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Abstract

This paper presents a new trust region optimization ap-
proach for cooperative multi-agent reinforcement learn-
ing through the incorporation of optimal transport. We
replace traditional KL-divergence constraints with the
Wasserstein-1 distance to define trust regions, using a
dual formulation to transform the constrained optimiza-
tion problem into a tractable problem over single non-
negative dual variables per agent. We also introduce
a coordination-aware adaptive trust-region (CAATR)
mechanism, adjusting each agent’s trust-region radius
inversely proportional to teammate policy drift. The re-
sulting Wasserstein multi-agent trust-region policy op-
timization (W-MATRPO) algorithm provides surrogate
objective bounds through sequential optimization. The-
oretical analysis establishes performance bounds for the
multi-agent setting, and experimental analysis demon-
strates improved exploration in an environment with lo-
cal optima traps.

Introduction

Learning effective coordination strategies for multiple
agents remains a central challenge in robotics, autonomous
systems, and distributed control. MARL has become a valu-
able tool for modeling such systems with multiple decision-
making entities each pursuing individual goals, with use-
cases spanning autonomous traffic networks with vehicle
coordination requirements (Zhang et al. 2024) or dynamic
multi robot locomotion and planning (Orr and Dutta 2023).
When multiple agents must work together to achieve a com-
mon goal, cooperative MARL provides a framework for
learning behaviors to enable adaptive agent coordination
based on experience and key objectives. However, coop-
erative MARL is not without its challenges. Factors hin-
dering perfect coordination include the moving-target/non-
stationarity problem (Papoudakis et al. 2019) (Hernandez-
Leal et al. 2017), curse of dimensionality (Hao et al.
2022), and the credit-assignment problem (Zhou et al. 2020)
(Nguyen, Kumar, and Lau 2018) in cooperative settings. For
an overview of MARL, we refer readers to the surveys by
(Busoniu, Babuska, and De Schutter 2008) (Oroojlooy and
Hajinezhad 2023) (Canese et al. 2021).
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Recently, trust-region methods have been used to attempt
to rectify these aforementioned factors (Li et al. 2021) (Sun
et al. 2022) (Li and He 2023). Trust-region methods con-
strain how much a policy can change per update step, in or-
der to prevent overtly aggressive updates that could destabi-
lize learning. One way to enforce such a method is through
the use of Kullback-Leibler (KL) divergence (also known as
relative entropy), as is done in trust region policy optimiza-
tion (Schulman et al. 2015a). Designing trust-region policy
optimization algorithms for MARL is difficult as it requires
agents to coordinate their policy updates while maintaining
monotonic improvement guarantees. Classical trust-region
algorithms have been extended to the cooperative multi-
agent setting by leveraging game-theoretic approaches (Wen
et al. 2022) and by transforming the policy-update rule (Li
and He 2023). Notably, the heterogeneous-agent trust region
policy optimization (HATRPO) algorithm (Kuba et al. 2021)
provided the first formal monotonic improvement guarantee
in cooperative MARL through sequential updates bounded
by KL divergence.

KL divergence has two very attractive benefits; (1) there
exists a classical inequality that relates KL divergence to
the total variation distance between distributions, known as
Pinsker’s inequality (Pinsker 1964) (Fedotov, Harremoés,
and Topsoe 2003) and (2) there exists a closed-form solution
for the KL divergence between two multivariate Gaussians
(Li2018). However, the use of KL divergence is not without
its limitations. KL divergence is asymmetric (it is not a met-
ric), implying that different update magnitudes could exist
depending on the direction of comparison, which could skew
the policy optimization techniques. Some research has also
argued that KL divergence is not well-suited for knowledge
distillation, as it cannot capture relationships between differ-
ent categories and is poor at dealing with high-dimensional
feature spaces (Lv, Yang, and Li 2024). Similarly, in unsu-
pervised learning, when dealing with low dimensional man-
ifolds, KL divergence likely fails as the model manifold and
true distribution’s support is often zero leading to an unde-
fined KL divergence (Arjovsky, Chintala, and Bottou 2017).
Both of these issues permeate MARL, where agents must
learn distinct but coordinated policies (similar to these cate-
gory relationships), often having been assigned various roles
(Wang et al. 2020) (Makar, Mahadevan, and Ghavamzadeh
2001). These limitations motivate our exploration of alterna-



tive divergence metrics, namely from optimal transport the-
ory.

Most generally, optimal transport refers to the mathemati-
cal problem of moving a distribution of mass from one loca-
tion to another as efficiently as possible (Peyré, Cuturi, and
others 2019). The Wasserstein distance is the most ubiqui-
tous metric between probability distributions originally de-
rived from the optimal transport problem. This metric, as
well as the development of the Sinkhorn distance, a regu-
larized approximation of the Wasserstein distance (Cuturi
2013) has been instrumental for providing a geometrically
intuitive way to compare probability distributions, particu-
larly useful in machine learning and reinforcement learn-
ing. (We refer the reader to the works of (Kolouri et al.
2017) (Peyré, Cuturi, and others 2019) (Villani and others
2008) for an overview of optimal transport and its applica-
tions in machine learning.) Recent literature has replaced KL
divergence with Wasserstein distance for single-agent pol-
icy optimization settings (Pacchiano et al. 2020) (Terpin et
al. 2022) (Song, Zhao, and He 2022); however, the integra-
tion of Wasserstein constraints in multi-agent policy opti-
mization remains unexplored. It is difficult to maintain coor-
dination guarantees while handling Wasserstein constraints
among multiple interacting agents.

