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Abstract

Sampling-based inference and learning techniques, especially Bayesian inference,
provide an essential approach to handling uncertainty in machine learning (ML). As
these techniques are increasingly used in daily life, it becomes essential to safeguard
the ML systems with various trustworthy-related constraints, such as fairness,
safety, interpretability. Mathematically, enforcing these constraints in probabilistic
inference can be cast into sampling from intractable distributions subject to general
nonlinear constraints, for which practical efficient algorithms are still largely
missing. In this work, we propose a family of constrained sampling algorithms
which generalize Langevin Dynamics (LD) and Stein Variational Gradient Descent
(SVGD) to incorporate a moment constraint specified by a general nonlinear
function. By exploiting the gradient flow structure of LD and SVGD, we derive
two types of algorithms for handling constraints, including a primal-dual gradient
approach and the constraint controlled gradient descent approach. We investigate
the continuous-time mean-field limit of these algorithms and show that they have
O(1/t) convergence under mild conditions. Moreover, the LD variant converges
linearly assuming that a log Sobolev like inequality holds. Various numerical
experiments are conducted to demonstrate the efficiency of our algorithms in
trustworthy settings.

1 Introduction

Efficient approximation and sampling methods of intractable distributions plays a key role in proba-
bilistic machine learning, especially Bayesian inference. Traditionally, this problem has been framed
as Monte Carlo sampling. Recently, variational optimization ideas, which frame the sampling prob-
lem into functional minimization problem of KL divergence in the space of distributions, have been
popularized, as exemplified by Langevin dynamics (through the lens of Wasserstein gradient flow
(Jordan et al., 1998)), and Stein variational gradient descent (Liu & Wang, 2016; Liu, 2017; Liu &
Wang, 2018). Let p∗0 be a probability density function supported on Rd from which it is intractable to
draw samples exactly; p∗0 can be the posterior distribution in Bayesian inference, or a probabilistic
graphical model constructed based on data and expert knowledge. The variational methods consider
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to minimize the following KL divergence objective in the space of distributions, denoted by P ,
min
q∈P

KL(q || p∗0), (1)

which, if solved exactly, recovers the target distribution q = p∗0. Langevin dynamics and SVGD can
be viewed as solving (1) following two different types of gradient flow under different metrization of
P; in practice, both Langevin dynamics and SVGD yield a particle approximation, a set of points
(a.k.a. particles) {θi}ni=1 ⊂ Rd, whose empirical measure q =

∑n
i=1 δθi/n approximates p∗0 in weak

convergence; the difference is that Langevin dynamics obtains the particles with a random diffusion
process, while SVGD evolves the particles with a deterministic repulsive interacting particle system.

However, most existing works focus on sampling from unconstrained domains, reflecting the fact
that Problem (1) is an unconstrainted optimization on P . In many cases, especially trustworthy
machine learning, we would like to impose a constraint of high practical importance in addition to
approximating p∗0, yielding a constrained variant of (1)

min
q∈P

KL(q || p∗0), s.t. Eq[g(θ)]≤0, (2)

where we find the best approximation of p∗0 subject to a moment constraint Eq[g(θ)] ≤ 0, with g
a general nonlinear function specified by the users. If p∗0 is the posterior distribution in Bayesian
inference, Problem (2) can be viewed as a form of posterior regularization (Zhu et al., 2014). Our
framework provides a powerful tool for enabling reliable trustworthy machine learning with fairness,
safety, interpretability, and other constraints, which we illustrate as follows.

Fairness Constraints A motivating example is Bayesian fairness (Chakraborty, 2020; Ji et al.,
2020; Dimitrakakis et al., 2019), in which, in addition to approximating the posterior distribution, we
want to enforce equalized odds or other fairness constraints on different demographic subgroups.

Specifically, suppose we are given a dataset D = {x(i), y(i), z(i)}Ni=1 consisting of the feature vector
x(i), a label y(i), and a protected attribute z(i) (e.g., male vs. female), and we want to fit it with a
prediction model ŷ(x; θ) described by a parameter θ. In typical Bayesian inference, we are interested
in finding a distribution q on θ to approximate the posterior distribution p∗0(θ) = p(θ | D). In fair
Bayesian inference, we also hope q to satisfy certain fairness constraints. For example, to control the
disparate impact, one can introduce a constraint of Eq[g(θ)] ≤ 0 with

g(θ) = `fair(θ)− ε, `fair(θ) = (covD[z, ŷ(x; θ)])2, (3)
where we enforce the prediction ŷ(x; θ) to be uncorrelated with the protected attribute z. Therefore,
solving (2) allows us to obtain the best approximation of p∗0 subject to the fairness constraint.

Safety and Interpretability Constraints It is difficult to control and make sense of the behavior
of large AI models such as deep neural networks. In many applications, such as healthcare, robotics,
and AI-based systems, it is essential to add guardrails to ensure that the AI models stay within a
pre-specified safety region. For example, we may want to ensure that the prediction ŷ(x, θ) must fall
inside a pre-specified interval [ŷ0,−(x), ŷ0,+(x)], which can be ensured by Eq[g(θ)] ≤ 0 with

g(θ) = Dist(ŷ(x, θ), [ŷ0,−(x), ŷ0,+(x)]),

where Dist(·, ·) is a point-to-set distance. Similar approach can also be used to control and increase
the interpretability of deep neural networks (DNNs), by enforcing that the prediction of DNNs is
close to simple interpretable models such as linear classifiers and logic rules.

