

(1−γ)4ε2K

)
, where Õ notation suppresses logarithmic terms.

4.2 SAMPLE COMPLEXITY OF AN ICRL SOLVER

Following a similar theoretical framework, Yue et al. (2024) derived the sample complexity for ICRL
solver by defining the feasible cost set. We briefly recap and discuss the results below. Appendix B.6
provides a detailed review.

Lemma 4.3. (Feasible cost set implicit (Yue et al., 2024, Lemma 4.3)). Under (Yue et al., 2024,
Assumption 4.1), let P be an ICI problem and SICRL be the ICRL solver, then c is a feasible cost, i.e.,
c ∈ CP if and only if ∀(s, a) ∈ S ×A:

(i) if πE(a|s) > 0, Qc,πE

M∪c(s, a)− V c,πE

M∪c(s) = 0;
(ii) if πE(a|s) = 0 and Ar,πE

M∪c(s, a) > 0, Qc,πE

M∪c(s, a)− V c,πE

M∪c(s) > 0;

(iii) if πE(a|s) = 0 and Ar,πE

M∪c(s, a) ≤ 0, Qc,πE

M∪c(s, a)− V c,πE

M∪c(s) ≤ 0.

Remark 4.4. Unlike the feasible reward correction terms in Lemma 4.1, the feasible cost function is
closely related to the reward advantage function under an expert policy, i.e., Ar,πE

M∪c. If Ar,πE

M∪c(s, a)>0,
the action a yields higher rewards than the expert. Such actions must violate the underlying constraints
(case (ii)); otherwise, the expert policy could be further improved, contradicting its optimality.

Similarly, to compute the sample complexity of the ICRL solver, we utilize the uniform sampling
strategy in Appendix Algorithm 1. Guaranteed by the strategy, the Hausdorff distance dH between
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the ground truth and estimated feasible cost set, i.e., CP and CP̂, is upper bounded by

dH(CP, CP̂) ≤ max
(s,a)∈S×A

I c
k+1(s, a),with I c

k+1(s, a) =
σ

(1− γ)2

√
ℓk+1(s, a)

2N+
k+1(s, a)

,

where σ =
√
3γCmax

(
Rmax(3 + γ)/min+

∣∣Ar,πE

M∪c

∣∣+ (1− γ)
)

.

Theorem 4.5. (Sample Complexity of ICRL solver (Yue et al., 2024, Theorem C.9)). If the ICRL
solver terminates at iteration K with the updated accuracy εK , then with probability at least 1− δ, it
converges with a number of samples upper bounded by n ≤ Õ

(
γ2σ2SA
(1−γ)6ε2K

)
.

Discussion. By comparing Theorem 4.2 with Theorem 4.5, we observe that the sample complexity
of ICRL solver exceeds that of IRC solver by a factor of 1/(1 − γ)2. This increase stems from
estimating the reward advantage function Ar,πE

M∪c, which indictates whether to impose additional costs
on any state-action pairs. Specifically, in the tri-level optimization in (1), establishing the feasible cost
functions relies on the convergence of the Lagrange multiplier λ to its optimum while λ increases
whenever Ar,πE

M∪c(s, a) > 0 to penalize unsafe policies.

5 CROSS-ENVIRONMENT TRANSFERABILITY: GENERALIZING THE SAFETY
AND OPTIMALITY OF CONSTRAINTS

Beyond cloning the behaviors of expert agents, a critical application of the inverse optimization
methods (including IRL, ICRL, and IRC) is to infer generalizable oracle signals, such as rewards
or constraints, that can effectively guide agent behaviors in similar environments. We use teal and
purple colors to distinguish the source CMDPMc =M∪ cE = (S,A, PT , r, c

E) and the target
CMDPM′

c =M′ ∪ (c′)E = (S,A, P ′
T , r

′, (c′)E), where they can differ in the reward function, the
transition model and underlying cost functions (i.e., r′ ̸= r, P ′

T ̸= PT and cE ̸= (c′)E). Under this
setting, our study adheres to the standard ICI problem fashion, assuming access to a single expert
within a specific environment. We investigate the transferability of learned constraints across source
and target CMDPs, focusing on two key aspects: safety and optimality.

5.1 GENERALIZING SAFETY GUARANTEES ACROSS DIVERSE ENVIRONMENTS

Transferring a recovered reward correction term ∆r or a cost function c introduces new challenges
that remain largely unexplored in the ICI literature since there is no guarantee that ∆r or c with
the new reward function r′ and new transition model P ′

T will make the new expert policy (π′)E

constraint satisfying in the target CMDPM′
c. That is to say, transferred ∆r or c may lead to unsafe

policies (let alone optimal policies) in the target environment.

𝑠𝑐

𝑟𝑆 𝜏1 = 2, 𝑟𝑆 𝜏2 = 1

𝑠𝑐
IRC: Δ ǁ𝑟 = −1 − 𝛽
ICRL: 1ℳ𝑐 𝑠𝑐 = 0

infer

transfer

Down 

Winds

Higher

Rewards

Source Env Target Env

𝜏1 𝜏2 𝜏2𝜏1

𝑟𝑇 𝜏1 = 2 + 𝛽, 𝑟𝑇 𝜏2 = 1 − 𝛽
∵ 2 + 𝛽 − 1 − 𝛽 > 1 − 𝛽

∴ 𝜏∗ = 𝜏1

Figure 1: An example showing that transferring ∆r and
constraint 1Mc(sc) = 0 learned in the source environment
(left) to the target environment (right) induces different opti-
mal policies (τ1 denotes the optimal path and τ2 denotes the
second-best path).

Challenges in Ensuring Safety with
IRC. Although the IRC solver is
more sample-efficient in training in
the source environment, it struggles
to guarantee safety in the target en-
vironment, as illustrated in Figure 1.
Consider a hard constraint scenario;
soft constraints will be discussed later.
In the source environment, trajectory
τ1 (with a reward rS(τ1) = 2) has a
larger reward than τ2 (rS(τ2) = 1),
but the expert agent prefers τ2 since
τ1 passes through an unsafe state sc.
To align with the expert’s demonstra-
tion, the IRC solver learns a feasi-
ble reward correction term ∆r(sc)=
−1 − β (where β > 0), ensuring
that τ1 achieves lower rewards than
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τ2: rS(τ1) + ∆r(τ1) = 1 − β < 1 = rS(τ2) + ∆r(τ2) (note that ∆r(τ2) = 0 since τ2 does not
pass through sc). However, when this correction term is transferred to a target environment—where
reward functions and transition dynamics slightly differ (rT (τ1) = 2 + β, rT (τ2) = 1 − β)—it
renders the unsafe path τ1 as deceptively safe since τ1 now achieves higher rewards than τ2:
rT (τ1) +∆r(τ1) = 1 ≥ 1− β = rT (τ2) +∆r(τ2). This misguides the agent to prefer τ1.

In essence, the reward correction terms reflect the extent of penalty applied to constraint-violating
actions in the source environment. These penalties can be easily offset by increasing the gains on
penalized actions or decreasing the gains on other actions in the target environment. Comparably, the
ICRL solvers do not have such difficulty since they learn a hard constraint that invalidates any visit
to sc (e.g., the feasibility 1Mc(sc) = 0). The cost function directly decides the boundaries of safe
region, a modification that cannot be compensated for in the same manner as correction terms.

A Formal Study of Transferability in Safety. Transferability with single expert knowledge requires
similarity restrictions between source and target environments (Metelli et al., 2021, Assumption
4.1) (Schlaginhaufen & Kamgarpour, 2024, Theorem 3.10). In the context of safety, we expect the
learned constraint knowledge to remain at least partially active in the target environment, i.e., the two
constrained regions overlap so that the learned constraint information can be effectively reused. This
property is characterized as follows:

Assumption 5.1. (Similarity). Let (M, πE) and (M′, (π′)E) represent the source and target
ICI problems. The intersection of their constraint-violating region is not empty: G = {(s, a) |
Ar,πE

M∪cE
(s, a) > 0} ∩ {(s, a) | Ar′,(π′)E

M′∪(c′)E
(s, a) > 0} ≠ ∅.

Under this assumption, we begin by addressing the hard constraint scenario, in which the ICRL solver
outputs a set of feasible cost functions, all of which can be safely transferred to the target CMDP, i.e.,
ensuring safety within G. This property is illustrated in the following lemma:

Lemma 5.2. Suppose a hard constraint scenario. For any (s′, a′) ∈ G, the feasible cost function ĉ
inferred by the ICRL solver can prevent the visitation to (s′, a′) in the target CMDP.

However, the reward correction term learned by the IRC solver fails to guarantee safety in the target
environment. In the following, we identify conditions under which ∆r is not transferable.

