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ABSTRACT

Recent large vision-language models (LVLMs) demonstrate remarkable capabil-
ities in processing extended multi-modal sequences, yet the resulting key-value
(KV) cache expansion creates a critical memory bottleneck that fundamentally
limits deployment scalability. While existing KV cache compression methods fo-
cus on retaining high-importance KV pairs to minimize storage, they often over-
look the modality-specific semantic redundancy patterns that emerge distinctively
in multi-modal KV caches. In this work, we first analyze how, beyond simple
importance, the KV cache in LVLMs exhibits varying levels of redundancy across
attention heads. We show that relying solely on importance can only cover a subset
of the full KV cache information distribution, leading to potential loss of semantic
coverage. To address this, we propose MixKV, a novel method that mixes im-
portance with diversity for optimized KV cache compression in LVLMs. MixKV
adapts to head-wise semantic redundancy, selectively balancing diversity and im-
portance when compressing KV pairs. Extensive experiments demonstrate that
MixKV consistently enhances existing methods across multiple LVLMs. Under
extreme compression (budget=64), MixKV improves baseline methods by an av-
erage of 5.1% across five multi-modal understanding benchmarks, and achieves
remarkable gains of 8.0% and 9.0% for SnapKV and AdaKV on GUI ground-
ing tasks, all while maintaining comparable inference efficiency. Furthermore,
MixKV extends seamlessly to LLMs with comparable performance gains. The
code is available in the supplementary material and will be released on GitHub.

1 INTRODUCTION

Large vision-language models (LVLMs) (Li et al., 2024a; Chen et al., 2024d) have achieved re-
markable performance in multimodal understanding by effectively integrating visual information
and user instructions into the input space of large language models (LLMs) (Grattafiori et al., 2024;
Yang et al., 2025a). With the growing demand for understanding long-context visual inputs, includ-
ing high-resolution images (Bai et al., 2025; Zhu et al., 2025) and long videos (Shu et al., 2025;
Qin et al., 2025), LVLMs must process an increasing number of visual tokens. However, process-
ing such long-context inputs generates numerous key-value (KV) pairs in the KV cache of LLMs,
substantially increasing GPU memory consumption and degrading computational efficiency due to
memory access latency and bandwidth constraints (Liu et al., 2025; Wan et al., 2024).

To address the KV storage overhead, two main approaches have emerged. Token compression meth-
ods (Yang et al., 2025b; Chen et al., 2024a) directly compress visual tokens to indirectly reduce KV
cache storage, but often underperform in high-resolution fine-grained tasks like text understand-
ing (Singh et al., 2019) and document processing (Mathew et al., 2021). More effective KV cache
compression methods directly evict KV pairs in the LLM to minimize storage while preserving per-
formance (Wan et al., 2024; Li et al., 2024b), thereby enhancing decoding efficiency and throughput.
However, current KV cache compression methods for LVLMs predominantly rely on attention-based
importance scores to decide which KV pairs to retain (Tao et al., 2025; Wang et al., 2025b). While
this strategy does reduce the KV cache size, it fails to consider the intrinsic semantic characteristics
of KV pairs in multi-modal settings. To bridge this gap, we conduct a comprehensive analysis and
identify two key characteristics of KV pairs in LVLMs:
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(a) Cosine Similarity between All Tokens (b) Similarity Distribution

Figure 1: Visualization of KV cache redundancy across different models. (a) presents the simi-
larity of keys across the same layer and head, with Qwen2-VL (bottom) processing vision-language
information and Qwen2 (top) handling pure text information. (b) quantifies the average similarity
distribution of keys (top) and values (bottom) across all layers and heads for Qwen2 and Qwen2-VL.

(I) Vision-Language Redundancy Differences: Visual information in LVLMs contains signifi-
cantly more semantic redundancy than textual information in LLMs. Images often contain repeti-
tive visual elements (e.g., similar textures, repeated patterns), leading to higher semantic similarity
among KV pairs during vision-language processing. Figure 1 provides compelling evidence: (a)
shows that Qwen2-VL exhibits much denser high-similarity regions compared to the more diverse
patterns of Qwen2, while (b) reveals that keys in Qwen2 peak around 0.2-0.4 average similarity
whereas Qwen2-VL keys peak around 0.6-0.8, a 2-3× increase. This demonstrates that KV pairs in
LVLMs exhibit substantially higher semantic redundancy than in LLMs.

(II) Head-wise Redundancy Differences: Within LVLMs, different attention heads focus on dis-
tinct multi-modal aspects (Wang et al., 2025b). Some heads capture global features with lower
redundancy, while others focus on local details with higher semantic similarity. Figure 2 illustrates
this phenomenon across multiple tasks: for Qwen2-VL-7B, certain heads show extremely high av-
erage similarity exceeding 0.9, while other heads maintain relatively low similarity below 0.3. This
pattern is consistent across different vision-language tasks, indicating that KV pairs in LVLMs show
varying degrees of semantic redundancy across attention heads in the LLM.

Furthermore, our analysis reveals that importance-based compression methods fail to fully repli-
cate the information distribution of the original KV cache, leading to potential information loss
(Figure 3). Therefore, we argue that beyond importance, preserving diverse KV pairs at per-head
granularity is essential for minimizing semantic redundancy while maintaining comprehensive infor-
mation coverage. To this end, we propose MixKV, which adopts a principled “mixing importance
with diversity” approach. Specifically, MixKV extends existing importance-based KV compression
methods by incorporating head-wise semantic diversity evaluation. By independently measuring se-
mantic similarity within each attention head, MixKV adaptively balances importance and diversity
per head to achieve fine-grained joint optimization of KV cache compression in LVLMs.

MixKV is a plug-and-play framework that enhances existing KV compression methods with consis-
tent performance gains, maintaining inference efficiency while better preserving the distributional
properties of the original KV cache. In summary, the main contributions are as follows:

1. Semantic Redundancy Analysis. We conduct in-depth analyses of KV caches in LVLMs, reveal-
ing substantial inherent semantic redundancy. Besides, we demonstrate that importance-based
methods fail to preserve full KV distribution coverage, exposing fundamental limitations.

2. Mixing Importance with Diversity. Based on our analysis, we propose MixKV, a head-wise
adaptive mechanism that quantifies semantic redundancy to create principled weighting between
importance and diversity scores for joint optimization of KV cache compression.

3. Comprehensive Experimental Validation. Extensive experiments across diverse multi-modal
and text benchmarks demonstrate that MixKV yields consistent performance improvements for
existing importance-based compression methods while maintaining inference efficiency.
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(a) Head Similarity of LLaVA-NeXT-Mistral-7B (b) Head Similarity of Qwen2-VL-7B

Figure 2: Visualization of KV cache redundancy across different heads in LLMs. (a) and (b)
present the average cosine similarity across heads of LLaVA-NeXT-Mistral-7B and Qwen2-VL-7B
within the LLMs, with brighter heads indicating greater similarity in semantic information.

2 RELATED WORK

Large Vision-language Models. Current large vision-language models (LVLMs) integrate a vision
encoder (i.e., ViT), a projector module, and a large language model (LLM) to enable multi-modal
comprehension (Liu et al., 2023; 2024a). To meet the growing demand for high-resolution image
understanding, recent LVLMs introduce higher-resolution inputs via dynamic cropping strategies,
such as LLaVA-NeXT (Liu et al., 2024b) and InternVL series (Chen et al., 2024c;b), or native
resolution processing like Qwen2-VL (Wang et al., 2024; Bai et al., 2025) and GLM-4.5V (Hong
et al., 2025). Additionally, video large language models (VideoLLMs) such as LLaVA-Video (Zhang
et al., 2024b) and Video-XL-2 (Qin et al., 2025) process multi-frame videos with thousands of
frames. This trend dramatically increases visual token counts, leading to substantial computational
costs and GPU memory burdens due to the key-value (KV) cache in the attention mechanism.