Prior-Agnostic Bayesian Inference The posterior of typical Bayesian inference depends on both
the likelihood `(θ) which represents the fitness on data and a prior distribution (let it be p∗0). A
poor choice of prior may heavily influence the posterior and yield poor fitness. One approach to
automatically limiting the influence of prior is to find a q that minimizes KL(q || p∗0), subject to the
moment constraint with g(θ) = −`(θ) + ε, so that we always have a guaranteed high data fitness (i.e.,
high `(θ)) regardless of the choice of the prior. Note that p∗0 here is the prior, while it is the posterior
in the two settings above.

Our Contribution We advance the frontier of sampling with constraints in the following ways: i)
We propose two general approaches to extend SVGD and Langevin dynamics to the constrained setting
(1), including a primal-dual gradient method (see Algorithm 1), and a novel constraint controlled
gradient descent method (see Algorithm 2). ii) We develop novel theoretical analysis on both methods
for both convex and non-convex settings. iii) We demonstrate the power of our approaches on a variety
of tasks related to trustworthy machine learning, including fair Bayesian classification, incorporating
logic rules into black-box models, and training monotonic neural networks.
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Overview of the Main Algorithms

We provide a quick summary of the practical algorithms that we develop for solving (1), so that the
readers with a practical interest can skip the main theoretical derivation, which is in Section 2.1.

Our algorithms iteratively update a set of n particles {θi,t}ni=1 ⊂ Rd through iteration t, such
that its empirical distribution, denoted as qt =

∑n
i=1 δθi,t/n, approximately solves the constrained

Problem 2 in a proper sense when t → +∞ and n → +∞. The updates of our algorithm for the
SVGD and Langevin cases are:

SVGD: θi,t+1 = θi,t + hEθ∼qt [(∇ log p∗0(θ)− λt∇g(θ))k(θ, θi,t) +∇θkt(θ, θi,t)], (4)

Langevin: θi,t+1 = θi,t + h(∇ log p∗0(θi,t)− λt∇g(θi,t)) +
√

2hξi,t, (5)

where {ξt,i} are i.i.d. standard Gaussian noise and h is a step size. The updates modify the standard
SVGD and Langevin update rules by introducing an extra λt∇g(θ) term to account the constraint in
(2), where λt ≥ 0 serves as a Lagrange multipler, whose update rule is described below.

Primal-dual Gradient Method A straightforward approach is to update λt by performing pro-
jected gradient descent on the dual problem of (2). As we show in Section 2.2, for both the SVGD
and Langevin case, this can be achieved by,

λt = max(λt−1 + h̃Eqt [g(θ)], 0), (6)

where h̃ is a step size that can different from h. This is similar to the typical primal-dual gradient
method on finite dimensional optimization: we increase λt−1 if Eqt [g(θ)] ≥ 0 (constraint violated)
and decrease it if the constraint is met. See Algorithm 1, and the detailed version in Algorithm 3 in
the appendix.

Constraint Controlled Gradient Method Because λt is iteratively updated in (14), the result
can be sensitive to the initialization λ0 and the learning rate η of λ. In Section 2.3, we propose
an alternative “constraint controlled” method so (4) and (5) yield the steepest descent on the KL
objective while ensuring that the solution converges to the feasible set rapidly when it is violated.
The derived update λt is different for the Langevin and SVGD cases and is shown below:

Langevin: λt = max

(
αEqt [g] + Eqt [(∇ log p∗0)>∇g +∇>∇g]

Eqt [‖∇g‖
2
]

, 0

)
, (7)

SVGD: λt = max

(
αEθ∼qt [g(θ)] + Eθ,θ′∼qt [∇θ′g(θ′)>(∇ log p∗0(θ) +∇θ)kt(θ, θ′)]

Eθ,θ′∼qt [∇g(θ)>∇g(θ′)kt(θ, θ′)]
, 0

)
,

(8)

where α > 0 is a coefficient. Note that the λt here is completely decided by the information at the
t-th iteration and does not need to be iteratively updated from λt−1 like (6). See Algorithm 2 and
more details in Algorithm 4 in Appendix.

2 Main Results

We first introduce the background on SVGD and Langevin through the view of minimizing (1) via
functional steepest descent in Section 2.1. We then introduce our two approaches to extending SVGD
and Langevin dynamics for solving the constraint optimization in (2) in Section 2.2 and Section 2.3.
We provide theoretical analysis of both approaches with and without convexity assumptions.

2.1 Review on Langevin Dynamics and SVGD: Sampling with Steepest Descent

We provide a unified introduction to Langevin dynamics and Stein variational gradient descent
(SVGD), which can be viewed as minimizing KL(q || p∗0) with two different types of gradient flow
on the space of distributions P . Our results apply to both algorithms. For audience with special
interest in one of the two algorithms, we recommend ignoring the other one in the first read.