Theorem 5.3. Suppose a hard constraint scenario. At state s, let aE denote the expert action, aC
denote the action that satisfies (s, aC) ∈ G and aO denote the other actions. ∀r′ ∈ [0, Rmax]

S×A

and ∀P ′
T ∈ ∆S

S×A, if ∃s ∈ S , ∀ aE , aO ∈ A, ∃ aC ∈ A that satisfies the following conditions, then
a reward correction term ∆r constructed by such Q-functions leads to unsafety in the target CMDP,

Qr+∆r ,πE

M∪(r+∆r)(e(s,aE) − e(s,aC)) ≥ 0, Qr+∆r ,πE

M∪(r+∆r)(e(s,aE) − e(s,aO)) ≥ 0,

Qr+∆r ,πE

M∪(r+∆r)(e(s,aE) − e(s,aC)) < (Y ′)−1
[
r′ − r + (Y − Y ′)Qr+∆r ,πE

M∪(r+∆r)

]
(e(s,aC) − e(s,aE)),

Qr+∆r ,πE

M∪(r+∆r)(e(s,aO) − e(s,aC)) < (Y ′)−1
[
r′ − r + (Y − Y ′)Qr+∆r ,πE

M∪(r+∆r)

]
(e(s,aC) − e(s,aO)),

where Y = (IS×A − γPT π
E), Y ′ = (IS×A − γP ′

T (π
′)E) and e(s,a) denotes a vector with value of

1 at index (s, a) and 0 elsewhere.

The first two inequalities, obtained from Lemma 4.1, ensure the optimality of the source expert policy
πE . The last two inequalities state that unsafe actions will be chosen if increments in the Q function
of constraint-violating actions are larger than other actions after transfer. We provide a numerical
validation of the above theorem in Appendix B.7, regarding the example in Figure 1.

Extension to Soft Constraint. The above results pertain to hard constraint scenarios. In cases
of the soft constraint, i.e., threshold ϵ > 0 in (PI), any (s, a) can be visited by feasible policies
because the cost of visiting (s, a) can always be mitigated via the discount factor γ < 1. In this
sense, cost functions, like reward correction terms, reflect the degree of penalization for constraint-
violating actions that can be compensated by new transition dynamics and expert policies. Although
the recovered cost function no longer guarantees safety in G, it still outperforms inferred reward
correction terms because it resists variations between source and target reward functions. We provide
a detailed analysis for soft constraints in Appendix B.8.2.

7



Published as a conference paper at ICLR 2025

5.2 GENERALIZING OPTIMALITY GUARANTEES ACROSS DIVERSE ENVIRONMENTS

The above analysis primarily emphasizes ensuring safety by satisfying constraints in the target
environment. However, it does not guarantee that the resulting policy is optimal with respect to
constrained reward maximization. In this context, a trivial solution involves blocking all state-action
pairs deviating from expert trajectories. However, such an approach compromises the optimality
of the resulting policy. Building upon safety guarantees, this section establishes the theoretical
foundations for policy optimality in the target environment under the estimated hard constraint. As
safety takes precedence over optimality, the IRC solver is excluded from this discussion.

Transferability in Optimality for ICRL Solver. Guaranteeing the optimality of transferred cost
functions to target environments requires sufficient knowledge of the environment landscape. To
achieve this goal, we recognize the difficulty of obtaining optimality guarantees under unregularized
settings (Schlaginhaufen & Kamgarpour, 2024, Remark 3.12) and emphasize that exploration is
crucial for obtaining theoretical guarantees of transferability.
Assumption 5.4. (Exploration). Let F={s ∈ S | ∃a ∈ A : c(s, a) = 0} be the state feasible region,
and Q =

{
µ ∈ RS×A

+ : (E − γP )⊤µ = (1− γ)µ0

}
⊆∆S×A be the set of occupancy measures that

satisfies the Bellman flow constraints. We assume that for any s ∈ F and µ ∈ Q, the state occupancy
measure µ(s) :=

∑
a µ(s, a) is lower bounded by a positive constant, i.e., µ(s) ≥ µmin > 0.

To ensure the policy can exhibit exploratory behavior, we adjust the CRL objective (PI) by assuming
the optimal policy maximizes the regularized objective in the following:

π∗ = argmax
π

Eµ0,π,PT

[ ∞∑
t=0

γt
(
r(st, at)− λ∗ · c(st, at) + h(π(·|st))

)]
, (4)

where the Shannon entropy regularizer h(π(·|s)) := −αEπ[log π(a|s)] and the weighting term
α > 0. Additionally, we model the influence of policy by deriving the occupancy measure µ. As
a result, the dual representation of the CRL problem (DI) can be recast as a convex optimization
problem (Altman, 2021; Puterman, 2014):

CRLPT (r, c) := argmax
µ∈Q

J(r, λ∗, c, µ),with J(r, λ∗, c, µ) = ⟨r − λ∗c, µ⟩ − Eµ[h(π
µ)], (5)

where µ(s, a) = (1− γ)Eπ,PT

[∑∞
t=0 γ

t1(st = s, at = a)
]

and πµ(a|s) = µ(s, a)/µ(s).

Under this formulation, to quantify the performance of a given occupancy measure µ under an
inferred cost function c, we define the sub-optimality gap as follows:

ℓ r,λ
∗

PT
(c, µ) := max

µ′∈Q
J(r, λ∗, c, µ′)− J(r, λ∗, c, µ). (6)

Building upon this, we extend the transferability definition from Schlaginhaufen & Kamgarpour
(2024, Definition 3.1) from regular MDP settings to CMDP settings.
Definition 5.5. (ε-transferability for cost). For some fixed ε > 0, we say the inferred cost function ĉ
is ε-transferable to some new reward function r′ ∈ [0, Rmax]

S×A and transition law P ′
T ∈ ∆S×A

S if
ℓ
r′,(λ′)∗

P ′
T

(ĉ,CRL(cE)) ≤ ε.

Intuitively, ε-transferability quantifies how well the inferred cost function ĉ captures the preference
of expert behaviors in a different environment. When the gap is large, it indicates that certain feasible
state-action pairs are overly penalized, potentially leading to suboptimal policy decisions. Conversely,
when the gap is small, the estimated cost function ĉ accurately explains the expert’s behaviors,

A key element in bounding this suboptimality gap in target environments is to constrain the similarity
between source and target transition laws. To represent the feasible cost set CSICRL , we map a transition
law PT to a subspace UPT := im(E − γPT ) via potential shaping transformation (Ng et al., 1999).
A detailed discussion of this transformation for cost equivalence is provided in Appendix B.28. We
utilize principal angles as a generalization of angles between higher-dimension planes to provide a
more refined measure of similarity and dissimilarity between them.
Definition 5.6. (Principal angles (Galántai, 2013)) Let V,W ⊆ Rn be two subspaces of dimension
m ≤ n. The principal angles 0 ≤ θ1(V,W) ≤ . . . ≤ θm(V,W) =: θmax(V,W) ≤ π/2 between V
andW are defined recursively via
cos(θi(V,W)) = max

v∈V,w∈W
⟨v, w⟩ s.t. ∥v∥2 = ∥w∥2 = 1, ⟨v, vj⟩ = ⟨w,wj⟩ = 0, j = 1, . . . , i− 1,
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where vj , wj are the maximizers corresponding to the angle θj . For two transition laws PT 1, PT 2,
we define θi(PT 1, PT 2) := θi(UPT 1

,UPT 2
) and θmax(PT 1, PT 2) := θmax(UPT 1

,UPT 2
).

Theorem 5.7. Let P ′
T be the target transition law, the source and target ground-truth constraints

are the same (c′)E = cE and d1 = ∥[cE − ĉ]UP ′
T
∥2. Suppose that Assumption 5.4 holds. If

ℓ
r′,(λ′)∗

PT
(ĉ,CRL(cE)) ≤ ε1, then ĉ is ε-transferable to the target environment with

ε = 2max
{
d21 sin

(
θmax(PT

′, PT )
)2

/2, 2ε1/σR

}
/η, (7)

where σR and η are regularity constants, given in Appendix B.25.

The theorem asserts that if the two transition laws are close and the recovered cost has a small
suboptimality gap in the target environment, then ε-optimality of the recovered cost is guaranteed.
More specifically, we observe that the transferability in optimality of cost is affected by two key
factors. The first factor is the discrepancy between the source and target CMDP, which encompasses:
1) the difference in rewards and Lagrange multipliers, captured by ε1, and 2) the discrepancy in
transition dynamics, indicated by θmax. The second factor is the estimation error associated with the
recovered cost ĉ, denoted by d1.

6 EMPIRICAL EVALUATION
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Figure 2: Four different Gridworld environments.

We empirically evaluate the ICRL solver against
the IRC solver in four different constrained Grid-
world environments. For each Gridworld, source
and target environments differ in reward func-
tions and transition dynamics. Code is available
at https://github.com/Bobyue0118/Constraint-Inference-in-Safe-IRL.

Experiment Setting. We focus on evaluating the training efficiency and transferability of the ICRL
and IRC solvers. The results are assessed using two key metrics:1) discounted cumulative rewards,
which quantify the total rewards achieved by the learned policy. 2) discounted cumulative costs,
which calculate the total costs incurred by the learned policy. We compare the uniform sampling
strategy (Appendix Algorithm 1) of the ICRL and IRC solvers.

In the environment, the agent’s goal is to navigate from a starting location (blue) to a target location
(red) while avoiding constraints (black). The expert policy is trained under ground truth constraints.
Four source environments exhibit a stochasticity of p = 0.05, i.e., the agent takes a uniformly
randomized action with that probability, while four target environments feature a higher stochasticity
of p = 0.1. All rewards are assigned at the target location, with identical values of 1 in four source
environments and 2, 7, 7, 15 in four respective target environments.