Long-Context Optimization. Longer contexts generally improve the performance of LVLMs and
enable more comprehensive multi-modal understanding (Wang et al., 2025c; Chen et al., 2025).
Extensive work aims to make long-context processing more efficient and can be broadly categorized
into three directions: (i) Efficient computational architectures, such as sparse attention (Li et al.,
2025b; Xu et al., 2025), linear attention (Li et al., 2025a), and state-space models (Gu & Dao,
2024), which reduce the quadratic complexity of attention with respect to sequence length and thus
accelerate long-context processing; (ii) Model-centric compression, including network pruning (Ma
et al., 2023), model quantization (Wang et al., 2025a), and knowledge distillation (Cai et al., 2025a),
which reduce parameter count and thereby lower the computational and memory cost of long-context
inference; and (iii) Data-centric compression, which reduces the effective context length or storage
processed by the model, for example via token compression (Yang et al., 2025b; Zhang et al., 2025),
KV cache compression (Li et al., 2024b; Wang et al., 2025b) or KV cache quantization (Liu et al.,
2024d; Zhang et al., 2024a), thus directly improving the efficiency of long-context computation.
These three directions optimize long-context processing from complementary perspectives and are
largely orthogonal to each other. Given that the context lengths required by modern applications
have rapidly increased (Liu et al., 2025), in this work we focus on the data-centric perspective and
compress the stored KV cache to enable efficient long-context computation for LVLMs.

KV Cache Compression. The KV cache stores computed key-value (KV) pairs during the LLM’s
pre-filling phase to avoid redundant computations in decoding and enhance inference efficiency.
However, long-context multi-modal inputs impose a significant GPU memory burden on the KV
cache. To alleviate this, several works propose KV cache compression techniques, categorized as:
(i) Vision token compression that directly compresses vision tokens (Yang et al., 2025b; Chen et al.,
2024a), and (ii) KV cache compression that compresses stored KV pairs during pre-filling (Zhang
et al., 2023; Liu et al., 2024e). Current KV compression methods are mainly designed for LLMs,
such as SnapKV (Li et al., 2024b), which clusters important KV positions using attention patterns
from an observation window; KNorm (Devoto et al., 2024), which uses ℓ2 key norms to score
and retain KV pairs with lower norms; and AdaKV (Feng et al., 2025), which adaptively allocates
eviction budgets across attention heads. Methods specifically designed for LVLMs include InfiniPot-
V (Kim et al., 2025), which employs Value Norm for KV pair selection, and SparseMM (Wang et al.,
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2025b), which allocates asymmetric budgets across attention heads based on their importance and
retains high-attention KV pairs from observation windows. Most existing compression methods
follow the paradigm of retaining critical KV pairs and evicting less important ones.

Unlike prior works that focus primarily on importance-based selection, we identify a critical char-
acteristic in LVLMs: heterogeneous head-wise redundancy, where KV caches exhibit varying de-
grees of semantic redundancy across attention heads (Figure 2), causing importance-only methods
to retain KV pairs that fail to cover the full information spectrum in high-redundancy heads. This
motivates us to jointly consider importance and diversity for more effective KV cache compression.

3 METHODOLOGY

3.1 PRELIMINARY: LARGE VISION-LANGUAGE MODELS

LVLM Architecture. Contemporary large vision-language models (LVLMs) generally adopt a
“ViT-Projector-LLM” architecture (Li et al., 2024a; Wang et al., 2024), which consists of three
primary components. For an input image I ∈ RH×W×3 or video V = {vi}Ti=1 ∈ RT×H×W×3: (i)
The visual encoder (i.e., ViT) extracts visual features, yielding embeddings E ∈ RN×D for images
or E = {ei}Ti=1 ∈ RT×N×D for videos; (ii) A projection layer, often a two-layer MLP, maps these
to vision tokens Fv ∈ RM×D′

for images or Fv = {fvi }Ti=1 ∈ RT×M×D′
for videos, with M ≤ N ;

and (iii) The LLM processes the combined visual and text tokens Ft in two phases: During the pre-
filling phase, it computes KV pairs for all input tokens (Fv and Ft) and stores them in the KV cache
to avoid redundant computations; in the decoding phase, it auto-regressively generates responses,
leveraging the KV cache for efficient retrieval of prior KV pairs in attention mechanisms:

p
(
Y | Fv,Ft

)
=

L∏
j=1

p
(
yj | Fv,Ft,Y1:j−1; C

)
, (1)

where Y = {yj}Lj=1 is the output sequence, and C denotes the KV cache. Thus, LVLMs achieve
multi-modal understanding based on visual inputs and user instructions.

KV Cache Compression. Multi-modal long-context sequences result in numerous KV pairs, which
lead to significant memory overhead. KV cache compression addresses this challenge by intro-
ducing a compression operator Φ, which selectively reduces the number of stored KV cache (Wang
et al., 2025b). Typically, Φ involves an evaluation function E that assigns scores si = E(Kl

h,i,V
l
h,i)

to each KV pair i, with compression based on these scores by retaining top-b highest-scoring pairs
given a budget B, such that for each layer l and head h, KV pairs Kl

h,V
l
h ∈ RT×D (T is se-

quence length, D dimension per head) are compressed into compact representations K̂l
h, V̂

l
h =

TopB(Kl
h,V

l
h, {si}Ti=1). KV cache compression targets KV tensors computed during pre-filling,

reducing memory burden while supporting efficient attention in decoding.

3.2 ANALYSIS OF KV PAIRS CHARACTERISTICS

To optimize KV cache compression in LVLMs, we begin by analyzing key characteristics of the KV
cache. An intuitive characteristic is importance, aimed at retaining KV pairs with greater signifi-
cance while compressing those with lesser importance, thereby enabling efficient compression.

Importance Metrics. Existing methods evaluate KV pair importance from two perspectives, intrin-
sic and extrinsic, each employing distinct metrics to compute importance scores simp:

• Intrinsic Importance: Determined by inherent KV vector properties, including Key Norm
(KNorm) (Devoto et al., 2024), which computes the ℓ2 norm of each key vector with its nega-
tive assigned as sin

imp,i = −sin (KNorm)
imp,i for compression scoring, and Value Norm (VNorm) (Kim

et al., 2025), which calculates the ℓ2 norm of each value vector, using it directly as sin
imp,i =

sin (VNorm)
imp,i for scoring. Compression retains the KV pairs with higher sin

imp,i, such that K̂l
h, V̂

l
h =

TopB(Kl
h,V

l
h, {sin

imp,i}Ti=1), where sin
imp,i represents the intrinsic importance.

• Extrinsic Importance: Quantified by average attention scores from an observation window at
the prompt end (default length 32) (Li et al., 2024b; Cai et al., 2025b), reflecting instruction
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relevance. The score sex
imp,i =

1
|window|

∑
j∈window Attention(Qj ,Ki) is computed from attention

weights between query Qj and key Ki, balancing modalities effectively. This score serves as
sex

imp,i for compression. Compression prioritizes pairs with higher sex
imp,i, such that K̂l

h, V̂
l
h =

TopB(Kl
h,V

l
h, {sex

imp,i}Ti=1), where sex
imp,i primarily reflects instruction relevance.

We argue that a comprehensive assessment of KV pair importance requires integrating both in-
trinsic and extrinsic perspectives. This ensures a balanced evaluation of inherent significance and
instruction relevance. Specifically, the integrated importance score is computed as:

simp,i = sex
imp,i + sin

imp,i (2)

where we employ sin (VNorm)
imp,i as the default intrinsic component. To ensure compatibility between

VNorm and attention-based extrinsic importance, we normalize VNorm scores to [0, 1] and scale
them to match attention score magnitudes: sin

scaled,i = sin
norm,i ·

s̄ex
imp

s̄in
norm+ϵ , where s̄ex

imp and s̄in
norm de-

note respective mean values. Comprehensive ablation studies in Section 4.3 Table 4 validate the
effectiveness of this design choice. However, methods relying solely on importance suffer from a
critical limitation: they preferentially retain semantically similar KV pairs, leading to significant
redundancy in the compressed cache and loss of global semantic coverage.

