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ABSTRACT

Last-layer retraining (LLR) methods — wherein the last layer of a neural network is reinitialized and
retrained on a held-out set following ERM training — have recently garnered interest as an efficient
approach to rectify dependence on spurious correlations and improve performance on minority groups.
Surprisingly, LLR has recently been found to improve worst-group accuracy even when the held-out
set is an imbalanced subset of the training set. We initially hypothesize that this “unreasonable
effectiveness” of LLR is explained by its ability to mitigate neural collapse through the held-out set,
resulting in the implicit bias of gradient descent benefiting robustness. Our empirical investigation
does not support this hypothesis. Instead, we present strong evidence for an alternative hypothesis:
that the success of LLR is primarily due to better group balance in the held-out set. We conclude by
showing how the recent algorithms CB-LLR and AFR perform implicit group-balancing to elicit a
robustness improvement.

1 INTRODUCTION

The standard neural network training procedure of empirical risk minimization (ERM) (Vapnik, 1998), which minimizes
the average classification loss, is well-known to overfit to spurious correlations in the training set (Geirhos et al., 2020).
The conjunction of target labels and spurious features form minority groups, upon which ERM performance may be no
better than random guessing (Shah et al., 2020). Due to the relevance of spurious correlations in high-consequence
applications, e.g., medicine (Zech et al., 2018) and criminal justice (Chouldechova, 2016), significant work has focused
on algorithms which maximize worst-group accuracy (WGA) — also called group robustness (Sagawa et al., 2020).

A promising family of group robustness methods are based on last-layer retraining (LLR), wherein the last layer is
reinitialized and retrained on a held-out set following ERM training. The original LLR method, called deep feature
reweighting (DFR), requisites the held-out set to comprise equal data from each group (Kirichenko et al., 2023). This
limits its practical application, as the groups are often unknown ahead of time or difficult to annotate.1 While DFR still
performs the best, group information was recently found to be unnecessary to observe WGA improvement from LLR
(Qiu et al., 2023; LaBonte et al., 2023). This surprising observation has led LLR to be termed a “free lunch” for group
robustness (LaBonte et al., 2023).

Contributions. In this paper, we take a “scientific method” approach to investigate why LLR on an imbalanced
held-out subset of the training set can perform so well. Our contributions include:

• We propose an initial hypothesis (visualized in Figure 1) that neural collapse on the training set results in a
biased ERM classifier since the class means are dominated by majority group data. We initially hypothesize
that during LLR, the features are not collapsed on the held-out set, and so the implicit bias of gradient descent
elicits a maximum-margin classifier that could enjoy better robustness guarantees.

• We put forth evidence which does not support our initial hypothesis. First, neural collapse either does not
occur or occurs after the standard number of epochs for our benchmark datasets. Moreover, convergence of
the LLR classifier to the maximum-margin solution is extremely slow, and the average margin over all training
data is much more correlated with group accuracy than the (standard) minimum margin over training data.

1However, DFR compares favorably in this respect to methods which require group annotations for the entire training set, such as
group distributionally robust optimization (DRO) (Sagawa et al., 2020).
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(a) Dataset with Majority and
Minority Groups

(b) Collapsed Features with Bi-
ased Classifier (c) Held-out Features with

Optimal Classifier

Figure 1: Visualization of our initial hypothesis. In Figure 1(a), we visualize the feature space of a training set with
two classes and two features, one core and one spurious. In Figure 1(b), we visualize our initial hypothesis that neural
collapse on the training set causes the features to collapse to their class means — dominated by majority group data —
resulting in a biased ERM classifier. In Figure 1(c), we visualize our initial hypothesis that during LLR, the features are
not collapsed on the held-out set, and so the implicit bias of gradient descent elicits a maximum-margin classifier which
is invariant to the spurious feature. Importantly, our empirical investigation does not support our initial hypothesis.
Instead, we find that the success of LLR is primarily explained by better group balance in the held-out set.

• We present strong evidence for an alternative hypothesis: that the success of LLR is primarily due to better
group balance in the held-out set, often achieved implicitly through class balancing. Our experiments indicate
that LLR does not improve over ERM when the held-out set has the same group balance as the training set,
with Pearson correlation coefficient r > 0.99 on CelebA and CivilComments. On the other hand, LLR with a
better group balance enjoys drastically improved WGA, and vice versa.

