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ABSTRACT

Stochastic dynamical systems are ubiquitous in physics, biology, and engineering,
where both deterministic drifts and random fluctuations govern system behavior.
Learning these dynamics from data is particularly challenging in high-dimensional
settings with complex, correlated, or state-dependent noise. We introduce a noise-
aware system identification framework that jointly recovers the deterministic drift
and full noise structure directly from the trajectory data, without requiring prior
assumptions on the noise model. Our method accommodates a broad class of
stochastic dynamics, including colored and multiplicative noise, that scales effi-
ciently to high-dimensional systems, and accurately reconstructs the underlying
dynamics. Numerical experiments on diverse systems validate the approach and
highlight its potential for data-driven modeling in complex stochastic environments.

1 INTRODUCTION

Stochastic differential equations (SDEs) provide a fundamental and versatile framework for modeling
systems in which random fluctuations are intrinsic to the dynamics (Evans, 2013; Särkkä & Solin,
2019). Compared to deterministic ordinary differential equations (ODEs), SDEs incorporate noise
explicitly–often through a Brownian motion term–allowing them to capture variability and uncer-
tainty that strongly influence system behavior. This capability is essential for representing complex
phenomena in physics, biology, chemistry, and finance, where stochasticity can be a dominant factor.
By incorporating deterministic forces and random fluctuations in a unified mathematical description,
SDEs offer a flexible modeling approach that is both theoretically rigorous and practically relevant.

We consider SDEs of the form

dxt = f(xt) dt+ σ(xt) dwt, xt,wt ∈ RD,

where the drift f : RD → RD and the diffusion coefficient σ : RD → RD×D are potentially
unknown. The driving noise wt is a vector of independent standard Brownian motions. The noise
structure of the SDE system is described by a state dependent covariance matrix Σ : RD → RD×D,
where Σ = σσ⊺. This general formulation encompasses many classical and modern models. In
physics, the Langevin equation (Sachs et al., 2017; Coffey & Kalmykov, 2012; Ebeling et al., 2008;
Talay, 2002) describes microscopic particle dynamics under both systematic forces and thermal
fluctuations. In biology, stochastic Lotka–Volterra models (Takeuchi et al., 2006) capture population
interactions in fluctuating environments, while other SDE-based models describe cellular processes
and gene expression noise (Székely & Burrage, 2014; Dingli & Pacheco, 2011). In chemistry, the
chemical Langevin equation (Wu et al., 2016) accounts for reaction kinetics in small-molecule
regimes, where random molecular collisions cannot be neglected. In finance, SDEs form the basis of
models such as Black–Scholes (Black & Scholes, 1973; Hull, 2017), Vasicek (Vasicek, 1977), and
Heston (Heston, 1993), which incorporate uncertainty in asset prices, interest rates, and volatility.
More recently, SDE formulations have emerged as the mathematical backbone of diffusion models in
machine learning (Ho et al., 2020; Song et al., 2021), enabling state-of-the-art generative modeling
methods.

Accurate application of SDEs requires careful calibration to empirical data so that both the deter-
ministic drift and stochastic noise are faithfully represented. This is crucial for predictive power and
for preserving physical interpretability. In many traditional settings, the functional forms of f and
σ are assumed known up to a small set of parameters, which can be estimated via least squares or
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related regression techniques (Mrázek & Pospíšil, 2017; Abu-Mostafa, 2001). However, in modern
applications—particularly those involving high-dimensional data where these functional forms are
often unknown, and both the drift and the diffusion must be learned directly from the observed trajec-
tories. Statistical inference for SDEs has a rich history (Kutoyants, 2004), with maximum-likelihood
methods playing a central role when full trajectory data are available (Liptser & Shiryaev, 2001,
Chapter 7). Recent advances have extended such methods to data-driven drift recovery Guo et al.
(2024), but typically under restrictive noise assumptions, such as independence or constant variance.

In this work, we develop a noise-informed, trajectory-based learning framework for discovering the
governing structures of SDEs directly from observational data. Unlike methods that estimate the
drift alone or treat noise as a secondary effect, our approach embeds the noise process explicitly into
the learning procedure and leverages information from the entire trajectory evolution, rather than
focusing on isolated time points. This enables simultaneous recovery of both the drift f and the
noise structure Σ(x), including scalar or matrix-valued forms and fully state-dependent, correlated
noise. We conduct a systematic investigation of the method’s stability, accuracy, and computational
efficiency across a variety of SDE models with different noise structures, demonstrating consistently
superior performance in reconstructing complex stochastic dynamics.

