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Abstract

Variational Graph Autoencoders (VGAEs) are powerful models for unsupervised learning
of node representations from graph data. In this work, we make a systematic analysis of
modeling node attributes in VGAEs and show that attribute decoding is important for
node representation learning. We further propose a new learning model, interpretable NOde
Representation with Attribute Decoding (NORAD). The model encodes node representations
in an interpretable approach: node representations capture community structures in the
graph and the relationship between communities and node attributes. We further propose
a rectifying procedure to refine node representations of isolated notes, which improves the
quality of the representations of these nodes. Our empirical results demonstrate the advantage
of the proposed model when learning graph data in an interpretable approach.

1 Introduction

Graph data are ubiquitous in real-world applications. Graph data contain rich information about graph
nodes. The community structure among graph nodes is particularly interesting. Such structures are modeled
by traditional models such as the stochastic blockmodel (SBM) (Wang & Wong, 1987; Snijders & Nowicki,
1997) and its variants, which assign a node to one or multiple communities.

Learning node representations are widely investigated in document networks. One typical branch is Relational
Topic Model (RTM) (Chang & Blei, 2009) and its variants (Panwar et al., 2021; Bai et al., 2018). In such
models, the links and node attributes are decoded from the node representations, which are learned from the
documents with rich textual information. RTM-based models often provide interpretable representations due
to their carefully-designed graphical models. However, the effectiveness of the RTM-based models highly
relies on the text richness of the dataset.

On par with the RTM-based models, Variational Graph Autoencoder (VGAE) (Kipf & Welling, 2016)
utilizes Graph Neural Networks (GNNs) to learn node vectors that encode information that can be used
for reconstructing the graph structure. This model is further improved in multiple aspects. Mehta et al.
(2019); Li et al. (2020); Sarkar et al. (2020) adopt different priors to learn node representations for different
applications. Hasanzadeh et al. (2019) introduces a hierarchical variational framework to VGAE and modifies
the link decoder. Pan et al. (2018; 2019) adopt the training scheme of generative adversarial networks
(GANs) (Goodfellow et al., 2014) to encode the node latent representations. Following VGAE, most of its
variants do not decode node attributes and only use node attributes in the encoder. Though some other
models (Mehta et al., 2019; Cheng et al., 2021) use separate decoder heads to generate graph edges and node
attributes. There is no systematic approach to analyzing how node attributes should be used to better learn
representations in the VGAE framework.

In this work, we analyze VGAE using the information-theoretic framework by Alemi et al. (2018) and show
the theoretical strengths of different model constructions. In particular, the analysis indicates that appropriate
modeling of node attributes brings benefits to a large class of link prediction tasks.

We further devise a new representation learning model, interpretable Node Representations with Attribute
Decoding (NORAD), which learns interpretable node representations from the graph data. To exploit
node attributes, the model includes a specially designed decoder for node attributes; the model can learn
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good representations for nodes with low degrees. We further propose a rectification procedure to refine
representations of isolated nodes.

We conduct extensive experiments to evaluate and diagnose our model. The results show that node
representations learned by our model perform well in link prediction and node clustering tasks, indicating the
good quality of these representations. We also show that the learned node representations capture community
structures in the graph and the relationship between communities and node attributes.

Our contributions can be summarized as following:

• we systematically examine VGAE through an information-theoretic analysis;
• we propose a new model NORAD, which includes a specially designed attribute decoder and a

refinement procedure for representations of isolated nodes;
• we conduct extensive experiments to study the quality and interpretability of node representations

learned by NORAD.

2 Preliminaries

Let G = (A,X) denote an attributed graph with n nodes, A ∈ Rn×n is the binary adjacency matrix of the
graph, and X = (xi)ni=1 ∈ Rn×D denotes node attributes, with xi being the attribute vector of node i. We
consider the problem of jointly modeling A and X. The goal is to learn interpretable node representations
Z = (zi)ni=1 ∈ Rn×K that can best explain the data. Then Z provides essential information for downstream
tasks such as node clustering.

Graph Neural Networks. GNN is a neural network designed to extract information from graph data. It
typically consists of multiple layers, each of which runs a message-passing procedure to encode information
into a node’s vector representation. Let H = gnn(A,X;φ) denote the network function of a L-layer GNN,
which is typically defined by H(0) = X,

H(l) = σ
(

H(l−1)W(l) + AH(l−1)V(l)
)
, l = 1, . . . , L.

And H = H(L). Here σ(·) is the activation function. Here W(l) and V(l) are the network weights for the l-th
layer. We denote the all network weights with φ.

Variational Graph Autoencoder. VGAE (Kipf & Welling, 2016) learns node representations in an
unsupervised approach based on variational auto-encoder (VAE) (Kingma & Welling, 2013). In VGAE, the
prior distribution p(Z) over node presentations Z is a standard Gaussian distribution. And the generative
model p(A|Z) is defined as

p(A|Z) =
n∏
i=1

n∏
j=1

p(Aij |zi, zj), p(Aij = 1|zi, zj) = sigmoid(z>i zj). (1)

The inference model of VGAE q(Z|A,X) is a Gaussian distribution Gaussian(Z|µ,σ2) defined by a GNN.