• Ultimately, we reevaluate the “free lunch” interpretation of LLR by showing that class balanced LLR (CB-
LLR) (LaBonte et al., 2023) and automatic feature reweighting (AFR) (Qiu et al., 2023) owe their improved
WGA primarily to implicit group-balancing on the held-out set. On a positive note, we show that LLR can
recover the WGA of an optimally class-balanced model even when ERM was not optimally class-balanced.
More broadly, LLR remains an effective method to achieve group robustness using group annotations only on
the held-out set (or proxies thereof, such as in SELF (LaBonte et al., 2023) and AFR (Qiu et al., 2023)).

Related work. Reliance on spurious correlations is a widely-studied phenomenon in machine learning known to
exacerbate bias and hinder generalization, e.g., Beery et al. (2018); Geirhos et al. (2020); Sagawa et al. (2020). Last-layer
retraining, proposed by Kirichenko et al. (2023), has recently garnered interest as an efficient approach to improve
group robustness in a variety of settings (Qiu et al., 2023; LaBonte et al., 2023; Stromberg et al., 2024; Park et al., 2025).
Our work aims to further a fundamental understanding of LLR methods, following broadly in the spirit of Izmailov et al.
(2022); Ye et al. (2023); Chen et al. (2023); Welfert et al. (2024); Qiu et al. (2024). Our initial hypothesis primarily
concerns neural collapse, a phenomenon introduced by Papyan et al. (2020); Han et al. (2022) which has been applied
to the study of fairness and spurious correlations in the context of ERM by Lu et al. (2024); Wang et al. (2024); Chen
et al. (2024); Xu et al. (2025), but never before to LLR. We also consider the implicit bias of gradient descent in
logistic regression towards the maximum ℓ2-margin classifier, studied in the separable case by Soudry et al. (2018) and
the non-separable case by Ji & Telgarsky (2019) (though a rich literature exists on this topic; see Vardi (2023) for a
recent survey). Finally, in Section 3 we evaluate the impact of group balance on LLR performance via a case study on
class-balancing, a popular lightweight method to improve group robustness studied by Idrissi et al. (2022); Chaudhuri
et al. (2023); Shwartz-Ziv et al. (2023); LaBonte et al. (2024).

Setting. We consider the setting of classification tasks with input domain X and target classes Y . We assume the
existence of a set of spurious features S such that each data point x ∈ X is associated with a single spurious feature

2



104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

(a) Waterbirds (b) CelebA

Figure 2: Collapse of class feature variability occurs after standard ERM training, if at all. We plot the empirical
metric of neural collapse NC1 := 1

|Y| tr(ΣAΣ
†
R) throughout training a ResNet-18 on Waterbirds and CelebA. Each plot

displays the mean and standard deviation for NC1 computed across 3 experimental seeds. We also display the mean
NC1 metric computed on the features of the held-out set at the end of training (EoT). We believe the cyclic spikes in
the Waterbirds plot are due to the cosine learning rate scheduler used when training the model.

s(x) ∈ S . The dataset is partitioned into groups G by the Cartesian product of classes and spurious features: G := Y×S .
Let Ωg ⊆ {1, ...,m} denote the indices of training points belonging to group g ∈ G. Similarly, let Ωy ⊆ {1, ...,m}
denote the indices of training points belonging to class y ∈ Y . We define the majority group(s) to be the groups which
maximize |Ωg|. All other groups are considered to be minority groups. Importantly, we also define the worst group(s)
to be the group(s) with lowest test accuracy. Our goal is to find a model which, despite group imbalance in the training
set, performs uniformly well across groups. To evaluate this, we use worst-group accuracy (WGA), or the minimum
accuracy achieved among all groups (Sagawa et al., 2020).

