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Abstract

While scaling training compute has led to remarkable improvements in large lan-
guage models (LLMs), scaling inference compute has not yet yielded analogous
gains. We hypothesize that a core missing component is a lack of diverse LLM out-
puts, leading to inefficient search due to models repeatedly sampling highly similar,
yet incorrect generations. We empirically demonstrate that this lack of diversity can
be mitigated by searching over candidate plans for solving a problem in natural lan-
guage. Based on this insight, we propose PLANSEARCH, a novel search algorithm
which shows strong results across HumanEval+, MBPP+, and LiveCodeBench (a
contamination-free benchmark for competitive coding). PLANSEARCH generates a
diverse set of observations about the problem and uses these observations to con-
struct plans for solving the problem. By searching over plans in natural language
rather than directly over code solutions, PLANSEARCH explores a significantly
more diverse range of potential solutions compared to baseline search methods.
Using PLANSEARCH on top of Claude 3.5 Sonnet achieves a pass@200 of 77.0%
on LiveCodeBench, outperforming both the best pass-rate achieved without any
search (pass@1 = 41.4%) and using standard repeated sampling on top of existing
non-search models (pass@200 = 60.6%). Finally, we show that, across all models,
search algorithms, and benchmarks analyzed, we can accurately predict perfor-
mance gains from search as a function of the diversity over generated ideas. Code
can be found at https://github.com/scaleapi/plansearch.

1 Introduction

The bitter lesson [42] famously posits that two forms of scaling trump everything else: learning
and search. While recent advances in large language models (LLMs) have shown that learning is
extremely effective, search has not yet proven its value for LLMs, despite its success with classical
machine learning techniques [10, 39, 40, 7, 8, 4, 18].

Here, we refer to search as any method of spending compute at inference time to improve overall
performance [29]. In this work, we focus our efforts on improving LLM search for code generation,
one of the most important current applications of LLMs. We hypothesize the major bottleneck
preventing widespread use of search for code is a lack of high-level diversity in model outputs, since
repeated sampling with little to no diversity returns highly similar programs, resulting in minimal gain
from additional inference-time compute. We empirically demonstrate that this is the case for many
open-source language models which have undergone significant post-training. Specifically, we show
that in many cases, despite instruction tuned models outperforming base models by large margins on a
single sample regime (pass@1), this trend disappears—sometimes even reversing—when generating
many samples. We refer to Figure 29 for examples of this phenomenon.
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This diversity problem is also not reflected in many public leaderboards (e.g. LMSYS Chatbot Arena
[15], LiveCodeBench [23], OpenLLMLeaderboard [1]), which often report only the pass rate from a
single sample of the model, ignoring an entire dimension along which to compare models. While the
performance of one sample is the primary metric of relevance for applications such as chatbots, as
users typically are sensitive to latency, this scalar is insufficient to fully capture the quality of a model
with greater inference-time compute budget.
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Figure 1: PLANSEARCH first generates observations, then combinatorially samples subsets of these
observations to generate the next step in the search process. To generate the next layer of observations,
the combinations derived from the first observations are used as stepping stones to generate the next
observations, and the process repeats. After generating both the first and second order observations,
PLANSEARCH then generates a natural language description of a strategy to solve the problem. For
additional diversity, the model is prompted to regenerate its strategy as an additional sample before
generating code. See Section 4.3 for additional information.

In this paper, we explore several directions for improving the diversity of LLMs at inference time.
We hypothesize that the right level of diversity to search over is the natural language conceptual/idea
space, and we validate our hypothesis across several experiments. First, we show that models can
produce the correct final program when fed the correct solution sketches, where these sketches have
been “backtranslated” from passing solution code into sketches in idea space (Section 3.2). Second,
we show that when models are asked to generate their own ideas before implementing them on
LiveCodeBench (IDEASEARCH), their accuracy conditioned on a particular sketch trends towards
either 0% or 100%, suggesting that most of the variance in passing a particular problem is captured
by whether the sketch is correct. These two experiments suggest a natural method to improving LLM
search for code generation: by searching for the correct idea to implement.

Guided by this principle of maximizing exploration of ideas, we propose PLANSEARCH. In contrast
to many existing search methods that search over individual tokens [50, 53], lines of code [25], or
even entire programs [26], PLANSEARCH searches over possible plans for solving the problem at
hand, where a plan is defined as a collection of high level observations and sketches helpful to solve a
particular problem (Figure 1). We find that searching over plans outperforms both standard repeated
sampling and directly searching over ideas (IDEASEARCH, introduced in Section 4.2) in terms of
effectively using compute at inference time.

Applying PLANSEARCH on top of Claude 3.5 Sonnet achieves a state-of-the-art pass@200 of 77.0%
on LiveCodeBench, outperforming both the best score achieved without search (pass@1 = 41.4%)
and the standard best-of-n sampling score (pass@200 = 60.6%). Furthermore, consistent with recent
findings on the effectiveness of search on top of small models [13, 6, 5, 44], allowing PLANSEARCH
based on a small model (GPT-4o-mini) outperforms larger models not augmented with search after
merely 4 attempts. Evaluations of PLANSEARCH across two other coding benchmarks, HumanEval+
and MBPP+ [27], suggest similar improvements.

Finally, we measure the idea diversity of output codes via an LLM-as-a-judge procedure (Section 6.1)
and show that the resulting diversity score is highly correlated with the performance gains generated by
a given search method. This provides further support for our hypothesis that the effective exploration
of plans in idea space is key to LLM search for code generation (Figure 3).
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2 Related Work

We reiterate that search as defined in the context of our paper refers to any method which expends
inference-time compute to improve performance. We further specify planning as any form of high
level observation or abstract thought that assists a model in generating a final solution. Our work
builds off a long history of work in scaling search and planning. For information on relevant work in
classical AI, general search, and filtering, see Appendix T.

Regarding searching over plans in natural language, several approaches have proposed generalizing
chain-of-thought [43] reasoning into a search-like process, such as Tree of Thoughts [45] and
Reasoning via Planning [21]. However, prior methods have largely demonstrated effectiveness on
somewhat contrived problems designed to highlight the power of search, such as the game of 24,
or classic planning benchmarks such as Blocksworld [28], where both benchmarks are easier to
solve by explicitly considering many options, and where the ‘steps’ over which to search over are
fairly obvious. By contrast, most real-world planning is used to assist in domains that are complex
enough to benefit from, but not require, the additional exploration of plans. We demonstrate that
PLANSEARCH, which plans in natural language, outperforms baseline search methods in one such
domain: code generation. Moreover, our analysis reveals the underlying reason that such search is
effective: it increases the diversity of the generated ideas, allowing more efficient search relative to
other methods which repeatedly submit highly similar, incorrect solutions. This is consistent with
prior work suggesting the importance of diversity in natural language generation [22, 51]. Other
directions for search include decomposing programs down into smaller parts before solving each one
individually [48, 54, 20].

