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ABSTRACT

Last-layer retraining (LLR) methods — wherein the last layer of a neural network
is reinitialized and retrained on a held-out set following ERM training — have
recently garnered interest as an efficient approach to rectify dependence on spurious
correlations and improve performance on minority groups. Surprisingly, LLR has
recently been found to improve worst-group accuracy even when the held-out
set is an imbalanced subset of the training set. We initially hypothesize that
this “unreasonable effectiveness” of LLR is explained by its ability to mitigate
neural collapse through the held-out set, resulting in the implicit bias of gradient
descent benefiting robustness. Our empirical investigation does not support this
hypothesis. Instead, we present strong evidence for an alternative hypothesis: that
the success of LLR is primarily due to better group balance in the held-out set.
We conclude by showing how the recent algorithms CB-LLR and AFR perform
implicit group-balancing to elicit a robustness improvement.

1 INTRODUCTION

The standard neural network training procedure of empirical risk minimization (ERM) (Vapnik, 1998),
which minimizes the average classification loss, is well-known to overfit to spurious correlations in the
training set (Geirhos et al., 2020). The conjunction of target labels and spurious features form minority
groups, upon which ERM performance may be no better than random guessing (Shah et al., 2020).
Due to the relevance of spurious correlations in high-consequence applications, e.g., medicine (Zech
et al., 2018) and criminal justice (Chouldechova, 2016), significant work has focused on algorithms
which maximize worst-group accuracy (WGA) — also called group robustness (Sagawa et al., 2020).

A promising family of group robustness methods are based on last-layer retraining (LLR), wherein
the last layer is reinitialized and retrained on a held-out set following ERM training. The original
LLR method, called deep feature reweighting (DFR), requisites the held-out set to comprise equal
data from each group (Kirichenko et al., 2023). This limits its practical application, as the groups
are often unknown ahead of time or difficult to annotate.1 While DFR still performs the best, group
information (even on the validation set) was recently found to be unnecessary to observe WGA
improvement from LLR (Qiu et al., 2023; LaBonte et al., 2023). This surprising observation has led
LLR to be termed a “free lunch” for group robustness (LaBonte et al., 2023).

Contributions. In this paper, we take a “scientific method” approach to investigate why LLR on an
imbalanced held-out subset of the training set can perform so well. Our contributions include:

• We propose an initial hypothesis (visualized in Figure 1) that neural collapse on the training
set results in a biased ERM classifier since the class means are dominated by majority group
data. We initially hypothesize that during LLR, the features are not collapsed on the held-out
set, and so the implicit bias of gradient descent elicits a maximum-margin classifier that
could enjoy better robustness guarantees.

∗Corresponding author. Email: jhill326@gatech.edu.
1However, DFR compares favorably in this respect to methods which require group annotations for the entire

training set, such as group distributionally robust optimization (DRO) (Sagawa et al., 2020).
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(a) Dataset with Majority
and Minority Groups

(b) Collapsed Features
with Biased Classifier (c) Held-out Features with

Optimal Classifier

Figure 1: Visualization of our initial hypothesis. In Figure 1(a), we visualize the feature space
of a training set with two classes and two features, one core and one spurious. In Figure 1(b), we
visualize our initial hypothesis that neural collapse on the training set causes the features to collapse
to their class means — dominated by majority group data — resulting in a biased ERM classifier. In
Figure 1(c), we visualize our initial hypothesis that during LLR, the features are not collapsed on the
held-out set, and so the implicit bias of gradient descent elicits a maximum-margin classifier which is
invariant to the spurious feature. Importantly, our empirical investigation does not support our initial
hypothesis. Instead, we find that the success of LLR is primarily explained by better group balance in
the held-out set.

• We put forth evidence which does not support our initial hypothesis. First, neural collapse
either does not occur or occurs after the standard number of epochs for our benchmark
datasets. Moreover, convergence of the LLR classifier to the maximum-margin solution is
extremely slow, and the average margin over all training data is much more correlated with
group accuracy than the (standard) minimum margin over training data.