Datasets and models. We employ four benchmark classification datasets in our experiments: Waterbirds (Welinder
et al., 2010; Wah et al., 2011; Sagawa et al., 2020), CelebA (Liu et al., 2015; Sagawa et al., 2020), CivilCom-
ments (Borkan et al., 2019; Koh et al., 2021), and MultiNLI (Williams et al., 2018; Sagawa et al., 2020). We discuss
each dataset at length in Appendix B.1. We use ResNet-18 and ResNet-50 (He et al., 2016) models pretrained on
ImageNet-1K (Russakovsky et al., 2015) for the Waterbirds and CelebA datasets, and a BERT-Base (Devlin et al., 2019)
model pretrained on Book Corpus (Zhu et al., 2015) and English Wikipedia for CivilComments and MultiNLI. Our
implementation of LLR uses SGD with no learning rate schedule or regularization. Following standard practice, we
use 20% of the training set for the held-out set on Waterbirds and half the validation set as the held-out set in all other
datasets. Further training details are located in Appendix B.2.

2 NEURAL COLLAPSE AND IMPLICIT BIAS DO NOT EXPLAIN LLR

The interpretation of LLR methods as logistic regression on top of convergent ERM features lends itself to a possible
understanding combining a feature learning phenomenon (neural collapse) and a logistic regression phenomenon
(implicit bias). Neural collapse was first identified by Papyan et al. (2020); Han et al. (2022) and implies that the
penultimate layer features collapse to their class means over the course of ERM training. On the other hand, implicit
bias results state that linear classifiers trained via gradient descent with the unregularized logistic loss converge in
direction to the maximum-margin SVM solution (Soudry et al., 2018; Ji & Telgarsky, 2019).

Combining these two ideas, we developed the following initial hypothesis (visualized in Figure 1). We hypothesized
that the model undergoes neural collapse during ERM training, causing the features to collapse to their class means.
These class means, however, are dominated by the largest groups in each class — resulting in ERM learning a biased
classifier. We hypothesized that during LLR, the features are not collapsed as the held-out set was not seen during
ERM; hence, the implicit bias of gradient descent elicits a robust maximum-margin classifier.

In this section, we present evidence which does not support our initial hypothesis. Specifically, we find that neural
collapse either does not occur or occurs after the standard number of epochs of ERM training. Moreover, convergence of
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(a) Waterbirds (b) CelebA

Figure 3: Convergence of LLR to the maximum-margin SVM solution is extremely slow. We plot the mean and
standard deviation over 3 experimental seeds of the directional error Êrr between the last layer weights of a ResNet-18
last layer and an SVM (both trained on the features of the held-out set). Here, Êrr := || θNN

||θNN||2 − θSVM
||θSVM||2 ||2, where

θNN denotes the last layer weights and θSVM denotes the weights of an SVM trained on the held-out set features.

the LLR classifier to the maximum-margin solution is extremely slow, and the average margin is much more correlated
with group accuracy than the (standard) minimum margin.

2.1 NEURAL COLLAPSE MAY NOT OCCUR DURING STANDARD ERM TRAINING

We will measure the collapse of variability among feature representations via a metric called NC1. For each class
y ∈ Y and each training example i ∈ Ωy in that class, we denote the penultimate layer feature vector of i as fy,i. Neural
collapse posits that features collapse to their respective class mean µy := 1

|Ωy|
∑

i∈Ωy
fy,i. We compute an empirical

metric of this collapse using the intra-class covariance matrix ΣA := 1
m

∑
y∈Y

∑
i∈Ωy

(fy,i − µy)(fy,i − µy)
⊤, the

global feature mean µG := 1
|Y|

∑
y∈Y µy , and the inter-class covariance matrix ΣR := 1

|Y|
∑

y∈Y(µy−µG)(µy−µG)
⊤.

We then define NC1 := 1
|Y| tr(ΣAΣ

†
R), where Σ†

R denotes the pseudo-inverse of ΣR. Neural collapse is formalized by
NC1 → 0 (Han et al., 2022; Kothapalli, 2023).2

If neural collapse plays a significant role in ERM learning a biased classifier prior to LLR, then a collapse in feature
variability should be observed during a standard number of ERM training steps. We display NC1 for a ResNet-18 on
Waterbirds and CelebA in Figure 2. We train on both datasets for much longer than normal and denote the standard
number of training steps in the spurious correlations literature (Sagawa et al., 2020; Kirichenko et al., 2023).