(µ,σ) = gnn(A,X). (2)

The output of the GNN is split into µ and σ, representing the mean and standard derivation, respectively.
VGAE maximizes the Evidence Lower Bound (ELBO) of the marginal log-likelihood log p(A) to learn the
encoder and the decoder:

Lg = Eq(Z|A,X)
[

log p(A|Z) + log p(Z)− log q(Z|A,X)
]
. (3)

After the encoder is learned, its mean µ can be used as deterministic node representations.
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3 An Information-Theoretic Analysis of Attribute Decoding

In this section, we analyze VGAE from the perspective with the rate-distortion theory (Alemi et al., 2018)
and consider the mutual information between the encoding Z and observed data (A,X). Let p∗(A,X) be
the data distribution and H be its entropy, which is a constant. Let Iq = I[(A,X); Z] denote the mutual
information between (A,X) and Z. Note that Iq is defined from the encoder distribution q(Z|A,X) and the
data distribution. The maximization of the ELBO

Le = Eq(Z|A,X)
[

log p(A,X|Z) + log p(Z)− log q(Z|A,X)
]

(4)

can be viewed as indirect maximization the mutual information I[(A,X); Z] under a rate constraint (Alemi
et al., 2018). We further decompose I[(A,X); Z] as follows:

I[(A,X); Z] = I[A; Z] + I[X; Z] + I[A; X|Z]− I[A; X] (5)

In this decomposition, the last term I[A; X] is a constant decided by the data. The first term is the
information about A from Z, and the second term is the information about X. The third term I[A; X|Z] is
the information between A and X that cannot be explained by Z. When Z is lossless encoding, I[A; X|Z] = 0.

The decomposition above is derived from the encoder distribution q(Z|A,X), but it helps us to design the
decoder p(A,X|Z), which approximates q(A,X|Z) when maximizing the ELBO Le. One variant of VGAE
(Mehta et al., 2019; Cheng et al., 2021) assumes p(A,X|Z) = p(X|Z)p(A|Z). In this case, the conditional
mutual information I[A; X|Z] tends to be zero. The conditional independence assumption may require Z to
have extra bits, but Z can explain A and X separately. In this model choice, the lower bound becomes

La = Eq(Z|A,X)
[

log p(A|Z) + log p(X|Z) + log p(Z)− log q(Z|A,X)
]
. (6)

Other possible variants that do not have the assumption, the decoder p(A,X|Z) can be decomposed as
p(X|Z)p(A|X,Z), then it is more flexible and should fit the data better. However, Z is less capable in
explaining A because part of the information is encoded in X. The same issue happens in the decomposition
p(A,X|Z) = p(A|Z)p(X|A,Z).

Another variant Graphite (Grover et al., 2019) takes a totally different approach: it only lets Z encode A
and conditions the entire model on X. Therefore, the ELBO is

Lc = Eq(Z|A,X)
[

log p(A|X,Z) + log p(Z|X)− log q(Z|A,X)
]
≤ I[A; Z|X]. (7)

In this case, the optimal encoding Z only encodes the part of A that cannot be explained by X. This results
in Z only containing a small portion of the information about A.

In the ELBO Lg of the basic VGAE, there is no decoding of X. This means the encoder has no incentive to
encode any information about X. By decoding X, the learned representation Z is usually more expressive.

Our analysis shows that the simple formulation La with conditional independence assumption is a better
choice if we want Z to maximally encode information about (A,X). Though we are not the first to discover
this formulation, our analysis of different formulations helps deepen the understanding of VGAE variants.

Fix the bias of model fitting in link prediction. Node representations of VGAE are often used in link
prediction tasks. Therefore, the given adjacency matrix is Â, which is sparser than the true adjacency matrix
A. In this case, we have to do model fitting with Â instead of A.

Model training based on Â is biased because actual edges missing from Â are mixed with non-edges. This
issue has been studied by Liang et al. (2016); Liu & Blei (2017) in different contexts. Specifically, the bias
is due to the term Eq

[
log p(Â|Z)

]
, which leads Z to treat missing edges and non-edges equally. However,

in some datasets, X and A have a strong correlation, and X is observed for all graph nodes. In this case,
encoding information in X helps improve the link prediction performance, so we consider a modified ELBO:

Lα = Eq(Z|A,X)
[

log p(Â|Z) + α log p(X|Z) + log p(Z)− log q(Z|A,X)
]
. (8)
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Figure 1: The plate representation of our framework. Here the parameters (η,µ,σ) are computed from the
encoder.

In a link prediction task, we set the ratio factor α > 1 so that model training can pay more attention to node
features. Note that this modified ELBO is still a lower bound of Iq−H when X is discrete and log p(X|Z) < 0.
If we set α = 0, it is equivalent to VGAE. If Â = A in a representation learning task, we still use the normal
ELBO and set α = 1.

4 Interpretable Node Representations with Attribute Decoding

In this section, we introduce a new model, NORAD, to learn node representations. The proposed model has
two goals. The primary goal is to learn high-quality node representations that best preserve the information
of the attributed graph, and the secondary goal is to make the learned representations interpretable.

We will use the formulation Lα in Equation (8) to construct our model. We need to specify four distributions:
the encoder q(Z|A,X), the prior p(Z), the decoder p(A|Z), and the decoder p(X|Z). We illustrate the
graphical model of our framework in Figure 1.

4.1 The prior distribution

We assign a prior such that the representation zi of node i is a sparse vector. We use a prior that separately
decides the sparse pattern and non-zero values in zi. Let C = (ci)ni=1 be the random binary vectors indicating
the sparse pattern and V = (vi)ni=1 be the random real value vectors deciding non-zero entries of Z. Both of
them have the same dimension as Z. Then

cik ∼ Bernoulli(δ), vik ∼ Gaussian(u, s), where i = 1, . . . , n; k = 1, . . . ,K (9)

Here δ = 0.5, u = 0, s = 1, and Z = C �V with � being the Hadamard product. The prior p(Z) in our
framework is equivalent to p(C,V). We can view zi as i-th node’s membership assignment in K communities.
Each entry of zi is from a spike and slab distribution: the spike indicates whether the i-th node belongs
to the corresponding community while the slab indicates the (positive or negative) strength of i-th node’s
membership in the community.
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4.2 The conditional distribution of the adjacency

We then define the generative process of graph edges. We use the OSBM (Latouche et al., 2011) to define the
decoder for A. In OSBM, two nodes’ community memberships indicate how they interact. We use parameter
B ∈ RK×K to indicate the interactions between different communities. A large value in the entry Bkk′ means
a node in community k has a higher chance of connecting with a node in community k′, and vice versa.
Formally, we define the graph edge distribution as follows:

pB(Aij = 1|zi, zj) = sigmoid(z>i Bzj), pB(A|Z) =
n∏
i=1

n∏
j=1

pB(Aij |zi, zj). (10)

By using the OSBM distribution, the model is encouraged to learn meaningful community structures in the
graph.