• We present strong evidence for an alternative hypothesis: that the success of LLR is primarily
due to better group balance in the held-out set, often achieved implicitly through class
balancing. Our experiments indicate that LLR does not improve over ERM when the held-
out set has the same group balance as the training set, with Pearson correlation coefficient
r > 0.99 on CelebA and CivilComments. On the other hand, LLR with a better group
balance enjoys drastically improved WGA, and vice versa.

• Ultimately, we reevaluate the “free lunch” interpretation of LLR by showing that class bal-
anced LLR (CB-LLR) (LaBonte et al., 2023) and automatic feature reweighting (AFR) (Qiu
et al., 2023) owe their improved WGA primarily to implicit group-balancing on the held-out
set. On a positive note, we show that LLR can recover the WGA of an optimally class-
balanced model even when ERM was not optimally class-balanced. More broadly, LLR
remains an effective method to achieve group robustness using group annotations only on
the held-out set (or proxies thereof, such as in SELF (LaBonte et al., 2023) and AFR (Qiu
et al., 2023)).

Related work. Reliance on spurious correlations is a widely-studied phenomenon in machine
learning known to exacerbate bias and hinder generalization, e.g., Beery et al. (2018); Geirhos et al.
(2020); Sagawa et al. (2020). Last-layer retraining, proposed by Kirichenko et al. (2023), has recently
garnered interest as an efficient approach to improve group robustness in a variety of settings (Qiu
et al., 2023; LaBonte et al., 2023; Stromberg et al., 2024; Park et al., 2025). Our work aims to
further a fundamental understanding of LLR methods, following broadly in the spirit of Izmailov
et al. (2022); Ye et al. (2023); Chen et al. (2023); Welfert et al. (2024); Qiu et al. (2024). Our initial
hypothesis primarily concerns neural collapse, a phenomenon introduced by Papyan et al. (2020);
Han et al. (2022) which has been applied to the study of fairness and spurious correlations in the
context of ERM by Lu et al. (2024); Wang et al. (2024); Chen et al. (2024); Xu et al. (2025), but
never before to LLR. We also consider the implicit bias of gradient descent in logistic regression
towards the maximum ℓ2-margin classifier, studied in the separable case by Soudry et al. (2018)
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and the non-separable case by Ji & Telgarsky (2019) (though a rich literature exists on this topic;
see Vardi (2023) for a recent survey). The maximum-margin classifier has recently been shown to
converge, under certain conditions, to the classifier with optimal worst-group accuracy (Chaudhuri
et al., 2023). Finally, in Section 3 we evaluate the impact of group balance on LLR performance via a
case study on class-balancing, a popular lightweight method to improve group robustness studied
by Idrissi et al. (2022); Chaudhuri et al. (2023); Shwartz-Ziv et al. (2023); LaBonte et al. (2024).

Setting. We consider the setting of classification tasks with input domain X and target classes Y .
We assume the existence of a set of spurious features S such that each data point x ∈ X is associated
with a single spurious feature s(x) ∈ S. The dataset is partitioned into groups G by the Cartesian
product of classes and spurious features: G := Y × S. Let Ωg ⊆ {1, ...,m} denote the indices
of training points belonging to group g ∈ G. Similarly, let Ωy ⊆ {1, ...,m} denote the indices of
training points belonging to class y ∈ Y . We define the majority group(s) to be the groups which
maximize |Ωg|. All other groups are considered to be minority groups. Importantly, we also define
the worst group(s) to be the group(s) with lowest test accuracy. Our goal is to find a model which,
despite group imbalance in the training set, performs uniformly well across groups. To evaluate this,
we use worst-group accuracy (WGA), or the minimum accuracy achieved among all groups (Sagawa
et al., 2020).