Figure 3: t-SNE visualization of KV
cache distributions under different
settings. “Full KV” represents the
original KV distribution of Qwen2-VL
without compression, serving as the
reference distribution.

Figure 3 further presents this limitation, which performs
a t-SNE visualization of KV cache distributions. We ob-
serve that methods relying only on importance, such as
SnapKV (Li et al., 2024b) (blue stars), fail to adequately
cover the full KV cache information. In Figure 3, SnapKV
primarily focuses on a small portion of the information,
losing semantic coverage compared to the full KV distribu-
tion (light gray circles). This is because importance-based
methods prioritize task-relevant, highly similar informa-
tion, often neglecting the broader diversity of KV pairs.
As a result, relying solely on importance introduces redun-
dancy by retaining semantically similar KV pairs, which
do not provide the full semantic richness of the KV cache.
Therefore, effective KV cache compression in LVLMs re-
quires incorporating diversity to retain non-redundant KV
pairs. This enables KV cache compression methods to ap-
proximate the full original semantic distribution of the
uncompressed KV cache more effectively.

Diversity Metrics. Beyond importance, semantic diversity serves as another crucial characteristic
for effective KV cache compression in LVLMs. We focus on key diversity, as keys primarily govern
the attention patterns and semantic focus within a head, making them the most direct levers for
controlling information redundancy. To quantify diversity in a computationally efficient manner,
we adopt the negative cosine similarity between each key and the global average key, as it serves
as an intuitive proxy for capturing the breadth of the semantic distribution. For each layer l and

head h, we first normalize each key vector: K̂l
h,i =

Kl
h,i

∥Kl
h,i∥

, where Kl
h,i ∈ RD represents the i-

th key vector and T is the sequence length. We then compute a single global key representation
via averaging: ˆ̄Kl

h = 1
T

∑T
i=1 K̂

l
h,i. This ensures that the diversity scores, computed via cosine

similarity, are obtained in linear time with respect to T . Specifically, the diversity score for each
KV pair is sdiv

i = −K̂l
h,i · ˆ̄Kl

h. Here, higher scores indicate greater distinctiveness from the global
pattern, as the negative cosine similarity encourages the retention of diverse information.

3.3 HEAD-WISE ADAPTIVE MIXING MECHANISM

Section 3.2 analyzes importance metrics simp and diversity metrics sdiv, both critical for compression.
A natural question arises: How can these complementary metrics be combined effectively?. While
simply adding the importance and diversity scores (simp +sdiv) offers simplicity, Figure 2 shows that
varying semantic similarity levels across attention heads make uniform mixing sub-optimal.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Our central insight is that heads exhibiting higher semantic redundancy should prioritize diver-
sity preservation to prevent similar KV pair retention, while less redundant heads can emphasize
importance-based selection. This motivates the head-wise adaptive weighting mechanism in MixKV.

Head-wise Redundancy Quantification. We develop a principled approach to quantify semantic
redundancy within each attention head. For layer l and head h, we employ the off-diagonal average
similarity of normalized key vectors as our redundancy measure.

Using the normalized key matrix K̂l
h ∈ RT×D from diversity computation, we construct the simi-

larity matrix Rl
h = K̂l

h(K̂
l
h)

T ∈ RT×T . By exploiting the relationship between dot products and
norms, the total similarity sum becomes:

T∑
i,j=1

Rl
h,i,j =

(
T∑

i=1

K̂l
h,i

)
·

 T∑
j=1

K̂l
h,j

 = T 2∥ ˆ̄Kl
h∥22 (3)

where ˆ̄Kl
h = 1

T

∑T
i=1 K̂

l
h,i. Given that normalized vectors yield unit diagonal elements due to the

normalization process, the off-diagonal average similarity is:

r̄lh =
T 2| ˆ̄Kl

h|22 − T

T (T − 1)
. (4)

This formulation ensures that as r̄lh → 1 (high redundancy), diversity weight increases to prevent
redundant retention, while r̄lh → 0 (low redundancy) prioritizes importance-based selection. This
mathematical property positions r̄lh as an ideal adaptive weight for diversity scores.

Head-wise Adaptive Mixing. Based on the redundancy quantification, we develop the head-wise
adaptive mixing function W head(·). To ensure scale compatibility between importance and diversity

scores, we first normalize diversity scores to [0, 1]: s̃div
i =

sdiv
i −minj(s

div
j )

maxj(sdiv
j )−minj(sdiv

j )+ϵ
, then scale them to

match the magnitude of importance scores: sdiv
scaled,i = s̃div

i · s̄imp
¯̃sdiv+ϵ

.

The comprehensive score is computed through our head-wise adaptive mixing function W head(·):

scomp
i = W head(simp + sdiv) = (1− r̄lh) · simp,i + r̄lh · sdiv

scaled,i (5)

Through this formulation, MixKV achieves adaptive adjustment: redundant heads (r̄lh → 1) empha-
size diverse KV pairs, while less redundant heads (r̄lh → 0) prioritize importance. This head-wise
adaptation ensures the compressed KV cache preserves both critical information and semantic di-
versity. KV compression is realized by selecting the top-B pairs with the highest comprehensive
scores: K̂l

h, V̂
l
h = TopB(Kl

h,V
l
h, {s

comp
i }Ti=1). Notably, Figure 3 demonstrates that the adaptive

mixing strategy of MixKV enables SnapKV to leverage KV cache diversity, thereby capturing a
broader range of information and encompassing a wider distribution of the full KV cache (high-
lighted in red circles). See Figure 7 for more visualizations and Appendix A.6 for the algorithm.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Model Details. We evaluate MixKV across a diverse set of architectures to ensure generalizability:
LLaVA-NeXT-Mistral-7B (Liu et al., 2024b), InternVL3-8B (Li et al., 2024a), and Qwen2-VL-7B-
Instruct (Wang et al., 2024) for multi-modal understanding tasks; Qwen2.5-VL-7B-Instruct (Bai
et al., 2025) for GUI grounding tasks; and Mistral-7B-Instruct-v0.2 (Jiang et al., 2023) and Llama-
3.1-8B-Instruct (Grattafiori et al., 2024) for text-only evaluation.

Benchmark Details. We select a range of multi-modal understanding benchmarks and a com-
prehensive text understanding benchmark for evaluation. For image understanding, we include
DocVQA (Mathew et al., 2021), OCRBench (Liu et al., 2024c), TextVQA (Singh et al., 2019),
ChartQA (Masry et al., 2022), and TextCaps (Sidorov et al., 2020), along with ScreenSpot-v2 (Wu
et al., 2024) for GUI grounding. For text understanding, we adopt LongBench (Bai et al., 2024).
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Table 1: Performance on multiple image understanding benchmarks. Since SparseMM (Wang
et al., 2025b) does not provide head importance scores for InternVL3-8B (Zhu et al., 2025), we
cannot reproduce their results on this model. “Full KV” means caching all KV pairs (upper bound).