Figure 3 demonstrates four learned cost functions by the ICRL solver at each state (top) and four
learned reward correction terms by the IRC solver at each state (bottom), in the source environments of
four Gridworld settings (from left to right, Gridworld-1,2,3,4). Figure 4 demonstrates the accumulated
rewards and costs of resulting policies learned under inferred reward correction terms by the IRC
solver and cost functions by the ICRL solver at each iteration. In the source environments, we
observe that the reward and cost curve of the IRC solver converges more quickly than the ICRL
solver, indicating higher training efficiency. However, in the target environments, we find that inferred
reward correction terms lead to unsafe policies (costs exceeding 0), whereas recovered cost functions
ensure both safety (costs converging to 0) and optimality (rewards converging to the expert).

For continuous environments, we use the maximum entropy framework of ICRL (Malik et al., 2021)
and simplified IRL framework for constraint inference (Hugessen et al., 2024) where two frameworks
recover constraint knowledge that best explains the expert demonstrations from an offline dataset.
We report additional experimental results and implementation details in Appendix C, D and E.

7 CONCLUSION

Summary. In this paper, we study the novel challenge of transferring learned constraint information
from source to target environments. Constraint information can be either implicit reward correction

9
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Figure 3: Learned constraint information by the ICRL solver (top) and the IRC solver (bottom).
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Figure 4: Training curves of discounted cumulative rewards (top), costs (bottom) for the ICRL (red)
and IRC (blue) solvers across four Gridworld environments. The expert’s rewards and costs are
represented in grey. Solid and dashed lines correspond to source and target environments, respectively.

terms by IRC solvers or explicit cost functions by ICRL solvers. We compare both solvers regarding
training efficiency and transferability. Although the IRC solver is guaranteed lower sample complexity,
the additional sample complexity required by the ICRL solver proves crucial for ensuring both safety
and optimality in target environments. Under hard constraints, the recovered cost functions strictly
prevent the agent in target environments from entering overlapping constrained regions, whereas the
reward correction terms can be easily offset by variations in transition laws and reward functions,
leading to insufficient constraint representation. We also derive conditions that limit the similarity
between source and target environments to ensure the optimality for the ICRL solver. Empirical
studies across various environments validate our findings.

Limitations and Future Work. Our research initiates intriguing avenues for future studies. First,
extending our approach to incorporate demonstrations from multiple experts, including sub-optimal
ones, would be a valuable contribution to the field. Second, we believe that extensions to more
complex and scalable tasks, particularly those in real-world applications, such as safety issues in
robotics and Large Language Models, could offer valuable insights into the practical challenges and
opportunities involved in transferring constraint information.
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A GENERAL NOTATIONS AND NOMENCLATURE

In Table 1, we report the general notations and nomenclature used in our paper.

B DEFINITIONS, THEOREMS, AND PROOFS

B.1 ADDITIONAL DEFINITIONS

Definition B.1. (Hausdorff distance). (Rockafellar & Wets, 2009). Let (M,d) be a metric space. The
Hausdorff distance dH between two non-empty subsets A ⊆M and B ⊆M with distance function
d is defined as:

dH(A,B) = max

{
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(b, a)

}
where:

• infb∈B d(a, b) denotes the shortest distance from a point a ∈ A to all points in set B.

• supa∈A infb∈B d(a, b) is the maximum of these shortest distances for all points in A.

• Similarly, supb∈B infa∈A d(b, a) represents the maximum shortest distance for all points in
B to set A.

Definition B.2. (Operators). Let f ∈ RS and g ∈ RS×A. We abuse PT and π as the operators in-
duced by the transition model p and by the policy π, i.e.,(PT f)(s, a) =

∑
s′∈S PT (s

′|s, a)f(s′) and
(πg)(s) =

∑
a∈A π(a|s)g(s, a). Moreover, the expansion operator (Ef)(s, a) = f(s). Given π ∈

∆A
S , we denote with (Bπg)(s, a) = g(s, a)1 {π(a|s)>0} and (B

π
g)(s, a) = g(s, a)1 {π(a|s) = 0}.

14
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Table 1: General Notations and Nomenclature
Symbol Name Signature

S State space /
A Action space /
r/r′ Source/Target reward function RS×A

PT /P
′
T Source/Target transition model ∆S

S×A
πE/(π′)E Source/Target expert policy ∆A

S
cE Expert cost function RS×A

c Cost function RS×A

∆r Reward correction term RS×A

Qr,π
M Reward action-value function for r of π inM RS×A

V r,π
M Reward state-value function for r of π inM RS

Ar,π
M Reward advantage function for r of π inM RS×A

Qc,π
Mc

Cost action-value function for c of π inMc RS×A

V c,π
Mc

Cost state-value function for c of π inMc RS

Qr,π
Mc

Reward action-value function for r of π inMc RS×A

V r,π
Mc

Reward state-value function for r of π inMc RS

Ar,π
Mc

Reward advantage function for r of π inMc RS×A

P ICI problem (M, πE) /
SIRC IRC solver /
RP Set of feasible reward correction terms {RS×A}
SICRL ICRL solver /
CP Set of feasible cost functions {RS×A}
ε Target accuracy R+

δ Significancy (0, 1)
θ Principal angle [0, π/2]

∥ · ∥∞ Infinity norm /
E Expansion operator RS → RS×A

im(T ) Image of a linear operator T /

Definition B.3. (Image of a linear operator). Let T : V →W be a linear operator from vector space
V to vector space W . The image of T , denoted as im(T ), is defined as:

im(T ) = {T (v) | v ∈ V }.

This is the set of all vectors in W that can be written as T (v) for some v ∈ V . The image of T is a
subspace of W .

Definition B.4. (Inifinity norm). For a vector a, we define the vector infinity norm as ||a||∞ =
maxi|ai|. For a matrix M , we define the matrix infinity norm as ||M ||∞ = maxi

∑
j |Mij |.

B.2 ESTIMATING THE TRANSITION MODEL AND EXPERT POLICY

We define how we estimate the transition model and the expert policy with a generative model in
Algorithm 1. When the generative model is queried about a state-action pair (s, a), it responds with a
transition triple (s, a, s′) and an expert action aE ∼ πE(s)

In each iteration of uniform sampling, we query the generative model with each state-action pair
multiple times. At iteration k, we denote by nk(s, a, s

′) the number of times we observe the transition
tuple (s, a, s′). We further denote nk(s, a) =

∑
s′∈S nk(s, a, s

′). At iteration k, we denote by
nE
k (s, a) the number of times we observe action a as an expert decision at state s. We further denote

nE
k (s) =

∑
a∈A nE

k (s, a).

We define four cumulative counts from iteration 1 to k as Nk(s, a, s
′) =

∑k
j=1 nj(s, a, s

′) and

Nk(s, a) =
∑k

j=1 nj(s, a), NE
k (s, a) =

∑k
j=1 n

E
j (s, a) and NE

k (s) =
∑k

j=1 n
E
j (s). Finally, the
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estimated transition model and the estimated expert policy are defined as:

P̂T k(s
′|s, a) = Nk(s, a, s

′)

N+
k (s, a)

, π̂E
k (a|s) =

NE
k (s, a)

NE
k

+
(s)

, (8)

where x+ = max{1, x}.

B.3 UNIFORM SAMPLING STRATEGY FOR EACH SOLVER

To acquire desired information, the agent utilizes the uniform sampling strategy to query a generative
model. Specifically, the agent can always query a generative model about a state-action pair (s, a) to
receive a next state s′ ∼ P (·|s, a) and an expert action aE ∼ πE(·|s).

Algorithm 1 Uniform Sampling Strategy With a Generative Model
Input: significance δ, target accuracy ε, maximum number of samples per iteration nmax

Initialize k ← 0, ε0 = 1
1−γ

while εk > ε do
Collect ⌈nmax

SA ⌉ samples from each (s, a) ∈ S ×A
For IRC solver, update accuracy εk+1 = 1

1−γ max
(s,a)∈S×A

I∆r
k+1(s, a)

For ICRL solver, update accuracy εk+1 = 1
1−γ max

(s,a)∈S×A
Ick+1(s, a)

Update P̂T k+1 and π̂E
k+1 according to Eq. (8)

k ← k + 1
end while

B.4 THEORETICAL RESULTS OF IRL SOLVER

In this part, we reformulate the IRL solver for ICI based on Metelli et al. (2021).

Inverse Reinforcement Learning (IRL). Typically, IRL solvers recover the reward function from
expert demonstrations, where the environment is always considered to be safe. To employ IRL for
constraint inference in CMDP, we modify the original formalization of the IRL problem (Ng et al.,
2000) as follows:

Definition B.5. (IRL solver for ICI). An IRL solver is denoted as SIRL. A corrected reward function
rc is a feasible solution for an ICI problem P if and only if πE is an optimal policy forM∪ rc. We
denote by RP the set of feasible corrected reward functions.

Lemma B.6. (Feasible reward set implicit) (Metelli et al., 2021, Lemma 3.1). Let P be an ICI
problem and SIRL be the IRL solver. rc is a feasible corrected reward function, i.e, rc ∈ RP if and
only if ∀(s, a) ∈ S ×A:

• if πE(a|s) > 0, Qrc,πE

M∪rc(s, a) = V rc,πE

M∪rc (s),

• if πE(a|s) = 0, Qrc,πE

M∪rc(s, a) ≤ V rc,πE

M∪rc (s).