Datasets and models. We employ four benchmark classification datasets in our experiments:
Waterbirds (Welinder et al., 2010; Wah et al., 2011; Sagawa et al., 2020), CelebA (Liu et al., 2015;
Sagawa et al., 2020), CivilComments (Borkan et al., 2019; Koh et al., 2021), and MultiNLI (Williams
et al., 2018; Sagawa et al., 2020). We discuss each dataset at length in Appendix B.1. We use ResNet-
18 and ResNet-50 (He et al., 2016) models pretrained on ImageNet-1K (Russakovsky et al., 2015)
for the Waterbirds and CelebA datasets, and a BERT-Base (Devlin et al., 2019) model pretrained
on Book Corpus (Zhu et al., 2015) and English Wikipedia for CivilComments and MultiNLI. Our
implementation of LLR uses SGD with no learning rate schedule or regularization. Following standard
practice, we use 20% of the training set for the held-out set on Waterbirds and half the validation set
as the held-out set in all other datasets. Further training details are located in Appendix B.2.

2 NEURAL COLLAPSE AND IMPLICIT BIAS DO NOT EXPLAIN LLR

The interpretation of LLR methods as logistic regression on top of convergent ERM features lends
itself to a possible understanding combining a feature learning phenomenon (neural collapse) and
a logistic regression phenomenon (implicit bias). Neural collapse was first identified by Papyan
et al. (2020); Han et al. (2022) and implies that the penultimate layer features collapse to their class
means over the course of ERM training. On the other hand, implicit bias results state that linear
classifiers trained via gradient descent with the unregularized logistic loss converge in direction to the
maximum-margin SVM solution (Soudry et al., 2018; Ji & Telgarsky, 2019).

Combining these two ideas, we developed the following initial hypothesis (visualized in Figure 1).
We hypothesized that the model undergoes neural collapse during ERM training, causing the features
to collapse to their class means. These class means, however, are dominated by the largest groups in
each class — resulting in ERM learning a biased classifier. We hypothesized that during LLR, the
features are not collapsed as the held-out set was not seen during ERM; hence, the implicit bias of
gradient descent elicits a robust maximum-margin classifier.

In this section, we present evidence which does not support our initial hypothesis. Specifically,
we find that neural collapse either does not occur or occurs after the standard number of epochs
of ERM training. Moreover, convergence of the LLR classifier to the maximum-margin solution
is extremely slow, and the average margin is much more correlated with group accuracy than the
(standard) minimum margin.

2.1 NEURAL COLLAPSE MAY NOT OCCUR DURING STANDARD ERM TRAINING

We will measure the collapse of variability among feature representations via a metric called NC1.
For each class y ∈ Y and each training example i ∈ Ωy in that class, we denote the penultimate
layer feature vector of i as fy,i. Neural collapse posits that features collapse to their respective
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(a) Waterbirds (b) CelebA (c) CivilComments (d) MultiNLI

Figure 2: Collapse of class feature variability occurs after standard ERM training, if at all. We
plot the empirical metric of neural collapse NC1 := 1

|Y| tr(ΣAΣ
†
R) throughout training a ResNet-18

on Waterbirds and CelebA and a BERT-Tiny on CivilComments and MultiNLI. Each plot displays
the mean and standard deviation for NC1 computed across 3 experimental seeds. We also display
the mean NC1 metric computed on the features of the held-out set at the end of training (EoT). We
believe the cyclic spikes in the Waterbirds plot are due to the cosine learning rate scheduler used
when training the model.

class mean µy := 1
|Ωy|

∑
i∈Ωy

fy,i. We compute an empirical metric of this collapse using the intra-
class covariance matrix ΣA := 1

m

∑
y∈Y

∑
i∈Ωy

(fy,i − µy)(fy,i − µy)
⊤, the global feature mean

µG := 1
|Y|

∑
y∈Y µy , and the inter-class covariance matrix ΣR := 1

|Y|
∑

y∈Y(µy − µG)(µy − µG)
⊤.

We then define NC1 := 1
|Y| tr(ΣAΣ

†
R), where Σ†

R denotes the pseudo-inverse of ΣR. Neural collapse
is formalized by NC1 → 0 (Han et al., 2022; Kothapalli, 2023).2

If neural collapse plays a significant role in ERM learning a biased classifier prior to LLR, then a
collapse in feature variability should be observed during a standard number of ERM training steps.
We display NC1 for a ResNet-18 on Waterbirds and CelebA in Figure 2. We train on both datasets for
much longer than normal and denote the standard number of training steps in the spurious correlations
literature (Sagawa et al., 2020; Kirichenko et al., 2023).