In Figure 2, we see evidence of feature collapse on Waterbirds. NC1 is two orders of magnitude larger for the held-out
set than for the training set by the end of training. However, complete collapse is not achieved by the standard number
of epochs. The CelebA features do not appear to collapse within any reasonable number of training steps as NC1

remains comparable between the training and held-out sets even after more than 3× the standard number of training
steps. Also, NC1 measured on the CelebA training set experiences no significant decrease after the first epoch. Thus, it
is unlikely that neural collapse significantly affects the classifier learned by ERM prior to LLR in real-world datasets.

2.2 THE MINIMUM MARGIN OF LLR IS NOT PREDICTIVE OF ROBUST GENERALIZATION

Let fθ : X → {−1, 1} be a binary linear classifier defined by fθ(x) = x⊤θ+b. Let D := {(xi, yi)}ni=1 ⊆ X ×{−1, 1}
be the training set and C := {xi : yif(xi) > 0} be the set of points correctly classified by fθ. Then, we define the
minimum ℓ2-margin of fθ to be minxi∈C yifθ(xi) and the average ℓ2-margin of fθ to be 1

n

∑n
i=1 yifθ(xi). The hard

margin SVM is a binary linear classifier formulated through the following optimization problem: minθ,b
1
2 ||θ||

2
2 such

that yi(x⊤
i θ + b) ≥ 1 for all (xi, yi) ∈ D. The classifier θSVM learned by a hard margin SVM is the separating

hyperplane which maximizes the minimum ℓ2-margin. Soudry et al. (2018) show that linear classifiers trained via

2A slightly less precise formulation ΣA → 0 was studied by Papyan et al. (2020).
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(a) Waterbirds (b) CelebA (c) CivilComments (d) MultiNLI

Figure 4: LLR performance is determined by held-out set group balance. We compare the test WGA of ERM and
LLR models while controlling the group balance of the training and held-out sets. We train a ResNet-50 for the vision
datasets and a BERT-Base for the language datasets, and we plot the mean and standard deviation over 3 experimental
seeds. A group ratio of 1.00 corresponds to the majority and minority groups having equal size, whereas a group ratio
of 0.05 implies that the minority groups are 5% the size of the majority groups. We compute the Pearson correlation
coefficient between the test WGA of ERM and the test WGA of LLR for each dataset while keeping group ratios fixed
in the comparison. We find that the correlation coefficient is close to 1 for all datasets. In particular, LLR tends to
improve over ERM only if the held-out set has better group balance.

GD with the unregularized logistic loss converge in direction to θSVM. In particular, || θGD
||θGD||2 − θSVM

||θSVM||2 ||2 → 0 at

a worst-case rate of O( log log t
log t ) where t is the number of gradient steps. This result can also be extended to the

nonseparable case, though, as one might expect, the implicit bias is more complex (Ji & Telgarsky, 2019).

If LLR maximizes the minimum training margin and this results in a debiased classifier, then we should see a high
correlation between the size of group minimum margin and group test accuracy (i.e., minority group points lie near
the decision boundary). However, we find that the minimum training margin for a group is not correlated with the test
accuracy for that group. Interestingly, we find that average group training margin actually is correlated with group test
accuracy. We display the Pearson correlation coefficients in Table 1 (deferred to Appendix A).

Moreover, convergence towards θSVM is slow in practice. We train a ResNet-18 last layer on the held-out set via SGD
with learning rate 0.001 and unregularized logistic loss, and we plot its directional error with θSVM in Figure 3. In line
with the slow O( log log t

log t ) rate, we find that even after 10× the number of standard training steps, the LLR classifier
has yet to converge to θSVM. As convergence to θSVM is slow and minimum ℓ2-margin is uncorrelated with group test
accuracy, we conclude that SVM convergence and minimum margin bounds are unlikely to explain LLR.

3 GROUP BALANCE CORRELATES STRONGLY WITH LLR PERFORMANCE

The negative results of Section 2 prompted us to reconsider our initial hypothesis. We now present strong evidence for
an alternative hypothesis: that the success of LLR is primarily due to better group balance in the held-out set than the
training set. We also show how recent LLR algorithms owe their success to implicit group-balancing on the held-out set.