Methods DocVQA (%) OCRBench (%) TextVQA (%) ChartQA (%) TextCaps
256 128 64 256 128 64 256 128 64 256 128 64 256 128 64

LLaVA-NeXT-Mistral-7B
Full KV 63.6 52.9 65.7 52.9 0.707

SnapKV 59.7 55.2 47.3 45.0 39.0 31.9 63.5 61.0 57.1 50.2 47.5 42.7 0.650 0.558 0.444
+ MixKV 61.7 58.1 48.8 49.9 44.7 36.1 65.2 64.3 60.1 50.8 47.7 43.6 0.708 0.659 0.514
∆baseline +2.0 +2.9 +1.5 +4.9 +5.7 +4.2 +1.7 +3.3 +3.0 +0.6 +0.2 +0.9 +0.058 +0.101 +0.070
PyramidKV 58.2 54.3 43.4 44.1 39.4 29.1 62.9 60.9 54.8 49.1 47.1 40.8 0.621 0.553 0.407
+ MixKV 60.8 57.2 45.1 49.7 43.7 32.0 64.9 63.8 57.8 50.8 47.5 41.3 0.687 0.656 0.466
∆baseline +2.6 +2.9 +1.7 +5.6 +4.3 +2.9 +2.0 +2.9 +3.0 +1.7 +0.4 +0.5 +0.066 +0.103 +0.059
AdaKV 59.6 55.9 48.7 45.1 40.4 32.8 62.9 60.5 56.9 50.4 47.8 44.6 0.646 0.566 0.440
+ MixKV 61.3 58.3 50.8 49.8 44.9 36.6 65.3 63.7 59.6 50.9 48.5 45.2 0.704 0.660 0.509
∆baseline +1.7 +2.4 +2.1 +4.7 +4.5 +3.8 +2.4 +3.2 +2.7 +0.5 +0.7 +0.6 +0.058 +0.094 +0.069
SparseMM 61.6 60.8 57.6 51.9 50.7 46.2 65.1 64.7 62.8 51.9 51.2 48.9 0.680 0.634 0.524
+ MixKV 61.9 61.0 59.2 50.8 50.4 49.5 65.2 65.0 64.4 51.8 51.5 50.6 0.682 0.652 0.575
∆baseline +0.3 +0.2 +1.6 -1.1 -0.3 +3.3 +0.1 +0.3 +1.6 -0.1 +0.3 +1.7 +0.002 +0.018 +0.051

InternVL3-8B
Full KV 90.96 84.2 81.1 86.36 1.042

SnapKV 89.2 85.4 75.7 80.6 69.0 53.1 80.4 78.2 71.9 86.2 84.6 79.8 1.009 0.901 0.734
+ MixKV 89.4 86.2 76.3 81.9 71.1 52.3 80.9 78.8 72.9 86.3 84.8 80.7 1.029 0.949 0.753
∆baseline +0.2 +0.8 +0.6 +1.3 +2.1 -0.8 +0.5 +0.6 +1.0 +0.1 +0.2 +0.9 +0.020 +0.048 +0.019
PyramidKV 87.2 82.7 69.7 70.9 58.4 41.8 78.3 75.3 67.2 85.7 84.0 78.0 0.896 0.809 0.632
+ MixKV 87.5 83.5 70.4 72.3 60.0 41.2 79.0 76.6 68.2 85.8 84.4 78.6 0.941 0.850 0.646
∆baseline +0.3 +0.8 +0.7 +1.4 +1.6 -0.6 +0.7 +1.3 +1.0 +0.1 +0.4 +0.6 +0.045 +0.041 +0.014
AdaKV 89.2 86.0 77.2 80.8 70.2 53.1 80.4 78.0 71.8 86.2 84.4 80.4 1.013 0.921 0.759
+ MixKV 89.5 86.7 78.1 82.4 71.6 52.3 80.8 78.7 72.9 86.2 85.2 80.9 1.034 0.955 0.782
∆baseline +0.3 +0.7 +0.9 +1.6 +1.4 -0.8 +0.4 +0.7 +1.1 +0.0 +0.8 +0.5 +0.021 +0.034 +0.023

Qwen2-VL-7B-Instruct
Full KV 93.9 82.1 82.1 81.5 1.469

SnapKV 88.0 80.1 66.5 77.3 71.9 62.4 80.3 77.5 69.9 81.3 79.6 75.5 1.360 1.142 0.794
+ MixKV 90.5 82.6 67.9 79.3 75.4 66.0 81.9 80.6 72.5 81.6 81.2 77.6 1.470 1.342 0.878
∆baseline +2.5 +2.5 +1.4 +2.0 +3.5 +3.6 +1.6 +3.1 +2.6 +0.3 +1.6 +2.1 +0.110 +0.200 +0.084
PyramidKV 81.7 74.0 59.9 74.5 67.9 56.8 78.3 74.6 65.3 81.1 79.2 73.5 1.115 0.951 0.569
+ MixKV 84.0 76.3 60.8 76.6 72.6 58.4 80.4 77.1 67.0 81.3 80.7 75.5 1.348 1.119 0.633
∆baseline +2.3 +2.3 +0.9 +2.1 +4.7 +1.6 +2.1 +2.5 +1.7 +0.2 +1.5 +2.0 +0.233 +0.168 +0.064
AdaKV 87.4 81.2 67.1 77.8 71.0 62.1 79.9 77.0 70.3 80.8 79.6 75.9 1.345 1.146 0.775
+ MixKV 90.3 82.1 67.8 79.3 74.7 65.5 81.8 79.6 71.2 81.5 80.9 77.4 1.448 1.275 0.878
∆baseline +2.9 +0.9 +0.7 +1.5 +3.7 +3.4 +1.9 +2.6 +0.9 +0.7 +1.3 +1.5 +0.103 +0.129 +0.103
SparseMM 93.5 91.5 84.9 81.2 79.0 74.3 82.0 81.6 77.3 82.0 81.5 80.1 1.482 1.430 1.038
+ MixKV 93.8 92.7 86.4 82.0 81.0 77.1 82.0 82.0 80.9 81.6 81.8 81.4 1.480 1.459 1.303
∆baseline +0.3 +1.2 +1.5 +0.8 +2.0 +2.8 +0.0 +0.4 +3.6 -0.4 +0.3 +1.3 -0.002 +0.029 +0.265

Table 2: Performance on ScreenSpot-v2 GUI grounding benchmark with Qwen2.5-VL-7B-
Instruct. “Full KV” refers to caching all KV pairs of the LLM (upper bound).

Methods Mobile Text Mobile Icon/Widget Desktop Text Desktop Icon/Widget Web Text Web Icon/Widget Average
128 64 128 64 128 64 128 64 128 64 128 64 128 64

Qwen2.5-VL-7B-Instruct
Full KV 97.2 87.7 91.2 77.1 88.5 82.3 88.5

SnapKV 65.5 28.6 78.7 53.1 86.1 57.2 74.3 57.1 76.9 46.6 74.4 49.8 75.3 46.9
+ MixKV 86.6 35.5 85.3 60.2 87.1 71.1 75.0 65.7 85.0 53.0 76.4 56.2 83.3 54.9
∆baseline +21.1 +6.9 +6.6 +7.1 +1.0 +13.9 +0.7 +8.6 +8.1 +6.4 +2.0 +6.4 +7.9 +8.0
PyramidKV 45.5 11.0 62.1 34.1 82.0 33.0 75.0 47.9 69.2 20.5 71.4 24.1 65.6 26.1
+ MixKV 64.1 15.9 74.4 42.2 87.1 41.8 74.3 47.1 76.9 24.8 71.9 27.1 74.1 31.1
∆baseline +18.6 +4.9 +12.3 +8.1 +5.1 +8.8 -0.7 -0.8 +7.7 +4.3 +0.5 +3.0 +8.5 +5.0
AdaKV 80.7 35.2 84.8 59.2 90.2 70.6 74.3 63.6 82.1 49.6 75.9 56.2 81.6 53.7
+ MixKV 94.1 49.0 88.6 66.8 89.7 75.3 75.0 68.6 85.0 61.5 76.9 63.1 86.0 62.7
∆baseline +13.4 +13.8 +3.8 +7.6 -0.5 +4.7 +0.7 +5.0 +2.9 +12.0 +1.0 +6.9 +4.4 +9.0

Implementation Details. We integrate MixKV with various KV compression methods, includ-
ing SnapKV (Li et al., 2024b), PyramidKV (Cai et al., 2025b), AdaKV (Feng et al., 2025), and
SparseMM (Wang et al., 2025b), across different KV cache budgets. Details are in Appendix A.3.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Performance on LongBench with Mistral-7B-Instruct-v0.2 and Llama-3.1-8B-
Instruct. “Full KV” refers to caching all KV pairs of the LLM (upper bound).