PLANSEARCH is also distinct from other methods which explicitly train a model to search or on
reasoning traces sampled from the model [49, 52, 47, 31] in that PLANSEARCH induces diversity at
inference-time and converts an LLM API not designed for search into one that is capable of showing
strong gains from search. Separately, there is a large family of work in the agent space, in which
outputs from terminal commands or other tools are fed back into the model before the agent is queried
for the next step [38, 46, 35, 11].

3 Motivation
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Figure 2: Backtranslation shows the promise of providing good sketches, and conditioning on idea
shows the presence of a solution sketch polarizes performance.

3.1 Defining the Search Space

Perhaps the most important question for eliciting strong search capacities is determining which
space to search over, as finding the proper layer of abstraction is critical to progress in the field.
Prior approaches have varied, with many people searching over individual tokens [50, 53], lines
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of code [25], or even entire programs [26]. We hypothesize that the key factor is obtaining the
correct solution sketch, which we define as a description of the correct program in natural language
space. Intuitively, conducting the reasoning process in natural language space allows us to effectively
harness the training process of LLMs, which have observed many human reasoning traces in both
pre- and post-training. Prior work [43] has observed strong positive effects from being allowed to
conduct such reasoning in natural language, making it a natural place to search over. We describe
two experiments providing evidence for this hypothesis below.

3.2 Backtranslation

To investigate the hypothesis whether the idea space, instantiated as solution sketches, is the right area
of exploration, a natural question is whether LLMs can correctly implement a correct code solution
given a correct sketch. Inspired by approaches to backtranslation in machine learning [36, 33, 17],
we experiment with “backtranslating” passing code solutions back into idea space.

First, we generate code solutions using GPT-4o to generate 1000 attempts to solve the problem and
filter out problems without any passing solutions. As we also do not have a dataset of correct solution
sketches associated with each solution, we generate a candidate correct idea via backtranslation. We
do this by feeding an LLM both the problem and code solution and asking the LLM to convert said
solution into a natural language description of the solution. Additionally, we vary the detail of the
backtranslated idea via instructions to the LLM in the prompt (e.g. ‘in w words’). A full description
of the prompts can be found in Appendix O.1, alongside several example backtranslated solutions of
various lengths.

We observe that prompting a model with a backtranslated idea significantly improves accuracy,
increasing with the length of the translated idea (Figure 2a), which suggests that having a correct
sketch is sufficient to produce the correct final solution with relatively high accuracy, even only after
10 tokens of backtranslated solution.

3.3 Conditioning on Idea Quality

Next, we prompt an LLM to generate its own sketches to solve LiveCodeBench problems instead
of providing it with golden ones via backtranslation. First, we generate 5 ideas per problem using
IDEASEARCH, defined in Section 4.2. For each idea, we then sample 25 candidate solutions and
measure their pass rate. For this experiment, we filter out any problem that GPT-4o-mini solves with
either a 100% or a 0% solve rate, since such problems are either too easy or too hard for the model
and would not be informative for this experiment. We end with 75 problems and 375 sketches.

To test our hypothesis that generating a correct sketch is a critical factor for solving problems, we
compare the distribution of solve rates for generating correct code solutions conditioned on a given
sketch to the distribution over solve rates given a sketch drawn at random, i.e., just the distribution
over solve rates.

While verifying whether a sketch is correct or incorrect is difficult without access to external labels,
a key insight is that if generating the correct idea is a critical factor in solving the problem, then
conditioning on a particular sketch should polarize the distribution of solve rates towards {0, 1}. If
the model is given a correct sketch, it should consistently generate correct solutions, while if given a
bad sketch, it should consistently generate incorrect solutions.

Our results confirm this to be the case. Figure 2b shows the distribution of solve rates across
problems, both unconditionally (in red) and conditioned on each sketch (in blue). We notice that
when grouping by sketches, the solve rates indeed become polarized towards {0, 1}. This result has
important implications for improving code generation, suggesting that a large portion of variance in
performance may come from whether the model is given a correct idea or not. Therefore, a natural
path for improvement is to focus on the sketch generation step and search for correct sketches and
observations in idea space before generating solution code.
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4 Methods

We provide a description of the various methods of search we explore in our work. If additional
background on competitive programming and related notation is desired, we provide more (optional)
information in Appendix S.

4.1 REPEATED SAMPLING

We consider the basic prompting approach as a baseline, in which we use few-shot prompting by
providing the LLM with a number of problem-solution pairs before asking it to solve the desired
question [9]. A full example of the prompt is given in Appendix O.2. In code generation, the most
common variant of search utilized is repeated sampling, where models are repeatedly sampled from
until they generate an output that passes the test or the maximum number of samples is reached.
Refer to the Related Work for more information (Section T.2).

4.2 IDEASEARCH

A natural extension of the REPEATED SAMPLING approach discussed in Section 4.1 is to avoid
prompting the LLM for the solution code immediately. This can be viewed as an application of the
commonly used “chain-of-thought” prompting to programming problems [43], although we find that
IdeaSearch shows non-negligible performance boosts over standard “chain-of-thought” prompting
(see Appendix H).

In IDEASEARCH, the LLM is given the problem P and is asked to output a natural language solution
S of the problem. Then, a separate instance of the LLM is given P and S, and tasked to follow
the proposed solution S to solve the problem P . The purpose of IDEASEARCH is to isolate the
effectiveness of having the correct “idea/sketch” for solving the problem. Empirically, we find that
explicitly forcing the search algorithm to articulate an idea for solving the problem increases diversity.
See Appendix O.3 for detailed prompts.

4.3 PLANSEARCH

While both REPEATED SAMPLING and IDEASEARCH are successful and lead to improvement in
the results on benchmark results, we observe that in many of the cases, prompting multiple times
(pass@k) (even at high temperatures) will only lead to small, narrow changes in the output code that
change minor aspects but fail to improve upon pitfalls in idea.

Ablations for many of the choices in the subsequent description of PLANSEARCH can be found in
Appendix K.