Lemma B.7. (Metelli et al., 2021, Lemma B.1). Let P be an ICI problem and SIRL be the IRL solver.
A Q-function satisfies the condition of Lemma B.6 if and only if there exist ζ ∈ RS×A

≥0 and V r ∈ RS

such that:

Qrc,πE

M∪rc = −BπE

ζ + EV r. (9)

Furthermore, ∥V r∥∞ ≤ ∥Qr
M∪rc∥∞ and the the expansion operator E satisfies (Ef)(s, a) = f(s).

Lemma B.8. (Feasible reward set explicit (Metelli et al., 2021, Lemma 3.2)). Let P be an ICI
problem and SIRL be the IRL solver. A reward function rc ∈ RP if and only if there exist ζ ∈ RS×A

≥0

and V r ∈ RS such that

rc = −BπE

ζ + (E − γPT )V
r. (10)
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Lemma B.9. (Error Propagation (Metelli et al., 2021, Theorem 3.1)). Let P = (M, πE) and

P̂ = (M̂, π̂E) be two ICI problems. Then, for any rc ∈ RP such that rc = −BπE

ζ+(E−γPT )V
r

and ∥rc∥∞ ≤ Rmax, there exists r̂c ∈ RP̂ such that element-wise it holds that:

|rc − r̂c| ≤ B
πE

Bπ̂E

ζ + γ
∣∣∣(PT − P̂T

)
V r

∣∣∣ . (11)

Furthermore, ∥ζ∥∞ ≤ Rmax

1−γ and ∥V r∥∞ ≤ Rmax

1−γ .

Theorem B.10. (Sample Complexity of the IRL Solver (Metelli et al., 2021, Theorem 5.1)). If the IRL
solver stops at iteration K with accuracy εK , then with probability at least 1− δ it converges, with a
number of samples upper bounded by:

n ≤ Õ
(
γ2R2

maxSA

(1− γ)4ε2K

)
. (12)

Proof. The above result can be obtained by settingM′ =M and γ′ = γ in (Metelli et al., 2021,
Theorem 5.1).

Remark B.11. In IRL solvers, although r in the CMDP is independent of the cost function c, rc
indeed captures the information of underlying constraint signals for enabling the imitating agent to
reproduce πE . However, the IRL solver lacks a mechanism to leverage the known reward function r
for constraint inference. Moreover, since rc relies on the current reward function, directly transferring
rc to another CMDP with a different reward function does not make sense. Therefore, it is necessary
to adjust the setting of IRL solver to accommodate potential changes in the reward function. Li et al.
(2023) propose modifying imperfect reward functions to align them with expert behaviors, but this
approach lacks tractable sample complexity. To address these limitations, we propose a modified
version of the IRL solver from a feasible set perspective, namely the Inverse Reward Correction (IRC)
solver in the main paper.

B.5 THEORETICAL RESULTS OF IRC SOLVER

In this part, we provide additional results regarding the IRC solver for ICI.

Inverse Reward Correction (IRC). Based on the known r, IRC solvers learn a reward correction
term ∆r to capture constraint signals. The goal of IRC solvers is to enable the imitating agent to match
expert demonstrations by following the corrected rewards: rc(s, a) = r(s, a) +∆r(s, a),∀(s, a) ∈
S ×A.

Lemma 4.1. (Feasible reward correction set implicit). Let P be an ICI problem and SIRC be the IRC
solver. ∆r is a feasible reward correction term, i.e., ∆r ∈ RP if and only if ∀(s, a) ∈ S ×A:

(i) if πE(a|s) > 0, Qr+∆r ,πE

M∪(r+∆r)(s, a) = V r+∆r ,πE

M∪(r+∆r)(s),

(ii) if πE(a|s) = 0, Qr+∆r ,πE

M∪(r+∆r)(s, a) ≤ V r+∆r ,πE

M∪(r+∆r)(s).

Proof. From Lemma B.6 and the decomposition that rc(s, a) = r(s, a)+∆r(s, a),∀(s, a), we have,

(i) if πE(a|s) > 0, Qr+∆r ,πE

M∪(r+∆r)(s, a) = V r+∆r ,πE

M∪(r+∆r)(s),

(ii) if πE(a|s) = 0, Qr+∆r ,πE

M∪(r+∆r)(s, a) ≤ V r+∆r ,πE

M∪(r+∆r)(s).

Corollary B.12. (Feasible reward correction set implicit). Let P be an ICI problem and SIRC
be the IRC solver. ∆r is a feasible reward correction term, i.e., ∆r ∈ RP if and only if for all
(s, a) ∈ S ×A, it holds that:

(i) if πE(a|s) > 0, Q∆r ,πE

M∪(r+∆r)(s, a) = −A
r,πE

M∪(r+∆r)(s, a) + V ∆r ,πE

M∪(r+∆r)(s),

(ii) if πE(a|s) = 0, Q∆r ,πE

M∪(r+∆r)(s, a) ≤ −A
r,πE

M∪(r+∆r)(s, a) + V ∆r ,πE

M∪(r+∆r)(s).
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Proof. Note that, for any given policy π, Q-function and V-function are both linear towards re-
ward function, i.e., Qr1+r2,π

M∪(r1+r2)
= Qr1,π

M∪(r1+r2)
+Qr2,π

M∪(r1+r2)
and V r1+r2,π

M∪(r1+r2)
= V r1,π

M∪(r1+r2)
+

V r2,π
M∪(r1+r2)

. Thus, inheriting from Lemma 4.1, we obtain,

(i) if πE(a|s) > 0,
[
Q∆r ,πE

M∪(r+∆r) +Qr,πE

M∪(r+∆r)

]
(s, a) =

[
V r,πE

M∪(r+∆r) + V ∆r ,πE

M∪(r+∆r)

]
(s),

(ii) if πE(a|s) = 0,
[
Q∆r ,πE

M∪(r+∆r) +Qr,πE

M∪(r+∆r)

]
(s, a) ≤

[
V r,πE

M∪(r+∆r) + V ∆r ,πE

M∪(r+∆r)

]
(s).

By simple transposition, we derive,

(i) if πE(a|s) > 0,

Q∆r ,πE

M∪(r+∆r)(s, a) = −Q
r,πE

M∪(r+∆r)(s, a) + V r,πE

M∪(r+∆r)(s) + V ∆r ,πE

M∪(r+∆r)(s),

(ii) if πE(a|s) = 0,

Q∆r ,πE

M∪(r+∆r)(s, a) ≤ −Q
r,πE

M∪(r+∆r)(s, a) + V r,πE

M∪(r+∆r)(s) + V ∆r ,πE

M∪(r+∆r)(s).

By the definition of advantage function Ar,π
M∪r1

(s, a) = Qr,π
M∪r1

(s, a)− V r,π
M∪r1

(s), we obtain,

(i) if πE(a|s) > 0, Q∆r ,πE

M∪(r+∆r)(s, a) = −A
r,πE

M∪(r+∆r)(s, a) + V ∆r ,πE

M∪(r+∆r)(s),

(ii) if πE(a|s) = 0, Q∆r ,πE

M∪(r+∆r)(s, a) ≤ −A
r,πE

M∪(r+∆r)(s, a) + V ∆r ,πE

M∪(r+∆r)(s).

Lemma B.13. Let P be an ICI problem and SIRC be the IRC solver. A Q-function satisfies the
condition of Lemma 4.1 if and only if there exist ζ ∈ RS×A

⩾0 and V r ∈ RS such that:

Q∆r ,πE

M∪(r+∆r) = −B
πE

ζ −Ar,πE

M∪(r+∆r) + EV r. (13)

Proof. The proof can be easily derived from from (Metelli et al., 2021, Lemma B.1).

Lemma B.14. (Feasible reward correction set explicit). Let P be an ICI problem and SIRC be the IRC
solver. ∆r is a feasible reward correction term, i.e., ∆r ∈ RP if and only if there exist ζ ∈ RS×A

≥0

and V r∈RS such that:

∆r = −BπE

ζ − r + (E − γPT )V
r,πE

M∪(r+∆r) + (E − γPT )V
r. (14)

Proof. From Bellman equation (Sutton & Barto, 2018), we have,

∆r =
(
IS×A − γPT π

E
)
Q∆r ,πE

M∪(r+∆r),

r =
(
IS×A − γPT π

E
)
Qr,πE

M∪(r+∆r).

Thus, we obtain,

∆r =
(
IS×A − γPT π

E
)
Q∆r ,πE

M∪(r+∆r)

=
(
IS×A − γPT π

E
)(
−BπE

ζ −Ar,πE

M∪(r+∆r) + EV r

)
= −BπE

ζ −Ar,πE

M∪(r+∆r) + EV r + γPT π
EAr,πE

M∪(r+∆r) − γPT V
r

= −BπE

ζ −
(
IS×A − γPT π

E
)
Ar,πE

M∪(r+∆r) + (E − γPT )V
r

= −BπE

ζ −
(
IS×A − γPT π

E
) (

Qr,πE

M∪(r+∆r) − EV r,πE

M∪(r+∆r)

)
+ (E − γPT )V

r

= −BπE

ζ −
(
IS×A − γPT π

E
)
Qr,πE

M∪(r+∆r) +
(
IS×A − γPT π

E
)
EV r,πE

M∪(r+∆r) + (E − γPT )V
r

= −BπE

ζ − r + (E − γPT )V
r,πE

M∪(r+∆r) + (E − γPT )V
r, (15)

where the last equality utilizes πEE = IS .
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Lemma B.15. (Error Propagation). Let P = (M, πE) and P̂ = (M̂, π̂E) be two ICI problems.