Assume we start from an initial density q0 and the associated random variable θ0 ∼ q0. We consider
moving the random variable θt along a time-dependent vector field φt : Rd → Rd. In other words,
θt is driven by an ordinary differential equation (ODE): dθt/dt = φt(xt). Let qt be the distribution
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of θt at time t, which is known to follow the Fokker-Planck equation dqt/dt = −∇>(φtqt), where
∇>f(θ) :=

∑d
`=1 ∂θ`f

`(θ) denotes the divergence operator of a vector-valued function f : Rd → Rd
with θ` and f` the `-th element of θ and f , respectively; here we use the “>” notation because we
formally view∇ as a d-dimensional column vector.

To decrease KL(qt || p∗0) as fast as possible, we want to choose φt, from a pre-decided candidate
function set Ft, so that the decreasing rate − d

dtKL(qt || p∗0) is maximized. One can show that

− d

dt
KL(qt || p∗0) = Eθ∼qt

[
(∇ log p∗0(θ)−∇ log qt(θ))

>φt(θ)
]

:= Rqt,p∗0
[φt], (9)

which is a linear functional Rqt,p∗0
acting on Ft. Assume Ft is a Hilbert space, equipped with an

inner product 〈·, ·〉Ft and a norm ‖·‖Ft . By Riesz representation theorem, assuming Rqt,p∗0
is a

continuous linear functional, there exists an element rqt,p∗0 ∈ Ft, such that Rqt,p∗0
[φ] = 〈rqt,p∗0 , φ〉Ft .

We call rqt,p∗0 the Riesz representation of Rqt,p∗0
in Ft. The optimal choice of φt in Ft can be framed

into an optimization:

φt = arg min
φ∈Ft

{
−〈rqt,p∗0 , φ〉Ft +

1

2
‖φ‖2Ft

}
= rqt,p∗0 , DFt(qt, p∗0)2 =

∥∥rqt,p∗0∥∥2
, (10)

where we add a regularization ‖φ‖2Ft to constrain the scale of φ, yielding the optimal solution
φt = rqt,p∗0 ; here we defined DFt(qt, p∗0)2 to be the corresponding maximum descending rate of
KL divergence, which can be viewed as a discrepancy measure between qt and p∗0. In this work, we
always assume that Ft is sufficiently large, so that DFt(qt, p∗0) = 0 implies qt = p∗0.

Langevin dynamics and SVGD can be viewed as using different Hilbert spaces Ft, hence yielding
different Riesz representation rqt,p∗0 for the linear operator Rqt,p∗0

.

Langevin Dynamics Taking Ft to be Lqt,2, the Hilbert space of Rd → Rd maps equipped with
inner product 〈φ, φ′〉Lqt,2 := Eθ∼qt [φ(θ)>φ′(θ)]. Then it is immediate to see from (9) that

φt(θ) = rqt,p∗0 (θ) = ∇ log p∗0(θ)−∇ log qt(θ). (11)

In this case, DFt(qt, p∗0)2 is the Fisher divergence Eθ∼qt
[
‖∇ log p∗0(θ)−∇ log qt(θ)‖2

]
. Note that

the Fokker Planck equation, dqt/dt = −∇>((∇ log p∗0 −∇ log qt)qt) = −∇>(∇ log p∗0(θ)qt(θ)) +
∇>∇qt(θ), coincides with the density functions of the Langevin diffusion process dθt =

∇ log p∗0(θt)dt+
√

2dWt, whose time-discretization yields the (unadjusted) Langevin Monte Carlo
method; here Wt is the standard Wiener process. Meanwhile, other discretization methods also exist,
see e.g. Wibisono (2018); Salim et al. (2020).

Stein Variational Gradient Descent (SVGD) In SVGD, we take Ft to the reproducing kernel
Hilbert space of a positive definite and continuously differentiable kernel kt(θ, θ′). By the reproducing
property of RKHS and Stein identity (see Liu & Wang (2016)), one can show that the optimal φt is

φt(·) = rqt,p∗0 (·) = Eθ∼qt [∇ log p∗0(θ)kt(θ, ·) +∇θkt(θ, ·)], (12)

Related, DFt(qt, p∗0) reduces to kernel Stein discrepancy (Liu et al., 2016; Chwialkowski et al., 2016):

DF (qt, p
∗
0)2 =

∥∥rqt,p∗0∥∥2

Ft
= Eθ∼qt [(∇θ log p∗0(θ) +∇θ)>(∇θ′ log p∗0(θ′) +∇θ′)kt(θ, θ′)].