4.3.1 Prompting for Observations

Starting from the problem statement P , we prompt an LLM for “observations”/hints to the problem.

We denote these observations as O1
i , where, i ∈ {1, . . . , n1} due to the fact that they are first-order

observations. Typically, n1 is on the order of 3 to 6. The exact number depends on the LLM output.
To use these observations to inspire future idea generation, we create all subsets with size at most
S = 2 of s1 =

{
O1

1, . . . , O
1
n1

}
. Each of these subsets is a combination of observations, and for

clarity we denote each subset as C1
i , i ∈ {1, . . . , l1}, where l1 = 1 + n1 +

(
n1

2

)
.

4.3.2 Deriving New Observations

The set of all observations can be thus defined as a directed tree with depth 1, where the root
node is P , and an edge exists for each C1

i pointing from P to C1
i . We then repeat this procedure

from Section 4.3.1 on each leaf node C1
i to generate a set of second order observations, s2i =

{O2
i,1, . . . , O

2
i,ni,2

}. To obtain second order observations, we prompt the model with both the original
problem P and all observations contained in C1

i , framed as primitive observations that are necessary
in order to solve P . The LLM is then prompted to use/merge the observations found in C1

i in order
to derive new ones.

5



The same procedure as Section 4.3.1 is used to create all subsets C2
i,j , for all i ∈ {1, . . . , l1}. This

process may be arbitrarily repeated, but we truncate the tree at depth L = 2 for computational
constraints.

Note that there is no assumption any of the observations generated are correct. In fact, it is critical to
note that many of them may be incorrect. The observations merely serve to elicit the model to search
over a more diverse set of ideas.

4.3.3 Observations to Code

After the observations have been made, they must be implemented as ideas before being translated
into code. For each leaf node, we prompt the model with all observations, along with the original
problem P , in order to generate a natural language solution to the problem P . To add more diversity,
for each generated idea, we generate an additional idea by supposing the idea is wrong, and asking an
LLM to give criticisms/feedback, thus increasing our proposed ideas by a factor of 2.

These natural language solutions are then translated into pseudocode, which are subsequently trans-
lated into actual Python code. We take a more granular approach to reduce the translation error (which
may cause the model to revert to its original mode, disregarding the reasoned-through observations).
We provide all prompts for all sections in Appendix O.4.

5 Experimental Results

Model Benchmark Pass@1 Pass@200 PLANSEARCH@200
GPT-4o-mini LiveCodeBench 39.0 53.3 64.9
GPT-4o LiveCodeBench 41.3 60.6 73.0
DeepSeek-Coder-V2 LiveCodeBench 41.4 53.2 70.3
Claude-Sonnet-3.5 LiveCodeBench 40.3 55.6 77.0
GPT-4o-mini HumanEval+ 83.7 95.0 98.2
GPT-4o HumanEval+ 86.4 98.2 99.5
DeepSeek-Coder-V2 HumanEval+ 82.8 91.4 99.3
Claude-Sonnet-3.5 HumanEval+ 81.6 88.9 98.5
GPT-4o-mini MBPP+ 73.5 83.8 91.0
GPT-4o MBPP+ 77.2 87.4 92.2
DeepSeek-Coder-V2 MBPP+ 76.3 81.9 92.6
Claude-Sonnet-3.5 MBPP+ 77.1 83.0 93.7

Table 1: We find that PLANSEARCH and IDEASEARCH improve upon search baselines across all
models, with PLANSEARCH achieving the best results across all models and benchmarks considered.
Notably, using PLANSEARCH on top of Claude 3.5 Sonnet [2] has a pass@200 of 77.0 on Live-
CodeBench, which is nearly double the performance of the top model without using search (41.4).
We highly encourage readers to check Appendix D for complete results and pass@k curves.

Our summarized results for REPEATED SAMPLING, IDEASEARCH, and PLANSEARCH can be found
in Table 1 and Figure 9. Additionally, we plot our full pass@k curves for all methods, models,
and datasets in Appendix D. For sake of easy comparison, we also plot all relative gains compared
to REPEATED SAMPLING@1 averaged over all models in Appendix F. For a compute-normalized
comparison between REPEATED SAMPLING and PLANSEARCH, see Figure 16.

See Appendix C for experiment and dataset details.

6 Analysis

Our results suggest that both PLANSEARCH and IDEASEARCH outperform basic sampling by a wide
margin (Figures 10, 11, 12), with PLANSEARCH achieving the best score across all methods and
models considered. We show the detailed pass@k results for each dataset in Figures 4, 5 and 6. We
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also compare with Chain-of-Thought [43] in Appendix H. Interestingly, we find that IDEASEARCH
performs somewhat better, which we speculate comes from differences in splitting solution sketch
into two model responses, instead of doing both chain-of-thought and code solution in one model
response.

Investigating the differences in specific models, we notice that trends exhibited by the pass@k curves
are not uniform across all models; in fact, each curve seems unique. We hypothesize that these
differences are in part due to changes in idea diversity, as investigated in Figures 3, 24, 25. From the
figures, we can see that our approximate diversity score accounts for much of the variance we see in
the relative improvement that arrives from scaling-up inference-time compute. This correlation holds
across all methods and models on the same dataset, thus suggesting that diversity score can be used
as a proxy to predict for relative pass@k improvement. For further discussion on the specifics of the
diversity score, see Section 6.1.

One interesting point of observation is that PLANSEARCH often hurts pass@1 for several models,
including most notably Sonnet 3.5 on LiveCodeBench, our best performing combination. Intuitively,
this is because increasing the diversity across ideas likely dilutes the probability that any particular
idea is generated, while simultaneously increasing the chance of having at least one correct idea
within said pool. Therefore, pass@1 may be slightly lower than usual, yet pass@k will likely surpass
“pools” of ideas lacking diversity for this reason. See Figure 39 for a graphical intuition.

Finally, in Table 1, we present our main results normalized across attempts/completion, where each
search method is allowed k attempts to solve each problem. Although we did not design for compute-
optimality, we show in Appendix G that PLANSEARCH also outperforms other methods if sufficient
compute is expended.