3.1 LLR PERFORMANCE IS DETERMINED BY HELD-OUT SET GROUP BALANCE

To isolate the effect of group balance on LLR, we perform an ablation study, shown in Figure 4. We directly control the
group ratios — defined as the ratio between the number of minority group points and the number of majority group
points — by removing data until the desired group ratio is achieved for each class. We vary the group ratios for both the
ERM training set and the LLR held-out set between 0.05 and 1.00, keeping the total data in each stage constant. For
a fair comparison, the ERMs in Figure 4 are trained with the held-out set added in. For example, on Waterbirds we
compare LLR with 20% of data following an ERM with 80% of data (colored line) to an ERM with 100% of data (gray
line). Note that LLR with a group ratio of 1.00 corresponds to DFR.
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(a) Waterbirds (b) CelebA (c) CivilComments (d) MultiNLI

Figure 5: LLR does not significantly improve over optimally class-balanced ERM. We plot the test WGA of ERM
(trained on 100% of available data) and LLR (trained using a training/held-out set split) using no class-balancing,
upsampling, upweighting, and subsetting. We train a ResNet-50 for the vision datasets and a BERT-Base for the
language datasets and plot the mean and standard deviation over 3 experimental seeds. We find ERM matches the
performance of LLR when ERM is trained with optimal class-balancing. Note that MultiNLI is class balanced a priori.

We find that LLR performance is almost completely determined by the change in group balance between the training
and held-out datasets. LLR only shows significant gains over ERM when it is trained on a held-out set with a higher
group ratio than the ERM training set, and vice versa. In Figure 4, we detail the Pearson correlation coefficients
between ERM and LLR test WGA across all group ratios and observe a strong trend, with r > 0.99 on CelebA and
CivilComments. Moreover, the test WGA of LLR trained with a fixed group ratio is nearly identical to the test WGA of
ERM trained with that same group ratio (observed most impressively on CelebA).

These results indicate that the two-stage training procedure of LLR methods is not fundamentally oriented towards
learning a debiased classifier as we initially hypothesized. Rather, some form of group-balancing is necessary to capture
any of the robustness benefits achieved by DFR. Moreover, LLR methods are limited by how well they improve the
group ratio, and thus DFR likely upper bounds the WGA of any LLR method which does not utilize group annotations.

3.2 RECENT LLR METHODS SUCCEED VIA IMPLICIT GROUP-BALANCING

In this section, we show how the recent LLR methods of class-balanced LLR (CB-LLR) (LaBonte et al., 2023)
and automatic feature reweighting (AFR) (Qiu et al., 2023) perform implicit group-balancing to elicit a robustness
improvement without group annotations.3 Oftentimes, this is achieved by class-balancing.

We utilize three standard techniques for class-balancing: subsetting, wherein the size of each class is reduced to
match the size of the smallest class; upsampling, wherein sampling probabilities for each class are adjusted so that the
mini-batches are balanced in expectation; and upweighting, wherein minority class samples are assigned larger weights
in the loss function (Idrissi et al., 2022; LaBonte et al., 2024). Since groups are defined with respect to classes, each of
these class-balancing methods partially group-balance the dataset without requiring group annotations.

In Figure 5, we compare the test WGA of class-balanced ERM and class-balanced LLR, and we find that the improvement
of LLR over ERM is dependent on the class-balancing methods used. We find optimally class-balanced ERM achieves
nearly the same test WGA as optimally class-balanced LLR on all datasets! The CB-LLR results of LaBonte et al.
(2023) use upsampling for ERM (as well as LLR), which on CelebA and CivilComments is suboptimal and explains
why CB-LLR seems to work so well. On a positive note, this means that LLR can recover the WGA of an optimally
class-balanced model even when ERM experiences catastrophic collapse.

Compared to standard LLR, which utilizes the cross-entropy loss only, AFR incorporates a weighted loss function
which prioritizes points upon which the ERM model performs poorly. Specifically, AFR introduces a weight for each
held-out example i proportional to exp(−γp̂i), where p̂i is the probability for the correct class yi and γ ≥ 0 is a
tunable temperature parameter.4 Therefore, the AFR held-out set effectively has better group balance than the training
set! Notably, the ablations of Qiu et al. (2023) show that setting γ = 0 reduces to CB-LLR with upweighting, thus
explaining its improvement over an ERM with no class-balancing (see Figure 5).