A nice property of the φt in (12), compared with the φt in (11), is that it depends on qt only
through the expectation operator Eqt , which enables a direct particle implementation of dθt = φtdt,
instead of resolving to a diffusion process. Specifically, if we initialize q0 =

∑n
i=1 δθi,0/n to be the

empirical measure of a set of particles {θi,0}i, then qt remains to be an empirical measure, that is,
qt =

∑n
i=1 δθi,t/n, where the particles are evolved by

d

dt
θi,t = Eθ∼qt [∇ log p∗0(θ)kt(θ, xi,t) +∇θkt(θ, θi,t)], ∀i = 1, . . . , n,

This is a set of differential equations coupled by the mean field qt. Following Liu & Wang (2016),
the bandwidth parameter of the kernel kt(θ, θ′) at time t can depend on the current particles {θi,t}i
via the median trick.
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2.2 Primal-Dual Gradient Method

Introducing a Lagrange multipler λ, Problem (2) is equivalent to the following minimax problem:
min
q∈P

max
λ≥0
{L(q, λ) = KL(q || p∗0) + λEq[g(θ)]} . (13)

We solve the minimax problem by alternatively updating λ and q with gradient descent. Note that we
can rewrite L(q, λ) into L(q, λ) = KL(q || p∗λ)+Φ(λ), with
p∗λ(θ) = p∗0(θ) exp(−λg(θ) + Φ(λ)), and Φ(λ) = min

q∈P
L(q, λ) = − logEθ∼p∗0 [exp(−λg(θ))],

and p∗λ = arg minq∈P L(q, λ). Therefore, if we want to minimize L(q, λt) with a fixed λt, we should
update qt to move it towards p∗λt , which can be done by following the functional gradient descent
with either SVGD or Langevin dynamics: dθt/dt = rqt,p∗λt

(θt). With a fixed q, we perform standard
projected gradient ascent on λ shown in (6):

λt = max(λt−1 + h̃Eqt [g(θ)], 0), (14)

where h̃ is a step size. In the continuous time limit (h̃ → 0), we find the λt follows a projected
ordinary differential equation. It can be written jointly with the density qt of θt as a primal-dual
gradient flow (PDGF):

dqt
dt

= −∇ · (φtqt) = −∇ · (rqt,p∗λt qt),
dλt
dt

= [ηEqt [g]]λt,+, (15)

with [a]λ,+ = I(λ ≤ 0) max(a, 0) + I(λ > 0)a and η = h̃/h characterizes the update speed of λt
relative to qt. Again, rqt,p∗λt is defined by (11) for the Langevin dynamics, and (12) for the SVGD, as
long as p∗0 is replaced by p∗λt .

Numerical Implementation To implement (15) through a particle-based algorithm, we use Euler
discretization and approximate qt with empirical measure

∑n
i=1 δθi,t/n, where {θi,t}ni=1 are the

particles at time t. This yields the updates of SVGD and Langevin shown in (4) and (5). Note that in
(5), we run n parallel chains of Langevin dynamics, which are coupled since they share the common
λ. The empirical distribution of {θi,t} is used to approximate Eqt [g(θ)] in (14). See Algorithm 1 and
more details in Algorithm 3.

Convergence Analysis

One problem of primal-dual gradient method is that the algorithm does not try to meet the constraint
directly. Instead, it tries to minimize KL(q || p∗λ) which involves the constraint. So in order to prove
the convergence, we need to assume that KL(q || p∗λ) and its maximum descending rate DF (q, p∗λ)
dominate the constraint function g. In particular, we consider the following assumptions:

Assumption 2.1. There exist positive constants c1, c2 <∞, such that for any t ≥ 0,
(Eqt [g]− Ep∗λt [g])2 ≤ c1DFt(qt, p∗λt)

2 (16)

(Eqt [g]− Ep∗λt [g])2 ≤ c2KL(qt || p∗λt). (17)

Algorithm 1 Primal-Dual Method
Initialize the particles {θi,0}ni=1 and λ0. Let
qt =

∑
i δθi,t/n.

for iteration t do
Update the particles {θi,t}ni=1 by Eq. (4)
(SVGD), or Eq. (5) (Langevin).
Update λt by Eq. (14).

end for

Algorithm 2 Constraint Controlled Method
Initialize the particles {θi,0}ni=1. Let qt =∑
i δθi,t/n.

for iteration t do
If SVGD, update {θi,t}ni=1 by Eq. (4), and then
update λt by Eq. (8)
If Langevin, update {θi,t}ni=1 Eq. (5), and
then Update λt by Eq. (7).

end for

Condition (17) always holds when g is a bounded function, due to the Pinsker’s inequality (See
e.g., Lemma A.1 of Cui & Tong (2021)). Condition (16) holds if g can be written into a form of
g(θ) = a +∇ log p∗λ(θ)>ψ(θ) +∇>ψ(θ) for some a ∈ R, ψ ∈ Ft and ‖ψ‖2Ft ≤ c1 (see Lemma
B.1 in Appendix). It can also be obtained by (17) and a log-Sobolev like inequality (18), which we
will discuss later.
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Assumption 2.2. There exists 0 < v0 ≤ v1 <∞ such that v0 ≤ varθ∼p∗λt
[g(θ)] ≤ v1 for ∀t ≥ 0.

This is a mild assumption, and holds when g is bounded and is not a constant on the support of p∗λt .

Our analysis is based on the following Lyapunov function for the minimax problem on L(q, λ):

E(q, λ) = L(q, λ)− 2Φ(λ) + max
λ≥0

Φ(λ).

Lemma 2.3. We have E(q, λ) ≥ 0, and E(q, λ) = 0 iff (q, λ) is a saddle point of L(q, λ).