In Figure 2, we see evidence of feature collapse on Waterbirds and MultiNLI. NC1 is at least an
order of magnitude larger for the held-out set than for the training set by the end of training. However,
complete collapse is not achieved by the standard number of epochs. The CelebA and CivilComments
features do not appear to collapse within any reasonable number of training steps as NC1 remains
comparable between the training and held-out sets even after training for more than double the
standard number of training steps. Also, NC1 measured on the CelebA and CivilComments training
sets experiences no significant decrease after the first epoch. Thus, it is unlikely that neural collapse
significantly affects the classifier learned by ERM prior to LLR in real-world datasets.

2.2 THE MINIMUM MARGIN OF LLR IS NOT PREDICTIVE OF ROBUST GENERALIZATION

Let fθ : X → {−1, 1} be a binary linear classifier defined by fθ(x) = x⊤θ + b. Let D :=
{(xi, yi)}ni=1 ⊆ X × {−1, 1} be the training set and C := {xi : yif(xi) > 0} be the set of points
correctly classified by fθ. Then, we define the minimum ℓ2-margin of fθ to be minxi∈C yifθ(xi) and
the average ℓ2-margin of fθ to be 1

n

∑n
i=1 yifθ(xi). The hard margin SVM is a binary linear classifier

formulated through the following optimization problem: minθ,b
1
2 ||θ||

2
2 such that yi(x⊤

i θ + b) ≥ 1
for all (xi, yi) ∈ D. The classifier θSVM learned by a hard margin SVM is the separating hyperplane
which maximizes the minimum ℓ2-margin.

Soudry et al. (2018) show that linear classifiers trained via GD with the unregularized logistic
loss converge in direction to θSVM. In particular, || θGD

||θGD||2 − θSVM
||θSVM||2 ||2 → 0 at a worst-case rate

of O( log log t
log t ) where t is the number of gradient steps. This result can also be extended to the

nonseparable case, though, as one might expect, the implicit bias is more complex (Ji & Telgarsky,

2A slightly less precise formulation ΣA → 0 was studied by Papyan et al. (2020).

4



Published as an SCSL Workshop Paper at ICLR 2025

(a) Waterbirds (b) CelebA (c) CivilComments

Figure 3: Convergence of LLR to the maximum-margin SVM solution is extremely slow. We
plot the mean and standard deviation over 3 experimental seeds of the directional error Êrr between
the last layer weights of a neural network model and an SVM (both trained on the features of the
held-out set). We use a ResNet-18 for Waterbirds and CelebA and a BERT-Tiny for CivilComments.
Here, Êrr := || θNN

||θNN||2 − θSVM
||θSVM||2 ||2, where θNN denotes the last layer weights and θSVM denotes the

weights of an SVM trained on the held-out set features.

2019). The SVM solution was recently studied in the context of group robustness by Chaudhuri et al.
(2023), who showed that under certain conditions on the data distribution, θSVM on subsampled data
converges to the classifier with optimal worst-group accuracy.

If LLR maximizes the minimum training margin and this results in a debiased classifier, then we
should see a high correlation between the size of group minimum margin and group test accuracy
(i.e., minority group points lie near the decision boundary). However, we find that the minimum
training margin for a group is not correlated with the test accuracy for that group. Interestingly, we
find that average group training margin actually is correlated with group test accuracy. We display
the Pearson correlation coefficients in Table 1 (deferred to Appendix A).

Moreover, convergence towards θSVM is slow in practice. We train a ResNet-18 and BERT-Tiny last
layers on the held-out sets of Waterbirds, CelebA and CivilComments via SGD with learning rate
0.001 and unregularized logistic loss, and we plot the directional error with θSVM in Figure 3. In line
with the slow O( log log t

log t ) rate, we find that even after 10× the number of standard training steps, the
LLR classifier has yet to converge to θSVM. As convergence to θSVM is slow and minimum ℓ2-margin
is uncorrelated with group test accuracy, we conclude that SVM convergence and minimum margin
bounds are unlikely to explain LLR.