6.1 Measuring Diversity

0.2 0.3 0.4 0.5 0.6
Idea Diversity

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Re
la

tiv
e 

Ga
in

s (
Pa

ss
@

1 
to

 P
as

s@
20

0)

Idea Diversity vs Relative Gains from Search (on LiveCodeBench)
Repeated Sampling
IdeaSearch
PlanSearch

GPT-4o-mini
GPT-4o
DeepSeek-Coder-V2
Sonnet-3.5

Figure 3: We observe a strong positive correlation between the measured amount of idea diversity in
a search algorithm and the resulting improvements due to search (Section 6.1). Diversity score is the
probability that GPT-4o-mini believes two randomly selected output codes implement different ideas
(higher is more diverse). Our findings suggest that diversity in idea space is essential for effective
LLM search.

We find that diversity as measured in idea space is highly predictive of search performance, as
measured by the relative improvement between a model/method’s pass@1 and its pass@200 (Fig-
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ure 3). While the most common measure of diversity is entropy [37], entropy is insufficient for a
number of reasons for the precise setting of LLMs [22, 51]. As a simple example, consider two
different language models, one of which generates minor variations of the same program while
another generates a variety of programs with different underlying ideas. Even if both models have the
same entropy, the latter model will be significantly better when augmented with search capabilities.

In our setting, we measure diversity by grounding it in idea space using a simple pair-matching
strategy across all generated programs. Formally, suppose we have a pool of n code generations,
{c1, . . . , cn}.

To compute the diversity of such a given generation pool, we ask an LLM to judge the similarity of
two ideas in the following manner. First, we construct each of the

(
n
2

)
pairs. For each pair (ci, cj), we

judge (using an LLM) whether both ci and cj implement the same idea. We define this as the function
S(ci, cj) ∈ {0, 1}, which evaluates to 1 if ci and cj implement the same idea and 0 otherwise. Our
overall diversity score for a particular problem is then defined as:

D = 1−
∑

i<j S(ci, cj)(
n
2

) (1)

Models that output programs implementing the same idea will have a score of D = 0, while models
that output completely unique programs will have a score of D = 1. Overall, a score of D implies
that if two codes are chosen at random, the probability that they implement similar ideas (as measured
by the LLM) is D. In Appendix U, we describe this measure in additional mathematical depth.

We detail the prompts used in Appendix R.1 and use OpenAI’s GPT-4o-mini as the supporting LLM.

7 Conclusion

In this work, we find that diversity in idea space is incredibly useful to unlock significant achievements
in the effectiveness of inference-time compute—otherwise referred to as search—particularly in code
generation tasks. We propose PLANSEARCH, which obtains SOTA performance on all datasets tested,
almost doubling baseline performance at pass@200. Additionally, we find strong correlation between
our diversity metric and resulting performance gains from evaluating at pass@k instead of pass@1,
which underscores the importance of idea diversity in effective search.

Looking forward, we believe that these insights and techniques can be applied to many other domains
and unlock similar significant performance gains as seen here. Embracing idea diversity during
inference will be crucial in realizing the full potential of LLMs.
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A Limitations and Future Work

While PLANSEARCH substantially improves diversity over idea space at inference-time, fundamen-
tally, improvements in diversity should come at the post-training stage, like with methods such as
o1 [31]. This likely requires re-imagining the post-training pipeline for LLMs around search, instead
of the current paradigm optimized for a single correct response. We are optimistic about future
work in designing improved post-training objectives to maximize both quality and diversity, while
specifically optimized to use inference-time compute to maximum effectiveness.

PLANSEARCH and IDEASEARCH tradeoff a slight deterioration of pass@1 performance for a large
improvement in pass@k performance. However, in many such cases outside of code generation, it
is infeasible to run an LLM-based model for more than a few attempts at most. For example, in
Figure 6, PLANSEARCH does not significantly outperform REPEATED SAMPLING until k ≥ 4.

Fortunately, many filtering algorithms exist, which mitigates this tradeoff by implicitly bringing
pass@k (for high k) to pass@1 (or lower k), i.e. shifting the original pass@k curve leftward. Even
the simplest filtering—public test filtering—improves PLANSEARCH’s pass@1 significantly above
REPEATED SAMPLING’s pass@1, which continues as k increases. Moreover, most to almost all base
models with public test filtering outperform their instruct model variants at pass@1, no matter the
dataset (see Appendix M). Since base models’ pass@1 is known to be worse than instruct models
to trade off for higher diversity, we suggest a new paradigm—developing search algorithms which
tradeoff pass@1 performance for much stronger pass@k performance, then filtering the generated
solutions to extract the pass@k back into pass@1.

With good filtering methods, which we demonstrate can be simple in nature, pass@k, for medium k,
can be effectively brought down to pass@1, emphasizing a similar paradigm of increasing diversity,
then strengthening existing filtering methods, even for domains outside of code generation that are
out of scope of this paper.

Finally, a natural extension of this work is training the underlying model itself on successful plans
and code solutions obtained from PLANSEARCH. This has the potential to distill the pass@k into the
pass@1—without inference-time methods like filtering—by reducing the likelihood of the model
going down unfavorable branches of the search tree. We believe that such training is likely to
significantly improve the model and look forward to future work in this direction.

B Public Test Filtering

Public test filtering is a method which only chooses samples out of the original pool n which pass the
public tests. This is particularly useful in settings such as code deployment where executing the full
suite of tests may be computationally costly or otherwise undesirable (e.g. in a coding contest where
every incorrect submission is penalized). Thus, instead of submitting all n codes, after public test
filtering, only codes ci would be submitted such that ci(xj) = yj for all j ∈ {1, . . . , u}, where ci(x)
refers to the output from running the code on some input x. The primary effect of public test filtering
is to shift the pass@k curve leftward, since public test filtering will discard low quality candidate
solutions that either fail to compile or fail elementary test cases for the problem.

All problems in MBPP+, HumanEval+, and LiveCodeBench come with a few public tests which
are usually used to sanity check any submissions. We can further improve performance by filtering
on these public tests before a final submission, as described. Applying public test filtering reduces
the number of samples to achieve the same accuracy by tenfold: PLANSEARCH to achieve a 77.1%
accuracy on LiveCodeBench after just 20 submissions (pass@20) compared to a pass@200 of
77.0% without using public filtering (see Figure 9). We provide full results for the other datasets in
Appendix E.