4.3 The conditional distribution of attributes

We also define an interpretable decoder for node attributes. Here we first focus on binary attributes:
xi ∈ {0, 1}D is a binary vector.

We assume that each zi independently generates xi: p(X|Z) =
∏
i∈V p(xi|zi). Then we design an Attention-

based Topic Network (ATN) to consider the community-attribute relation in p(xi|zi). We use θ to denote
the network parameters in ATN.

Similar to topic models, ATN assumes that each community is represented as an embedding vector. All
such embedding vectors are in a matrix T ∈ RK×d′ . Each attribute also has an embedding vector, and
all attributes’ vectors are denoted in a matrix U ∈ Rd′×D. We compute attention weights from the two
embedding matrices to decide the probabilities of the node’s attributes from the two embedding matrices.
We first compute the aggregated community vector

gi = relu(T>zi). (11)

Then we use the vector gi as a query to compute attention weights against attribute vectors U.

λi = sigmoid
(

g>i WqW>
k U√

d′′

)
. (12)

Here the parameters Wq and Wk both have size (d′×d′′). We apply the sigmoid function, instead of softmax
in standard attention calculation, to get binary probabilities λi.

We denote the procedure above as λi = atn(zi; T,U), then we have

p(xi|zi) =
D∏
d=1

p(xid|zi), p(xid = 1|zi) = λid. (13)

The proposed decoder can also be extended for the bag-of-words (BoG) feature. This is achieved by first
computing the vector O, whose d-th entry records the maximum occurrence of the d-th word in the vocabulary.
Then given a BoG feature xi, we fit λi to a vector of Bernoulli parameters xi/O. We can sample each word
Od times and recover the BoG feature during reconstruction.

4.4 The encoder

Here we introduce our model’s encoder, which is designed for two purposes: computing node representations
and model fitting through variational inference, which we will discuss right after this subsection.

The encoder qφ(Z|A,X) is computed by a GNN, whose parameters are collectively denoted by φ. Since Z is
computed from C and V, we use qφ(C,V|A,X) instead, this can be further represented as qφ(Z|A,X) =
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Algorithm 1 Varaitional EM for NORAD
Input: network graph G = (A,X), initialized model and variational parameters (θ, φ) and blockmodel B,
iteration steps Te, Tm, ratio factor α, regularization factor γ.
Output: learned model and variational parameters (θ, φ) and blockmodel B.
repeat
[E-step]
Fix blockmodel B
for t = 1, . . . , T e do
Compute (η,µ,σ) = gnn(X,A;φ).
Sample C ∼ Bernoulli(η), V ∼ Gaussian(µ,σ2) via reparameterization tricks.
Compute Hadamard product Z = C�V.
Compute loss L(θ, φ) = α log pθ(X|Z) + log pB(A|Z) + log p(C,V)− log qφ(C,V|A,X).
Update (φ, θ) by maximizing L(φ, θ) via SGD.

end for
[M-step]
Fix parameters (φ, θ)
for t = 1, . . . , Tm do
Compute (η,µ,σ) = gnn(X,A;φ).
Compute Hadamard product Z = η � µ.
Compute loss L(B) = log pB(A|Z)− γ‖B‖.
Update B by maximizing L(B) via SGD.

end for
until convergence of the ELBO L(φ, θ,B)

qφ(V|A,X)qφ(C|A,X) by using mean-field distribution. In the variational distribution, V and C are
respectively sampled from Bernoulli and Gaussian distributions, which are parameterized by a GNN.

qφ(C|A,X) ∼ Bernoulli(η), qφ(V|A,X) ∼ Gaussian(µ,σ2). (14)

We use a GNN to compute these distribution parameters from X and A.

(η,µ,σ) = gnn(A,X;φ). (15)

Here η, µ, and σ are all matrices of size n×K. The output of the GNN has size n× (3K), then it is split
into the three matrices. All parameters of the two variational distributions are network parameters of the
GNN.

Deterministic node representations Z◦ are computed from η and µ directly.

Z◦ = µ� 1(η > 0.5). (16)

Here 1(η > 0.5) gets a binary matrix indicating which elements are greater than the threshold 0.5.

4.5 Model fitting through variational inference

In this section, we discuss the learning procedure of our model. Besides the ELBO we have discussed in the
previous section, we also add regularization terms over the parameter B.

L(θ, φ,B) = Eqφ(C,V|A,X)
[

log pB(A|C,V) + α log pθ(X|C,V) + log p(C,V)− log qφ(C,V|A,X)
]

+ γ‖B‖.
(17)

The hyper-parameter α controls the strength of the attribute decoder. We maximize the objective L(θ, φ,B)
with respect to model parameters (θ and B) and variational parameters φ. The objective gradient is estimated
through Monte Carlo samples from the variational distribution. Note that the random variable C is binary,
and we use the Gumbel-softmax trick (Jang et al., 2016), then we can estimate the gradient of the objective
efficiently through the reparameterization trick.
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We find alternatively updating (θ, φ) and B in a variational-EM fashion gives better optimization performance.
In our optimization procedure, we fix B and update (θ, φ) for a few iterations at E-step, and then fix model
and variational parameters (θ, φ) and optimize B for a few iterations at M-step. The parameters are all
optimized with SGD. The intuition behind this is that the training of B needs to depend on somewhat clear
relations between different communities. The training procedure is shown in Algorithm 1.