3 GROUP BALANCE CORRELATES STRONGLY WITH LLR PERFORMANCE

The negative results of Section 2 prompted us to reconsider our initial hypothesis. We now present
strong evidence for an alternative hypothesis: that the success of LLR is primarily due to better group
balance in the held-out set than the training set. We also show how recent LLR algorithms owe their
success to implicit group-balancing on the held-out set.

3.1 LLR PERFORMANCE IS DETERMINED BY HELD-OUT SET GROUP BALANCE

To isolate the effect of group balance on LLR, we perform an ablation study, shown in Figure 4.
We directly control the group ratios — defined as the ratio between the number of minority group
points and the number of majority group points — by removing data until the desired group ratio is
achieved for each class. We vary the group ratios for both the ERM training set and the LLR held-out
set between 0.05 and 1.00, keeping the total data in each stage constant. For a fair comparison, the
ERMs in Figure 4 are trained with the held-out set added in. For example, on Waterbirds we compare
LLR with 20% of data following an ERM with 80% of data (colored line) to an ERM with 100% of
data (gray line). Note that LLR with a group ratio of 1.00 corresponds to DFR.

We find that LLR performance is almost completely determined by the change in group balance
between the training and held-out datasets. LLR only shows significant gains over ERM when it
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(a) Waterbirds (b) CelebA (c) CivilComments (d) MultiNLI

Figure 4: LLR performance is determined by held-out set group balance. We compare the test
WGA of ERM and LLR models while controlling the group balance of the training and held-out sets.
We train a ResNet-50 for the vision datasets and a BERT-Base for the language datasets, and we
plot the mean and standard deviation over 3 experimental seeds. A group ratio of 1.00 corresponds
to the majority and minority groups having equal size, whereas a group ratio of 0.05 implies that
the minority groups are 5% the size of the majority groups. We compute the Pearson correlation
coefficient between the test WGA of ERM and the test WGA of LLR for each dataset while keeping
group ratios fixed in the comparison. We find that the correlation coefficient is close to 1 for all
datasets. In particular, LLR tends to improve over ERM only if the held-out set has better group
balance.

is trained on a held-out set with a higher group ratio than the ERM training set, and vice versa. In
Figure 4, we detail the Pearson correlation coefficients between ERM and LLR test WGA across all
group ratios and observe a strong trend, with r > 0.99 on CelebA and CivilComments. Moreover,
the test WGA of LLR trained with a fixed group ratio is nearly identical to the test WGA of ERM
trained with that same group ratio (observed most impressively on CelebA).

These results indicate that the two-stage training procedure of LLR methods is not fundamentally
oriented towards learning a debiased classifier as we initially hypothesized. Rather, some form of
group-balancing is necessary to capture any of the robustness benefits achieved by DFR. Moreover,
LLR methods are limited by how well they improve the group ratio, and thus DFR likely upper
bounds the WGA of any LLR method which does not utilize group annotations.

3.2 RECENT LLR METHODS SUCCEED VIA IMPLICIT GROUP-BALANCING

In this section, we show how the recent LLR methods of class-balanced LLR (CB-LLR) (LaBonte
et al., 2023) and automatic feature reweighting (AFR) (Qiu et al., 2023) perform implicit group-
balancing to elicit a robustness improvement without group annotations.3 Oftentimes, this is achieved
by class-balancing.

We utilize three standard techniques for class-balancing: subsetting, wherein the size of each class is
reduced to match the size of the smallest class; upsampling, wherein sampling probabilities for each
class are adjusted so that the mini-batches are balanced in expectation; and upweighting, wherein
minority class samples are assigned larger weights in the loss function (Idrissi et al., 2022; LaBonte
et al., 2024). Since groups are defined with respect to classes, each of these class-balancing methods
partially group-balance the dataset without requiring group annotations.

In Figure 5, we compare the test WGA of class-balanced ERM and class-balanced LLR, and we find
that the improvement of LLR over ERM is dependent on the class-balancing methods used. We find
optimally class-balanced ERM achieves nearly the same test WGA as optimally class-balanced LLR
on all datasets! The CB-LLR results of LaBonte et al. (2023) use upsampling for ERM (as well as
LLR), which on CelebA and CivilComments is suboptimal and explains why CB-LLR seems to work
so well. On a positive note, this means that LLR can recover the WGA of an optimally class-balanced
model even when ERM experiences catastrophic collapse.