In this paper, we develop a Wasserstein-constrained multi-
agent trust region algorithm by formulating a dual opti-
mization framework that preserves multi-agent coordination
while exploiting the geometric advantages of optimal trans-
port. Our approach transforms the intractable primal prob-
lem into a tractable per-agent dual problem, where each
agent solves for a single scalar dual variable that automat-
ically balances exploration with coordination constraints.
Additionally, we introduce a coordination-aware adaptive
trust-region (CAATR) mechanism that dynamically adjusts
each agent’s trust-region radius based on teammate policy
drift. The derived algorithm produces a multi-agent policy
optimization scheme that: (1) provides a computationally
tractable solution to Wasserstein-constrained multi-agent
optimization through dual decomposition, (2) provides the-
oretical guarantees on surrogate objective improvement, and
(3) demonstrates improved exploration and convergence to
near-global optima through coordination-aware adaptation,
avoiding local optima traps observed in fixed trust-region
methods. Later in this paper, we discuss the success of our
W-MATRPO + CAATR algorithm at escaping local optima
traps in a differential game environment.

Contributions. Our main contributions are as follows:

e We derive a tractable dual formulation for Wasserstein-
constrained policy optimization (W-MATRPO) in coop-
erative MARL.

* We introduce CAATR, a method to adaptively modulate
trust region radius based on teammate stability.

* We provide theoretical analysis establishing surrogate
objective bounds and demonstrate empirically that W-
MATRPO+CAATR can escape local optima outperform-
ing conventional methods.

Paper Organization. The remainder of this paper is struc-
tured as follows: Section 2 presents Related works. Sec-

tion 3 presents the methodology, including preliminaries
on Dec-POMDPs, the Wasserstein-constrained policy op-
timization dual formulation, and the W-MATRPO algo-
rithm with CAATR. Section 4 establishes theoretical re-
sults including regularity conditions and surrogate objective
bounds. Section 5 presents numerical experiments on differ-
ential games. Section 6 analyzes the results demonstrating
W-MATRPO+CAATR’s ability to escape local optima. Sec-
tion 7 discusses limitations and future directions, and Sec-
tion 8 concludes the paper.

Related Work

We first compare our work with the most closely related pa-
pers that exist in the literature. (Terpin et al. 2022) developed
single-agent TRPO with Wasserstein constraints using dual
optimization. They developed a one-dimensional dual refor-
mulation for the infinite-dimensional optimization problem
in policy optimization, as well as an optimal policy update
for the dual problem. While their work is instrumental for
motivating our research, it is important to note that their
approach has not been extended to the multi-agent setting,
and we provide a different method for developing the dual
formulation. (Song, Zhao, and He 2022) (Pacchiano et al.
2020) also study single-agent policy optimization through
the incorporation of the Wasserstein distance. These setups
are (1) single-agent, and are not necessarily generalizable
to multi-agent coordination problems, and (2) do not study
adaptive trust regions, only focusing on fixed trust regions.
(Shek, Shi, and Tokekar 2025) considers the multi-agent
trust-region policy optimization problem with adaptive trust
regions through both a Karush-Kuhn-Tucker-based method
and a greedy algorithm. This setup differs from our approach
for two reasons: (1) this approach does not use the notions
of optimal transport in the algorithm and (2) we use a dif-
ferent algorithm for adaptively generating the trust region,
as we use a setup that considers prior policy updates while
their approach allocates the KL divergence amongst agents.
On multi-agent trust region methods: Trust region policy
optimization (TRPO), first described in (Schulman et al.
2015a) is a method to optimize policies iteratively with guar-
anteed monotonic improvement through KL-constrained up-
dates. Extending these guarantees in multi-agent settings is
challenging due to the non-stationarity problem (Li and He
2023) (Matignon, Laurent, and Le Fort-Piat 2012) absent in
the single-agent setting. One of the first papers to tackle this
implementation was (Kuba et al. 2021), through the incor-
poration of sequential policy updates with agent-specific KL
constraints. More specifically, (Kuba et al. 2021) (Zhong et
al. 2024a) extended TRPO to multi-agent settings with se-
quential updates and monotonic improvement guarantees.
This aforementioned algorithm is especially useful when
agents exhibit heterogeneity, such as individual roles. Subse-
quently, this framework has been improved to include adap-
tivity (Shek, Shi, and Tokekar 2025) as well as the reformu-
lation of safe MARL as a constrained Markov game, solved
with multi-agent constrained policy optimization (MACPO)
(Gu et al. 2022).