Methods
Information Localization Information Aggregation

Avg.Single-Doc QA Multi-Doc QA Summarization Few-shot Synthetic Code

Nrtv
QA

Qasp
er

M
F-en

Hotp
otQ
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ue

Gov
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or
t
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Sum
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SAM
Sum

PCou
nt

PRe
Lcc

RB-P

Mistral-7B-Instruct-v0.2
Full KV 26.81 33.19 49.26 43.02 27.12 18.78 32.80 24.16 27.02 71.00 86.23 42.64 2.75 86.98 55.09 53.01 42.49

KV Cache Budget = 1024
SnapKV 24.98 30.24 49.03 41.45 27.11 18.26 25.69 23.87 25.97 68.00 86.25 42.30 2.82 87.93 54.95 52.00 41.30
+ MixKV 25.55 31.04 48.19 41.31 27.18 19.24 26.98 23.88 26.74 70.00 86.46 43.77 2.90 85.99 55.02 51.28 41.60
∆baseline +0.57 +0.80 -0.84 -0.14 +0.07 +0.98 +1.29 +0.01 +0.77 +2.00 +0.21 +1.47 +0.08 -1.94 +0.07 -0.72 +0.30
AdaKV 25.15 30.60 49.06 40.93 26.92 18.81 25.88 23.96 25.84 69.00 86.24 43.01 2.85 88.68 55.19 52.46 41.54
+ MixKV 25.31 30.56 48.83 41.96 26.95 18.27 26.77 23.85 26.37 70.50 86.63 43.44 2.62 86.52 55.65 51.87 41.63
∆baseline +0.16 -0.04 -0.23 +1.03 +0.03 -0.54 +0.89 -0.11 +0.53 +1.50 +0.39 +0.43 -0.23 -2.16 +0.46 -0.59 +0.09

KV Cache Budget = 512
SnapKV 23.69 27.71 49.16 39.70 25.44 17.38 23.31 23.28 24.20 66.00 86.17 41.54 3.24 86.29 53.71 51.19 40.13
+ MixKV 23.56 28.19 48.96 40.36 25.86 17.34 24.63 23.36 25.32 66.00 86.23 42.25 3.02 87.66 53.87 51.40 40.50
∆baseline -0.13 +0.48 -0.20 +0.66 +0.42 -0.04 +1.32 +0.08 +1.12 0.00 +0.06 +0.71 -0.22 +1.37 +0.16 +0.21 +0.37
AdaKV 24.35 27.33 48.76 40.07 26.38 17.97 23.73 23.51 24.31 67.50 86.38 42.53 3.06 86.65 53.90 51.57 40.50
+ MixKV 24.26 28.39 48.90 40.86 26.33 17.07 24.63 23.32 25.41 69.00 86.51 42.67 3.07 86.44 54.46 51.69 40.81
∆baseline -0.09 +1.06 +0.14 +0.79 -0.05 -0.90 +0.90 -0.19 +1.10 +1.50 +0.13 +0.14 +0.01 -0.21 +0.56 +0.12 +0.31

Llama-3.1-8B-Instruct
Full KV 30.22 45.37 55.80 55.97 45.00 31.26 35.12 25.38 27.20 72.50 91.64 43.57 9.41 99.50 62.88 56.43 49.20

KV Cache Budget = 1024
SnapKV 27.10 43.91 55.07 55.60 45.17 30.47 27.84 24.44 25.75 69.00 91.89 42.69 9.44 99.50 62.49 56.30 48.86
+ MixKV 27.50 44.19 55.42 55.82 45.40 30.65 28.83 24.75 26.26 70.00 91.62 42.88 8.96 99.50 62.69 56.41 49.30
∆baseline +0.40 +0.28 +0.35 +0.22 +0.23 +0.18 +0.99 +0.31 +0.51 +1.00 -0.27 +0.19 -0.48 +0.00 +0.20 +0.11 +0.44
AdaKV 28.16 43.98 54.68 56.14 45.19 30.30 28.35 24.80 26.11 72.50 91.72 42.48 8.74 99.50 62.94 56.51 49.27
+ MixKV 27.98 44.28 55.03 56.03 45.58 30.55 29.06 24.58 26.70 72.50 91.42 43.37 9.46 99.50 62.65 56.97 49.37
∆baseline -0.18 +0.30 +0.35 -0.11 +0.39 +0.25 +0.71 -0.22 +0.59 +0.00 -0.30 +0.89 +0.72 +0.00 -0.29 +0.46 +0.10

KV Cache Budget = 512
SnapKV 27.42 38.95 53.57 55.20 44.68 29.75 25.55 24.21 24.28 64.50 92.35 41.04 9.98 99.50 62.50 54.93 46.53
+ MixKV 26.76 41.77 53.77 55.19 44.72 30.02 26.03 24.28 25.27 69.00 91.44 42.24 9.98 99.50 61.84 55.17 47.37
∆baseline -0.66 +2.82 +0.20 -0.01 +0.04 +0.27 +0.48 +0.07 +0.99 +4.50 -0.91 +1.20 +0.00 +0.00 -0.66 +0.24 +0.84
AdaKV 25.96 40.26 52.82 54.55 43.83 30.43 25.76 24.06 24.69 69.00 92.05 42.10 9.45 99.50 62.58 55.59 46.42
+ MixKV 26.13 42.08 53.18 55.47 43.88 28.80 26.68 24.03 25.35 70.00 91.01 42.79 9.41 99.50 62.92 55.82 46.75
∆baseline +0.17 +1.82 +0.36 +0.92 +0.05 -1.63 +0.92 -0.03 +0.66 +1.00 -1.04 +0.69 -0.04 +0.00 +0.34 +0.23 +0.33

4.2 MAIN RESULTS

Performance on Multi-modal Understanding Benchmarks. Table 1 presents the integration of
MixKV with baseline methods on various models and benchmarks, highlighting three key advan-
tages: (i) Universal Improvements: MixKV enhances baselines across models, benchmarks, and
budgets, confirming the necessity of mixing importance with diversity. (ii) Scalability to Com-
pression Methods: Our approach benefits various paradigms from simple baselines like SnapKV to
layer-wise or head-wise budget allocation methods PyramidKV and SparseMM, modifying only the
evaluation function without adjusting the compression operator. (iii) Model Compatibility: MixKV
efficiently analyzes head-wise redundancy per sample, enabling direct compatibility with existing
LVLMs without offline statistics like SparseMM, enabling a plug-and-play implementation.

Performance on GUI Grounding Benchmarks. Recent advancements in LVLMs demonstrate
their capability to understand GUI scenarios (Cheng et al., 2024; Tang et al., 2025b;a), which rely on
edge-side comprehension and necessitate KV compression to reduce storage demands. To this end,
we further evaluate the fundamental GUI grounding capability on ScreenSpot-v2 using Qwen2.5-
VL-7B-Instruct (Bai et al., 2025). Table 2 shows that integrating MixKV with baseline importance-
based compression methods yields significant GUI grounding performance improvements. Notably,
with a budget of 128, SnapKV (Li et al., 2024b) improves average precision from 75.3% to 83.3%,
achieving a performance boost of +7.9%. This further validates the effectiveness of MixKV and its
potential for edge-side deployment of GUI agent models.

Performance on Long-Context Text Benchmarks. Table 3 evaluates the integration of MixKV
with importance-based methods on Mistral-7B-Instruct-v0.2 Jiang et al. (2023) and Llama3.1-8B-
Instruct (Grattafiori et al., 2024) using LongBench (Bai et al., 2024), demonstrating its applicability
to long-context text tasks in LLMs. Overall, MixKV yields consistent gains in average performance,
with more pronounced improvements under tighter KV budgets. We also observe intriguing patterns:
in Information Aggregation tasks like Summarization, MixKV substantially enhances baselines by
preserving diverse KV pairs, enabling better global information coverage essential for synthesis.
However, in Information Localization tasks, occasional declines occur, likely because these require
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Table 4: Ablation on MixKV metrics. sex
imp: extrinsic importance only (baseline). †W head: offline

head weights (OCRBench-derived, sample-shared r̄lh). W head: online head weights (per-sample r̄lh).