3LaBonte et al. (2023) also propose SELF: unlike AFR and CB-LLR, it explicitly constructs a more group-
balanced held-out set.
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(a) Waterbirds (b) CelebA (c) CivilComments (d) MultiNLI

Figure 5: LLR does not significantly improve over optimally class-balanced ERM. We plot the
test WGA of ERM (trained on 100% of available data) and LLR (trained using a training/held-out
set split) using no class-balancing, upsampling, upweighting, and subsetting. We train a ResNet-50
for the vision datasets and a BERT-Base for the language datasets and plot the mean and standard
deviation over 3 experimental seeds. We find ERM matches the performance of LLR when ERM is
trained with optimal class-balancing. Note that MultiNLI is class balanced a priori.

Compared to standard LLR, which utilizes the cross-entropy loss only, AFR incorporates a weighted
loss function which prioritizes points upon which the ERM model performs poorly. Specifically,
AFR introduces a weight for each held-out example i proportional to exp(−γp̂i), where p̂i is the
probability for the correct class yi and γ ≥ 0 is a tunable temperature parameter.4 Therefore, the
AFR held-out set effectively has better group balance than the training set! Notably, the ablations
of Qiu et al. (2023) show that setting γ = 0 reduces to CB-LLR with upweighting, thus explaining its
improvement over an ERM with no class-balancing (see Figure 5).

4 DISCUSSION

In this paper, we proposed and eventually rejected a hypothesis explaining the success of LLR through
neural collapse and worst-case margin. However, we also presented strong evidence supporting an
alternate hypothesis: that the improved WGA of LLR is primarily due to improved group balance
in the held-out set. Overall, LLR remains an effective method to improve worst-group accuracy,
especially if a limited number group annotations are available (e.g., DFR), or in conjunction with
implicit group-balancing techniques (e.g., CB-LLR, SELF, and AFR).

Our work highlights the need for further research towards two open questions. First, how do neural
networks learn both core and spurious features during ERM training? Second, what is the mechanism
by which LLR with better group ratio than ERM reweights the core and spurious features?
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A ADDITIONAL EXPERIMENTS

In this section, we present additional experiments deferred from the main body of the work. First,
in Table 1, we include the Pearson correlation coefficient between the test accuracy on each group
and its minimum/average margin, calculated as defined in Section 2.2. We find that the minimum
training margin on a group is surprisingly uncorrelated with the test accuracy on that group; instead,
the average training margin on a group is more correlated with its test accuracy.

Table 1: Correlation between types of training margins and group test accuracy. We compute the
Pearson correlation coefficient between the test group accuracy of a ResNet-18 (BERT-Tiny) trained
on Waterbirds and CelebA (CivilComments and MultiNLI) and the minimum/average margin of each
group across 3 experimental seeds. We see that average training margin is more correlated in general
with group test accuracy than minimum training margin. We leave an explanation of the predictive
power of average margin for future work.

(a) Waterbirds

Margin Metric Group 0 Group 1 Group 2 Group 3

Minimum Margin 0.349 0.380 -0.026 0.282
Average Margin -0.418 0.585 0.662 -0.185

(b) CelebA

Margin Metric Group 0 Group 1 Group 2 Group 3

Minimum Margin 0.245 0.326 0.385 0.370
Average Margin 0.469 0.290 0.475 0.495

(c) CivilComments

Margin Metric Group 0 Group 1 Group 2 Group 3

Minimum Margin 0.214 0.237 0.227 0.113
Average Margin 0.209 0.271 0.298 0.247

(d) MultiNLI

Margin Metric Group 0 Group 1 Group 2 Group 3 Group 4 Group 5

Minimum Margin 0.574 0.266 0.027 0.726 0.492 0.591
Average Margin 0.865 0.926 0.858 0.910 0.823 0.897

Second, we study an extension of the implicit group-balancing discussion from Section 3.2 to explicit
group balancing. As discussed in Section 3.2, we investigate three explicit balancing methods:
subsetting, upsampling, and upweighting. It has previously been observed that using upsampling or
upweighting for class-balancing can result in drastic decreases to test WGA during training (LaBonte
et al., 2024). If the performance improvement from LLR is indeed primarily due to the implicit
group-balancing achieved by class-balancing, we would expect similar collapse when we explicitly
group-balance using these same techniques.