C Result Details

C.1 Datasets

We evaluate our search methods on three benchmarks: MBPP+, HumanEval+ [27], and Live-
CodeBench [23]. MBPP [3] and HumanEval [14] are some of the most widely used code benchmarks
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in the field. However, since both benchmarks provide only a few test cases, [27] updates both
benchmarks with additional test cases that increase the benchmarks’ robustness to reward hacking.
LiveCodeBench is a benchmark for coding that consists of competitive programming problems which
typically require advanced reasoning capabilities. Given the reality that coding data is often highly
upsampled during pre-training [32, 16], LiveCodeBench differentiates itself from other benchmarks
by taking care to segregate problems by date to avoid data contamination concerns. For this paper,
we use only the subset of problems between May 2024 and September 2024 to avoid possibilities
of contamination. We choose May 2024 as the cutoff date to ensure that our results with our best
performing model (Claude 3.5 Sonnet) are not due to contamination, because Claude 3.5 Sonnet has
a knowledge cutoff of April 2024. To ensure fair comparison, we use the same cutoff for all models
evaluated, even though the precise cutoff dates for other models may vary slightly from May 2024.

C.2 Experiment Details

For all search algorithms, we require that all output code be in the correct format specified, and we
mark a solution as incorrect if it does not follow the intended formatting. The extracted code is then
run through all tests of the program and marked as correct if and only if it passes all tests.

All models are run with temperature 0.9 and top-p of 0.95. Temperature was determined
through a coarse hyperparameter sweep on REPEATED SAMPLING and IDEASEARCH from
T ∈ {0.0, 0.1, 0.2, . . . , 1.2}, which we describe in Appendix I.

The OpenAI, Claude, and DeepSeek endpoints were used for their respective model inference. For
other models not available on those APIs, a single node of 8 NVIDIA H100s were used for inference.
For test execution, a cluster on the order of 100 CPU nodes were used.

Both REPEATED SAMPLING and IDEASEARCH generate exactly n codes, whereas PLANSEARCH
generates a variable number of codes, usually ranging on the order of 300 to 400. To compute pass@k,
we use the unbiased estimator in Equation 4 [14]1. If k > n, we assume the remaining generations
did not pass. To compute pass@k for filtering, we limit the pool of codes to those that are filtered,
meaning that both n and c may shrink in size. This can be thought of as a conditional probability,
where the condition is that the code passes public tests.

D Full Pass@K curves for All Models and All Benchmarks

See Figures 4, 5, 6. We plot all models and methods on HumanEval+, MBPP+ [27], and Live-
CodeBench [23], respectively.

We include error bars as derived in Appendix Q.

1Note that the estimator in Equation 4 theoretically requires that the number of successes follows a binomial
distribution. REPEATED SAMPLING and IDEASEARCH obey this, but PLANSEARCH generations may not be
independent. See Appendix R for more discussion.
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E Full Pass@k Curves with Public Filtering

The idea of public test filtering is to shift pass@k curves leftward (i.e., bringing high k to low k),
so we plot curves in detail over k ∈ {1, . . . , 20}. Dotted lines are provided for reference of the
base method pass@k before filtering. For LiveCodeBench, even at 10 completions, PLANSEARCH
outperforms filtered REPEATED SAMPLING by a flat 30 to 40%.

See Figures 7, 8, 9. We plot all models and methods with public test filtering on HumanEval+,
MBPP+ [27], and LiveCodeBench [23], respectively.

1 10

0.6

0.7

0.8

0.9

1.0

Pa
ss

@
k

GPT-4o-mini

1 10

0.6

0.7

0.8

0.9

1.0 GPT-4o

1 10
k

0.6

0.7

0.8

0.9

1.0

Pa
ss

@
k

DeepSeek-Coder-V2

1 10
k

0.6

0.7

0.8

0.9

1.0 Sonnet-3.5

Repeated Sampling
IdeaSearch
PlanSearch

Public Filtering
No Public Filtering

Pass@k vs k for Methods with Public Filtering on HumanEval+

Figure 7: Pass@k performance of all models and methods on HumanEval+, with public test filtering,
plotted over k ∈ {1, . . . , 20}. Note that dotted lines are provided for reference of the base method
pass@k before filtering.
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F Average Relative Improvements

See Figures 10, 11, 12. To create these graphs, the relative improvements of each point on all pass@k
curves are computed and compared to the respective pass@1 of REPEATED SAMPLING. Then these
values are averaged over all models, so that there is one curve per method per dataset. The datasets
are HumanEval+, MBPP+ [27], and LiveCodeBench [23], respectively. For the public test filtered
versions, see Figures 13, 14, 15.
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Figure 10: Performance gain over REPEATED SAMPLING@1 averaged over all models on Hu-
manEval+, plotted over k ∈ {1, . . . , 200}.
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Figure 11: Performance gain over REPEATED SAMPLING@1 averaged over all models on MBPP+,
plotted over k ∈ {1, . . . , 200}.
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Figure 12: Performance gain over REPEATED SAMPLING@1 averaged over all models on Live-
CodeBench, plotted over k ∈ {1, . . . , 200}.

23



100 101

k
20

15

10

5

0

5

10

15

Re
la

tiv
e 

Ga
in

 (%
)

Average Gains with Public Filtering on HumanEval+

Repeated Sampling
IdeaSearch
PlanSearch

Public Filtering
No Public Filtering

Figure 13: Average performance gain over all models of methods with public test filtering compared
to REPEATED SAMPLING@1, plotted over k ∈ {1, . . . , 20}. Note that dotted lines are provided for
reference of the base method pass@k (before filtering).
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Figure 14: Average performance gain over all models of methods with public test filtering compared
to REPEATED SAMPLING@1, plotted over k ∈ {1, . . . , 20}. Note that dotted lines are provided for
reference of the base method pass@k (before filtering).
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Figure 15: Average performance gain over all models of methods with public test filtering compared
to REPEATED SAMPLING@1, plotted over k ∈ {1, . . . , 20}. Note that dotted lines are provided for
reference of the base method pass@k (before filtering).