Settings DocVQA (%) OCRBench (%) TextVQA (%) ChartQA (%) TextCaps
SnapKV AdaKV SparseMM SnapKV AdaKV SparseMM SnapKV AdaKV SparseMM SnapKV AdaKV SparseMM SnapKV AdaKV SparseMM

LLaVA-NeXT-Mistral-7B, KV Cache Budget = 64
Effects of Different Importance Metrics
sex

imp (baseline) 47.3 48.7 57.6 31.9 32.8 46.2 57.1 56.9 62.8 42.7 44.6 48.9 0.444 0.440 0.524
sex

imp + sin (KNorm)
imp 46.7 48.2 55.4 30.7 32.0 41.6 56.4 56.6 60.9 42.6 43.8 47.4 0.445 0.444 0.482

sex
imp + sin (VNorm)

imp 48.2 49.7 59.1 34.4 35.0 49.0 58.0 57.9 64.0 43.7 45.3 50.3 0.470 0.469 0.544
∆baseline +0.9 +1.0 +1.5 +2.5 +2.2 +2.8 +0.9 +1.0 +1.2 +1.0 +0.7 +1.4 +0.026 +0.029 +0.020
Effects of Different Mixing Strategies
sdiv 34.2 35.8 51.8 28.4 28.8 43.9 54.5 55.2 63.4 32.3 34.2 48.1 0.487 0.504 0.534
simp + sdiv 48.8 50.6 59.1 36.1 36.1 49.5 59.8 59.1 64.4 43.5 45.4 50.9 0.516 0.504 0.573
∆baseline +1.5 +2.1 +1.6 +4.2 +3.8 +3.3 +3.0 +2.7 +1.6 +0.9 +0.6 +1.7 +0.070 +0.069 +0.051

Qwen2-VL-7B-Instruct, KV Cache Budget = 64
Effects of Different Importance Metrics
sex

imp (baseline) 66.5 67.1 84.9 62.4 62.1 74.3 69.9 70.3 77.3 75.5 75.9 80.1 0.794 0.775 1.038
sex

imp + sin (KNorm)
imp 66.1 66.5 81.2 56.2 56.0 68.8 67.9 67.2 72.6 71.4 72.8 76.3 0.766 0.769 0.927

sex
imp + sin (VNorm)

imp 67.2 67.4 84.7 64.9 64.4 75.5 71.5 70.3 79.7 77.3 77.4 80.8 0.862 0.854 1.259
∆baseline +0.7 +0.3 -0.2 +2.5 +2.3 +1.2 +1.6 +0.0 +2.4 +1.8 +1.5 +0.7 +0.068 +0.079 +0.221
Effects of Different Mixing Strategies
sdiv 44.0 44.3 60.4 50.7 50.3 68.4 59.8 59.7 78.4 64.7 65.2 78.5 0.739 0.711 1.113
simp + sdiv 67.6 67.6 86.3 65.0 63.6 76.9 72.2 70.6 80.8 76.6 77.0 81.4 0.905 0.869 1.291
†W head(simp + sdiv) 67.7 67.7 86.2 66.1 65.2 76.8 72.4 71.1 80.9 77.5 77.3 81.1 0.922 0.873 1.301
W head(simp + sdiv) 67.9 67.8 86.4 66.0 65.5 77.1 72.5 71.2 80.9 77.6 77.4 81.5 0.916 0.879 1.303
∆baseline +1.4 +0.7 +1.5 +3.6 +3.4 +2.8 +2.6 +0.9 +3.6 +2.1 +1.5 +1.4 +0.122 +0.104 +0.265

Figure 4: Efficiency comparisons of total latency and peak memory. For a context length of
32,000, “Full KV” refers to caching the entire sequence, whereas KV compression strategies employ
a budget of 64. The upper part is total time, while the lower part is peak memory.

focused retrieval of local salient details, and introducing diversity may dilute attention in LLMs,
where head-wise semantic redundancy is inherently lower than in LVLMs (Figure 1). This highlights
the task-dependent benefits of balancing importance and diversity.

4.3 ABLATION STUDIES AND ANALYSIS

Ablation of Different Metrics in MixKV. Table 4 systematically evaluates three components: (a)
importance scores combining extrinsic (sex

imp) and two intrinsic measures (sin (KNorm)
imp , sin (VNorm)

imp ); (b)
diversity scores (sdiv); and (c) head-wise adaptive mixing (W head). We select LLaVA-NeXT-Mistral-
7B and Qwen2-VL-7B with different architectures to ensure generalizability.

For importance metrics, we evaluate combinations of extrinsic importance with intrinsic measures:
sex

imp + sin (KNorm)
imp and sex

imp + sin (VNorm)
imp . Results show that jointly assessing extrinsic importance

of keys and intrinsic importance of values provides consistent performance gains across scenar-
ios. However, sex

imp + sin (KNorm)
imp underperforms as KNorm focuses on key magnitude, potentially

misaligning with value-driven attention dynamics in LVLMs and leading to suboptimal KV pair
retention. Conversely, sex

imp + sin (VNorm)
imp proves more effective, with VNorm better capturing value

contributions to multi-modal attention, enhancing task relevance and compression efficiency.

Beyond importance, we validate the effects of mixing importance with diversity. Results demon-
strate that relying solely on diversity (sdiv) is inadequate, leading to performance degradation due
to the disruption of original semantic information. Furthermore, jointly incorporating importance
and diversity through simp + sdiv achieves notable performance improvements across diverse models
and benchmarks. We observe that applying r̄lh, computed offline on OCRBench (Liu et al., 2024c),
to other samples and benchmarks (†W head(simp + sdiv)), further enhances performance compared
to the direct combination simp + sdiv, as it accounts for varying redundancy levels across heads
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and adaptively adjusts importance and diversity weights. Advancing this, computing r̄lh per sam-
ple for W head(simp + sdiv) yields additional performance gains, since this approach allows MixKV
to adaptively tune importance and diversity weights based on the characteristics of each processed
sample, optimizing the mixing effect for superior performance. Moreover, experiments reveal that
the inference costs of W head(simp + sdiv) and †W head(simp + sdiv) remain comparable, as the low
computational cost of r̄lh calculation (Equation 4) does not affect the inference efficiency.

Efficiency Analysis of MixKV. Figure 4 compares the inference latency and peak memory usage
of the base Qwen2-VL-7B-Instruct with full KV cache, various baseline methods, and MixKV. As
expected, all compression methods reduce latency and memory compared to the full KV cache
baseline, confirming their role in improving LVLM efficiency. Importantly, combining MixKV with
baseline compression methods leads to significant performance gains without sacrificing their orig-
inal efficiency. The overhead from MixKV, mainly the lightweight mixing operation, scales linearly
with the KV sequence length T and has negligible impact (e.g., less than 1% increase in latency)
compared to the cost of the underlying compression method and overall process. The results in
Table 4 and Figure 4 show that MixKV strikes a remarkable balance between task performance and
inference efficiency. Further efficiency analysis can be found in Appendix A.5.

5 CONCLUSION

In this work, we analyze KV pair characteristics in LVLMs and identify two critical distinctions:
LVLMs exhibit significantly higher semantic redundancy than LLMs, and attention heads demon-
strate varying redundancy patterns. Based on these insights, we propose MixKV, which jointly
optimizes importance and diversity for KV cache compression. MixKV quantifies semantic similar-
ity within each attention head and adaptively balances importance and diversity weights, prioritizing
diversity in high redundancy heads while emphasizing importance in low redundancy heads. Exten-
sive experiments across multiple models and benchmarks confirm that MixKV consistently enhances
existing compression methods while maintaining inference efficiency.
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A APPENDIX

A.1 ADDITIONAL EXPLANATION OF FIGURE 1-3

Figure 1: To investigate the semantic redundancy patterns in KV caches across model architectures,
we visualize the head-wise average cosine similarity of key vectors in Qwen2-7B (Yang et al., 2024)
(an LLM) and Qwen2-VL-7B (Wang et al., 2024) (an LVLM), using representative samples from
LongBench (Bai et al., 2024) and OCRBench (Liu et al., 2024c). This comparison reveals that
LVLMs exhibit substantially higher intra-head semantic redundancy than LLMs.