4.6 Rectifying representations of isolated nodes

In the training process, the representation of isolated nodes are learned to predict zero connections from these
nodes. As we have analyzed, representations learned in this approach is biased. Here we use the rectification
strategy to post-process the learned representations of isolated nodes. For an isolated node i, we first compute
the deterministic node representation z◦i from Equation (16) and then update z◦i through ATN to improve
the recovery of xi. The update rule is shown as following:

z◦i = z◦i + ε∇z◦
i

log pθ(xi|z◦i ), (18)

where ε is the update learning rate. We run the update for multiple iterations and obtain the final represen-
tation. Empirically, 50 to 100 iterations usually give a clear improvement of these nodes’ representations.

5 Experiments

In this section, we study the proposed model with real datasets. The first aim of the study is to examine
the quality of node representations: whether the model learns node representations of high quality, and how
each component contributes the learning. We examine our model through extensive ablation studies and
sensitivity analysis. The second aim is to examine the interpretability of learned node representations. We
look into the data and show how learned representations encode interpretable structures in the data.

Datasets. We use four benchmark datasets, including Cora, Citeseer, Pubmed, and DBLP (Morris et al.,
2020). The details of datasets can be found in Table 7 in Appendix.

Baselines. We benchmark the performance of NORAD against existing models that share the same traits
as our model. The experiment setups and the implementation details of our model are shown in Appendix A.2.
We consider five baseline methods. (1) DeepWalk (Perozzi et al., 2014) learns the latent node representations
by treating truncated random walks sampled within the network as sentences. (2) VGAE (Kipf & Welling,
2016) is the first variational auto-encoder based on GNN. (3) KernelGCN (Tian et al., 2019) proposes a
learnable kernel-based framework, which decouples the kernel function and feature mapping function in the
propagation of GCN; (4) DGLFRM (Mehta et al., 2019) adopts IBP and Normal prior when encoding the
node representations and adds a perceptron layer to the node representations before decoding the edges.
(5) VGNAE (Ahn & Kim, 2021) shows that L2 normalization on node hidden vector in GCN improves the
representation quality of isolated nodes.

5.1 Link prediction and node clustering

We consider the quality of node representations in two tasks: link prediction and node clustering. In particular,
we pay attention to the representation of isolated nodes in sparse graphs.

In the link prediction task, all models predict the missing edges of the graph based on the training data,
including node attributes and links. We evaluate our model and the baselines in terms of Area Under the
ROC Curve (AUC) and Average Precision(AP) on four datasets. We follow the data splitting strategy in
Kipf & Welling (2016) and report the mean and standard deviation over 10 random data splits. The results
are reported in Table 1.

The table shows that NORAD significantly outperforms the baselines on almost all datasets, illustrating the
superior capability of our model in encoding graph information. The advantage is more obvious on DBLP,
which has relatively rich node attributes and links.
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DeepWalk VGAE KernelGCN DGLFRM VGNAE NORAD

Cora AUC 84.6±0.01 92.6±0.01 93.1±0.06 93.4±0.23 94.9±0.43 95.6±0.56
AP 88.5±0.00 93.3±0.01 93.2±0.07 93.8±0.22 94.9±0.39 96.1±0.44

Citeseer AUC 80.5±0.01 90.8±0.02 90.9±0.08 93.8±0.32 96.0±0.74 95.6±0.28
AP 85.0±1.00 92.0±0.02 91.8±0.04 94.4±0.73 96.1±0.89 96.5±0.19

Pubmed AUC 84.2±0.02 94.2±0.76 94.5±0.03 94.0±0.08 95.0±0.26 97.1±0.25
AP 87.8±1.00 94.0±0.88 94.2±0.01 95.0±0.35 94.7±0.36 97.3±0.28

DBLP AUC 80.4±0.65 90.8±0.37 93.6±0.22 93.7±0.41 91.8±0.34 96.3±0.22
AP 83.1±0.55 91.4±0.44 93.9±0.18 94.0±0.54 92.6±0.26 97.0±0.18

Table 1: Performance comparison of all models in the link prediction task: We used an unpaired t-test to
compare models’ performance values. Not significantly worse than the best at the 5% significance level are
bold.

DeepWalk VGAE KernelGCN DGLFRM VGNAE NORAD

Cora NMI 40.0±1.26 42.6±2.64 44.2±1.07 48.0±2.02 51.1±0.84 50.3±3.72
ACC 56.5±1.71 56.7±4.49 60.9±2.43 63.1±4.11 67.5±2.29 66.5±5.89

Citeseer NMI 13.2±1.55 15.5±2.83 25.6±2.56 28.8±1.63 35.6±3.76 38.9±1.18
ACC 38.8±2.12 36.1±2.38 52.8±4.36 51.9±2.38 57.8±4.41 64.5±1.17

Pubmed NMI 28.5±0.73 30.1±2.56 28.6±1.27 25.0±4.21 26.2±0.47 24.5±5.97
ACC 67.1±0.54 67.6±2.88 68.6±0.82 65.2±3.64 64.1±0.37 61.1±6.36

DBLP NMI 19.7±1.76 23.6±2.70 30.5±0.56 30.0±2.66 26.0±3.40 40.2±4.59
ACC 54.8±1.31 47.8±2.81 56.0±2.61 55.8±3.19 52.4±6.66 64.4±6.09

Table 2: Performance comparison of all models in the node clustering task: We used an unpaired t-test to
compare models’ performance values. Not significantly worse than the best at the 5% significance level are
bold.