26



G Compute Normalized Pass@K Graphs

See Figure 16. For each run of a method in Appendix D, we compute the number of generated tokens
needed per completion, per problem, independently on each dataset. Then, we average across all
datasets to obtain 244 generated tokens per completion per problem for REPEATED SAMPLING, and
1, 428 generated tokens per completion per problem for PLANSEARCH.
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Figure 16: Normalized pass@k by average tokens used per problem. REPEATED SAMPLING uses
roughly 244 tokens per completion per problem, and PLANSEARCH uses roughly 1428 tokens per
completion per problem. When we normalize compute across methods, we find that PLANSEARCH
begins to be more effective than repeated sampling if the user is willing to sample at least 10,000
tokens per problem.
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H Comparison with Chain-of-Thought

See Figures 17, 18, 19, which are run on LiveCodeBench [23], MBPP+, and HumanEval+ [27],
respectively. These are the same plots as Appendix D, with CoT [43]. See Figures 20, 21, 22 for the
public test filtered versions.
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Figure 17: Pass@k graphs on LiveCodeBench, with the Chain-of-Thought baseline.
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Figure 18: Pass@k graphs on MBPP+, with the Chain-of-Thought baseline.
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Figure 19: Pass@k graphs on HumanEval+, with the Chain-of-Thought baseline.
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Figure 20: Pass@k graphs on LiveCodeBench, with the Chain-of-Thought baseline and public
filtering.
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Figure 21: Pass@k graphs on MBPP+, with the Chain-of-Thought baseline and public filtering.
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Figure 22: Pass@k graphs on HumanEval+, with the Chain-of-Thought baseline and public filtering.
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I Ablation on Temperature for REPEATED SAMPLING and IDEASEARCH

See Figure 23. We sweep over temperature increments of 0.1 from 0.0 to 1.2, inclusive, with top-p of
0.95, on REPEATED SAMPLING and IDEASEARCH.
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Figure 23: Sweep over temperature in 0.1 increments from 0.0 to 1.2. REPEATED SAMPLING and
IDEASEARCH both exhibit pass@k improvements at higher temperature, although it seems that
higher temperatures may begin to plateau.
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J Diversity Score vs Search Improvement Plots for MBPP+ and HumanEval+

See Figures 24, 25, 3. Each figure is made through running the diversity measure as described in
Section 6.1 on the generated codes of each run, then compared with the relative gain from pass@k
compared to pass@1.
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Figure 24: Relationship between the measured diversity score as described in Section 6.1 (where
higher is more diverse) and relative improvement from the pass@1 of the method to the pass@200 of
the method.
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Figure 25: Relationship between the measured diversity score as described in Section 6.1 (where
higher is more diverse) and relative improvement from the pass@1 of the method to the pass@200 of
the method on MBPP+.
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K Ablations

We run ablations on the core parts of PLANSEARCH, using GPT-4o-mini on LiveCodeBench [23].
On the diverse observation generation side, we first verify our choice of S = 2—the maximum
subset size to sample from out of a given pool of observations—and also compare performance
across varying the number of observation layers used (Figures 26, 27). On the implementation side,
we compare different sections of the proposed pipeline (see Figure 1) to translate combinations of
observations to code in Figure 28. We compare each method’s pass@k from k = 1 to k = 200.
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Figure 26: We run ablations of PLANSEARCH with different S—controlling the maximum subset
size from a given pool of observations. There is not a large difference between different S, but we
find that 1 or 2 is slightly more optimal, although if more completions are desired, S can be increased
to 3 as well.

The effect S, the maximum observation subset size to build upon, has on performance is not overly
significant; there are small degradations as S is increased to 3, but not noticeable. We choose S = 2
to obtain more code completions. See Figure 26.

Increasing L, the maximum number of layers of the observation tree, increases pass@k at large
enough k (above 50). We choose L = 2 to strike a balance between extracting a large pass@k gain
while keeping compute costs reasonable. See Figure 27.

From Figure 28, we see that our overall translation step adds minor pass@k gains. We deconstruct the
translation step into parts: the pseudocode step, the fix step (i.e., asking the model to fix its proposed
solution sketch), and creating the solution sketch at all (which includes the fix step).

• “No solution sketch, no pseudocode” implies using a given observation combination to
directly prompt for the solution code.

• “No pseudocode” implies skipping the pseudocode step. In other words, given a solution
sketch, the sketch is directly translated into code.

• “No fix step, no pseudocode” implies the fix step is skipped, as well as the pseudocode. In
order to have the same number of completions, the whole PLANSEARCH pipeline is run
twice.
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Figure 27: We run ablations of PLANSEARCH with different L—controlling the maximum order of
observation used, i.e., how many layers the observation tree will search. We find pass@k scales with
respect to increasing L
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Figure 28: We run ablations of PLANSEARCH with different methods of translating a combination of
observations to code.
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L Base Models vs. Instruct Models for Large Samples

We find that base models, despite performing poorly relative to their instruct counterparts for evaluated
with pass@1, will frequently match or even exceed performance on pass@k for sufficiently high
k. This is likely due to higher amounts of diversity in base models, which have not undergone
post-training designed to elicit a single strong response from the model.

We see this effect across all models for HumanEval+ and MBPP+, but only the DeepSeek-Coder-V2
family for LiveCodeBench.

See Figure 29 for all base and instruct model comparisons between DeepSeek-Coder-V2-Lite, Llama-
3.1-8B, and Llama-3.1-70B on all three datasets.

We also provide Llama-3.1-8b and DeepSeek-Coder-V2-Lite pass@k comparisons for k up to 10, 000;
see Figures 31, 30.
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Figure 29: Pass@k curves comparing DeepSeek-Coder-V2-Lite, Llama-3.1-8B, and Llama-3.1-70B
base and instruct performance.

M Base Models vs. Instruct Models with Public Test Filtering

We repeat the graphs from Appendix L, but with public test filtering. We find that base models with
public test filtering almost always exceed the pass@1 of their instruct model variants.
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Figure 30: Pass@k curves comparing DeepSeek-Coder-V2-Lite’s base and instruct versions on
LiveCodeBench with up to 10, 000 completions.
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Figure 31: Pass@k curves comparing Llama-3.1-8B’s base and instruct versions on LiveCodeBench
with up to 10, 000 completions.

See Figure 32 for all base and instruct model comparisons between DeepSeek-Coder-V2-Lite, Llama-
3.1-8B, and Llama-3.1-70B on all three datasets with public test filtering.