Figure 2: To quantify the variability of redundancy across attention heads within LVLMs, we ran-
domly select 100 samples from each benchmark and compute the average cosine similarity of key
vectors per head in Qwen2-VL-7B (Wang et al., 2024) and LLaVA-NeXT-Mistral-7B (Liu et al.,
2024b). The results demonstrate significant head-wise heterogeneity in semantic redundancy, moti-
vating our adaptive compression strategy.

Figure 3: To qualitatively compare the semantic coverage of different KV selection strategies, we
randomly select one sample from TextVQA (Singh et al., 2019) and apply PCA to project the key
vectors from a representative attention head (layer 23, head 3 in the LLM) into a two-dimensional
space. This head exhibits moderate semantic redundancy, making it an ideal case to illustrate how
different compression strategies balance information retention. We visualize the distributions of
keys retained under three settings: full KV cache, SnapKV (Li et al., 2024b), and our MixKV. In
Figure 3, MixKV preserves a broader and more diverse set of key vectors compared to SnapKV.

A.2 MORE DISCUSSIONS ON REDUNDANCY DIFFERENCES

To further validate the two types of “redundancy differences” introduced in Section 1, Figure 5 visu-
alizes the head-wise KV cache redundancy of Qwen2 (Yang et al., 2024) and Qwen2-VL (Wang
et al., 2024) when processing pure-text and vision-language inputs. The pure-text and vision-
language results are obtained by averaging over 100 samples randomly drawn from LongBench (Bai
et al., 2024) and TextVQA (Singh et al., 2019), respectively. For pure-text inputs, Qwen2 and
Qwen2-VL exhibit highly similar redundancy patterns across heads, suggesting that the architec-
tural difference alone does not account for the redundancy gap we observe.

From this visualization, we obtain two key findings: (I) Vision-Language Redundancy Differ-
ences. When Qwen2-VL processes vision-language inputs, the semantic redundancy of its KV cache
is substantially higher than for pure-text inputs, which is consistent with our analysis in the main
text. Notably, for some heads (e.g., Layer 29, Heads 0 and 1), the redundancy on vision-language
data is more than twice that on text-only data, reflecting the inherently redundant nature of visual
signals, whereas textual tokens tend to be more semantically diverse. (II) Head-wise Redundancy
Differences. For both pure-text and vision-language data, different heads exhibit markedly different
redundancy levels, and their overall patterns are highly similar: a head that is relatively more redun-
dant on text remains relatively more redundant on vision-language inputs. We hypothesize that this
is because different heads focus on different types of information: some heads primarily attend to
local patterns and therefore exhibit higher semantic redundancy, while others capture more global
information and consequently show much lower redundancy.

A.3 DETAILED EXPERIMENT SETTINGS

Model Details We introduce more details of LVLMs used for evaluation in the main text:

• LLaVA-NeXT (Liu et al., 2024b) improves upon LLaVA (Liu et al., 2023; 2024a) by sup-
porting higher resolutions (4 × more pixels) and multiple aspect ratios using an AnyRes
technique. It employs a simple linear projector to connect vision features to the LLM, en-
abling efficient multi-modal processing with unified interleaving of visual and text tokens.

• InternVL3 (Zhu et al., 2025) is an advanced vision-language model in the InternVL se-
ries (Chen et al., 2024c;b), following the “ViT-MLP-LLM” architecture. It features native
multi-modal pre-training for superior performance in multi-modal tasks, with dynamic res-
olution handling and efficient alignment between vision and language components.
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(b) Qwen2-VL for Pure Text Data (c) Qwen2-VL for Vision-Language Data(a) Qwen2 for Pure Text Data

Figure 5: Visualization of KV cache redundancy of Qwen2 and Qwen2-VL on different data
types. The number on each head is the average cosine similarity of the KV cache within that head.

• Qwen2-VL (Wang et al., 2024) introduces Naive Dynamic Resolution to adaptively con-
vert frames of any resolution into visual tokens. It utilizes multi-modal Rotary Position
Embedding (M-RoPE) within a unified image-and-video processing paradigm, enabling
the handling of long videos for high-quality QA, dialogue, and content creation.

• Mistral-7B (Jiang et al., 2023) is a dense transformer-based LLM with 7B parameters. It
adopts Grouped-Query Attention (GQA) and Sliding Window Attention (SWA), improving
inference efficiency while supporting long-context understanding. Despite its compact size,
it delivers competitive performance across reasoning, coding, and dialogue tasks.

• Llama 3 (Grattafiori et al., 2024) represents the latest generation of Llama models, offer-
ing a family of parameter scales (e.g., 8B, 70B). It leverages large-scale pretraining with
optimized data curation and advanced instruction tuning, resulting in strong performance
on benchmarks covering reasoning, knowledge-intensive tasks, and multi-turn dialogue.

Benchmark Details We provide detailed introductions of benchmarks used in the main text:

• DocVQA (Mathew et al., 2021) is a visual question answering benchmark on document
images, focusing on extracting and reasoning over information from scanned documents.

• OCRBench (Liu et al., 2024c) evaluates OCR abilities, testing models on diverse text
extraction tasks from images with varying fonts, layouts, and noise levels.

• TextVQA (Singh et al., 2019) requires models to read and reason about text in images to
answer questions, emphasizing multi-modal integration of visual and textual information.

• ChartQA (Masry et al., 2022) assesses visual question answering on charts and graphs,
requiring models to interpret data visualizations and answer related questions accurately.

• TextCaps (Sidorov et al., 2020) is a captioning benchmark for text-containing images,
focusing on descriptions that accurately incorporate and describe textual content in scenes.

• ScreenSpot-v2 (Wu et al., 2024) is a GUI grounding benchmark that evaluates a model’s
ability to locate and identify specific UI elements (e.g., icons, text buttons) within screen-
shots across diverse platforms including mobile, desktop, and web interfaces.

• LongBench (Bai et al., 2024) evaluates long-context language understanding, with tasks
testing models’ handling of extended sequences across reasoning and comprehension.
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Table 5: Performance of integrating HeadKV into MixKV on LongBench and LooGLE bench-
marks using Mistral-7B-Instruct-v0.2.

Methods Single-Doc QA Multi-Doc QA Avg. Long Dependency QA Avg.NartvQA Qasper MF-en HotpotQA 2WikiMQA Musique Doc.QA Info. Retrieval Timeline Computation
Mistral-7B-Instruct-v0.2

Full KV 26.63 32.99 49.34 42.77 27.35 18.78 32.98 12.17 15.52 0.49 10.03 9.55

KV Cache Budget = 1024
HeadKV 25.88 31.28 50.54 40.61 27.57 18.80 32.45 11.93 14.87 0.49 9.56 9.21
+ MixKV 26.26 31.20 50.07 40.99 27.88 19.93 32.72 12.06 14.73 0.50 9.33 9.16
∆baseline +0.38 -0.08 -0.47 +0.38 +0.31 +1.13 +0.27 +0.13 -0.14 +0.01 -0.23 -0.05

KV Cache Budget = 128
HeadKV 24.34 26.60 48.55 40.69 25.97 15.34 30.25 10.48 12.72 0.53 10.04 8.44
+ MixKV 24.39 27.70 49.85 42.48 27.21 15.40 31.17 10.62 13.08 0.73 10.31 8.69
∆baseline +0.05 +1.10 +1.30 +1.79 +1.24 +0.06 +0.92 +0.14 +0.36 +0.20 +0.27 +0.25

Baseline Details We provide a detailed introduction to the baseline importance-based KV cache
compression methods used in the main text:

• SnapKV (Li et al., 2024b) clusters important KV positions based on attention patterns
observed from an initial window of tokens, enabling efficient KV cache compression by
retaining only the most relevant clusters while maintaining high generation quality and
reducing memory usage during inference.

• PyramidKV (Cai et al., 2025b) dynamically adjusts KV cache sizes across different LLM
layers in a pyramidal manner, allocating more KV cache budget to lower layers for foun-
dational information and less to higher layers for refined processing, based on information
priority to optimize compression and performance.

• AdaKV (Feng et al., 2025) adaptively allocates eviction budgets across attention heads
of LLMs by evaluating head-specific contributions, providing a plug-and-play solution for
KV cache compression that significantly reduces memory footprint while preserving model
performance in generative inference tasks.