In the node clustering task, we generate the node representations from different learning models and then use
K-means to obtain the clustering results. We set the hyperparameter in K-means as the number of classes in
each dataset. We compare the clustering performance against node embeddings learned from the baselines
listed above. We compare NORAD against the baselines in terms of Normalized Mutual Information (NMI)
and Accuracy (ACC) on four datasets. Before calculating ACC, we use the Hungarian matching algorithm
(Kuhn, 1955) to match the K-means predicted cluster labels with true labels. We report the mean and
standard derivation over 10 runs. The results can be found in Table 2.

We can observe that in the node clustering task, NORAD works better on Cora, Citeseer and DBLP against
almost all baselines. For Citeseer and DBLP, NORAD significantly outperforms all four baselines; this can
be explained that these two datasets provide more node information or edge information than the other two.
We find that our performance on Pubmed is not very competitive as on other datasets. One possible reason
is that Pubmed has the least node information among all the four datasets, and node attributes are not
informative about node classes.

5.2 Ablation study

In this section, we do ablation studies to understand the benefit of each model’s component. Specifically, we
investigate different variants of the decoder for A and X, respectively, and benefits of employing representation
rectification for isolated nodes. The results are tabulated in Table 3, implementation details can be found in
Appendix A.2.

We compare our edge decoder against two variants. For the first variant, we construct the decoder using
p(A|Z,X) assuming p(A,X|Z) = p(X|Z)p(A|X,Z). For the second variant, we consider the dot product
decoder p(A|Z) used by the VGAE model. We observe that our edge decoder performs better than the chosen
variants. We reason that the first variant strongly relies on the node features, which is again reconstructed
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Model Variants Cora Citeseer
NORAD 95.6±0.56 95.6±0.28
construction w/ p(A|X,Z) 94.5±0.42 94.3±0.76
VGAE decoder p(A|Z) 90.4±1.21 89.9±1.01
w/o decoder p(X|Z) 94.6±0.58 93.4±0.99
NRTM decoder p(X|Z) 95.3±0.41 94.0±0.42
TAN decoder p(X|Z) 95.0±0.69 94.7±0.55
w/o rectification 95.0±0.62 95.0±0.29

Table 3: AUC of link prediction on Cora and Citeseer using different model variants.

from Z via p(X|Z). The reconstruction error in p(X|Z) is then accumulated to p(A|X,Z). In the second
variant, the dot product decoder drastically decrease the link prediction performance. We hypothesize that
the node representation Z need to trade-off between both edge and node reconstructions. By introducing the
blockmodel B, the edge reconstruction task for Z is relaxed, and reducing the performance drop caused by
the trade-off. At the same time, a better reconstruction of X can be obtained with a well-designed decoder
p(X|Z).

We then investigate the power of using different node decoders p(X|Z). Specifically, we choose decoders
proposed by Neural Relational Topic Model (NRTM) (Bai et al., 2018) and Topic attention Networks (TAN)
(Panwar et al., 2021). In addition, the effect of the node decoder absence is also considered. We find that our
ATN decoder performs better than the decoders in other works. Moreover, we can see that the use of the
node decoder significantly contributes to model performance. Interestingly, we also observe the richer the
node attributes are, the more the model can benefit from utilizing an node decoder.

Finally, we study how rectifying the representation of the isolated nodes brings additional performance rise to
our model. Even though there is only a small portion of the nodes are isolated, we still observe an non-trial
improvement on the performance, which indicates the effectiveness of rectification. We give a more thorough
analysis of it under the circumstance when graphs are sparse in the next section,

5.3 Attribute decoding for sparse graphs

Our experiments show strong evidence that decoding attribute benefits node representation learning when
graphs are sparse. Here we report our observations.

We create sparser graphs by masking more edges during training. Specifically, we only keep 20%, 40%, 60%,
and 80% edges in the training set, and for the remaining edges, 1/3 are used for validation, and 2/3 are used
for testing. We again choose Cora and Citeseer datasets for analysis. Results are reported in Table 4. This
result shows more benefit is gained from the node decoder ATN when graphs are sparser.

We then consider the case of strengthening the node decoder by using α values greater than 1. We run the
same experiment as above but varying α values in Equation (17) and then report our observations in Table 5.
We see that large α values slightly increase the performance for sparse graphs.

Suggesting links for isolated nodes is often considered as the cold-start problem (Schein et al., 2002), which
is important in recommender systems. Here we examine the benefit of rectification procedure proposed in
Equation (18) by checking the isolated nodes representations. We consider dataset with differnt sparsity.
Specifically, we split graphs with different training ratios (TRs): 20%, 40%, 60%, 80%, lower training ratio
indicates more isolated nodes exist. The details of isolated nodes for each dataset can be found in Table 8
in Appendix. The results in Figure 2 show that our rectification procedure greatly improves the quality of
isolated nodes’ representations. Another interesting observation is that as TR decreases (graph becomes
much sparser), the model performance benefits less from the rectification. Our explanation is that the ATN
provides less correct guidance to the rectification procedure when the graph is sparser and the ATN itself is
not well trained.

9
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(a) Cora (b) Citeseer

Figure 2: Rectifying representations of isolated nodes : for both (a) Cora and (b) Citeseer datasets, we can
find that the AUC of isolated nodes related to link prediction is increasing with the rectification iteration on
all training ratios (TRs).