Figure 6 shows the effects that different group-balancing methods have on WGA during training.
We find that similarly to class-balancing, upsampling and upweighting lead to catastrophic collapse
on CelebA and CivilComments. Additionally, group-balanced upweighting leads to a catastrophic
collapse on MultiNLI and a mild decrease in WGA on Waterbirds. Overall, the training dynamics
which result from the choice of subsetting, upweighting, and upsampling for group-balancing are
quite similar to the dynamics observed by LaBonte et al. (2024) for class-balancing. The notable
exceptions are MultiNLI, which is class balanced a priori but not group balanced, and subsetting
on Waterbirds. Class-balanced subsetting on Waterbirds overly penalizes the minority group in the
majority class which is problematic due to Waterbirds’ small size. Group-balanced subsetting does
not have this issue and hence performs very well on Waterbirds.
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(a) Waterbirds (b) CelebA (c) CivilComments (d) MultiNLI

Figure 6: Group-balancing with upsampling and upweighting can lead to catastrophic collapse.
We compare three group-balancing methods: subsetting, upsampling, and upweighting. We plot the
mean and standard deviation over 3 experimental seeds for a ResNet-50 on the vision datasets and a
BERT-Base on the language datasets. We note a dramatic decrease in test WGA during training for
both upsampling and upweighting on CelebA and CivilComments. We also see a collapse in WGA
for upweighting on MultiNLI.

(a) Waterbirds (b) CelebA (c) CivilComments (d) MultiNLI

Figure 7: Choice of group-balancing method is important to DFR success. We compare class-
balanced ERM to group-balanced DFR across three balancing methods: subsetting, upsampling, and
upweighting. We plot the mean and standard deviation over 3 experimental seeds for a ResNet-50 on
the vision datasets and a BERT-Base on the language datasets. We note that the choice of balancing
method has a dramatic effect on the test WGA for both ERM and DFR. Two seeds of MultiNLI
subsetting failed, achieving 0% accuracy on the minority group, leading to high variance.

In Figure 7, we compare the test WGA of class-balanced ERM and group-balanced DFR. We observe
that the choice of balancing method has a large effect on the success of both ERM and DFR. However,
optimally group-balanced DFR improves over optimally class-balanced ERM on all datasets. This
is not the case for LLR, highlighting the value of explicit group-balancing when annotations are
available.

B ADDITIONAL DATASET AND TRAINING DETAILS

B.1 DATASET DETAILS

We study four benchmarks for group robustness across vision and language tasks, outlined below and
detailed in Table 2. Note that Waterbirds is the only dataset that has a distribution shift and MultiNLI
is the only dataset which is class-balanced a priori.

• Waterbirds (Welinder et al., 2010; Wah et al., 2011; Sagawa et al., 2020) is an image dataset
where birds are classified into land species (“landbirds”) or water species (“waterbirds”).
The spurious feature is the image background: landbirds are more frequently associated
with land backgrounds, and waterbirds are more often found with water backgrounds.5

5It is worth noting that the Waterbirds dataset contains incorrect labels (Taghanaki et al., 2022). We report
results based on the original, uncorrected version, as is customary in the literature.
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• CelebA (Liu et al., 2015; Sagawa et al., 2020) is an image dataset where celebrities are
categorized as either blond or non-blond. The spurious feature is gender, with a 16× greater
number of blond women than blond men in the training data.

• CivilComments (Borkan et al., 2019; Koh et al., 2021) is a language dataset where online
comments are classified as either toxic or non-toxic. The spurious feature involves the
presence of one of the following identity categories: male, female, LGBT, black, white,
Christian, Muslim, or other religion.6 Toxic comments tend to contain one of these identity
categories more often than non-toxic comments, and vice versa.