• SparseMM (Wang et al., 2025b) exploits sparsity patterns in visual attention heads of
multi-modal models, assigning asymmetric KV cache budgets based on head importance
for visual tokens, enabling modality-aware compression that effectively reduces storage
requirements in vision-language models without sacrificing accuracy.

• KNorm (Devoto et al., 2024) compresses KV cache using the ℓ2 norm of key embeddings,
keeping low-norm keys that correlate with high attention scores.

• VNorm (Kim et al., 2025) ranks tokens by the ℓ2 norm of their value embeddings to pre-
serve semantically salient information.

A.4 ADDITIONAL EXPERIMENTS

Performance of MixKV with HeadKV for Long-Context Understanding. Table 5 further applies
HeadKV (Fu et al., 2025) within our MixKV framework to validate its generality. Experimental re-
sults show that integrating HeadKV into MixKV can improve pure-text long-context understanding.
In particular, under the extreme compression setting (i.e., Budget=128), we observe consistent and
substantial gains across all tasks. This suggests that, when the KV cache budget is highly con-
strained, it is crucial to preserve KV entries that are both important and diverse in order to maintain
the long-context understanding ability of the baseline models.

Performance of MixKV on Larger LVLMs for Multi-Modal Understanding. Table 6 reports
the results of integrating MixKV with baseline KV cache compression methods on the larger LVLM
InternVL3-38B (Zhu et al., 2025) to evaluate its effectiveness for multi-modal understanding. Exper-
imental results show that MixKV consistently improves all baseline methods across benchmarks
and KV cache budgets, demonstrating its robustness on larger LVLMs and further highlighting its
practical value for real-world deployment.

Performance of MixKV on MoE-based LVLMs for Multi-Modal Understanding. Table 7 further
presents the results of integrating MixKV with SnapKV (Li et al., 2024b) on the MoE-based LVLM
Qwen3-VL-30B-A3B-Instruct to evaluate its performance on recent MoE-style LVLM architectures.
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Table 6: Performance of Applying MixKV to InternVL3-38B.

Methods DocVQA (%) OCRBench (%) TextVQA (%) ChartQA (%) TextCaps
128 64 128 64 128 64 128 64 128 64

InternVL3-38B
Full KV 93.5 85.9 83.8 88.6 0.953

SnapKV 87.5 85.2 77.8 64.3 82.0 78.5 87.5 85.2 0.932 0.822
+ MixKV 92.1 86.9 79.3 65.8 82.8 79.4 88.2 85.8 0.959 0.859
∆baseline +4.6 +1.7 +1.5 +1.5 +0.8 +0.9 +0.7 +0.6 +0.027 +0.037
AdaKV 92.0 87.6 79.6 67.8 82.0 79.3 87.4 85.3 0.940 0.841
+ MixKV 92.3 88.5 81.1 69.2 82.9 80.2 88.2 86.0 0.961 0.859
∆baseline +0.3 +0.9 +1.5 +1.4 +0.9 +0.9 +0.8 +0.7 +0.021 +0.018

Table 7: Performance of Applying MixKV to Qwen3-VL-30B-A3B-Instruct.

Methods DocVQA (%) OCRBench (%) TextVQA (%) ChartQA (%) TextCaps
128 64 128 64 128 64 128 64 128 64

Qwen3-VL-30B-A3B-Instruct
Full KV 94.5 84.0 83.5 85.1 0.287

SnapKV 91.9 83.8 71.0 55.2 75.3 75.3 83.8 79.8 0.314 0.272
+ MixKV 93.2 86.2 80.7 68.8 80.8 79.7 84.5 80.8 0.411 0.349
∆baseline +1.3 +2.4 +9.7 +13.6 +5.5 +4.4 +0.7 +1.0 +0.097 +0.077

Experimental results show that MixKV can significantly boost SnapKV across various benchmarks;
in particular, on OCRBench, it brings a 13.6% improvement under the strict Budget=64 setting.
These results demonstrate the strong effectiveness of MixKV on MoE-based LVLMs and further
highlight its potential for improving the efficiency of future LVLM inference.

A.5 MORE EFFICIENCY ANALYSIS OF MIXKV

Figure 6 further compares the total inference latency and peak GPU memory consumption across
different KV cache compression settings. We observe that integrating MixKVwith baseline methods
(e.g., SnapKV, AdaKV) incurs negligible overhead, typically less than 1% increase in latency and
no measurable rise in peak memory, while consistently achieving the same level of computational
efficiency as the underlying baselines. This confirms that MixKV preserves the original inference
speed and memory footprint of the compression method it enhances, making it a truly plug-and-play
efficiency-preserving framework.

A.6 ALGORITHM DETAILS OF MIXKV

Algorithm 1 outlines the workflow of our MixKV framework, seamlessly integrated with
SnapKV (Li et al., 2024b) to enhance its performance.

A.7 LIMITATIONS AND FUTURE WORK.

Our study is conducted on models up to the 8B parameter scale. Future work should validate if the
observed head-wise redundancy patterns and the effectiveness of MixKV generalize to significantly
larger models (e.g., 70B+). This would be a crucial step for broader applicability.

A.8 THE USE OF LARGE LANGUAGE MODELS

In this study, we solely employ LLM-based language polishing to refine sentence fluency and correct
grammatical errors, without altering the technical content or experimental data of the paper.
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Figure 6: More efficiency comparisons of total latency and peak memory. The top two rows of
bars correspond to a budget of 128, while the bottom two rows correspond to a budget of 256.
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Algorithm 1 MixKV with SnapKV for KV Cache Compression
1: Input: Key-value pairs Kl

h,V
l
h, query values Q, total memory budget B.

2: Output: Compressed KV pairs K̂l
h, V̂

l
h

3: Let B′ = B − |window| denote the adjusted budget for non-window KV pairs.
4: for each layer l and head h do
5: Step 1: Compute Importance and Diversity Scores
6: Compute the intrinsic importance using VNorm, normalize, and scale:

sin
scaled,i =

∥Vl
h,i∥2 −minj(∥Vl

h,j∥2)
maxj(∥Vl

h,j∥2)−minj(∥Vl
h,j∥2) + ϵ

·
s̄ex

imp

s̄in
norm + ϵ

, i = 1 to T

7: Compute the extrinsic importance as average attention scores:

sex
imp,i =

1

|window|
∑

j∈window

Attention(Qj ,Ki), i = 1 to T

8: Combine importance scores:

simp,i = sex
imp,i + sin

scaled,i, i = 1 to T

9: Normalize keys and compute diversity scores:

sdiv
i = −

Kl
h,i

∥Kl
h,i∥

· 1
T

T∑
i=1

Kl
h,i

∥Kl
h,i∥

, i = 1 to T

10: Step 2: Head-wise Adaptive Mixing
11: Quantify redundancy and compute comprehensive scores:

r̄lh =

T 2

∥∥∥∥ 1
T

∑T
i=1

Kl
h,i

∥Kl
h,i∥

∥∥∥∥2
2

− T

T (T − 1)

sdiv
scaled,i =

sdiv
i −minj(s

div
j )

maxj(s
div
j )−minj(s

div
j ) + ϵ

·
s̄imp

¯̃sdiv + ϵ
, i = 1 to T

scomp
i = (1− r̄lh) · simp,i + r̄lh · sdiv

scaled,i, i = 1 to T

12: Select the top-B′ KV pairs based on comprehensive scores:

K̂l
h, V̂

l
h = TopB(Kl

h[exclude window],Vl
h[exclude window], {scomp

i }Ti=1)

13: end for
14: Return: Compressed KV cache C = {(K̂l

h, V̂
l
h)}l,h
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(a) Layer 2 Head 0 (b) Layer 3 Head 1

(c) Layer 17 Head 0 (d) Layer 18 Head 0

(e) Layer 20 Head 1 (f) Layer 23 Head 3

Figure 7: More t-SNE visualization of KV cache distributions under different settings.
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