Then, for any ∆r ∈ RP such that ∆r = −BπE

ζ − r + (E − γPT )V
r,πE

M∪(r+∆r) + (E − γPT )V
r,

there exists ∆̂r ∈ RP̂ such that element-wise it holds that:∣∣∣∆r − ∆̂r
∣∣∣ ≤ B

πE

Bπ̂E

ζ + γ
∣∣∣(PT − P̂T

)(
V r,πE

M∪(r+∆r) + V r
)∣∣∣ . (16)

Furthermore, ∥ζ∥∞ ≤ 2Rmax

1−γ , ∥V r,πE

M∪(r+∆r)∥∞ ≤
Rmax

1−γ and ∥V r∥∞ ≤ Rmax

1−γ .

Proof. From Lemma B.14, we can express ∆r and ∆̂r as,

∆r = −BπE

ζ − r + (E − γPT )V
r,πE

M∪(r+∆r) + (E − γPT )V
r (17)

∆̂r = −Bπ̂E

ζ̂ − r + (E − γP̂T )V
r,π̂E

M̂∪(r+∆r)
+ (E − γP̂T )V̂

r (18)

Since we look for the existence of ∆̂r , we provide a specific choice of ζ̂ and V̂ r: ζ̂ = B
πE

ζ and
V̂ r = V r + V r,πE

M∪(r+∆r) − V r,π̂E

M̂∪(r+∆r)

∆r − ∆̂r = −BπE

Bπ̂E

ζ − γ
(
PT − P̂T

)(
V r,πE

M∪(r+∆r) + V r
)

(19)

By taking the absolute value and applying the triangular inequality, we obtain:∣∣∣∆r − ∆̂r
∣∣∣ ≤ B

πE

Bπ̂E

ζ + γ
∣∣∣(PT − P̂T

)(
V r,πE

M∪(r+∆r) + V r
)∣∣∣ . (20)

Note that the L∞-norms of value function ∥V r,πE

M∪(r+∆r)∥∞ ≤
Rmax

1−γ and ∥V r∥∞ ≤ Rmax

1−γ . Then, by
Lemma B.13, ∥ζ∥∞ ≤ 2Rmax

1−γ .

Theorem 4.2. (Sample Complexity of the IRC Solver). If an IRC solver stops at iteration K with
accuracy εK , then with probability at least 1 − δ it converges, with a number of samples upper
bounded by:

n ≤ Õ
(
4γ2R2

maxSA

(1− γ)4ε2K

)
. (21)

Proof. Compare Lemma B.15 for the IRC solver with Lemma B.9 for the IRL solver. Using the
proof techniques from (Metelli et al., 2021, Theorem 5.1), we derive the following sample complexity
for the IRC solver.

Remark B.16. Compared to the IRL solver, the IRC solver utilizes the known reward signals for
constraint inference. This method treats r as "imperfect" rewards and learns a correction term
∆r(s, a) to incorporate constraint signals. Note that the IRC solver does not explicitly model the
constraints during inference since the solver considers an unconstrained RL problem instead of CRL
during policy updates.

B.6 THEORETICAL RESULTS OF ICRL SOLVER

In this part, we provide additional results regarding the ICRL solver for constraint inference.

Inverse Constrained Reinforcement Learning (ICRL). ICRL solvers infer the constraint respected
by the expert agents from their demonstrations. An ICRL solver admits the following assumptions.
Assumption B.17. Either of the following two statements holds:
(i) The constraint in Eq. (PI) is a hard constraint such that ϵ = 0;
(ii) The constraint in Eq. (PI) is a soft constraint such that ϵ > 0, and the expert policy is deterministic.

Lemma 4.3. (Feasible cost set implicit (Yue et al., 2024, Lemma 4.3)). Under Assumption B.17, let
P be an ICI problem and SICRL be the ICRL solver, then c is a feasible cost, i.e., c ∈ CP if and only if
∀(s, a) ∈ S ×A:
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(i) if πE(a|s) > 0, i.e., (s, a) follows the expert policy:

Qc,πE

M∪c(s, a)− V c,πE

M∪c(s) = 0. (22)

(ii) if πE(a|s) = 0 and Ar,πE

M∪c(s, a) > 0, i.e., (s, a) violates the constraint:

Qc,πE

M∪c(s, a)− V c,πE

M∪c(s) > 0. (23)

(iii) if πE(a|s) = 0 and Ar,πE

M∪c(s, a) ≤ 0, i.e., (s, a) is in the non-critical region:

Qc,πE

M∪c(s, a)− V c,πE

M∪c(s) ≤ 0. (24)
Lemma B.18. Let P be an ICI problem and SICRL be the ICRL solver. A Q-function satisfies the
condition of Lemma 4.3 if and only if there exists ζ ∈ RS×A

≥0 and V c ∈ RS such that:

Qc,πE

M∪c = Ar,πE

M∪cζ + EV c, (25)

where the expansion operator E satisfies (Ef)(s) = f(s, a).
Lemma B.19. (Feasible cost set explicit (Yue et al., 2024, Lemma 4.4)). Let P be an ICI problem
and SICRL be the ICRL solver. c is a feasible cost, i.e., c ∈ CP if and only if there exist ζ ∈ RS×A

≥0

and V c ∈ RS such that:

c = Ar,πE

M∪cζ + (E − γPT )V
c. (26)

Similarly, we show how the estimation error on the environmental dynamic and on the expert policy
propagates to the cost function.

Lemma B.20. (Error Propagation (Yue et al., 2024, Lemma 4.5)). Let P = (M, πE) and P̂ =

(M̂, π̂E) be two ICI problems. For any c ∈ CP satisfying c = Ar,πE

M∪cζ + (E − γPT )V
c and

∥c∥∞ ≤ Cmax, there exists ĉ ∈ CP̂ such that element-wise it holds that:

|c− ĉ| ≤ γ
∣∣∣(PT − P̂T )V

c
∣∣∣+ ∣∣∣Ar,πE

M∪c −Ar,π̂E

M̂∪r

∣∣∣ ζ. (27)

Furthermore, ∥V c(s)∥∞ ≤ Cmax/(1− γ) and ∥ζ∥∞ ≤ Cmax/min+(s,a) |A
r,πE

M∪c|.

Lemma B.21. (Yue et al., 2024, Lemma 4.6) For a given policy π, let Ar,π
M∪r denote the reward

advantage function based on the original MDPM. For an estimated policy π̂, let Ar,π̂

M̂∪c
denote the

reward advantage function based on the estimated MDP M̂. Then, we have∣∣∣Ar,π
M∪c −Ar,π̂

M̂∪c

∣∣∣ ≤ 2γ

1− γ

∣∣∣(P̂T − PT )V
r,π̂

M̂

∣∣∣+ γ(1 + γ)

1− γ

∣∣∣(π − π̂)PT V
r,π
M

∣∣∣. (28)

Theorem 4.5. (Sample Complexity of ICRL solver(Yue et al., 2024, Theorem C.9)). If an ICRL
solver terminates at iteration K with the updated accuracy εK , then with probability at least 1− δ, it
converges with a number of samples upper bounded by

n ≤ Õ
(

γ2σ2SA

(1− γ)6ε2K

)
. (29)

where σ =
√
3γCmax

(
Rmax(3 + γ)/min+

∣∣Ar,πE

M∪c

∣∣+ (1− γ)
)

.

Remark B.22. Compared with the IRC solver, the ICRL solver considers a CMDP environment
instead of an MDP one, so it explicitly models constraints during policy updates.

B.7 NUMERICAL ANALYSIS OF THE EXAMPLE IN FIGURE 1

As illustrated in Figure 1, the basic environment contains 2× 5 grids, where the agent navigates from
the starting location (0, 0) (the left bottom corner) to the target location (0, 4) (the left top corner)
with four possible actions, i.e., Up, Down, Left and Right. In the source environment, (0, 4) (colored
blue) is assigned with a reward of 10, sc = (0, 2) (colored orange) contains a hard constraint that
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must not be accessed, while all other locations are assigned with 0 rewards and 0 costs. The discount
factor γ = 0.7 and there is no stochasticity in the source environment. For better readability, in this
part, we simplify Q

r/r′+∆r ,πE

M∪(r/r′+∆r)(s, a) as Qr/r′+∆r (a) and V
r/r′+∆r ,πE

M∪(r/r′+∆r)(s, a) as V r/r′+∆r (a).

If we do not add the reward correction term ∆r , under the current reward function r((0, 4)) = 10,
the agent chooses to go Up at (0, 1), which violates the hard constraint and deviates from the expert
policy. To guide the agent to go right at (0, 1) instead of going up, a feasible reward correction term
is ∆r((0, 2)) = −3 and are zero at all the other locations, which, together with reward function
r((0, 4)) = 10, leads to

Qr+∆r ,πE

((0, 1),Up) = ∆r((0, 2)) + γ × V r+∆r ,πE

((0, 2)) = −3 + 0.7× 7 = 1.9,

Qr+∆r ,πE

((0, 1),Right) = ∆r((1, 1)) + γ × V r+∆r ,πE

((1, 1)) = 0 + 0.7× 3.43 = 2.401.