• MultiNLI (Williams et al., 2018; Sagawa et al., 2020) is a language dataset where pairs of
sentences are classified as a contradiction, entailment, or neither. The spurious feature is the
presence of a negation in the second sentence — contradictions tend to have negations more
often than entailments or neutral pairs.

Table 2: Dataset composition. The class probabilities change dramatically when conditioned on the
spurious feature. Probabilities may not sum to 1 due to rounding.

Dataset Group g Training distribution p̂ Data quantity

Class y Spurious s p̂(y) p̂(g) p̂(y|s) Train Val Test

Waterbirds

landbird land
.768

.730 .984 3498 467 2225
landbird water .038 .148 184 466 2225
waterbird land

.232
.012 .016 56 133 642

waterbird water .220 .852 1057 133 642

CelebA

non-blond female
.851

.440 .758 71629 8535 9767
non-blond male .411 .980 66874 8276 7535
blond female

.149
.141 .242 22880 2874 2480

blond male .009 .020 1387 182 180

CivilComments

neutral no identity
.887

.551 .921 148186 25159 74780
neutral identity .336 .836 90337 14966 43778
toxic no identity

.113
.047 .079 12731 2111 6455

toxic identity .066 .164 17784 2944 8769

MultiNLI

contradiction no negation
.333

.279 .300 57498 22814 34597
contradiction negation .054 .761 11158 4634 6655
entailment no negation

.334
.327 .352 67376 26949 40496

entailment negation .007 .104 1521 613 886
neither no negation

.333
.323 .348 66630 26655 39930

neither negation .010 .136 1992 797 1148

B.2 TRAINING DETAILS

We utilize ResNet-18 and ResNet-50 (He et al., 2016) models pretrained on ImageNet-1K (Rus-
sakovsky et al., 2015) for Waterbirds and CelebA. We also utilize a BERT (Devlin et al., 2019)
model pretrained on Book Corpus (Zhu et al., 2015) and English Wikipedia for CivilComments
and MultiNLI. These pretrained models are used as the initialization for ERM finetuning under
the cross-entropy loss. We use standard ImageNet normalization with standard flip and crop data
augmentation for the vision tasks and BERT tokenization for the language tasks (Izmailov et al., 2022).
Our implementation uses the following packages: NumPy (Harris et al., 2020), PyTorch (Paszke
et al., 2017; 2019), Lightning (Falcon & the PyTorch Lightning maintainers and contributors,
2019), TorchVision (TorchVision maintainers and contributors, 2016), Matplotlib (Hunter,
2007), Transformers (Wolf et al., 2020), and Milkshake (LaBonte, 2023).

6This version of CivilComments includes four identity groups, as used in this work and by Sagawa et al.
(2020); Idrissi et al. (2022); Izmailov et al. (2022); Kirichenko et al. (2023); LaBonte et al. (2023). There exists
another version where identity categories are not merged into one spurious feature; that version is employed
by Liu et al. (2021); Zhang et al. (2022); Qiu et al. (2023). Both versions use the WILDS split (Koh et al., 2021).
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To our knowledge, the licenses of Waterbirds and CelebA are unknown. CivilComments is released
under the CC0 license, and information about MultiNLI’s license may be found in Williams et al.
(2018).

Our experiments were conducted on two local 24GB Nvidia RTX A5000 GPUs. We provide our
ERM finetuning hyperparameters in Table 3. Our LLR experiments were run for the same number of
epochs as ERM on a held-out dataset (20% of the training set for Waterbirds and half the validation
set for the other three datasets); we used SGD with learning rate 0.01 with no weight decay or
learning rate schedule.

Our code is available at https://github.com/tmlabonte/understanding-llr.

Table 3: Default ERM and LLR hyperparameters.

Dataset Optimizer Initial LR LR schedule Batch size Weight decay Epochs

Waterbirds AdamW 1× 10−5 Cosine 32 1× 10−4 100
CelebA AdamW 1× 10−5 Cosine 32 1× 10−4 20
CivilComments AdamW 1× 10−5 Linear 32 1× 10−4 20
MultiNLI AdamW 1× 10−5 Linear 32 1× 10−4 20
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