The remainder of the paper is organized as follows. We discuss the general SDE model which our
learning is based on in Section 2. Section 3 introduces the noise-informed likelihood formulation
and the associated learning framework for recovering drift and noise. Section 4 presents numerical
experiments on representative stochastic systems, highlighting accuracy and robustness across diverse
noise settings. Section 5 concludes with a discussion of the implications, limitations, and potential
extensions of our approach.

1.1 RELATED WORKS

System identification of the drift term from deterministic dynamics has been studied in many different
scenarios, e.g. identification by enforcing sparsity such as SINDy (Brunton et al., 2016), neural
network based methods such as NeuralODE (Chen et al., 2018), PINN (Raissi et al., 2019) and
autoencoder (Xu et al., 2024), regression based Cucker & Smale (2002)p, and high-dimensional
reduction variational framework (Lu et al., 2019). There are statistical methods which can be used to
estimate the drift and noise terms using pointwise statistics. SINDy for SDEs was also developed
in (Wanner & Mezić, 2024).

The observation data generated by SDEs can be treated as a time-series data with a mild assumption
on the relationship between xt and xt+∆t. Various deep neural network architectures can be used to
learn the drift term as well as predicting the trajectory data, using RNN, LSTM, and Transformers,
see (Liao et al., 2019; Yang et al., 2023; Wen et al., 2023) for detailed discussion.

However, most of these methods use a regression type of loss function defined as follows

EReg
H (f̃) = E

[ 1
T

∫ T

t=0

||f̃(xt)−
dxt

dt
||2 dt

]
.

Here the derivative dxt

dt is loosely defined in the discrete sense (or weak sense). On the other hand,
our likelihood induced loss of the form ⟨f̃ ,Σ†f̃⟩ dt− 2⟨f̃ ,Σ† dxt⟩, is linked to the regression type
loss through the expression

||f̃ − dxt

dt
||2 dt = ||f̃ ||2 dt− 2⟨f̃ ,dxt⟩+ ||dxt

dt
||2 dt.

The major difference comes in the re-scaling by the noise and our loss is a derivation from a
negative-log likelihood, which guarantees the existence and uniqueness of minimizers.

Furthermore, special high-dim drift terms living on low-dim manifolds with constant noise is investi-
gated in (Lu et al., 2022); such loss is similar to ours when σ(x) = σ > 0. In (Guo et al., 2024), a
constant correlated noise matrix is studied.

2 MODEL EQUATION

Before introducing our learning framework for system identification from observed stochastic
dynamics, we first establish the modeling setting and notation for the observational data. Let
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(Ω,F , (Ft)0≤t≤T ,P) be a filtered probability space, for a fixed and finite time horizon T > 0. As
usual, the expectation operator with respect to P will be denoted by EP or simply E. For random
variables X,Y we write X ∼ Y , whenever X,Y have the same distribution. We consider governing
equations for stochastic dynamics of the following form

dxt = f(xt) dt+ σ(xt) dwt, xt,wt ∈ RD, (1)

with some given initial condition x0 ∼ µ0, here f : RD → RD is the drift term, σ : RD → RD×D

is the diffusion coefficient. Without Loss of Generality, we assume that σ is symmetric positive
definite (SPD), i.e., σ⊺ = σ, x⊺σx ≥ 0 with x⊺σx = 0 iff x = 0. Moreover, w represents a vector
of independent standard Brownian motions. The covariance matrix of the SDE system is a symmetric
positive definite matrix denoted by Σ = Σ(x) : RD → RD×D where Σ = σσ⊺. We impose the
following global regularity and growth conditions: there exist constants C1, C2 > 0 such that for all
x,y ∈ RD {

∥f(x)− f(y)∥+ ∥σ(x)− σ(y)∥Fro ≤ C1∥x− y∥,
∥f(x)∥2 + ∥σ(x)∥2Fro ≤ C2

(
1 + ∥x∥2

)
.

Under these assumptions, equation 1 admits a unique strong solution {xt}t∈[0,T ] adapted to the
filtration (Ft)0≤t≤T for every square-integrable initial condition x0 ∼ µ0.