3LaBonte et al. (2023) also propose SELF: unlike AFR and CB-LLR, it explicitly constructs a more group-balanced held-out set.
4Loss-based adjustments are common among group robustness methods not using group annotations, e.g., Liu et al. (2021).
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A ADDITIONAL EXPERIMENTS

In this section, we present additional experiments deferred from the main body of the work. First, in Table 1, we include
the Pearson correlation coefficient between the test accuracy on each group and its minimum/average margin, calculated
as defined in Section 2.2. We find that the minimum training margin on a group is surprisingly uncorrelated with the
test accuracy on that group; instead, the average training margin on a group is strongly correlated with its test accuracy.

Table 1: Correlation between types of training margins and group test accuracy. We compute the Pearson
correlation coefficient between the test group accuracy of a ResNet-18 and the minimum/average margin of each group
across 3 experimental seeds. We see that average training margin is much more correlated with group test accuracy than
minimum training margin. We leave an explanation of the predictive power of average margin for future work.

Margin Metric Waterbirds CelebA

Minimum Margin −0.132 0.093
Average Margin 0.668 0.789

Second, we study an extension of the implicit group-balancing discussion from Section 3.2 to explicit group balancing.
As discussed in Section 3.2, we investigate three explicit balancing methods: subsetting, upsampling, and upweighting.
It has previously been observed that using upsampling or upweighting for class-balancing can result in drastic decreases
to test WGA during training (LaBonte et al., 2024). If the performance improvement from LLR is indeed primarily
due to the implicit group-balancing achieved by class-balancing, we would expect similar collapse when we explicitly
group-balance using these same techniques.

(a) Waterbirds (b) CelebA (c) CivilComments (d) MultiNLI

Figure 6: Group-balancing with upsampling and upweighting can lead to catastrophic collapse. We compare three
group-balancing methods: subsetting, upsampling, and upweighting. We plot the mean and standard deviation over
3 experimental seeds for a ResNet-50 on the vision datasets and a BERT-Base on the language datasets. We note a
dramatic decrease in test WGA during training for both upsampling and upweighting on CelebA and CivilComments.
We also see a collapse in WGA for upweighting on MultiNLI.

Figure 6 shows the effects that different group-balancing methods have on WGA during training. We find that
similarly to class-balancing, upsampling and upweighting lead to catastrophic collapse on CelebA and CivilComments.
Additionally, group-balanced upweighting leads to a catastrophic collapse on MultiNLI and a mild decrease in WGA on
Waterbirds. Overall, the training dynamics which result from the choice of subsetting, upweighting, and upsampling for
group-balancing are quite similar to the dynamics observed by (LaBonte et al., 2024) for class-balancing. The notable
exceptions are MultiNLI, which is class balanced a priori but not group balanced, and subsetting on Waterbirds. Class
balanced subsetting on Waterbirds overly penalizes the minority group in the majority class which is problematic due to
Waterbirds’ small size. Group balanced subsetting does not have this issue and hence performs very well on Waterbirds.
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B ADDITIONAL DATASET AND TRAINING DETAILS

B.1 DATASET DETAILS

We study four benchmarks for group robustness across vision and language tasks, outlined below and detailed in
Table 2. Note that Waterbirds is the only dataset that has a distribution shift and MultiNLI is the only dataset which is
class-balanced a priori.

• Waterbirds (Welinder et al., 2010; Wah et al., 2011; Sagawa et al., 2020) is an image dataset where birds are
classified into land species (“landbirds”) or water species (“waterbirds”). The spurious feature is the image
background: landbirds are more frequently associated with land backgrounds, and waterbirds are more often
found with water backgrounds.5

• CelebA (Liu et al., 2015; Sagawa et al., 2020) is an image dataset where celebrities are categorized as either
blond or non-blond. The spurious feature is gender, with a 16× greater number of blond women than blond
men in the training data.

• CivilComments (Borkan et al., 2019; Koh et al., 2021) is a language dataset where online comments are
classified as either toxic or non-toxic. The spurious feature involves the presence of one of the following
identity categories: male, female, LGBT, black, white, Christian, Muslim, or other religion.6 Toxic comments
tend to contain one of these identity categories more often than non-toxic comments, and vice versa.