Other metrics have also been considered in the MARL
problem. (Nasiri and Rezghi 2023) uses the Bregman di-



vergence to implement heterogeneous-agent reinforcement
learning through Mirror Descent Policy Optimization, and
(Zawar, Sethi, and Roy 2024) extended the MACPO (Gu et
al. 2022) approach to use Jensen-Shannon divergence rather
than KL divergence. (Zawar, Sethi, and Roy ) notes that they
did not use the Wasserstein distance due to intractability,
claiming Jensen-Shannon divergence as a “middle ground”
(Zawar, Sethi, and Roy ); we use a dual formulation to solve
the MARL problem using the Wasserstein distance while
maintaining computational tractability. On optimal trans-
port: Optimal transport theory compares probability distri-
butions by measuring minimum cost of mass transport from
one distribution to another (Villani and others 2008) (Peyré,
Cuturi, and others 2019). The Wasserstein distance (opti-
mal transport metric) holds some advantages over KL di-
vergence: (1) it is a true metric and is well-defined over
non-overlapping supports, and (2) it incorporates the ge-
ometry of the underlying action space through the ground
metric (Villani and others 2008). Cuturi’s Sinkhorn algo-
rithm (Cuturi 2013) used entropic regularization to make
the Wasserstein distance tractable, greatly increasing its po-
tential for machine learning research. Recent advances in
dual and subdual methods have further improved scalability,
yielding smooth variational problems amenable to numeri-
cal optimization (Cuturi and Peyré 2018) (Cuturi and Peyré
2016) (Khamis et al. 2024).

Optimal transport theory has found applications as a tool
across many domains of reinforcement learning. (Baheri
2023) establishes a framework using optimal transport op-
timizing rewards while maintaining risk constraints, while
(Baheri and Kochenderfer 2024) notes a potential synergy
between optimal transport theory and the MARL, particu-
larly in policy alignment and in addressing non-stationarity.
Other methods by which optimal transport was used in
RL include Wasserstein unsupervised reinforcement learn-
ing (He et al. 2022), distributional RL, curriculum learning,
robustness, and imitation learning. In distributional RL, the
Bellman operator is notably a contraction in the Wasserstein
metric (Bellemare, Dabney, and Munos 2017). In curriculum
learning, (Klink et al. 2022) framed curricula (the sequence
of learning tasks) as interpolations between task distribu-
tions through a constrained optimal transport problem. In ro-
bustness, (Abdullah et al. 2019) formalized RL as a min-max
game with a Wasserstein constraint, and (Hou et al. 2020)
used the Wasserstein distance to measure disturbances of a
reference transition kernel. In imitation learning, (Xiao et al.
2019) used Kantorovich potential as a reward function and
found a connection between inverse RL and optimal trans-
port. The most relevant papers at the intersection of optimal
transport and trust region policy optimization include (Ter-
pin et al. 2022) (Song, Zhao, and He 2022) (Pacchiano et
al. 2020) described earlier. Our paper uses optimal transport
theory in a multi-agent setting, while also incorporating a
novel adaptive trust region setup, uniquely positioning this
work in both the optimal transport and MARL domains.

Methodology
Preliminaries

We briefly summarize our notation. Cooperative multi-
agent tasks are formally modeled as decentralized partially-
observable Markov decision processes (Dec-POMDPs),
defined by the tuple (NS, A,Q, P,r,0,v) (Kaelbling,
Littman, and Cassandra 1998)(Schulman et al. 2015a). We
denote by ' = {1, ..., N} the set of NV agents. The global
state space is S, with joint action space A and joint obser-
vation space (2. Each agent 7 has its individual action space
A; and observation space €2;. The environment dynamics
are characterized by the state transition probability function
P(s'|s, a), which determines the probability of transitioning
to state s’ given current state s and joint action a. The shared
reward function 7 (s, a) provides the immediate reward for
all agents. The observation function O(o|s’, a) determines
the probability of joint observation o given the new state s’
and previous action a. Finally, v € [0, 1] is the discount fac-
tor for future rewards.

At each timestep ¢, the environment is in global state s; € S.
The agents undergo a joint action a; = (ay,...,ay) € A,
causing a transition to state s;;1 according to P(s;41]|st, at)
yielding a shared reward r;1 = r(s¢, a;). Agents do not
observe s; directly, but receive local observations o;; €
Q; according to the observation function O(o¢|s¢y1,at).
Each agent ¢ operates using a local, parameterized policy
my, (a;|0;). The collective goal is to find the parameters § =
{61, ...,0n} for the joint policy my(als) = Hf\il 7o, (ai]o;)
that maximizes the expected total discounted return:

J(7T9> = ]ESQNpo,atNﬂg(-lst) [Z WtT(St,at)] (1)

st1~vP(se,ar) [ 1=0

This problem is addressed within the centralized training for
decentralized execution (CTDE) paradigm, where a central-
ized learner uses global information during training to opti-
mize decentralized policies (Amato 2024).