3 LEARNING FRAMEWORK

We now introduce the methodology for learning the drift f and the diffusion σ terms of stochas-
tic differential equations from observed trajectory data. We assume continuous observation data
{xt}t∈[0,T ] for x0 ∼ µ0, and that f and σ are the only unknowns. We estimate these functions in
two stages.

3.1 ESTIMATION OF THE DIFFUSION TERM

The diffusion coefficient σ is first inferred using quadratic (co-)variation arguments. For two scalar
stochastic processes xt and yt, the quadratic variation over time interval [0, T ] is defined by

[xt, yt]
T
0 = lim

|∆tk|→0

K∑
k=1

(x(tk+1)− x(tk))(y(tk+1)− y(tk)),

where ∆tk = tk+1 − tk and {0 = t1 < t2 < · · · < tK = T} is a partition of the interval [0, T ]. For
a vector stochastic process xt = [x1(t), x2(t), . . . , xD(t)]

⊺, the quadratic variation matrix [x,x]T0
has entries [xi(t), xj(t)]T0 for i, j = 1, . . . , D. Using such notation, the estimation of Σ = σσ⊺ is the
minimizer of the following loss function

Eσ(Σ̃) = E
[(
[xt,xt]

T
0 −

∫ T

t=0

Σ̃(xt) dt
)2]

. (2)

Since σ is SPD, σ =
√
Σ is uniquely defined. If Σ is constant, then the estimation can be simplified

to Σ̃ = 1
T E

[
[xt,xt]

T
0

]
. Note that estimation of Σ does not dependent on the drift function f .

3.2 ESTIMATION OF THE DRIFT TERM

Once Σ is obtained, we estimate f by finding the minimizer to the following likelihood-based loss

EH(f̃) =
1

2
E
[ ∫ T

t=0

⟨f̃(xt),Σ
†(xt)f̃(xt)⟩ dt− 2⟨f̃(xt),Σ

†(xt) dxt⟩
)]
, (3)

where f̃ ∈ H with H being restricted to a convex and compact (w.r.t to L∞) function space
determined by the observed data, ⟨·, ·⟩ denotes the Euclidean inner product, and Σ† is the pseudo-
inverse of Σ, under our setting Σ† = Σ−1. The differential dxt is approximated in practice by
finite differences dxt ≈ xt+∆t − xt. This loss function arises from the Girsanov theorem and the
Radon-Nikodym derivative for stochastic processes, see (Liptser & Shiryaev, 2001, Chpater 7) and
Section 3.3 for details.
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3.3 DERIVATION OF THE LOSS FOR THE DRIFT

We discuss the theoretical foundation of our methods in this section. Consider two Itô processes
defined over measurable space (Ω,F) and let PX , PY be probability measures corresponding to
processes x and y, where

dxt = f(xt) dt+ σ(xt) dwt,

dyt = g(yt) dt+ σ(yt) dwt, y0 = x0,

satisfying all assumptions in (Liptser & Shiryaev, 2001, Theorem 7.18) and its following corollary.
Then, the Radon-Nikodym derivative, or the likelihood ratio, takes the form

dPX

dPY
(y) = exp

(∫ T

0

⟨(ft − gt,Σ† dyt⟩ −
1

2

∫ T

0

⟨(ft − gt),Σ†
t(ft + gt⟩dt

)
, (4)

where ft = f(yt), gt = g(yt), and Σt = Σ(yt). Here let us assume that the observations
are {xt}t∈[0,T ]. In view of the assumption of (Liptser & Shiryaev, 2001, Theorem 7.18), the n-
dimensional adapted process Θ = σ†(f(xt)− g(xt)) is such that

∫ T

0
||Θ||2 dt <∞. By Girsanov

theorem, w̃t = wt +
∫ T

0
Θs ds is an n-dimensional standard Brownian motion under probability

measure PY . Hence, dxt = f(xt) dt + σ(xt)(dw̃t − Θt dt) = g(xt) dt + σ(xt) dw̃t. For con-
venience, we take g = 0, in which case xt becomes a Brownian process under PY . Therefore
PY ({xt}t∈[0,T ]|f) is now independent from f since xt has no drift term under PY . Putting such
likelihood under the negative-log function, we arrive at our first loss as

ET (f̃) = − lnL(f |{xt}t∈[0,T ]) =

∫ T

0

(
f(xt)

⊺Σ†f(xt) dt− 2f(xt)
⊺Σ† dxt

)
.