Ratio Cora Citeseer
w/o ATN w/ ATN w/o ATN w/ ATN

20% 82.7±0.61 86.4±0.58 88.5±0.76 92.2±0.55
40% 88.5±0.71 90.7±0.44 91.7±0.51 93.7±0.39
60% 91.9±0.63 93.2±0.37 92.8±0.58 94.5±0.42
80% 94.0±0.75 95.2±0.56 93.9±0.62 95.6±0.48

Table 4: Benefits of using ATN versus different sparsity
levels: The percentage(%) indicates the fraction of graph
edges in the training set. We report the link prediction
performance (AUC).

α
Cora Citeseer

20% 40% 20% 40%
1.0 86.4 90.7 92.2 93.7
1.5 86.5 90.8 92.6 93.9
2.0 86.7 90.9 92.8 94.0
2.5 86.8 91.1 92.9 94.1
3.0 86.9 91.4 93.1 94.3

Table 5: Link prediction performance (AUC)
on Cora and Citeseer with different training
ratios as α increases.

5.4 Interpretability of node representations

We inspect node representations learned by our model qualitatively and interpret them in the context of the
application. Specifically, we focus on two questions: whether representations capture community structures in
the data and whether representations explain node attributes from the perspective of community structures.

Alignment between community membership and node classes. We visualize a few example com-
munities detected from the graph. The visualization of the detected communities along with the node label
is done in the following steps: (1) we first choose one experiment trail for each dataset, and obtain the
node representation Z for t-SNE compressing (Van der Maaten & Hinton, 2008); (2) we take 10% of the
nodes and choose 2 representative communities. Note that we perform the dimension reduction in full data,
then randomly take a subset of the compressed data; (3) we set the threshold to be 0.5, and compute the
community membership for each selected node, there are three kinds of community assignment for each node
– community 1, community 2, and others.

The visualization results is shown in Figure 3. We use colors to indicate node classes. Then we extract
communities from Z. For community k, nodes with zik greater than a threshold are considered to be in the
community. We identify nodes in two communities and indicate them with markers in the figure. We see that
nodes in the same community tend to be in the same node class. They also tend to clump together in the
plot.

Topic analysis. Here we inspect the relation between communities and node attributes by analyze the
learned topics in Pubmed dataset, which is constructed from a network of clinical articles. The articles in
Pubmed are categorized into three Diabetes Mellitus classes: (1) Experimental, (2) Type 1, and (3) Type

10
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(a) Cora (b) Citeseer

Figure 3: t-SNE visualization of node representations on Cora and Citeseer: color indicates the node
class, marker indicates the community assignment. We only choose two non-overlapping communities for
visualization.

2. The dataset contains the vocabulary corresponding to node attributes, which allows us to examine the
meaning of node representations. We treat each community as a topic to which a document may belong. To
determine which attributes are turned on for each community k, we manually set a c to be a one-hot vector
with ck = 1. Then we multiply c by v ∼ Gaussian(0, I). We sample v 10,000 times and reconstruct x using
z = c� v via ATN and get a distribution of “on” attributes. Then we extract words corresponding to these
attributes from topic k. We remove non-semantic words using tf-idf.

Our model learned 12 related subareas, which highly related to their own corresponding high frequency
stemmed keywords. We show the full names of the abbreviations in Table 9 in the appendix. We show the
top eight stemmed keywords for each topic in Table 6. For each topic, these keywords are coherently related
to a medical subarea such as treatment, disease, etc. Here we manually assign each topic a label according to
the area. For example, by inspecting the keywords, the second topic can be labeled as diabetic retinopathy
(DR), which is the most common complication of diabetes mellitus (Wang & Lo, 2018); the third topic can be
labeled as coronary artery disease (CAD), which is happened at a higher risk in patients with type 2 diabetes
mellitus (T2DM) than non-T2DM patients Naito & Kasai (2015); the ninth topic can be labeled as Islet Cell
Antibodies (ICA)1.

It shows that the learned subareas of diabetes mellitus are all meaningful and interpretable after the analysis
of high frequency stemmed keywords. Besides, We also find that each topic is often within a node class in the
dataset, which again proves that the detected community is coherent.

6 Related Work

The stochastic blockmodel (Wang & Wong, 1987; Snijders & Nowicki, 1997) is frequently used for detecting
and modeling community structure within network data. Later variants of SBM make different assumptions
on the node-community relationships (Airoldi et al., 2008; Miller et al., 2009; Latouche et al., 2011). For
example, the mixed membership stochastic blockmodel (MMSB) (Airoldi et al., 2008) assumes each node
belongs to a mixture of communities. The overlapping stochastic blockmodel (OSBM) (Latouche et al., 2011)
assumes each node can belong to multiple communities with the same strengths.

1According to Narendran et al. (2005): “the beta cell: ICA, is the first islet (a pancreatic cell) ‘autoantigen’ to be
described. Antibodies to ICA are present in 90% of type 1 diabetes patients at the time of diagnosis.”
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Topic Label Top Eight Stemmed Keywords
NAFLD liver, fat, resist, correl, hepat, befor, obes, degre

DR retinopathi, complic, diagnosi, mortal, famili, cohort, predict, screen
CAD cholesterol, genotyp, polymorph, lipoprotein, heart, coronari, target, triglycerid

Hypoglycemic agents exercis, postprandi, oral, presenc, region, metformin, reduct, agent
Diet intervention intervent, intak, particip, promot, loss, individu, primari, dietari
Eating disorder depress, chronic, approxim, dietari, secret, cpeptid, defect, vs

Obesity period, pathogenesi, greater, continu, daili, meal, weight, dose
AGEs receptor, alter, neuropathi, streptozotocin, oxid, inhibit, stimul, peripher
ICA antibodi, transplant, beta, pancreat, antigen, ica, immun, tcell

HbA1c hypoglycaemia, hba1c, manag, symptom, life, glycaem, known, ii
MS neuropathy abnorm, metabol, children, nondiabet, durat, nerv, rat, sever
MS uric acid caus, syndrom, evid, acid, diet, urinari, rat, insulindepend

Table 6: Display of top eight words in twelve learned latent topics in Pubmed dataset. The topic labels
are abbreviations of clinical subareas related to Diabetes Mellitus. They are highly related to the top eight
stemmed keywords. The details can be found in Table 9 in Appendix.