Wasserstein-Constrained Policy Optimization

Trust-region methods in single-agent reinforcement learn-
ing are valued for their guaranteed monotonic improvement
(Schulman et al. 2015b), i.e. policy performance can be im-
proved by maximizing a surrogate objective within its con-
strained policy neighborhood. We define this constrained
policy neighborhood using the Wasserstein-1 distance, W;.
For two probability distributions x and v on the action space
A, the W distance is defined as follows:

Wi(p,v) = inf / cla,a’)dy(a,a’)  (2)
YL (sv) J Ax A

where I'(u, v) is the set of all joint distributions (couplings)
with marginals i and v, and ¢(a, a’) is a transport cost func-
tion. Setting c(a, a’) to be a metric on the action space (e.g.
Euclidean distance), the W, distance provides a geometri-
cally meaningful measure of the difference between poli-
cies. This contrasts with KL divergence, which is a purely
information-theoretic view on policy change, insensitive to
the inherent metric of the action space.



Applying the sequential update scheme of HATRPO (Zhong
et al. 2024b), we formulate the per-agent policy improve-
ment step as an optimization problem:

Id
max ]Es,afi[Aﬂ-D (57ai7a—i)}

3)
st B Wi (5 ( ]s), mi™ (]5))] < &

Here, the objective is to maximize the expected advantage
of agent i’s new policy, subject to the constraint that the av-
erage Wasserstein distance between the new and old policies
remains within a trust-region of radius §;. The optimization
problem (3) is intractable due to the infinite-dimensional
policy space and the complexity of computing the Wasser-
stein constraint. We therefore develop a Lagrangian dual for-
mulation that transforms this problem into an optimization
over a single non-negative dual variable A; > 0 for each
agent.

Theorem 1 (Dual Formulation). The Wasserstein con-
strained policy optimization problem admits the dual rep-
resentation:

: old
min {Nibi + By g [234(s,a:)] } 4)
where
(s, a:) = max {47 (5,0} a-) = Ne(ai a)) | (5)
al€A;

is the A-regularized advantage function. Furthermore,
strong duality holds between the primal and dual problems.

Proof. The primal problem is a concave maximiza-

tion over a convex constraint set: the objective
Esa , [A™(s,a;,a_;)] is linear in % (hence both
convex and concave), and the Wasserstein constraint
Egp[Wh (70(+]s), 7% (-|s))] < §; defines a convex set.
Setting 7% = 79 yields Wy(m °1d, ) = 0 < 4,
satlsfylng Slater’s COIldlthIl for the constraint. By standard
Lagrangian duality for constrained maximization problems,
strong duality holds.
The Lagrangian for the maximization problem is

LT N\) =Eq o, [A™" (s, a:,a_;)]
= Ai (Eanp[Wr(m (-] 5), T (|5))] — 0:)
(6)
The dual function is:
g(\) = sup L(x*, 1)

71"L

=\0; +supEq., []Ea_i / A”md(s, ai,a_;)dm™(a;|s)
A;
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i
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Since the optimization over 7V (-|s) can be performed inde-
pendently for each state s (the conditional policies are sepa-
rable), we can exchange the order of expectation and supre-
mum. Define

fli(s, ai) =K

old

() [AT (s, ai,a-5)] Q)

a_;~TT

as the advantage function marginalized over other agents’
actions. Since the expectation over a_; does not depend on
the choice of 7%, the inner supremum becomes

sup {/ Ai(s,a;) dmi®™ (a;)s)
v (-ls) LJ A,

— N W (s )mr?ew(-ls))}

By Kantorovich duality for the W; Wasserstein distance
(Kantorovich and Rubinshtein 1958), the supremum of a lin-
ear functional minus a transport cost admits the dual repre-
sentation

sup {/ Ai(s,a;) dmi™ (a;)s) —
TV (-[s) LJA;

_ / max [A;(s, a}) — Aic(as, al)] dnd(as)
A, al€A;

(10)

where the maximization is taken pointwise over the cost
function c.

Substituting this back into the dual function and using the
definition of A;, we have

g()\i) = /\151 + ES’VPE&@NW?M("S) [;’%’gﬁi

old

Eu ot (1o [A™ (5, 0)] — Aw(ai,a;)H
an

Exchanging the order of the maximum and the expectation
over a_; (valid since expectation preserves suprema), we
obtain

g()‘z) = )\151 + Es,awﬂ'"ld [(I)())\l?(sa a"L)] (12)

The dual problem miny,>og();) yields the stated re-
sult. O

Remark 1. Intuitively, the inner maximization process de-
rives a new action aj that balances maximizing advantage
against the transport cost to that action, scaled by \;. The
outer minimization finds the optimal trade-off parameter \;
that satisfies the trust-region constraint. The dual formula-
tion avoids explicit computation of the Wasserstein distance
integral during the policy optimization step, instead requir-
ing only the solution to the inner maximization problem over
a. For continuous action spaces, the inner maximization
maxa;{A“"M(s,a;,a_i) — Aic(ai,al)} can be solved us-
ing: (1) gradient ascent when the advantage and cost func-
tions are differentiable, (2) cross-entropy method (CEM) for
non-differentiable cases, or (3) closed-form solutions for
Gaussian policies with Lo cost, where the optimal action is
ai, = a; + Va, A/ (2);). For discrete action spaces, exhaus-
tive search is tractable.