Here such loss function is used to handle observation data from one long trajectory (i.e. observed
over large time), and it will be effective especially for ergodic systems. Moreover, we also consider
the situation where multiple medium (or short-burst) trajectories with different initial conditions are
observed, then we derive our loss function as the expectation (over trajectories with different initial
conditions) of the negative-log-likelihood function as

E(f̃) = E
[
− lnL(f |{xt}t∈[0,T ])

]
=

1

2
E
[ ∫ T

0

(
f(xt)

⊺Σ†f(xt) dt− 2f(xt)
⊺Σ† dxt

)]
.

3.4 CONVERGENCE THEOREM

We present the following convergence results in a theorem.
Theorem 1. Given the continuous-time i.i.d trajectory data {xm

t }Mm=1 for t ∈ [0, T ] and each xm
t

generated by equation 1, we define an estimator to f through minimizing the following loss

EM (f̃) =
1

2M

M∑
m=1

( ∫ T

0

⟨f̃m
t , (Σ

m
t )−1f̃m

t ⟩ dt− 2

∫ T

0

⟨f̃m
t , (Σ

m
t )−1 dxm

t ⟩
)
,

where f̃m
t = f̃(xm

t ), Σm
t = Σ(xm

t ), and f̃ ∈ H with H being convex and compact (w.r.t to L2-
norm). When H is finite dimensional, i.e., n = dim(H) < ∞, and f ∈ H, then the estimator,

given as f̂M = argminf̃∈H EM (f̃), has the following properties: f̂M
P−→ f (consistency) and

√
M(f̂M − f) D−→ N (0,B−1) (Asymptotic normality). HereB = E[

∫ T

0
Ψ⊺

tΣ
−1
t Ψt dt], where

Ψt = Ψ(xt) = [ψ1(xt) · · · ψn(xt)] ∈ RD×n.

with {ψ1,ψ2, · · · ,ψn} being a basis of H where each ψη : RD → RD. Notice thatB is SPD.

3.5 DEEP LEARNING FOR HIGH-DIM FUNCTIONS

In learning high dimensional f and σ, we can employ the deep learning architecture, with one neural
network for learning f and the other for σ. The learning of f is rather straightforward, since the
loss is well-defined for deep learning and simply changing the functional space to be a space of
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neural networks. We will discuss the learning of σ in details. Let G : RD → RD(D+1)/2 be a neural
network with outputs arranged as {uij(x)}1≤j≤i≤D. Since Σ is SPD, the Cholesky decomposition
on Σ gives Σ(x) := L(x)L(x)⊺ where L is a lower-triangular matrix with positive diagonal entries.
Therefore we can learn a lower–triangular mapping L̃ : RD → RD×D by

(
L̃(x)

)
ij
=


h
(
uii(x)

)
if i = j

uij(x) if i > j

0 if i < j

,

where h : R → (0,∞) is some chosen function to enforce positivity on the main diagonal. Hence,

we define the model Σ̃(x) := L̃(x) L̃(x)⊺ ≈ Σ(x). Given M trajectories, set Y m
l :=

∆xm
l

(
∆xm

l

)⊺

∆t .
We learn the estimator by minimizing the Frobenius mean squared difference between Yl and Σ̃(xl)
over all observed trajectories:

E(Σ̃) = 1

M

M∑
m=1

L−1∑
l=0

∥∥∥Y m
l − Σ̃

(
xm
l

) ∥∥∥2
F
. (5)

If σ is a full matrix, we use the matrix-square-root function to obtain σ =
√
Σ. If Σ(x) is diagonal

for all x, i.e., Σ(x) = diag
(
Σ11(x), . . . ,ΣDD(x)

)
, then we will learn each diagonal entry by a

single-output positive network. Writing Y m
l,ii =

(
∆x

(m,i)
l

)2

∆t , where x
(m,i)
l represents the ith entry

of xm
l and the loss function can be decoupled and become E(Σ̃ii) = 1

M

∑M
m=1

∑L−1
l=0

(
Y m
l,ii −

Σ̃ii

(
xm
l

) )2

.Hence σ̂ii(x) =
√

Σ̂ii(x) .