The VGAE models (Kipf & Welling, 2016; Hasanzadeh et al., 2019; Mehta et al., 2019; Sarkar et al., 2020; Li
et al., 2020; Cheng et al., 2021) combine a VAE and a GNN to learn the latent node representation of graph
data. DGLFRM (Mehta et al., 2019) replaces the Gaussian prior with Indian Buffet Process (IBP) prior (Teh
et al., 2007) to promote interpretabilities of learned representations. LGVG (Sarkar et al., 2020) extends
the ladder VAE (Sønderby et al., 2016) to modeling graph data and introduces the gamma distribution to
enable interpretability of the learned representation. But these models do not explain the relation between
communities and attributes. Other models improve the architectures of different components of VGAE.
DGVAE (Li et al., 2020) instead uses the Dirichlet prior and shows its application in node clustering and
balanced graph cut. Cheng et al. (2021) devises a model that decodes multi-view node attributes.

The RTM models (Nallapati et al., 2008; Chang & Blei, 2009) focus on learning meaningful topics from the
document content, with the help of the relation information that reside in the document network. Various
works (Bai et al., 2018; Xie et al., 2021; Panwar et al., 2021) are proposed based on this idea by either
improving the graphical model or proposing a novel network architecture.

On combining of the ideas of VGAEs and RTMs, our model is able to learn node representations that not only
being useful to performing downstream tasks such as link prediction and node clustering, but also provides
highly interpretability in both community-wise and topic-wise, where the former concerns the topological
structure of the network and the latter concerns the content of the documents.

7 Conclusion

In this work, we have theoretically analyzed the role of node attribute decoder in representation learning
in VGAEs. We show that the node attribute decoder helps the model encode information about the graph
structure.

We further propose the NORAD model to learn interpretable node representations. We introduce blockmodel
in the edge decoder, with the aim of capturing community structure. We carefully designed the ATN as the
node decoder, which improves the quality of node representations and makes them interpretable. We also
design a rectification procedure to refine representations of isolated nodes in the graph after model training.

However, our model has the following limitations: (1) The node decoder of our model are limited to documents
and can not be extended to other type of features. (2) Although The introduced blockmodel, which attempts
to capture the interaction between communities, improves the performance of edge decoding. The learned
blockmodel itself still lacks enough interpretability.
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Dataset Nodes Edges Words Classes
Cora 2,708 5,429 1,433 7

Citeseer 3,312 4,732 3,703 6
Pubmed 19,717 44,338 500 3
DBLP 17,716 105,734 1,639 4

Table 7: Dataset statistics

Training ratio Cora Citeseer
20% 40% 60% 80% 20% 40% 60% 80%

# isolated nodes 1,370 702 336 120 2,045 1,275 737 341
% isolated nodes 50.6% 25.9% 12.4% 4.4% 61.8% 38.5% 22.3% 10.3%

#contributed edges 3,584 1,445 547 155 3,883 1,955 958 385
%contributed edges 66.0% 26.6% 10.1% 2.9% 82.1% 41.3% 20.3% 8.1%

Training ratio Pubmed DBLP
20% 40% 60% 80% 20% 40% 60% 80%

#isolated nodes 11,220 7,196 4,290 1,964 8,290 4,664 2,628 1102
%isolated nodes 56.9% 36.5% 21.8% 10.0% 46.8% 26.3% 14.8% 6.2%

#contributed edges 19,919 9,938 5,156 2,125 19,915 7,765 3,525 1249
%contributed edges 45.0% 22.4% 11.6% 4.8% 18.8% 7.3% 3.3% 1.2%

Table 8: Isolated nodes numbers and percentages in different training ratio.

A Appendix

A.1 Datasets details

Cora. Citation network consists of 2,708 documents from seven categories. The dataset contains bag-of-
words feature vectors of length 1,433. The network has 5,278 links.

Citeseer. Citation network consists of 3,312 scientific publications from six categories. The dataset contains
bag-of-words feature vectors of length 3,703. The network has 4,732 links.

Pubmed. Citation network consists of 19,717 scientific publications from three categories. The dataset
contains bag-of-words feature vectors of length 500. The network has 44,338 links.

DBLP. Citation network consists of 17,716 papers from categories classes. The dataset contains bag-of-words
feature vectors of length 1,639. The network 105,734 links.

Isolated nodes in different training ratio. In Table 8, we calculate the numbers and percentages of
isolated nodes in different training set split ratios, we also get the numbers and percentages of edges that
contribute to generating the isolated nodes.

Abbreviation Full Name
NAFLD Nonalcoholic Fatty Liver Disease

DR Diabetic Retinopathy
CAD Coronary Artery Disease
AGEs Advanced Glycation End products
ICA Islet Cell Antibodies
MS Metabolic Syndrome

Table 9: Abbreviation and full name of learned topics.