This ensures the optimality of the expert policy at state (0, 1) since

Qr+∆r ,πE

((0, 1),Up) < Qr+∆r ,πE

((0, 1),Right),

meaning the safe and optimal action Right is chosen. Figure 5 illustrates the source environment, the
optimal value function regarding r +∆r , and the optimal policy at each state.

Suppose we have a target environment, with r′((0, 4)) = 20, and stochasticity of 0.3 to state
(1, 4), (1, 3), (1, 1) and (0, 1) of the environment and there remains no stochasticity to all the other
states. Figure 6 (middle) shows the new reward value function regarding r′ +∆r . Figure 6 (right)
shows the policy generated by r′ with ∆r((0, 2)) = −3. We observe that ∆r((0, 2)) = −3 is not
enough to penalize the going up action at (0, 1), since

Qr′+∆r ,πE

((0, 1),Up) = ∆r((0, 2)) + γ × V r′+∆r ,πE

((0, 2)) = −3 + 0.7× 14 = 6.8,

Qr′+∆r ,πE

((0, 1),Right) = ∆r((1, 1)) + γ × V r′+∆r ,πE

((1, 1)) = 0 + 0.7× 5.78 = 4.046,

Qr′+∆r ,πE

((0, 1),Up) > Qr′+∆r ,πE

((0, 1),Right),

meaning the constraint-violating action Up is chosen.

Next, we validate Theorem 5.3. At state (0, 1), aE = Right, aC = Up, aO1 = Down, aO2 = Left.
Through numerical calculation, we derive the following results, which match the results of Theorem
5.3.

• Qr+∆r (aE)−Qr+∆r (aC) = 0.501 ≥ 0;

• Qr+∆r (aE)−Qr+∆r (aO1 ) = 1.225 ≥ 0; Qr+∆r (aE)−Qr+∆r (aO2 ) = 0.720 ≥ 0;

• Qr+∆r (aE)−Qr+∆r (aC) = 0.501 < (Y ′)−1(Y − Y ′)Qr+∆r [aC − aE ] = 3.701;

• Qr+∆r (aO1 )−Qr+∆r (aC) = −0.724 < (Y ′)−1(Y − Y ′)Qr+∆r [aC − aO1 ] = 4.312;

Qr+∆r (aO2 )−Qr+∆r (aC) = −0.219 < (Y ′)−1(Y − Y ′)Qr+∆r [aC − aO2 ] = 4.060.

B.8 THEORETICAL RESULTS OF TRANSFERABILITY IN SAFETY

B.8.1 THE HARD CONSTRAINT SCENARIO

Lemma 5.2. Suppose a hard constraint scenario. For any (s′, a′) ∈ G, the feasible cost function ĉ
inferred by the ICRL solver (3.1) can prevent the visitation to (s′, a′) in the target CMDP.

Proof. For any (s′, a′) ∈ G and efficiently small cost estimation error ε, there must be ĉ(s′, a′) > 0
by the ICRL solver, which bans action a′ at state s′. In a hard constraint scenario, when ĉ is
transferred to a target CMDP, this ĉ(s′, a′) will also ban this action a′ at state s′, since any policy
with π(a′|s′) > 0 leads to a violation of the hard constraint.
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Figure 5: The basic environment (left), the source reward value function under r and PT (middle),
and the expert policy of the example in Figure 1 (right).

Figure 6: The basic environment (left), the target reward value function under r′ and P ′
T (middle),

and the generated policy (right).

Theorem 5.3. Suppose a hard constraint scenario. At state s, let aE denote the expert action , aC
denote the action that satisfies (s, aC) ∈ G and aO denote the other actions. ∀r′ ∈ [0, Rmax]

S×A

and ∀P ′
T ∈ ∆S

S×A, if ∃s ∈ S, ∀ aE , aO ∈ A, ∃ aC ∈ A that satisfies the following condition, then
the reward correction term ∆r constructed by such Q-functions violates safety in the target CMDP,

Qr+∆r ,πE

M∪(r+∆r)(e(s,aE) − e(s,aC)) ≥ 0, Qr+∆r ,πE

M∪(r+∆r)(e(s,aE) − e(s,aO)) ≥ 0,

Qr+∆r ,πE

M∪(r+∆r)(e(s,aE) − e(s,aC)) < (Y ′)−1
[
r′ − r + (Y − Y ′)Qr+∆r ,πE

M∪(r+∆r)

]
(e(s,aC) − e(s,aE)),

Qr+∆r ,πE

M∪(r+∆r)(e(s,aO) − e(s,aC)) < (Y ′)−1
[
r′ − r + (Y − Y ′)Qr+∆r ,πE

M∪(r+∆r)

]
(e(s,aC) − e(s,aO)),

where Y = (IS×A − γPT π
E), Y ′ = (IS×A − γP ′

T (π
′)E) and e(s,a) denotes a vector with value of

1 at the index (s, a) and 0 elsewhere.

Proof. For better readability, in this part, we denote Qr′ = Q
r′+∆r ,(π′)E

M′∪(r′+∆r) and Qr = Qr+∆r ,πE

M∪(r+∆r).
Since, at each state s ∈ S , the agent chooses its action based on the maximum Q-function, we study
the Q-function in the source and target CMDP.

Qr(s, a) = (IS×A − γPT π
E)−1rc(s, a) = (IS×A − γPT π

E)−1[r(s, a) +∆r(s, a)]
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Qr′(s, a) = (IS×A − γP ′
T (π

′)E)−1(rc)′(s, a) = (IS×A − γP ′
T (π

′)E)−1[r′(s, a) +∆r(s, a)]

We next show how the Q-function in the target CMDP is shifted from the source CMDP.

Qr(s, a) = (IS×A − γPT π
E)−1 [r +∆r ] (s, a) (30)

Qr′(s, a) = (IS×A − γP ′
T (π

′)E)−1 [r′ +∆r ] (s, a)

= (IS×A − γP ′
T (π

′)E)−1
[
r′ − r + (IS×A − γPT π

E)Qr
]
(s, a)

= (Y ′)−1 [(r′ − r) + Y Qr] (s, a)

= (Y ′)−1 [(r′ − r) + (Y − Y ′ + Y ′)Qr] (s, a)

= (Y ′)−1 [(r′ − r) + (Y − Y ′)Qr] (s, a) +Qr(s, a). (31)

Based on Eq. (31), we have

Qr′(s, aE) = (Y ′)−1 [r′ − r + (Y − Y ′)Qr] (s, aE) +Qr(s, aE)

Qr′(s, aC) = (Y ′)−1 [r′ − r + (Y − Y ′)Qr] (s, aC) +Qr(s, aC)

Qr′(s, aO) = (Y ′)−1 [r′ − r + (Y − Y ′)Qr] (s, aO) +Qr(s, aO). (32)

The first two inequalities result from Lemma 4.1, aiming to ensure the optimality of expert policy.
The third and fourth inequalities are derived by substituting Eqs. (32) into Qr′(s, aE) < Qr′(s, aC)

and Qr′(s, aO) < Qr′(s, aC) to construct target Q-functions that drive the agent choose constraint-
violating actions aC .

Given Y = (IS×A − γPT π
E) and Y ′ = (IS×A − γP ′

T (π
′)E), we have

Y − Y ′ = γ(P ′
T (π

′)E − PT π
E)

= γ[P ′
T (π

′)E − PT (π
′)E + PT (π

′)E − PT π
E ]

= γ[(P ′
T − PT )(π

′)E ]︸ ︷︷ ︸
A: transition difference term

+ γ[PT ((π
′)E − πE)]︸ ︷︷ ︸

B: expert policy difference term

(33)

= A+B

Based on (33), we can further split the increment from Qr(s, a) to Qr′(s, a) in (31) into:

Qr′(s, a)−Qr(s, a) =

(Y ′)−1 (r′ − r)︸ ︷︷ ︸
reward transfer shift

+ (Y ′)−1AQr︸ ︷︷ ︸
transition transfer shift

+ (Y ′)−1BQr︸ ︷︷ ︸
expert policy transfer shift

 (s, a). (34)

We observe how transfer from the source CMDP to the target CMDP affects the Q-value function,
driven by variations in the reward functions, transition dynamics, and the expert policy.

B.8.2 THE SOFT CONSTRAINT SCENARIO

In this part, we extend our theory from the hard constraint scenario to the soft constraint scenario.
Unlike the hard constraint scenario, where we construct a constraint set on state-action pairs (i.e.,
{(s, a)|c(s, a) > 0}) that a sensible agent should never visit, the soft constraint scenario is more
challenging. Given a threshold ϵ > 0, no matter how large a cost c(s, a) is, the agent can always visit
(s, a) after a sufficiently large number of steps as the effective cost of visiting (s, a) can be reduced
below the threshold ϵ via the discount factor γ < 1 raised to the power of ⌊logc(s,a) ϵ⌋+ 1.

For IRC solvers, in the soft constraint scenario, safety is also not guaranteed by the transferred reward
correction term in the target environment. Lemma 5.3 still applies, as long as G ̸= ∅.

For ICRL solvers, the key distinction between the hard and soft constraint scenarios is that the
inferred cost function c no longer guarantees safety, since Q

c,(π′)E

M′∪c (s, a) − V
c,(π′)E

M′∪c (s) > 0 (case
(ii) in Lemma 4.3) is not necessarily satisfied for (s, a) ∈ G. However, we demonstrate that the
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ICRL solver still offers better transferability than the IRC solver in safety, as it remains unaffected by
reward transfer shifts.