3.6 PERFORMANCE MEASURES

In order to properly gauge the accuracy of our learning estimators, we provide three different
performance measures of our estimated drift. First, if we have access to original drift function f , then
we will use the following error to compute the difference between f̂ (our estimator) to f with the
following norm

||f − f̂ ||2L2(ρ) =

∫
Rd

||f(x)− f̂(x)||2ℓ2(RD) dρ(x), (6)

where the weighted measure ρ, defined on RD, is ρ(x) = E
[
1
T

∫ T

t=0
δxt(x)

]
. Here xt evolves from

x0 by equation 1. The norm given by 6 is useful only from the theoretical perspective, e.g. showing
convergence. Under normal circumstances, f is most likely non-accessible. Thus we look at a
performance measure that compares the difference between X(f ,x0, T ) = {xt}t∈[0,T ] (the observed
trajectory that evolves from x0 ∼ µ0 with the unknown f ) and X̂(f̂ ,x0, T ) = {x̂t}t∈[0,T ] (the
estimated trajectory that evolves from the same x0 with the learned f̂ and driven by the same realized
random noise as used by the original dynamics). Then, the difference between the two trajectories is
measured as follows

||X− X̂|| = E
[ 1
T

∫ T

t=0

||xt − x̂t||2ℓ2(RD) dt
]
. (7)

However, comparing two sets of trajectories (even with the same initial condition) on the same
random noise is not realistic. Therefore we compare the distribution of the trajectories over different
initial conditions and different noise at the same time instances using the Wasserstein distance at any
given time t ∈ [0, T ]. Let µM

t be the empirical distribution at time t for the simulation under f with
M trajectories, and µ̂M

t be the empirical distribution at time t for the simulation with M trajectories
under f̂ , where µM

t = 1
M

∑M
i=1 δx(i)(t), µ̂M

t = 1
M

∑M
i=1 δx̂(i)(t). Then the Wasserstein distance of

order two between µM
t and µ̂M

t is defined as

W2(µ
M
t , µ̂

M
t |µ0) =

(
inf

π∈Π(µM
t ,µ̂M

t |µ0)

∫
RD×RD

∥x− y∥2 dπ(x, y)

)1/2

. (8)

Here, Π(µM
t , µ̂

M
t |µ0) is the set of all joint distributions on RD × RD with marginals µM

t and
µ̂M
t , and with the additional constraint that the joint distribution must be consistent with the initial

distribution of x0 following µ0.
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4 EXAMPLES

We demonstrate the application of our trajectory-based method for estimating drift functions and
noise structures, showcasing a variety of examples. We focus on two major types of normal SDEs, in-
teracting partial systems, and Stochastic Partial Differential Equations (SPDEs), where the dimension
of the systems can increase rapidly.

4.1 EXAMPLE: INTERACTING PARTICLE SYSTEMS (IPS)

(a) Case (I): Err = 0.02. (b) Case (II): Err = 0.14.

Figure 1: True ϕ vs learned ϕ̂; Empirical density of r shown in the background.

We consider a high dimensional SDE case where the drift term has a special structure. Such
special structure will allow us to learn the high-dimensional SDE more effectively through an innate
dimension reduction approach. This high dimensional SDE case is a presentation of an interacting
partial system. Learning of such systems without stochastic noise terms had been investigated in (Lu
et al., 2019; Zhong et al., 2020; Maggioni et al., 2021; Feng et al., 2022; Feng & Zhong, 2024). We
consider such system with correlated and state-dependent stochastic noise, i.e. for a system of N
particles, where each particle is associated with a state vector xi ∈ Rd. The particles’ states are
governed by the following system of SDEs

dxi(t) =
1

N

N∑
j=1,j ̸=i

ϕ(||xj(t)− xi(t)||)(xj(t)− xi(t)) dt+ σx(xi(t)) dw(t), i = 1, . . . , N.

Here ϕ : R+ → R is an interaction kernel that governs how partial j influences the behavior of partial
i, and σx : Rd → Rd×d is a symmetric positive definite matrix that represents the noise strength and
correlation. We test two interaction kernels

Case (I) : ϕ(r) = r − 1,

Case (II) : ϕ(r) = −
tanh

(
8(1− r)

)
+ 0.67

r
.

The diffusion is shared across particles, diagonal, and state–dependent, i.e., σx(xi(t)) =
diag

(
σx
11(xi(t)), σ

x
22(xi(t))

)
with{

σx
11(xi(t)) = 0.08 sin2

(
∥xi(t)∥

)
+ ε,

σx
22(xi(t)) = 0.06 cos2

(
∥xi(t)∥

)
+ ε,

ε = 0.01.