We also report Llama-3.1-8b and DeepSeek-Coder-V2-Lite pass@k comparisons with public test
filtering for k up to 10, 000; see Figures 33, 34.
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Figure 32: Pass@k curves comparing DeepSeek-Coder-V2-Lite, Llama-3.1-8B, and Llama-3.1-70B
base and instruct performance with public test filtering.
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Figure 33: Pass@k curves comparing Llama-3.1-8B’s base and instruct versions on LiveCodeBench
with up to 1, 000 completions and with public test filtering.
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Figure 34: Pass@k curves comparing DeepSeek-Coder-V2-Lite’s base and instruct versions on
LiveCodeBench with up to 1, 000 completions and with public test filtering.
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N Bar Charts

See Figures 35, 36, 37. These plot pass@1 and pass@200 of select methods between REPEATED
SAMPLING and PLANSEARCH, on datasets MBPP+, HumanEval+ [27], and LiveCodeBench [23].
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Figure 35: Bar chart with REPEATED SAMPLING@1, REPEATED SAMPLING@200, and
PLANSEARCH@200, on MBPP+.
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Figure 36: Bar chart with REPEATED SAMPLING@1, REPEATED SAMPLING@200, and
PLANSEARCH@200, on HumanEval+.
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Figure 37: Bar chart with REPEATED SAMPLING@1, REPEATED SAMPLING@200, and
PLANSEARCH@200, on LiveCodeBench.

O Prompts

O.1 Backtranslation

O.1.1 Backtranslate System Prompt

You are an expert Python programmer. You will be given an algorithmic
question (problem specification). You will return a high-level, natural
language solution to the question, like an editorial. You will NOT return
any code. Be as creative as possible, going beyond what you think is
intuitively correct.

O.1.2 Implement Backtranslation Idea

You are an expert Python programmer. You will be given a question (problem
specification) and a natural language solution/tutorial that describes how
to solve the problem. You will generate a correct Python program that
matches said specification and tutorial and passes all tests. You will
NOT return anything except for the program inside markdown codeblocks.

O.2 Repeated Sampling

You are an expert Python programmer. You will be given a question (problem
specification) and will generate a correct Python program that matches the
specification and passes all tests. You will NOT return anything except
for the program inside Markdown codeblocks.

O.3 Simple Idea

You will given a competitive programming problem; please output a
high-level description of how to solve the problem in natural language.
Below are examples:
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Example input: PROBLEM DESCRIPTION HERE
Example output: EXAMPLE OUTPUT HERE
Here is the competitive programming problem: PROBLEM TO SOLVE

Brainstorm a high-level, natural language solution to the problem above.
Note that your intuition may lead you astray, so come up with simple,
creative ideas that go beyond what you would usually come up with and go
beyond your narrow intuition. Brainstorming solutions that do not seem
intuitively correct IS CRUCIAL.

O.4 PLANSEARCH

O.4.1 Prompt for Observation Part 1

You are an expert Python programmer. You will be given an competitive
programming question (problem specification). You will return several
useful, non-obvious, and correct observations about the problem, like hints
to solve the problem. You will NOT return any code. Be as creative as
possible, going beyond what you think is intuitively correct.

O.4.2 Prompt for Observation Part 2

You are an expert Python programmer. You will be given an competitive
programming question (problem specification) and several correct
observations about the problem.

You will brainstorm several new, useful, and correct observations about the
problem, derived from the given observations. You will NOT return any code.
Be as creative as possible, going beyond what you think is intuitively
correct.

O.4.3 Combining Observations

Here is a sample prompt from the function with placeholders:

Here is the competitive programming problem:

Problem statement placeholder

Here are the intelligent observations to help solve the problem:

Observation 1 placeholder
Observation 2 placeholder
Observation 3 placeholder

Use these observations above to brainstorm a natural language solution to
the problem above. Note that your intuition may lead you astray, so come
up with simple, creative ideas that go beyond what you would usually come
up with and exceeds your narrow intuition.
Quote relevant parts of the observations EXACTLY before each step of the
solution. QUOTING IS CRUCIAL.

P A Model of Repeated Sampling: Pass@k

Consider a simplified model of repeated sampling for code generation. Suppose we have a dataset
D = {P1, . . . , Pl} with l problems. For some problem Pi, define the probability pi as the probability
that our code generation model solves the problem Pi in one submission. The pass@k [14, 25] metric
(for problem Pi) is defined as the probability that our code generation model solves the problem Pi at
least once out of k submissions. Thus, if we know the true pi of our model, we may compute our
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pass@k simply:

pass@ki = 1− (1− pi)
k (2)

pass@k =
∑
i

pass@ki/l (3)

However, it turns out that for k > 1, the naïve estimator as seen in Equation 2 is biased, if we sample
ni ≥ k from our code model to solve Pi, ci ≤ ni are correct, and compute pi = ci/ni [14]. Instead,
pass@ki is typically computed using the unbiased estimator:

pass@ki = 1−
(
n−c
k

)(
n
k

) (4)

Note that reporting pass@k on a dataset where l = 1 is rather pointless, since pass@k can be derived
using only pass@11 and n1. Every curve, over a suitable range of k values, will look like the S-curve
seen in Figure 38 (as k is plotted on a log scale).
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Figure 38: A simple pass@k ‘S-curve’ plotted with 1− (1− p)k, where p = 0.04.

However, with datasets where l > 1, models are able to differentiate themselves through larger k,
since the overall pass@k is an average of these l curves. For example, for l = 3, it is less optimal to
have solved probabilities of Set1 = {0.001, 0.7, 0.9} versus Set2 = {0.05, 0.1, 0.25}, in the regime
of roughly k = 20 to k = 2, 000 (in which both converge to 1), even though Set1 has a pass@1 of
53% and Set2 has a pass@1 of 13%. See Figure 39.

Although not shown in the graph, Set2 converges close to 1 at roughly k = 400, several orders of
magnitude below Set1. In addition, note that the slight notch seen in Set1’s curve at large k is due to
the presence of low, but non-zero solve-rates, which can be seen in empirical pass@k curves later
on. (These can be thought as the beginning of the ‘ramping-up’ regime of the typical S-curves in
Figure 38.)

Q Computing a Standard Error Estimate of the Pass@k Estimator

For some approximation of the overall variance in our estimates of pass@k, we compute the theoretical
variance of the estimator (assuming each sample solves the problem with an independent probability
p and there are n samples):
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Figure 39: Two pass@k curves on a hypothetical dataset of length l = 3, and the solve probabilities
of Set 1 are {0.001, 0.7, 0.9} and Set 2 are {0.05, 0.1, 0.25}. Note that the pass@1 is 53% and 13%,
respectively. However, at roughly k = 20, Set 2 surpasses Set 1 and within an order of magnitude,
achieves pass@k of roughly 1.0.
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Note that Equation 5 depends on p. We naïvely substitute p = c/n, which introduces extra variance
which is unaccounted for, thus making this estimate an underestimate.

Empirically applying this equation and comparing to known p, the unaccounted variance increases as
k increases. With k and n on the order of 200, simulations suggest this standard error estimate to be
roughly a factor of 3 off the theoretical standard deviation, if ground-truth p of all problems were
known.