Since at each state s ∈ S, the agent examines whether an action is safe or not based on the cost
Q-function, we first study the cost Q-function in the source and target CMDP, which are defined as:

Qc(s, a) = Q
c,(π)E

M∪c =
[
(IS×A − γPT π

E)−1c
]
(s, a) (35)

Qc′(s, a) = Q
c,(π′)E

M′∪c =
[
(IS×A − γP ′

T (π
′)E)−1c

]
(s, a) (36)

Similar to the transferability of reward correction terms, we further discuss the influence of different
reward functions, transition models, and expert policies on the transferability of cost functions. We
next show how the cost Q-function in the target CMDP is shifted from the source CMDP.

From (35) and (36), we obtain

Qc′(s, a) = [(Y ′)−1Y Qc](s, a)

= [(Y ′)−1(Y − Y ′ + Y ′)Qc](s, a)

= [(Y ′)−1(Y − Y ′)Qc](s, a) + Qc(s, a) (37)

Given (33), the increment in cost Q-functions can be split into:

Qc′(s, a)−Qc(s, a) =

 (Y ′)−1AQc︸ ︷︷ ︸
transition transfer shift

+ (Y ′)−1BQc︸ ︷︷ ︸
expert policy transfer shift

 (s, a) (38)

By comparing (34) with (38), we can clearly the differences in transferring reward correction terms
and cost functions become evident. The transfer of cost functions by the ICRL solver is influenced by:
(1) transition shifts and (2) expert policy shifts. In contrast, the transfer of reward correction terms by
the IRC solver is affected by: (1) reward shifts, (2) transition shifts, and (3) expert policy shifts.

Next, we identify the condition under which a cost function c is not transferable. At state s, for
aC ∈ G, we further distinguish two cases. Let aC1 denote the action that satisfies (s, aC1) ∈
{(s, a)|Ar,πE

M∪cE
(s, a) > 0} ∩ {(s, a)|Ar′,(π′)E

M′∪(c′)E
(s, a) > 0} and aC2 denote the action that satisfies

(s, aC2) ∈ {(s, a)|Ar,πE

M∪cE
(s, a) > 0}\{(s, a)|Ar′,(π′)E

M′∪(c′)E
(s, a) > 0}.

Based on Eq. (37), we have

Qc′(s, aE) = [(Y ′)−1(Y − Y ′)Qc](s, aE) +Qc(s, aE)

Qc′(s, aO) = [Y ′)−1(Y − Y ′)Qc](s, aO) +Qc(s, aO)

Qc′(s, aC1) = [(Y ′)−1(Y − Y ′)Qc](s, aC1) +Qc(s, aC1)

Qc′(s, aC2) = [(Y ′)−1(Y − Y ′)Qc](s, aC2) +Qc(s, aC2)

Qc′(s, (a′)E) = [(Y ′)−1(Y − Y ′)Qc](s, (a′)E) +Qc(s, (a′)E) (39)

A sufficient condition that the ICRL solver fails would be choosing aC1 in the target CMDP. Specifi-
cally, we should show the condition under which with new reward function r′ and new transition P ′

T ,
∃s ∈ S, ∀ aE ∈ A and ∀ aO ∈ A, ∃ aC1 ∈ A: Qc′(s, (a′)E) > Qc′(s, aC1) (aC1 does not violate
the constraint but achieves higher rewards). We formally state this condition in the following lemma.

Lemma B.23. ∀r′ ∈ [0, Rmax]
S×A and ∀P ′

T ∈ ∆S
S×A, if ∃s ∈ S, ∀ aE ∈ A and ∀ aO ∈ A,

∃ aC1 ∈ A that satisfies the following condition, then a cost function c constructed by such cost
Q-functions is non-transferable in the target CMDP,

Qc(s, aE) < Qc(s, aC1), Qc(s, aE) < Qc(s, aC2), Qc(s, aE) ≥ Qc(s, aO)

Qc(s, (a′)E)−Qc(s, aC1) > [(Y ′)−1(Y − Y ′)Qc](e(s,aC1 ) − e(s,(a′)E)) (40)

where e(s,a) denotes a vector with value of 1 at the index (s, a) and 0 elsewhere.
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Proof. The first three inequalities result from Lemma 4.3, aiming to ensure the optimality of expert
policy in the source environment. For the fourth inequality, based on Eqs. (39), the condition

Qc′(s, (a′)E) > Qc′(s, aC1)

is equivalent to

[(Y ′)−1(Y − Y ′)Qc](s, (a′)E) +Qc(s, (a′)E) > [(Y ′)−1(Y − Y ′)Qc](s, aC1) +Qc(s, aC1)

. By simple transpositions, we obtain

Qc(s, (a′)E)−Qc(s, aC1) > [(Y ′)−1(Y − Y ′)Qc](s, aC1)− [(Y ′)−1(Y − Y ′)Qc](s, (a′)E)

= [(Y ′)−1(Y − Y ′)Qc](e(s,aC1 ) − e(s,(a′)E)). (41)

Corollary B.24. If two additional assumptions are satisfied: 1) the transition model does not change,
i.e., P ′

T = PT ; 2) the optimal policy of source CMDP is the optimal policy of target CMDP, i.e.,
Π∗

Mc
⊆ Π∗

M′
c
, then a feasible cost function ĉ inferred by the ICRL solver (3.1) can prevent any

visitation to (s′, a′) ∈ G ≠ ∅ in the target CMDP.

Proof. Suppose (s′, a′) ∈ G ̸= ∅, at state s′, since a′ can bring more rewards both in the source
CMDP and in the target CMDP, a′ should be abandoned in both CMDPs. This means, in a soft
constraint scenario, the expert policy at state s′ must reach the threshold (Yue et al., 2024, Lemma
4.2). Since the constraint condition in case (ii) of Lemma 4.3 should be satisfied both in the source and

target CMDP, for ∀θ ∈ (0, 1], policy π′(a|s′) =

{
θ , a = a′

1− θ, a ∼ πE = (π′)E
violates the soft constraint

in target CMDP. As a result, action a′ is abandoned in the target CMDP after transferring.

B.9 THEORETICAL RESULTS OF TRANSFERABILITY IN OPTIMALITY

Proposition B.25. Let Hγ := 1/(1 − γ), R := maxr∈R ∥r̆∥∞,and D = maxr̆,r′∈R ∥r − r′∥2.
Suppose that α < 2D,then for the Shannon entropy regularization, η and σR can be obtained from
(Schlaginhaufen & Kamgarpour, 2024, Proposition D.8):

η = αµmin/H
2
γ and σR =

µmin

(
1− α

2D

)
exp

(
−2RHγ

α

)
D|S||A|2+Hγ

. (42)

Lemma B.26. Suppose Assumptions 5.4 hold, and let r, r′ ∈ R. Then, we have

σR

2
∥[r]U − [r′]U∥

2
2 ≤ ℓ(r′,RL(r)) = Dh (RL(r),RL(r

′)) ≤ 1

2η
∥[r]U − [r′]U∥

2
2 ,

for some problem-dependent constant σR > 0.

Proof. This lemma directly comes from (Schlaginhaufen & Kamgarpour, 2024, Lemma 3.5).

Lemma B.27. Consider x, y ∈ Rn and two subspaces V,W ⊂ Rn of dimension m < n. Then,

∥[x]W − [y]W∥2 ≤ ∥ΠW −ΠW∥ · ∥x− y∥2 + ∥[x]V − [y]V∥2 ,

where ∥ΠW −ΠV∥ = sin (θmax(V,W)) .

Proof. This lemma directly comes from (Schlaginhaufen & Kamgarpour, 2024, Proposition D.10).

Definition B.28. (Cost equivalence). We extend the results of reward equivalence (feasible reward set)
in IRL settings (Schlaginhaufen & Kamgarpour, 2024) to cost equivalence (feasible cost set) in ICRL
settings. Given a linear subspace V ⊆ RS×A, the quotient space RS×A/V is the set of all equivalence
classes [r − λ∗c]V := {r−λ∗c′ ∈ RS×A : λ∗(c′− c) ∈ V}. On quotient space RS×A/V , we define
the quotient norm ∥[x]V∥2 := minv∈V ∥x+ v∥2 = ∥ΠV⊥x∥2 and we say that c and ĉ are close in
RS×A/V given λ∗, if ∥[r−λ∗c]V−[r−λ∗c′]V∥2 = ∥[(r−λ∗c)−(r−λ∗c′)]V∥2 = ∥[λ∗(c′−c)]V∥2
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is small. The expert’s cost is said to be recovered by ĉ up to [·]V if r − λ∗ĉ ⊆ [r − λ∗cE ]V . In
this paper, we consider the equivalence relations induced by the subspace of potential shaping
transformations (Ng et al., 1999), i.e., V = UPT := im(E−γPT ). Revisiting Eq. (26), this subspace
is equivalent to the way we construct a feasible cost set.