We run two experiments to justify our method. We take N = 30 particles in Rd with d = 2 (so
D = Nd = 60), time horizon T = 1, step size ∆t = 0.001, and M = 100 i.i.d. trajectories. The
initial distributions are i.i.d. x0 ∼ Unif([0, 1]d) for each particle. Simulation uses Euler–Maruyama
method. In estimating σ, following the general implementation of σ mentioned in A.2, for the
diagonal case we learn each diagonal entry independently. Conclusion: the comparison of the
trajectories in Fig. 2a and 2b shows that the learned x̂ is close to the true x under the same noise. The
comparison of ϕ vs ϕ̂ in Fig. 1a and 1b shows that when the data is abundant (the background shows
the pairwise distance data used to obtain ϕ̂), the two are close to each other; for r close to zero, due to

6
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(a) Case (I). (b) Case (II).

Figure 2: True x vs learned x̂ under the same noise. Top row: evolution from the same training IC.
Bottom row: evolution from a new IC.

(a) Case (I): Err = 0.013. (b) Case (II): Err = 0.023

(c) Case (I): Err = 0.007. (d) Case (II): Err = 0.025.

Figure 3: True Σii vs learned Σ̂ii for i = 1, 2.

the form of the system, i.e. ϕ(||xj −xi||)(xj −xi), the information is weighted by zero, our learning
is not that promising. Figure 3 show our estimation result on state dependent σ under two different
kinds of dynamics. Each diagonal entry is modeled by a shallow two–hidden–layer Tanh network
with width 32. The estimators tracks the true σ closely even with such a lightweight network.

4.2 EXAMPLE: SPDE ESTIMATION

We extend our method of section 3 to the stochastic heat equation with additive noise

du(t,x)− θ(x)∆u(t,x) dt = σ dw(t,x), (9)

on a smooth bounded domain G ⊂ Rd, with initial condition u(0,x) = 0, zero boundary condition,
and where ∆ denotes the Laplace operator on G with zero boundary conditions. The existence,
uniqueness and other analytical properties of the solution u are well understood, and we refer
to (Lototsky & Rozovsky, 2017). Throughout this section, we fix the Hilbert space H = L2(G)

7
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equipped with the usual inner product denoted by (·, ·)H . We note that in this case, the Laplace
operator ∆ has only point spectrum, and we denote by

{
hk : k ∈ N

}
⊂ H its eigenfunctions

and −λk the corresponding eigenvalues, i.e. ∆hk = −λkhk. It is well known that {hk : k ∈ N}
is a complete system in H , and without loss of generality we assume it is also orthonormal. The
space-time noise, is assumed to be a cylindrical Brownian motion in H , which informally can be
written as w(t,x) =

∑
k∈N qkhk(x)wk(t),where {qk}k∈N ⊂ (0,∞) and {wk}k∈N are independent

one dimensional Brownian motions and σ is a positive constant. Assume that θ is bounded, a.s.
continuous on G, and θ(x) ≥ c0 > 0, for some positive real c0. This guarantees the existence of the
solution to equation 9 in an appropriate triple of Hilbert spaces. We are interested in the estimation
of θ(x). To verify our theoretical result, we present two numerical experiments for the stochastic

Figure 4: Left: Exact θ1(x) (solid) vs θ̂1 (dashed). Right: |θ1 − θ̂1| in log-scale.

heat equation equation 9 on the spatial interval [0, 2π]. Throughout we consider Fourier basis as our
estimation function space, i.e., Hn = span

{
1, sin(kx), cos(kx)

}n

k=1
. In simulation of u(t,x), we

apply a Galerkin projection of dimension Nfull with time step ∆t = 10−3 up to horizon T = 10.

Figure 5: True θ2 (solid) vs θ̂2 (dashed).

The drift matrix is calculated with true θ(x)
where no projection error is introduced at the
simulation stage. Only the first Nobs highest–
frequency Fourier modes are marked as observ-
able and the noise level is fixed at σ = 0.2.
In the first experiment, we take θ1(x) =
0.001

(
sinx − cos 2x

)
∈ H2, set Nfull = 100

and Nobs = 40. Next we consider a discon-
tinuous coefficient outside the function space
with

θ2(x) =

{
0.10, 0 ≤ x < π

0.05, π ≤ x ≤ 2π

and set the estimation function subspace to H40.
The simulation is carried out with Nfull = 200
and we observe Nobs = 100 modes. Figure 4

and 5 show the effectiveness of our learning under two fundamentaly different scenarios, one with
θ ∈ Hn and the other with θ ̸∈ Hn.