A.2 Model implementation and experimental details

In this section, we introduce the implementation for NORAD and the detailed setups of some experiments.
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Hyperparmeters VGAE KernelGCN DGLFRM VGNAE NORAD
Layer type GCN GCN GCN APPNP GCN
#Layers 2 2 2 1 1

Hidden dimension {32, 16} {32, 16} {256, 50} {128} {256}
Prior Gaussian Gaussian Gaussian+IBP Gaussian Gaussian+Bernoulli

Table 10: Encoder configuration of each models

Hyperparameters setting. For the encoder of NORAD, we choose 1-layer Graph Convolution Network
(GCN) as our encoders. Since we need to output three sets of variational parameters, we use three GCN
layers separately. Each encoder shares the same output dimension. We search the number of cluster K
over {32, 64, 128, 256} and find that our model is insensitive to K. When K becomes larger (usually 64 and
above), the model gives a relatively stable performance. We choose K = 256 for all models in the reported
experiments. For other VGAE baselines, we observe a slight performance drop when increasing the dimension
of the hidden layers of the encoder. Though node representation learned by NORAD are in higher dimension,
we argue that the actual number of the effective entries is usually much smaller. For example, we only observe
12 effective entries in Pubmed dataset. A detailed configurations of the encoders of the baselines and our
models are shown in Table 10. For the node decoder ATN, we search (de, dh) over {(128, 64), (64, 32)}. We
set de to be 128 and dh to be 64 in our experiment.

Training and prediction. We alternatively optimize (φ, θ) and B. We first update (φ, θ) for E steps, then
update B for M steps, and alternate until convergence. In the implementation, we set E = 10 and M = 10.
We use Adam optimizers Kingma & Ba (2014) with learning rate 0.001. Since we use the gumbel-softmax
Jang et al. (2016) to relax the binary vector C, in the training process, we use temperature annealing with 0.5
to be the minimum temperature. We use the relaxed binary vector for optimizing (φ, θ), and for optimizing B
and prediction phase, we use the binary vector by truncating the Bernoulli parameters π. For isolated nodes
rectification, we use the same learning rate to rectify the representation of the isolated nodes. We optimize
the representation for multiple iterations and choose the number of iterations to be 50 when reporting the
experiment results.

(a) Cora (b) Citeseer

Figure 4: Isolated nodes link prediction and representation rectification: (a) For Cora, AUC of isolated nodes
related link prediction is improved by adding ATN decoder (w/o → iteration 0) and increasing rectification
iterations (iteration 0 → 100); (b) For Citeseer, the increase is more obvious with lower training ratio.

Model diagnosis. Here we show the detailed implementation for each extra component mentioned in
Section 5.2. For the probability construction p(Z)p(X|Z)p(A|Z,X), Z is used for two purposes: reconstructs
X and reconstructs A with the help of X. For p(X|Z), we keep using the ATN as the node decoder. For
P (A|Z,X), we first use a node encoder to encode X into a hidden vector R, which has the same dimension
as Z. Then we concatenate Z with R and feed it into the edge encoder. For the node encoder, we use a
two-layer MLP with ReLU activation function. For the edge decoder in DGLFRM, we use one linear layer
along with the ReLU activation function. We set the dimension of the output Ẑ of the MLP to be half the
number of the clusters K. We use Ẑ to reconstruct A via inner product. And for reconstructing X, we still
use Z. Isolated node rectification is employed for all the model variants with node decoders.
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Ratio base w/ norm w/ ATN w/ both
Cora

20% 82.7±0.61 86.2±1.15 86.4±0.58 87.9±0.49
40% 88.5±0.71 89.8±0.52 90.7±0.44 91.2±0.51
60% 91.9±0.63 91.8±0.61 93.2±0.37 92.6±0.71
80% 94.0±0.75 93.0±1.25 95.2±0.56 93.7±1.14

Citeseer
20% 88.5±0.76 85.9±1.34 92.2±0.55 91.2±0.47
40% 91.7±0.51 90.1±1.04 93.7±0.39 93.3±0.72
60% 92.8±0.58 91.6±1.07 94.5±0.42 94.1±0.66
80% 93.9±0.62 92.8±1.09 95.6±0.48 94.8±0.70

Table 11: Performance comparison of normalization trick and ATN decoder: NORAD without ATN (denoted
as base), base with normalization trick (denoted as norm), NORAD (denoted as ATN), NORAD with
normalization trick (denoted as both).

A.3 Additional Experiments

Further result analysis of isolated nodes. Here we show how using a node decoder can greatly improve
the link prediction performance for isolated nodes. Figure 4 shows the superior capability of suggesting links
for isolated nodes, especially in Citeseer.

Normalization trick on NORAD. We also experiment with deploying normalization trick (Ahn & Kim,
2021) in our model. We add L2 normalization on the encoded features in the GCN layer. We compare the
performance of adding only the normalization trick or only our ATN on the Cora and Citeseer dataset with
four different ratios. We also try adding both the normalization trick and our ATN to thoroughly study
their effects. We show the performances of four variants in Table 11. We can find that our ATN decoder
outperforms the normalization trick on both datasets with all training ratios. The difference is more obvious
on the sparser graph dataset Citeseer. We also find that the combination of these two operations yields trivial
improvement on Cora with some training ratios, and even gets worse on Citeseer compared with using only
one of the operations.

t-SNE visulization of baselines. In Figure 5, we visualize the node embeddings learned from NORAD,
KernelGCN, DGLFRM, and VGNAE on Cora and Citeseer. Compared with other baselines, we can better
interpret the community structure from the node embeddings learned by our model.
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KernelGCN

Cora Citeseer Pubmed DBLP

DGLFRM

Cora Citeseer Pubmed DBLP

VGNAE

Cora Citeseer Pubmed DBLP

NORAD

Cora Citeseer Pubmed DBLP

Figure 5: Visualization of latent node embeddings learned by four models on four datasets.
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