Theorem 5.7. Let P ′
T be the target transition law, the source and target ground-truth constraints

are the same (c′)E = cE and d1 = ∥[cE − ĉ]UP ′
T
∥2. Suppose that Assumption 5.4 holds. If

ℓ
r′,(λ′)∗

PT
(ĉ,CRL(cE)) ≤ ε1, then ĉ is ε-transferable to the target environment with

ε = 2max
{
d21 sin

(
θmax(PT

′, PT )
)2

/2, 2ε1/σR

}
/η, (43)

where σR and η are regularity constants, given in Appendix B.25.

Proof. For better readability, we denote (r̂)′ = r′ − (λ′)∗ĉ and (r̆′)E = r′ − (λ′)∗cE . It follows
from Lemma B.26 that

∥∥∥[(r̆′)E ]UPT
− [(r̂)′]UPT

∥∥∥
2
≤

√
2ε1/σR. By choosing the closest (r̆′)E and

(r̂)′ in subspace UP ′
T

in Lemma B.27, we then have that∥∥∥[(r̆′)E ]UP ′
T
− [(r̂)′]UP ′

T

∥∥∥
2
≤ sin (θmax(P

′
T , PT ))

∥∥∥[(r̆′)E − (r̂)′]UP ′
T

∥∥∥
2
+

∥∥∥[(r̆′)E ]UPT
− [(r̂)′]UPT

∥∥∥
2

≤ d1 sin (θmax(P
′
T , PT )) +

√
2ε1/σR (44)

Hence, applying Lemma B.26 again yields

ℓ
r′,(λ′)∗

P ′
T

(
ĉ,CRLP ′

T
((c′)E)

)
= ℓ

r′,(λ′)∗

P ′
T

(
ĉ,CRLP ′

T
(cE)

)
≤ 1

2η

∥∥∥[(r̆′)E ]UP ′
T
− [(r̂)′]UP ′

T

∥∥∥2
2

≤
(d1 sin

(
θmax(PT

′, PT )
)
+
√
2ε1/σR)2

2η

≤
2max

{
d21 sin

(
θmax(PT

′, PT )
)2

/2, 2ε1/σR

}
η

. (45)

C COMPARISON IN SOFT CONSTRAINT SCENARIOS

We evaluate the performance of the ICRL solver in soft constraint scenarios in two aspects. In aspect
one, only reward functions are different between source and target. In aspect two, only transition
dynamics are different between source and target.

Aspect One: In soft constraint scenarios, the ICRL solver still outperforms the IRC solver
in the sense that it resists the variation between source and target reward functions. Table 2 illustrates
whether the inferred reward correction terms by the IRC solver violate the constraint in the target
environment (safe ✓ or not ✗). We can see that with the increase in reward functions, the inferred
reward correction terms tend to become unsafe while the inferred cost functions by ICRL solvers are
safe still. Threshold ϵ = 0.015 and ground truth costs are 1.

Table 2: Safety (safe ✓ or not ✗) of inferred reward correction terms by the IRC solver under
different rewards in the target environments of Gridworld-1. T represents the terminal location (6,6)
in Gridworld-1.

different r′(T ) ↑ r′(T ) = 1 r′(T ) = 1.2 r′(T ) = 1.4 r′(T ) = 1.6 r′(T ) = 1.8 r′(T ) = 2
IRC solver ✓ ✓ ✓ ✗ ✗ ✗

ICRL solver ✓ ✓ ✓ ✓ ✓ ✓
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Aspect Two: In soft constraint scenarios, ICRL solver can violate constraints due to compensated
penalization by new transition dynamics. We provide a case study to help the readers better understand
this aspect. Reconsider the example in Figure 1 in a soft constraint scenario. We only set c((0, 2)) = 1
and ϵ = 0.8 × (0.7)−2 > 0. Suppose in the source environment, there is no randomness for any
chosen actions. The true cost function the expert follows is cE((0, 2)) = 1. In this case, the shortest
path, i.e., going straight upward from (0,0) to (0,5), is forbidden by the expert because the path induces
a cumulative cost of 1× (0.7)−2 > ϵ. One choice of the feasible cost function is c((0, 2)) = 0.85,
since 0.85 × (0.7)−2 > ϵ is sufficient to ban the shortest path. Now we transfer c((0, 2)) = 0.85
from the source to the target environment. Suppose the target environment only differs from the
source environment in the transition model. In the target environment, if the location (0,1) alters
its transition model to be PT ((0, 2)|(0, 1),Up) = 0.9 and PT ((1, 1)|(0, 1),Up) = 0.1. The inferred
optimal policy based on c((0, 2)) = 0.85 visits (0, 2) because the shortest path has a cumulative cost
of 0.85× 0.9× (0.7)−2 = 0.765× (0.7)−2 < ϵ but should be forbidden because the policy of going
straight upwards in the left column has a cumulative ground truth cost of 0.9× (0.7)−2 > ϵ.

D COMPARISON IN CONTINUOUS ENVIRONMENTS

For continuous environments, we apply an offline setting to compare the transferability of constraint
knowledge inferred by IRC or ICRL solvers. The offline setting is different from the online setting in
discrete environments. The expert policy for online estimation is replaced by expert demonstrations
in a given dataset. For ICRL, The goal is to recover the minimum constraint set that best explains
the expert data. Existing ICRL works commonly follow the Maximum Entropy framework (Malik
et al., 2021). IRC solvers in this setting follow the same framework but solve a bi-level optimization
problem (Hugessen et al., 2024).
We build on the codebases from Hugessen et al. (2024) and Liu et al. (2023) to compare the
transferability performance of the IRC and ICRL solvers. We adapt the code to enable both solvers to
infer constraint knowledge—such as reward correction terms or cost functions—within the source
environment while evaluating the feasibility of this knowledge in the target environment. Using
the blocked half-cheetah environment as a testbed, we report the results with mean ± standard
deviation in Figure 7 with three random seeds. The definition of metrics and detailed source and
target environment specifications are explained in Section E.
We find that IRC solver has better training efficiency in the source environment, i.e., achieving zeo
violation rate with considerate feasible rewards more quickly than the ICRL solver. However, after
transferring constraint knowledge into the target environment, inferred correction terms by the IRC
solver fail to ensure safety (avoid constraint violation) while the cost function inferred by the ICRL
solver has better generalizability.
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Figure 7: Training curves of rewards (left), violation rate (middle), and feasible rewards (right) for
the ICRL (red) and IRC (blue) solvers. The top row shows the results for the source environment,
and the bottom row shows the results for the target environment.
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E EXPERIMENTAL DETAILS

We ran experiments on a desktop computer with Intel(R) Core(TM) i5-14400F and NVIDIA GeForce
RTX 4060 Ti.

Details about Gridworld. In this paper, we construct a map with dimensions of 7 × 7 units and
define four distinct settings, as shown in Figure 2. Locations are represented by two coordinates,
with the first corresponding to the vertical axis and the second to the horizontal axis. The agent’s
objective is to navigate from a starting point to a target location while avoiding specified constraints.
The agent begins in the bottom-left corner at position (0, 0) and has eight possible actions: four
cardinal directions (up, down, left, right) and four diagonal directions (upper-left, lower-left, upper-
right, lower-right). The target location and reward are positioned in the upper-right cell (6, 6) in
the first, second, and fourth Gridworld environments, while in the third environment, the target
is located in the upper-left cell (6, 0). If the environment has a stochasticity of p, the agent has a
probability of p to move randomly in any feasible direction, with each direction having a probability
of p/num_of_actions. The reward is only provided at the target cell, with all other cells yielding zero
reward. A cost of 1 is incurred if the agent enters a constrained location. Each policy rollout continues
for a maximum of 50 time steps. In Figure 4, we present the mean and the 68% confidence interval
(1-sigma error bar), calculated using three random seeds. Table 3 presents utilized hyperparameters
in Gridworld experiments.

Table 3: List of the utilized hyperparameters in the Gridworld environment.

Parameters Gridworld

Max Episode Length 50
Discount Factor 0.7
Stopping Threshold 0.001
Stochasticity 0.05
Nu Max Clamp 1
Penalty Initial Value 0.1
Penalty Learning Rate 0.1
Source Terminal Rewards 1,1,1,1
Target Terminal Rewards 2,7,7,15
Ground Truth Costs 1

Details about Half-Cheetah The Blocked Half-Cheetah task is built on Mujoco, where the agent
controls a two-legged robot. The reward is determined by the distance the robot travels between
consecutive time steps, penalized by the magnitude of the input action. Each episode ends after a
maximum of 5000 time steps. To impose a constraint, we block the region where the X-coordinate
should satisfy x_pos ≤ −3, restricting the robot’s movement to the region where the X-coordinate
is between −3 and +∞. The source environment follows the setup described above. In the target
environment, rewards are scaled by a factor of 1.1, and Gaussian noise with a mean of 0 and a
standard deviation of 0.1 is added to each observation. We utilize three metrics for evaluations: 1)
rewards are defined as the total returns for an episode, regardless of constraints; 2) feasible rewards
are the aggregated returns for an episode up to the first constraint violation; 3) the violation rate is
calculated as the percentage of episodes in which one or more constraint violations occur. Table 4
presents utilized hyperparameters in Gridworld experiments. Other hyperparameters follow previous
codebases (Hugessen et al., 2024; Liu et al., 2023).

Table 4: List of the utilized hyperparameters in the Half-Cheetah environment.

Parameters Half-Cheetah

Training Epoch 320
Testing Epoch 320
Max Episode Length 5000
IRC Solver IRL-base
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