NWi (799 )mr?ew(-ls))}



W-MATRPO Algorithm

We solve the dual problem using an actor-critic architec-
ture and a sequential update scheme. We use N decen-
tralized actor networks, 7, (a;|0;), which take only local
observations as input. During training, a centralized critic,
composed of a state-value network V;;(s) and a state-action
value network Q4 (s, a), uses global information to compute
a shared, low-variance estimate of the advantage function,
Am‘ld(sa Cl) ~ Q¢>(S7 CL) - Vd)(s)

The W-MATRPO algorithm (Algorithm 1) begins by initial-
izing the joint policy 7(*) and policy drift history (line 1).
At each iteration ¢ (line 2), the algorithm collects trajectories
by executing the current joint policy in the environment and

. ® . .
computes the advantage function A™ ‘ using the centralized
critic (line 3). Next, it calculates adaptive trust-region radii

{65”1)} for each agent using the CAATR mechanism de-
tailed in Algorithm 2 (line 4). We then randomly order the
agents by generating a random permutation o of the agent
indices {1,..., N} (line 5) before initializing an empty set
Uy, to track updated agents (line 6). For each agent in this
random order (lines 7-13), the algorithm retrieves the agent
index i as the k-th element of the permutation, i.e., i = o (k)
(line 8), then computes the importance-corrected advantage
M; (s, a) using the set of previously updated agents (line 9).
Next, the algorithm solves the dual optimization problem to
find the optimal Lagrange multiplier A} that minimizes the
dual objective (line 10). Using this optimal dual variable,
the agent’s policy is updated from 772@ to 7T1(t+1) (line 11),
and importance sampling correction is applied (line 12). The
updated agent is then added to the set U, (line 13). After
all agents have been updated, the centralized critic parame-
ters ¢ are trained using the collected trajectories (line 14).
Finally, the algorithm stores the policy drift measurements

Driftg-t) for all agents, computed as the Wasserstein distance
between consecutive policies (line 15).

Coordination-Aware Adaptive trust-region (CAATR)
We introduce a feedback mechanism to adapt the trust-
region radius §; based on teammate policy. The CAATR
mechanism adjusts each agent’s exploration constraints
based on the collective behavior of its teammates. The radius
for agent ¢ at iteration ¢ is set to be inversely proportional to
the measured policy drift of its teammates:

5 = ¢
i Zj# W, (7_‘_](_2671)7 7T§t72)) +e

(13)

where C'is a positive hyperparameter and e is adaptively set
as
€ = max(€pase, Min(€max, D—_;/10)) (14)

where D_; is the teammate drift sum. Here, €p, 1s the min-
imum regularization value preventing division by zero when
all teammates’ policies are perfectly stable, and ey« is the
maximum regularization value that prevents the trust region
from becoming too small even when teammates exhibit high
drift.

The CAATR update procedure (Algorithm 2) takes as input
the current and previous policies for all agents, along with

Algorithm 1 W-MATRPO with CAATR

Require: Initial policy (0 parameters C, €pase; Emax
1: Initialize policy drift history
2: fort=0,1,2,...do
3:  Collect trajectories and compute joint advantage
A
Compute trust-regions {6£t+1)} using Algorithm 2
Randomly order agents o
Initialize U, = ) (set of updated agents)
for k =1to N do
i+ o(k)
Compute M;(s,a) using Uy,
Solve dual problem for agent i: Af <
argminy, >0 g(A;)
11: Update policy 7r,§t+1) with A}
12: Apply importance sampling correction
13: U +— U U {7}
14:  end for
15:  Update centralized critic parameters ¢
16:  Store policy drift Drift|” for all j
17: end for ‘

SV Iank

hyperparameters C, €pase, and eqax. For each agent j (lines

1-3), it computes the policy drift Driftgt) as the expected

Wasserstein distance between the agent’s current policy 77]@

and previous policy rit= (line 2). Then, for each agent ¢

(lines 4-8), the algorit}]lm computes the teammate drift sum
D_; by summing the drifts of all other agents except agent
¢ (line 5). € is adaptively set based on the teammate drift
(line 6). We then set agent ¢’s adaptive trust-region radius as
5£t+1) = C/(D—; + ¢) (line 7). Finally, the algorithm re-
turns the complete set of adaptive trust-region radii for all
agents (line 9).

Algorithm 2 CAATR trust-region update

Require: Current policies {7r§t)}, previous policies
{W](‘til) }’ 07 Ebasey Emax

Ensure: Adaptive trust-region radii {(55
1: for j =1to N do

2:  Compute policy drift: Driftg-t) + E[W; (7r§t), F;til))]
3: end for

4: fori=1to N do

5:  Compute teammate drift sum: D_; < > ki Drift!"
6

t+1)}

J
Set adaptive epsilon: € —
maX(Ebasea min(amaxa D—Z/IO))

~

Set adaptive trust-region: 5§t+1) -3 c

—_i+e
end for
9: return {65“1), ce (5%“)}

*®

Sequential Updates and Loss Functions Agents are up-
dated sequentially in random order to ensure that policy im-
provements account for the changing behavior of teammates



within each iteration. An importance sampling correction is
applied to the learning signal at each step to minimize bias-
ing of the advantage estimates. Formally, let I/}, denote the
set of agents updated before agent 7 in the current iteration.
The importance-corrected learning signal for agent ¢ is:

M;(s,a) = A’T(‘]d(s,a) H M (15)

i, T(aslon)

where A”Old(s,a) is the original advantage estimate. The
policy parameters 6; and dual variable A; for each agent are
updated using the following optimization scheme:

E,’ (91, )\z) = - Es,aND [Mi(sa a)]
+ Ai (Eomn W (5 5), 70 ()] - )

(16)
We minimize £; with respect to §; using gradient descent:
91' < 91 — QQVQiﬁi(ei, /\1) (17)

and maximize with respect to \; using gradient ascent
(equivalent to minimizing the dual):

i (—/\Z‘—FOC)\V)W.E@'(Q,',/\Z‘) (18)

where oy and «) are the learning rates. This ensures \;
acts as a Lagrange multiplier enforcing the trust-region
constraint while being consistent with the dual problem
miny,>o g(A;). The gradient ascent on \; automatically ad-
justs its value: if the policy violates the trust region con-
straint (W7 distance exceeds d;), A; increases to penalize
large updates more strongly; if the constraint is satisfied
with margin, \; decreases to allow more aggressive policy
improvements. (Note that while the dual formulation avoids
Wasserstein distance computation in the policy gradient step
through the inner maximization, the loss function still re-
quires W7 estimates for the constraint term and CAATR re-
quires them for adaptation.) Critic parameters ¢ are updated
by minimizing the standard mean-squared TD-error:

E((b) = IE(S,a,r‘,s/)wD [(7‘ + 7V¢[argsn(8/) - Q¢(8a a))ﬂ
(19)

Theoretical Results

We now present further theoretical results for our approach.
We begin by stating the regularity conditions required for
our analysis. For convenience, we provide a table of nota-
tion, seen in Table 1:

Assumption 1 (Regularity of Spaces and Dynamics). The
state space S is a compact subset of a Euclidean space,
and each agent’s action space A; is a compact metric space
equipped with a distance function that makes it complete and
separable. The reward function v : S x A — R is continu-
ous. For every continuous function w : S — R, the mapping
(s,a) = [gw(s")dP(s'|s,a) is continuous in both s and a.
Assumption 2 (Continuity of Advantage and Cost). For
every joint policy m € 1I, the advantage function A™
S x A — R is continuous in both state and action. The
transport cost function ¢ : A; x A; — Rxq is continuous
and satisfies c(a;,a;) = 0 for all a; € A,.

Table 1: Notation for Theoretical Analysis

Symbol  Description

i Dual variable for agent ¢
Af Optimal dual variable for agent 7
®,(s,a;) A-regularized advantage function
Dx(s,a;)  Set of maximizers of regularized advantage
c(a;,a})  Transport cost between actions a; and

0; Trust region radius (Wasserstein distance bound)

Tx(s,a;) Closest maximizer transport map
Tx(s,a;) Furthest maximizer transport map

fap Pushforward of measure p through map f

t* Mixing parameter for optimal transport maps
i Updated policy for agent ¢

Wh Wasserstein-1 distance

Id Identity map

Vs Transport plan at state s

Pr State distribution under policy m

We use the standard c-transform identity from optimal trans-
port theory: sup, {{f,v) — A\W,(u,v)} = fsupy[f(y) —
Ae(x, y)]dp(x), which allows us to convert the supremum
over probability measures to a pointwise maximization.

Remark 2. Assumption I is standard in the MDP literature
(Herndndez-Lerma and Lasserre 2012) and guarantees ex-
istence of optimal stationary policies. Assumption 2 ensures
that the regularized advantage function is well-behaved and
that the Wasserstein distance is a proper metric.

Having established the regularity conditions, we character-
ize the optimal policy update through the A-regularized ad-
vantage function. For any A > 0, define:

Dy (s,a;) = max {A™(s,a;,a_;) — Ae(ag,ab)},  (20)
al€A;

and its associated set of maximizers:
Di(s,a;) := arg ;}_ﬂeaj?{Aﬂ(SaaL a—;) = Xe(ag,a7)}. (21)

The regularized advantage @ balances maximizing the ad-
vantage function against a transport cost penalty scaled by
A, and plays a central role in characterizing optimal trans-
port maps.

Corollary 1 (Optimal Policy Characterization). Under As-
sumptions 1 and 2, let \} > 0 minimize the dual problem
from Theorem 1. Then there exist measurable selection maps
Tye, T+ S x Aj — A, satisfying:

Ty+(s,a;) € arg ~ min
4 QEGDAI (s,a4)

c(a;,al), (22)

Ty+(s,a;) € arg  max
‘ a;€Dy= (s,a5)
k2

c(a;, al). (23)

When X! > 0, there exists t* € [0, 1] such that:
t*Es,aiNW [C(ai7 T)\f (87 az))]

. . (24)
+ (1 = t")Es q;~rlclai, Tax (s, ai))] = 0;.
An optimal policy for problem (P) is given by:
Ti(+]8) =t"Thx (s, ) am;(+|s
(:]s) o (s, )umi(ls) 25)

+ (1 =1)Tx; (s, ) mi(]s),
where t* = 0 if A} = 0.