R Biased Estimator for Pass@K Due to Non-Independence of PLANSEARCH

From a pure theoretical standpoint, the expression is biased (if using the same interpretation), but it
still leads to a similar interpretation—computing the probability that a subset of size k drawn from
the set of samples we already generated contains at least one success. (These given samples were
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generated by one run of PLANSEARCH.) As such, in theory, the estimator may be slightly biased in
the PLANSEARCH case when computing its true pass@k. In practice, we do not believe this to be a
large concern, especially as our primary results feature a relatively large k = 200.

R.1 Measuring Diversity

You are an expert Python programmer. You will be given a competitive
programming problem and two pieces of code which are attempts to solve the
problem. For your convenience, you will also be given the idea for each
code, summarized in natural language. You will be asked to answer whether
the ideas behind the code are the same. You must ONLY output ’Yes.’ or
’No.’

S Competitive Programming

Competitive programming is a popular subset of programming tasks that involve solving complex
algorithmic reasoning. Typically, problems consist of a problem statement (written in natural
language) P , with associated tests: (xi, yi), i ∈ {1, . . . ,m}, for which any solution must pass all of
them.

The number of tests m depends on the problem, but typically ranges on the order of 25 to 100. A
small subset of the tests are typically given to the solver (we call these public tests) to use as validation
that their program passes simple cases. The rest of the tests are hidden. Solutions to the problems
must generally pass all the tests to be considered correct. Formally, we let f(x) denote the output of
said code ran on input x. The solution code is considered correct (passing) if and only if f(xi) = yi
for all i ∈ {1, . . . ,m}.

Each dataset consists of many (on the order of low-hundreds) independent problems, and models are
evaluated on each of these problems independently.

T Other Related Work

T.1 Search in Classical AI

Classical search algorithms like breadth-first search, depth-first search, and A* search have been
widely used for pathfinding, planning, and optimization [34]. More advanced search techniques
like Monte Carlo Tree Search (MCTS) have achieved remarkable success in domains like game
playing, enabling superhuman performance in Go [39, 40], Poker [7, 8] and Diplomacy [18]. More
recently, scaling laws have been found for the performance of AI systems in board games, where
ELO improves logarithmically with the amount of compute spent at inference [24].

T.2 Search with Language Models

Applying search on top of LLMs has been a topic of much interest, especially with an eye towards code
generation [14, 26]. Historically, methods such as beam search significantly improved performance
for translation systems [19]. Closer to the present day, several recent works have explored repeated
sampling [13, 6, 5, 44] as a search method for improving performance. Repeated sampling is a
method which directly generates candidate code solutions from the model many times at moderate to
high temperatures in hopes that one of the resulting generations will be correct. However, although
these works address the roughly linear increase in pass@k with respect to log k, they only focus on
the most basic version of repeated sampling, without searching in idea space.

When combined with a verifier, reward model, or other filtering algorithm to select the best generation
(in cases where pass@k is not a viable metric due to lack of test cases), it is also known under the
name of best-of-n sampling [30]. Many works show somewhat good results under intelligent selection
of such a filtering algorithm [12, 13]. Recently, several approaches have demonstrated the power of
repeated sampling. For example, repeated sampling from a small model can sometimes outperform
taking a single sample from a large model on an equalized compute bases [41]. Unlike algorithms
such as repeated sampling, which search over the output space, the key insight of PLANSEARCH is
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that it is far more effective to instead search plans over the latent idea space. By explicitly searching
over different natural language plans before generating the code, we significantly increase the diversity
of the final code outputs and thus, the resulting pass@k scores for sufficiently large k.

U Mathematics and Examples of the Diversity Measure

While our choice of a diversity metric is intuitive, one should note that there are a number of intriguing
details that result from our definition.

For example, it is the case that with k unique ideas and n samples of each idea, respectively (for a
total of kn total generated codes), we achieve a diversity score approaching (k − 1)/k.

For a quick proof, suppose that there are k cliques, each of n size. Each clique represents a unique
idea. We wish to capture the number of unfilled edges over the number of possible edges as our
diversity score: (

k
2

)
n2(

kn
2

) =
(k − 1)n

kn− 1
(6)

which converges to k−1
k as n grows large.

Our formulation seems more intuitive than other proposals, such as one that simply counts how many
unique ideas k lie within a pool of size n to compute k/n as the diversity score.

For instance, suppose there are only two unique ideas, one clique of which is of size 2n− 1, and the
other only output once. The simple proposal would compute both the diversity score of this uneven
group and that of an even group (where both ideas are output n times) to be 2

2n = 1
n .

However, our score would compute the even group to be n
2n−1 , and the uneven group as:

1

2n
· 1 + 2n− 1

2n
· 1

2n− 1
=

1

n
(7)

Instead of counting edges, we compute the probability that two randomly selected outputs have
similar idea to each other, which is another interpretation of our diversity score.

It seems clear that a case with 2n − 1 instances of idea 1 and 1 instance of idea 2 is ‘less diverse’
than a case with n instances of both idea 1 and idea 2. A naïve proposal may score these two as being
the same diversity, whereas our score scores them as 1/n and roughly 1/2, respectively.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and the introduction only claim what is supported by experiments,
most notably that idea diversity is strongly correlated with relative gains in inference-time-
compute, which is in turn unlocked by searching in idea space.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Appendix A.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Section 4, Appendix D, and Appendix C. In addition, all prompts are
provided.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We do not provide open access to the code, although all data used is open-
source. We plan to open-source the code sometime around acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Same justification as the “Experimental Result Reproducibility Section.”
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See Appendix D, which contains the main pass@k figures used for the critical
claim that PLANSEARCHimproves drastically at pass@k. Standard error estimates are
somewhat of an underestimate since the estimator is not a naïve mean, as discussed in
Appendix Q, and thus is not reported in other graphs. It was also somewhat infeasible to run
experiments for much longer for compute concerns.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: There are no foreseeable points in the Code of Ethics which do not conform
with the research conducted. The nature of the research revolves around a somewhat
contrived, academic problem of competitive programming, with very little societal impact.
However, there is the case in which inference-time compute gains may cause safety concerns
in the future, but that is beyond obvious foresight.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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Justification: As discussed above, since the work revolves around the setting of competitive
programming and inference-time compute gains, there are no foreseeable societal impacts
in the near-future.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: There are no released models or data.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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