4.3 CONVERGENCE STUDY

To illustrate the statistical consistency of our estimator defined in 3, we consider an SDE in d = 1
case with f(x) = −x3 + x and σ(x) = 1 + 0.4 sinx simulated by the Euler–Maruyama scheme
with step–size ∆t = 10−3. The initial states are drawn i.i.d. from the invariant density, so the process
is strictly stationary. In 1D, this density is

π(x) =
1

G(f)
σ(x)−2 exp

{
2

∫ x

0

f(v)

σ(v)2
dv

}
, G(f) =

∫
R
σ(x)−2 exp

{
2

∫ x

0

f(v)

σ(v)2
dv

}
dx.

For a collection of M paths observed over [0, T ] our drift estimator f̂ is searched in the space
H = span{1,x,x2,x3} by minimizing the loss function 3. The estimation error is quantified in

8
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the ρ–weighted norm introduced in equation 6. We test consistency in both time T and number of
observed trajectories M with each replicated 20 times to obtain error bars. We first fix M = 1 and
let T ∈ {4, 8, 16, 32, 64, 128}. Due to the ergodicity of the underlying SDE, we expect the following
convergence rate ∥f̂ − f∥L2(ρ) = O(T−1/2), which is confirmed by Fig.6b. Next, we fix T = 1 and

(a) Estimated drifts (colored) vs true drift (black). (b) Log–log of ∥f̂ − f∥L2(ρ) vs T .

Figure 6: Convergence Test with M = 1.

let M ∈ {4, 8, 16, 32, 64, 128, 256}. The error decays at the rate ∥f̂ −f∥L2(ρ) = O(M−1/2), which
is the rate confirmed by our theorem; see Fig.7b. In addition to Log–log plots 6b and 7b confirming

(a) Estimated drifts (colored) vs true drift (black). (b) Log–log of ∥f̂ − f∥L2(ρ) vs M .

Figure 7: Convergence Test with T = 1.

the predicted slopes −1/2 in both regimes, we plot the corresponding drift functions 6a and 7a to
illustrate the qualitative tightening of f̂ towards f as information increases. These numerical findings
demonstrate that the estimator remains statistically consistent when the diffusion coefficient is state
dependent.

5 CONCLUSION

We have demonstrated a novel learning methodology for inferring the drift and diffusion coefficient in
general SDE systems driven by Brownian noise. Our estimation approach does not assume a specific
functional structure for the drift or the diffusion, thereby enhancing its applicability across a diverse
range of SDE models. This approach can handle high-dimensional SDE systems by leveraging deep
learning architectures. The loss function for the drift is derived from the negative logarithm of the
ratio of likelihood functions. For the diffusion coefficient, the loss function is based on the quadratic
variation, which operates independently of the drift function. This independence makes our method
particularly effective in scenarios where only trajectory observations are available. Additionally, our
approach is adaptable to various noise structures.

9
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A LEARNING FRAMEWORK

We discussion additional details related to the learning of drift and noise in this section.

A.1 SIMPLIFICATION OF THE LOSS

When D ≫ 1 and σ = σ(x) ∈ RD×D is a full matrix, the learning of the drift term f can be
computationally demanding, as all components of f are coupled and one has to solve the optimization
problem in high-dimensional space all at once. Stochastic gradient descent coupled with neural
network solutions is one of the desired approaches; however the solutions become less interpretable.
In this section, we discuss several scenarios this loss for learning drift can be simplified. In this
section, we discuss several scenarios in which the loss for learning drift can be simplified.

In the case of the noise being a constant full matrix, i.e. σ(xt) = σ ∈ RD×D, the loss is equivalent
(in the optimization sense) to the following

ESim
H (f̃) = E

[ ∫ T

t=0

||f̃(xt)||2 dt− 2⟨f̃(xt),dxt⟩
]

In the case of state-dependent uncorrelated noise, i.e. Σ(x) = σ2(x)I , where I is the D×D identity
matrix and σ : RD → R+ is a scalar function depending on the state and representing the noise level,
the loss function equation 3 can be simplified to

ESim
H (f̃) = E

[ D∑
d=1

∫ T

t=0

|f̃d(xt)|2 dt− 2f̃d(dx)d(t)

2σ2(xt)

]
, (10)

where f̃(xt) = (f̃1(xt), · · · , f̃D(xt)). Hence the learning of each component of f can be de-
coupled. When Σ is a state-dependent full matrix, we consider the eigen-decomposition of Σ, i.e.
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Σ(x) = QΛ(x)Q⊺, then we rotate the system by Q⊺, i.e., x′
t = Q⊺xt, f ′(x′) = Q⊺f(x)Q,

w′
t = Q

⊺wt, then we obtain the case when Σ is a diagonal matrix. Once we learn Λ̂ and f ′, we will
use the following to obtain the original functions, i.e., f(x) = Qf ′(Qx)Q⊺, and Σ̂ = QΛ̂Q⊺.