Proof. By Assumptions 1 and 2, the advantage function
and cost are continuous, so the correspondence (s, a;)
Di(s,a;) is closed-valued and measurable. Since the cost
function ¢(a;, -) is continuous on the compact set D (s, a;),
it attains its minimum and maximum. The existence of mea-
surable selections T’ and 1"y follows from standard measur-
able selection theorems.

When A} > 0, the trust region constraint is active. Consider
the transport plan:

Vs ::t*(Ida TA;‘ (57 ))#7’(1(|$)
+ (1 - t*)(Idvf)\f (57 ))#ﬂ—l(|8)v
where Id denotes the identity map. This plan has marginals

7;i(-|s) and 7;(+|s), yielding:
Wi (o), miC1s) < [

.Ai X AZ

(26)

c(a;, ay) dys(a;,al) (27)

= t'Ele(as, Ta:)] + (1 — t*)Ele(as, Th: ).

(28)

The parameter t* is chosen to satisfy the trust region con-
straint with equality. When A7 = 0, the constraint is not
binding and setting t* = 0 suffices. O

We now establish what guarantees the dual solution pro-
vides.

Proposition 1 (Surrogate Objective Bound). Let 7% denote
the current joint policy and \; > 0 the optimal dual variable
for agent i. When agent i updates to 7" via Corollary 1
while teammates remain at 71'0_’;-1, the surrogate objective sat-
isfies:

Mm(’“(s,a) > A5 (29)
i (ails)

Proof. By strong duality, the primal optimal equals the
dual optimal. The left side is the primal objective at 7%,
which equals \;6; + E[®:(s,a;)]. Since ®x(s,a;) >

old

A™(s,a;,a_;) and E,[A™"(s,a)] = 0, the result fol-
lows. O

ES’QNWM/

Remark 3. The dual variable X\ represents the shadow
price of the trust region constraint: each unit of Wasserstein
distance 0; contributes at least X} to surrogate improvement.
However, actual performance J (") depends on state dis-
tribution shift, which we cannot bound tightly without MDP-
specific structure.

NUMERICAL EXAMPLES
Multi-Agent Differential Game

We evaluate the proposed algorithm on an n-agent differen-
tial game where agents must coordinate to reach a global op-
timum while avoiding local optima. The joint reward func-
tion for n € {2,3,5,7,9} agents is given by

1 2 Q; — ) 2
r(ai,...,an) =agexp (—22w>
i

i=1

+ oy exp (—; Z(ai — 1)2>

=1

(30)

where the global optimum is located at (5,...,5) with co-
efficient oy, = 10/((27)"/2]]; 1), and a local optimum
exists at (1,...,1) with coefficient oy = 6.5/(27)™/2. The
variance terms are set as 0y = 03 = 1 and 09 = 3 to in-
troduce asymmetry among agents, creating different learn-
ing dynamics that test coordination under non-uniform gra-
dients. Actions are constrained to [0, 7] for all agents.

Each agent i maintains a Gaussian policy m;(-) = N (u;, 02)
initialized at p; = 1.5, 0; = 0.5, placing agents near
the local optimum. The challenge is for agents to coordi-
nate their policy updates to escape the local optimum basin
and converge to the global optimum. We implement the W-
MATRPO algorithm with CAATR. (Note that hyperparam-
eters are shown in Table 2.) The 1-Wasserstein distance be-
tween Gaussian policies is computed as

Wi (N (p1,01), N (2, 03)) = |1 — po| + oy — o2]. 31

Table 2: Differential Game Hyperparameters

Parameter 3 Agents 5 Agents 7 Agents 9 Agents
Iterations 4000 4000 4000 4000
Batch size 30 30 30 30
CAATR constant (C') 0.02 0.02 0.10 0.15
Trust region (9) 0.1 0.1 0.1 0.1
Initial ;0 1.5 1.5 1.5 1.5
Initial o 0.5 0.5 0.5 0.5
Critic LR 0.2 0.2 0.2 0.2

Results

We find that W-MATRPO with CAATR exhibits fundamen-
tally unique behavior compared to KL.-based TRPO meth-
ods in multi-agent settings. Most interestingly, the algorithm
is successful at escaping local optima in differential game
environments, while both adaptive and non-adaptive HA-
TRPO variants seem to remain in local optima traps, thereby
not exploring other locales. However, it is noteworthy that
the W-MATRPO with CAATR algorithm did not end up fi-
nally converging to the global optima. This has the following
implication: the inclusion of distance measures that respect
the underlying structure of the action space may be benefi-
cial in multi-agent coordination tasks, such as that required
to escape local optima and approach a global optimum, as
seen in Figure 1.

The CAATR mechanism has mixed success. In the differ-
ential game, combining CAATR with standard HATRPO
seemed to provide minimal benefit when included with HA-
TRPO. However, when paired with Wasserstein constraints,
CAATR appears to facilitate coordinated exploration as seen
in Figure 1. HATRPO includes a backtracking line search
mechanism, which we hypothesize interferes with any ben-
efit offered by the CAATR, as step size reductions and re-
jected updates artificially suppress the measured policy drift
that CAATR uses to coordinate trust region adaptation. (This
issue is not present in the W-MATRPO algorithm as the dual
formulation does not require or use backtracking.) CAATR’s
value seems to emerge when the underlying trust region
geometry already supports efficient exploration, serving to
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Figure 1: 2-agent differential game setup tested with three algorithms, HATRPO, HATRPO with CAATR and WMATRPO with
CAATR. Only WMATRPO with CAATR successfully escapes local maximum and approaches global maximum.