Under mild conditions, we can show E(qt, λt) is decaying along PDGF. Moreover, we can find a
solution that meets the KKT requirement approximately.

Theorem 2.4. If (16) holds and 0 < η < 1/(2c1), then E(qt, λt) decreases monotonically following
the primal-dual gradient flow in (15),

− d

dt
E(qt, λt) ≥ ∆(qt, λt) := (1− 2c1η)DFt(qt, p∗λt)

2 +
1

2
η(Eqt [g])2 × I(λ > 0 or Eqt [g] > 0).

Also (15) finds an approximate solution with an O(1/T ) rate: mint∈[0,T ] ∆(qt, λt) ≤
1
T E(q0, λ0),∀T ≥ 0.

Note that ∆(q, λ) is a measure of optimality. This is because ∆(q, λ) = 0 implies the KKT condition
of the constrained optimization (1) holds, which is q = p∗λ, Eq[g] ≤ 0 and λEq[g] = 0.

Linear Convergence with Log-Sobolev like Condition We can further show a linear convergence
of KL divergence to the optimal solution by assuming a Logarithmic Sobolev like inequality.

Assumption 2.5. There exists a positive constant c3 <∞, such that for any t ≥ 0,

KL(qt || p∗λt) ≤ c3DFt(qt, p
∗
λt)

2. (18)

Theorem 2.6. Suppose problem (13) has a solution (q∗, λ∗), and Assumptions 2.1,2.2 and 2.5 hold.
The PDGF following (15) with 0 < η < 1/(2c1) will converge to q∗ linearly in KL divergence:

KL(qt||q∗) ≤ α1E(qt, λt) ≤ α1 exp(−α2t)E(q0, λ0),

where α1 = max{1 + 1
2c2,

v1
2v0

+ 1
2v0
} and α2 = min{ 1

c3
(1− c1η), 1

2ηv0}.

Assumption 2.5 is equivalent to the log-Sobolev inequality in the Langevin case (when Ft = Lqt,2
and DF (·, ·)2 is Fisher divergence), which holds when log p∗λ is a bounded perturbation of a strongly
concave function (Holley & Stroock, 1986). In particular, it holds when p∗0 is strongly log-concave
and g is convex. So it can be seen as a strong convexity (concavity) assumption. In the optimization
literature, e.g. Nesterov et al. (2018), it is well known such assumption is necessary for linear
convergence; without it, we can usually only show O(1/t) convergence similar to Theorem 2.4.

For SVGD, Assumption 2.5 is less well understood. If one replaces qt with any probability measure
q, then (18) would fail to hold for kernel Stein discrepancy (KSD) because if qt is a discrete particle
measure, we would have KL(qt || p∗λ) = ∞ but DFt(qt, p∗λ) < ∞ under some mild conditions on
the kernel kt; see also Lemma 36 of Duncan et al. (2019). On the other hand, it is unclear if (17)
will hold for the smaller class of densities where {qt : t ∈ [0,∞)} takes place in SVGD given that
the initialization q0 is sufficiently regular (and in what sense). Therefore, Theorem 2.6 is not readily
applicable to SVGD. We hope future works can draw more understandings on this issue.

2.3 Constraint Controlled Gradient Descent

The results of the primal-dual gradient method can be sensitive to the initialization λ0 and the learning
rate η of λ. We now propose a “constraint controlled” method, which finds a constrained variant of
steepest descent direction φt that yields the steepest descent on the KL objective like Section 2.1,
while ensuring that the solution converges to the feasible set rapidly when it is violated.

Following Section 2.1, assume we update qt by dθt = φt(θt)dt, and want to decide the optimal
φt. To solve the constrained optimization (2), in addition to maximizing the descending rate of KL
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divergence as Section 2.1, we also want to ensure that the constraint Eqt [g] is properly controlled,
such that 1) if the constraint is not met (i.e., Eqt [g] ≥ 0), we should monotonically decrease Eqt [g],
and 2) after the constraint is met (i.e., Eqt [g] ≤ 0), we should monotonically descend the loss
KL(qt, p

∗
0), while ensuring that the solution stays within the constraint set. Note that

d

dt
Eqt [g] = Eqt [∇g(θ)>φt(θ)] := Sqt,g[φt] = 〈sqt,g, φt〉Ft ,

where Sqt,g is a linear operator onFt, whose Riesz representation is assumed to be sqt,g.Generalizing
the functional steepest descent idea in (10), we propose to set φt to be the solution of

φt = arg min
φ∈Ft

{
−〈rqt,p∗0 , φ〉Ft +

1

2
‖φ‖2Ft s.t. 〈sqt,g, φ〉Ft ≤ −αEqt [g]