• MultiNLI (Williams et al., 2018; Sagawa et al., 2020) is a language dataset where pairs of sentences are
classified as a contradiction, entailment, or neither. The spurious feature is the presence of a negation in the
second sentence — contradictions tend to have negations more often than entailments or neutral pairs.

B.2 TRAINING DETAILS

We utilize ResNet-18 and ResNet-50 (He et al., 2016) models pretrained on ImageNet-1K (Russakovsky et al., 2015)
for Waterbirds and CelebA. We also utilize a BERT-Base (Devlin et al., 2019) model pretrained on Book Corpus (Zhu
et al., 2015) and English Wikipedia for CivilComments and MultiNLI. These pretrained models are used as the
initialization for ERM finetuning under the cross-entropy loss. We use standard ImageNet normalization with standard
flip and crop data augmentation for the vision tasks and BERT tokenization for the language tasks (Izmailov et al.,
2022). Our implementation uses the following packages: NumPy (Harris et al., 2020), PyTorch (Paszke et al., 2017;
2019), Lightning (Falcon & the PyTorch Lightning maintainers and contributors, 2019), TorchVision (TorchVi-
sion maintainers and contributors, 2016), Matplotlib (Hunter, 2007), Transformers (Wolf et al., 2020), and
Milkshake (LaBonte, 2023).

To our knowledge, the licenses of Waterbirds and CelebA are unknown. CivilComments is released under the CC0
license, and information about MultiNLI’s license may be found in Williams et al. (2018).

Our experiments were conducted on two local 24GB Nvidia RTX A5000 GPUs. We provide our ERM finetuning
hyperparameters in Table 3. Our LLR experiments were run for the same number of epochs as ERM on a held-out
dataset (20% of the training set for Waterbirds and half the validation set for the other three datasets); we used SGD
with learning rate 0.01 with no weight decay or learning rate schedule.

5It is worth noting that the Waterbirds dataset contains incorrect labels (Taghanaki et al., 2022). We report results based on the
original, uncorrected version, as is customary in the literature.

6This version of CivilComments includes four identity groups, as used in this work and by Sagawa et al. (2020); Idrissi et al.
(2022); Izmailov et al. (2022); Kirichenko et al. (2023); LaBonte et al. (2023). There exists another version where identity categories
are not merged into one spurious feature; that version is employed by Liu et al. (2021); Zhang et al. (2022); Qiu et al. (2023). Both
versions use the WILDS split (Koh et al., 2021).
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Table 2: Dataset composition. The class probabilities change dramatically when conditioned on the spurious feature.
Probabilities may not sum to 1 due to rounding.

Dataset Group g Training distribution p̂ Data quantity

Class y Spurious s p̂(y) p̂(g) p̂(y|s) Train Val Test

Waterbirds

landbird land
.768

.730 .984 3498 467 2225
landbird water .038 .148 184 466 2225
waterbird land

.232
.012 .016 56 133 642

waterbird water .220 .852 1057 133 642

CelebA

non-blond female
.851

.440 .758 71629 8535 9767
non-blond male .411 .980 66874 8276 7535
blond female

.149
.141 .242 22880 2874 2480

blond male .009 .020 1387 182 180

CivilComments

neutral no identity
.887

.551 .921 148186 25159 74780
neutral identity .336 .836 90337 14966 43778
toxic no identity

.113
.047 .079 12731 2111 6455

toxic identity .066 .164 17784 2944 8769

MultiNLI

contradiction no negation
.333

.279 .300 57498 22814 34597
contradiction negation .054 .761 11158 4634 6655
entailment no negation

.334
.327 .352 67376 26949 40496

entailment negation .007 .104 1521 613 886
neither no negation

.333
.323 .348 66630 26655 39930

neither negation .010 .136 1992 797 1148

Table 3: Default ERM and LLR hyperparameters.

Dataset Optimizer Initial LR LR schedule Batch size Weight decay Epochs

Waterbirds AdamW 1× 10−5 Cosine 32 1× 10−4 100
CelebA AdamW 1× 10−5 Cosine 32 1× 10−4 20
CivilComments AdamW 1× 10−5 Linear 32 1× 10−4 20
MultiNLI AdamW 1× 10−5 Linear 32 1× 10−4 20
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