Table 3: Performance Comparison of Multi-Agent Algorithms. Our proposed W-MATRPO with CAATR (highlighted in
blue) consistently achieves the lowest distance to the global reward surface across all agent configurations, with an average
improvement of 64% over baseline methods. The distance metric measures convergence quality, where lower values indicate

superior performance.

Agents  Algorithm Final Actions Distance | Improvement
Standard HATRPO (0.995, 1.002, 1.013) 6.9227 baseline
3 HATRPO with CAATR (1.063, 1.040, 1.011) 6.8623 0.9%
W-MATRPO with CAATR (3.829, 3.517, 3.466) 2.4335 64.8 %
Standard HATRPO (1.004, 0.992, 0.999, 0.999, 1.017) 8.9393 baseline
5 HATRPO with CAATR (1.008, 0.963, 0.973, 1.030, 1.006) 8.9534 -0.2%
W-MATRPO with CAATR (3.566, 3.571, 3.537, 3.509, 3.508) 3.2690 63.4%
Standard HATRPO (1.016, 1.027, 1.025, 1.035, 1.026, 1.034, 1.015) 10.5157 baseline
7 HATRPO with CAATR (0.958, 0.953, 1.024, 0.988, 0.977, 0.961, 0.998) 10.6361 -1.1%
W-MATRPO with CAATR (3.536, 3.557, 3.554, 3.522, 3.481, 3.592, 3.506) 3.8760 63.1%
Standard HATRPO (1.014, 0.996, 0.952, 0.987, 0.978, 1.001, 0.964, 0.954, 0.976) 12.0590 baseline
9 HATRPO with CAATR (1.042, 0.981, 1.038, 0.990, 1.033, 1.035, 0.944, 1.029, 0.987) 11.9741 0.7%
W-MATRPO with CAATR (3.540, 3.565, 3.569, 3.574, 3.577, 3.574, 3.492, 3.525, 3.587) 4.3330 64.1%

modulate the exploration rate based on team stability. The al-
gorithm’s performance across different multi-agent settings
seems consistent (see Table 3), with the distance from global
optimum scaling approximately linearly with the number of
agents. This suggests that the coordination challenge inten-
sifies with team size, but the fundamental escape mechanism
remains effective for W-MATRPO as the number of agents
increase.

Limitations and Future Directions

The most notable limitation is the apparent difficulty of
reaching global maxima, as observed in the ablation study.
The tradeoff of improved exploration may potentially cause
paths to global maxima to be avoided in transit. Reduction in
the basin gap was observed to have a positive effect on per-
formance, indicating that reduction in search space improves
the performance of this approach. Another important limita-
tion to be noted is the computational overhead required in
solving the dual optimization problem. This increases wall-
clock training time for our approach as compared to simi-
lar approaches, which is inevitable due to the computational

1 Lower is better

cost of the approach. Second, our theoretical guarantees as-
sume accurate advantage estimation, which may not hold
early in training when the critic is poorly calibrated.

The results also indicate that even if Wasserstein-based ap-
proaches are seemingly successful at avoiding local op-
tima, superior tenets of KL-based approaches (lower com-
putational overhead, overall performance) suggest that both
methods seem to be useful in certain scenarios. Future work
should investigate hybrid approaches that dynamically select
between Wasserstein and KL constraints based on the ob-
served optimization landscape. Additionally, the framework
should be extended to competitive or mixed-agent settings
to determine if geometric awareness provides similar bene-
fits in scenarios where agents may not share a joint policy,
or when objectives are not aligned. Finally, this approach
needs further evaluation on larger-scale benchmarks such as
SMACV2 (Ellis et al. 2023).

Conclusion

This work presents a tractable dual formulation for
Wasserstein-constrained trust region policy optimization



in cooperative MARL. By replacing KL-divergence con-
straints with Wasserstein-1 distance, we reduce the infinite-
dimensional primal optimization to a one-dimensional con-
vex problem over a single dual variable per agent, with
explicit characterization of optimal policy updates and
bounds on surrogate objective improvement. We intro-
duce a coordination-aware adaptive trust region mechanism
(CAATR) that modulates each agent’s trust region inversely
proportional to teammate policy drift. Empirical evaluation
on differential games demonstrates that the resulting W-
MATRPO algorithm achieves improved exploration com-
pared to KL-based methods, successfully escaping local op-
tima where HATRPO fails. The primary contribution is com-
putational: the dual formulation provides a practical algo-
rithm for Wasserstein trust regions without requiring explicit
Wasserstein distance computation during optimization. Fu-
ture work should investigate when geometric trust regions
provide advantages over information-theoretic constraints,
extend the framework to competitive settings, and evaluate
on larger-scale benchmarks to determine the generality of
the observed exploration benefits.
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