}
, (19)

where α ≥ 0 is a control coefficient. This ensures that, if the constraint is not met (i.e. Eqt [g] > 0),
the constraint is descending ( d

dtEqt [g] ≤ −αEqt [g] < 0). If the constraint is met (Eqt [g] ≤ 0), then
it allows Eqt [g] to increase, but with a rate smaller than −αEqt [g], which decreases towards zero
when the solution approaches the constraint boundary {q : Eq[g] = 0}; this on one hand allows
us to have the flexibility to choose φ to decrease KL(q || p∗0)), and on the other hand ensures the
solution is confined inside the constraint set. The high-level idea here is similar to the control barrier
functions in control theory (e.g., Ames et al., 2019), which works in completely different settings.
Note that the constraint in (19) can be viewed as a linearization of the constant Eq[g] ≤ 0 around qt,
as αEqt+1/α

[g] = αEqt [g] + d
dtEqt [g] = αEqt [g] + 〈sqt,g, φ〉Ft , while the loss in (19) can be viewed

as a simple quadratic approximation of KL(q || p∗0). Therefore, (19) can be viewed as a functional
variant of sequential quadratic programming (Nocedal & Wright, 2006).

Using the Lagrange duality of (19), it is easy to derive that φt = rqt,p∗0 − λtsqt,g = rqt,p∗λt
, with

λt = max

(
αEqt [g] + 〈rqt,p∗0 , sqt,g〉Ft

‖sqt,g‖
2
Ft

, 0

)
. (20)

See Lemma B.2 in Appendix. Therefore, the density following the constraint controlled gradient flow
(CCGF) should satisfy:

dqt
dt

= −∇ · (φtqt) = −∇ · (rqt,p∗λt qt). (21)

This is similar to PDGF (15) as qt is driven towards p∗λt . But the λt in PDGF is recursively updated by
the algorithm, while CCGF has the explicit formula for λt. Intuitively, CCGF will be more efficient.

Next, we obtain Langevin and SVGD variants by taking Ft to be Lqt,2 and RKHS, respectively.

Langevin Dynamics and its implementation Assume Ft = Lqt,2. We have rqt,p∗0 = ∇ log p∗0 −
∇ log qt and sqt,g = ∇g. Hence φt = ∇ log p∗0 − λt∇g − ∇ log qt, with λt defined in (7). The
evolution of qt associated with dθ = φt(θ)dt is standard Fokker Planck equation associated with
p∗λt , which can be realized by the same parallel Langevin particle dynamics in (5), when setting
qt =

∑n
i=1 δi,t/n. Note that λt depends on qt only through the expectation Eqt [·], which can be

replaced by the empirical average of the particles. See Algorithm 2 and more details in Algorithm 4.

The SVGD Case Let Ft be the RKHS of kernel kt(θ, θ′). Then it is easy to show that sqt,g(·) =
Eθ∼qt [∇θg(θ)kt(θ, ·)]. Therefore, φt(·) = Eθ∼qt [(∇ log p∗0(θ) − λt∇g(θ))kt(θ, ·) + ∇θkt(θ, ·)],
with λt defined in (8). Similar to regular SVGD, we set qt =

∑n
i=1 δθi,t/n, which is iteratively

updated with SVGD updates with p∗λt as the target distribution as (4). Also, λt again only depends
on Eqt [·], which should be evaluated with the empirical mean of the particles. See Algorithm 2 and
the detailed version in Algorithm 4.

Convergence Analysis

Since CCGF tries to meet the constraint explicitly, we have the following attractive properties:

Theorem 2.7. Suppose ‖sqt,g‖Ft 6= 0 in the CCGF (21). Then with φt defined in (20), we have

Eqt [g] ≤ exp(−αt)Eq0 [g], ∀t ≥ 0.

If Eqt0 [g] ≤ 0 for some t0 ≥ 0, then Eqt [g] ≤ 0 and d
dtKL(qt || p∗0) ≤ 0 for all t ≥ s.
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Note that the requirement ‖sqt,g‖Ft 6= 0 is necessary for the λt in CCGF to be well defined. If fact,
if ‖sqt,g‖Ft = 0, then d

dtEqt [g] = 0 along any update direction φ. And if Ft = Lqt,2, one can show
g is a constant function qt-a.s.. In other words, this is an ill-posed scenario where local methods like
CCGF have no chance to solve. An assumption slightly stronger than λt 6=∞ would be assuming it
is bounded from above:

Assumption 2.8. There exists an upper bound λmax,+ < ∞, such that for all time t when the
constraint is not satisfied (i.e., Eqt [g] > 0), we have λt ≤ λmax,+ in (20).

This is a mild regularity condition, which holds, for example, if Eqt [g] and ‖rqt‖ are upper bound,
and ‖sqt,g‖ > c− > 0. In the following, we show that, under Assumption 2.8, our algorithm meets
the KKT condition with a O(1/t) rate. Further, if Assumption 2.5 holds, then KL(qt || q∗) converges
to zero exponentially fast. Note that the conditions here are milder than that of the primal-dual
method (which needs Assumption 2.1 and 2.2).

Theorem 2.9. Let {qt} be the density function of dθt = φt(θ)dt with φt defined in (20). Under
Assumption 2.8, we have

min
t∈[0,T ]

∆2(qt, λt) := DFt(qt, p∗λt)
2 + α(−λtEqt [g])+ ≤

1

T
(KL(q0, p

∗
0) + λmax,+(Eq0 [g])+) .

Note that, given that Eqt [g] ≤ 0 (see Theorem 2.7), ∆2(qt, λt) = 0 implies the rest of KKT condition
(i.e., qt = p∗λt and (−λtEqt [g])+ = 0).

We establish below the linear convergence of KL divergence under the log-Sobolev condition (18).

Theorem 2.10. Suppose problem (13) has a solution (q∗, λ∗), ‖sqt,g‖Ft 6= 0, and Assumption 2.5
also holds. Then the CCGF following (21) with α ≤ 1/c3 will converge to q∗ linearly in KL
divergence:

KL(qt || q∗) ≤ e−αtKL(q0 || q∗), ∀t ∈ [0,+∞).

Similar to Theorem 2.6, this result is not readily applicable to the SVGD case because (18) can not
be verified for SVGD.

3 Experiments

Algorithms and Settings We summarize the tested methods and the unconstrained baselines
here: Langevin: Vanilla Langevin dynamics. We run n parallel chains of Langevin dynamics for
sampling; SVGD: Vanilla SVGD with codes from Liu & Wang (2016); Primal-Dual+Langevin:
Langevin dynamics with Primal-dual gradient descent; Primal-Dual+SVGD: SVGD with Primal-
dual gradient descent; Control+Langevin: Langevin dynamics with constraint controlled gradient
descent; Control+SVGD: SVGD with constraint controlled gradient descent. For the SVGD methods,
we follow the configuration in Liu & Wang (2016). We use the RBF kernel with bandwidth chosen by
the standard median trick, that is, we use kt(θ, θ′) = exp(−‖θ − θ′‖2 /w2

t )) where the bandwidth wt
is set by wt = Median{‖θi,t − θj,t‖ : i 6= j} based on the particles {θi,t}ni=1 at the t-th iteration.

As a remark regarding the choice of kernel, Gorham & Mackey (2017) provided a counter-example
that suggests that Stein discrepancy with Gaussian RBF kernel may fail to metrize the weak con-
vergence and suggested to use inverse multi-quadratic (IMQ) kernel which does not suffer from the
problem. However, this counter-example assumes to use a fixed bandwidth and does not hold for
Gaussian RBF kernel equipped with the median trick which can adapt to the scale of the data better.
We leave the study of better and adaptive choice of kernels to future works. In our implementation,
we adopt the same decaying step size as suggested in Welling & Teh (2011) for both SVGD and
Langevin dynamics, where ht = h0(1.0 + t)−0.55 and h0 is a hyper-parameter. The step size for
the Lagrangian multiplier in primal-dual methods is chosen from {0.001, 0.01, 0.1, 1, 10, 100, 1000}.
The hyper-parameters are determined by grid-search to reach the smallest constraint loss in each
experiment.
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Figure 1: Trade-off curve with different ε. ‘LL’: log-likelihood. ‘Mono’: monotonicity. Note that the
x-axis are flipped so larger values are on the left.
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Figure 2: Experiment results on learning fair Bayesian neural networks. ‘LL’: log-likelihood. Note
that in (a) the x-axis are flipped so larger values are on the left.

Embedding Logic Rules into Black-box Models ML models can provide accurate predictions
but are difficult to interpret and control explicitly. Our method can be used to enforce the ML
model to be consistent with a set of logic rules to improve the interpretability and safety. We
illustrate this with a loan classification problem of predicting whether to lend loans to a specific
applicant. We impose the two logic rules: (1) an applicant must be denied if she has the lowest
credit rank and not employed; (2) an applicant must be approved if she has the highest credit rank
and has been employed over 15 years. To apply our method, we set p∗0 to be the typical posterior
distribution of Bayesian logistic regression, and define the constraint to g(θ) = `logic(θ)− ε, with
`logic(θ) = E(x,y)∼Dlogic [Loss(y, ŷ(x; θ))], where Dlogic is the uniform distribution on the (x, y)
that satisfy the logic constraints, Loss is the classification loss and ŷ(x; θ) is the prediction by the
Bayesian logistic regression model. We vary the threshold ε in {0.001, 0.01, 0.02, 0.03, 0.04, 0.05}
and find the corresponding training log-likelihood (LL). In combination, they are plotted as a trade-off
curve shown in in Figure 1(a, left). In Figure 1(a, right), we plot the trade-off curve of the testing
accuracy vs. the constraint violation ((Eθ∼q[`logic(θ)]− ε)+) on the testing data. We can see that the
controlled-based methods tend to enforce the constraints better (reaching lower values in logic loss)
in both training and testing set, and the SVGD methods tend to achieve higher test accuracy.

Training Monotonic Bayesian Neural Networks In some applications, it can be desirable to
enforce the ML prediction to be monotonic w.r.t certain attributes (Karpf, 1991; Sill, 1998). For
example, when predicting admission decisions, a fair ML system must admit a student with higher
GPA over the students with lower GPA, given that they are identical in the other features. We apply our
method to enforce monotonicity in Bayesian neural networks. We use the COMPAS dataset following
the setting in Liu et al. (2020). In this case, p∗0 is the posterior of a Bayesian neural network on
the data, and g is defined as g(θ) = `mono(θ)− ε with `mono(θ) = Ex∼D [‖(−∂xmono ŷ(x; θ))+‖1].
Here, xmono denotes the subset of features to which the output should be monotonic. By varying ε in
{0.0001, 0.01, 0.1, 0.5}, we plot in Figure 1(b) the trade-off curve of LL vs. the monotonic loss on
training/testing set, which follow similar trends as Figure 1(a).

Training Fair Bayesian Neural Networks We use the constraint defined in (3), and use the Adult
Income dataset (Kohavi, 1996), which is a classification problem of predicting whether the annual
income of a person is≥ $50,000, with gender as the protected attribute. For the experiment, we follow
the setting in Martinez et al. (2020); Liu & Vicente (2020). With ε = {0.0001, 0.001, 0.005, 0.01},
Figure 2(a, left) shows the trade-off curve of training LL vs. fairness loss, and Figure 2(a, right)
shows the testing accuracy vs. CV score (Calders & Verwer, 2010), a standard measure of disparate
impact. Figure 2(b) shows an example of training curves. We can again see that the control based
methods enforce the constraints more strictly and in a faster speed.
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(a) Unconstrained Samples (b) Control + Langevin

Figure 3: (a): images sampled from the
original NCSN model (Song & Ermon,
2019) on CIFAR10. (b): constrained im-
ages sampled by Control+Langevin
using the score function learned by
NCSN, where we constrain the center
of the generated images to be a black
square. Our method generates a variety
of shadows following the constraint.

Constrained Sampling on Generative Models We ap-
ply our method on Noise Conditional Score Networks
(NCSN) (Song & Ermon, 2019). NCSN models the dis-
tribution p∗0 of images by training a neural network to
estimate its score function ∇ log p∗0, then generates im-
ages by running Langevin dynamics with the learned
score function. Here, we add constraints to draw rare
samples from the generative model. In this experiment,
we constrain the center of the generated images to be a
black square, by defining the constraint function to be
g(θ) = ‖θΩ‖ − ε, where θ denotes the whole image, θΩ

is a image patch on region Ω, which is the square at the
center of image. We use a threshold of ε = 0.0001. We
use Control+Langevin to draw samples under the con-
straint, as the original NCSN model is based on Langevin
dynamics. As shown in Fig. 3, our method successfully
generates diverse images without violating the constraints.

4 Related Works, Limitations, Conclusion
Primal-Dual vs. Constraint-Control This work has proposed two methods, primal-dual and
CCGF. These two methods are derived from two different perspectives. CCGF tries to fit the
constraints directly, while the primal-dual operates in a more indirect manner. This is reflected in
the proof techniques, as we can directly show the constraint decays linearly for the CCGF method,
but we can only control the constrain through a Lyapunov function with the primal dual method. We
believe that the conditions required by CCGF is intrinsically weaker than that of primal-dual. This
can also be told from the fact that primal-dual method’s performance depends on the initialization of
λt and the step size η. But the CCGF method does not have this issue.

Related Works Although sampling on unconstrained domain has been extensively studied, efficient
algorithms for constrained settings are largely lacking. A body of works have developed to extend
Langevin dynamics and SVGD on Riemannian manifolds (Girolami & Calderhead, 2011; Patterson
& Teh, 2013; Liu & Zhu, 2018); these methods, however, rely on computationally efficient characteri-
zation of the manifolds and as a result does not work efficiently with constraints specified by general
nonlinear inequalities. Projection-based methods (e.g, Sen et al., 2018) can also be developed for
sampling on constrained spaces, but again only work for simple constraints with efficient projection
maps. Note that our method considers a different setting when the constraint is applied on the
population (rather than individual particles) and works for general nonlinear inequality constraints.
In terms of problem formulation, our constrained optimization in (2) coincides with the posterior
regularization framework of Zhu et al. (2014); but we focus on particle-based inference based on
SVGD and Langevin, which was not studied before.

Limits, Impacts, Future Directions Our new methods cast a full spectrum of theoretical questions
that can not be completed with a single work. In the current work, we mainly focus on the continuous
time and the infinite particle limit n→ +∞ when qt is a smooth probability density. A natural future
direction is to study the guarantees with finite particle size n and discrete time. Another valuable
direction is to study whether and how linear convergence can be established for SVGD; see Duncan
et al. (2019) for an in-depth discussion of this issue for unconstrained SVGD.

On the practical side, since our methods leverage SVGD and Langevin dynamics, they necessarily
inherent their limits, such as the sensitivity on the choice of kernel and step sizes. Another practical
issue is that we can only enforce constraints on the training set, and hence generalization error need
to be considered if we need to strictly enforce constraints on the testing set. Also, this work focuses
on a single constraint for simplicity, which is sufficient for most practical applications since different
constraints can be combined into a single constraint easily. Extensions to multiple constraints are
straightforward but will be studied separately.

In terms of social impact, our method aims to impose trustworthy constraints in Bayesian sampling,
and can help increase the reliability, fairness, and interpretability of ML systems applied to daily life.
We will release code freely online to promote the applications of our approach, although it does open
the possibility of malicious use of our techniques for adversarial purposes.
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