A.2 IMPLEMENTATION

We discuss in details how the algorithm is implemented for our learning framework. Practically
speaking, data are rarely sampled continuously in time. Instead, observers typically have access to
fragmented data sets, gathered from multiple independently sampled trajectories at specific, discrete
time points{xm

l }L,M
l,m=1, where xm

l = x(m)(tl) with 0 = t1 < · · · < tL = T and xm
0 is an i.i.d

sample from µ0. We use a discretized version of 3,

EL,M,H(f̃) =
1

2M

L−1,M∑
l,m=1

(
⟨f̃(xm

l ),Σ−1(xm
l )f̃(xm

l )⟩∆tl − 2⟨f̃(xm
l ),Σ−1(xm

l )∆xm
l ⟩

)
, (11)

for f̃ ∈ H and ∆xm
l = xm

l+1−xm
l . Moreover, we also assume that H is a finite-dimensional function

space, i.e. dim(H) = n < ∞. Then for any f̃ ∈ H, f̃(x) =
∑n

i=1 aiψi(x), where ai ∈ RD is a
constant vector coefficient and ψi :D ⊂ RD → R is a basis of H and the domainD is constructed
by finding out the min /max of the components of xt ∈ RD for t ∈ [0, T ]. We consider two methods
for constructing ψi: a) use pre-determined basis such as piecewise polynomials or Clamped B-spline,
Fourier basis, or a mixture of all of the aforementioned ones; b) use neural networks, where the
basis functions are also trained from data. Next, we can put the basis representation of f̃ back to
equation 11, we obtain the following loss based on the coefficients

EL,M,H({aη}ni=1) =
1

2M

L−1,M∑
l,m=1

( n∑
i,j=1

⟨ai,Σ
−1
l,maj⟩ψm

i,lψ
m
j,l∆tl − 2

n∑
i=1

⟨ai,Σ
−1
l,m∆xm

l ⟩ψm
i,l

)
,

(12)
where ψm

i,l = ψi(x
m
l ), Σ−1

l,m = Σ−1(xm
l ) and ∆tl = tl+1 − tl. In the case of diagonal covariance

matrix Σ, i.e., Σ(x) = diag(σ2
1(x), · · · , σ2

D(x)) ∈ RD×D, for σi > 0 and i = 1, · · · , D; we can
re-write equation 12 as

EL,M,H({aη}ni=1) =
1

2M

L−1,M∑
l,m=1

( n∑
i,j

⟨ai,aj⟩
σ2
k(x

m
l )
ψm
i,lψ

m
j,l∆tl − 2

n∑
i=1

⟨ai,∆xm
l ⟩

σ2
k(x

m
l )

ψm
i,l

)
.

Here (x)k is the kth component of any vector x ∈ RD. We define αk = [(a1)k · · · (an)k]
⊺ ∈

Rn, with Ak ∈ Rn×n and bk ∈ Rn given as

Ak(i, j) :=
1

2M

L−1,M∑
l,m=1

( ψm
i,lψ

m
j,l

σ2
k(x

m
l )

∆tl

)
, bk(i) :=

1

2M

L−1,M∑
l,m=1

ψm
i,l(∆xm

l )k

σ2
k(x

m
l )

.

Then the definition in (12) can be rewritten as EL,M,H({aη}ni=1) =
∑D

k=1(α
⊺
kAkαk − 2α⊺

kbk).
Since each α⊺

kAkαk − 2α⊺
kbk is decoupled from each other, we just need to solve simultaneously

Akα̂k − bk = 0, for k = 1, . . . , D. Then we can obtain f̂(x) =
∑n

i=1 âiψk(x). However when Σ
does not have a diagonal structure, we will have to resolve to gradient descent methods to minimize
equation 12 in order to find the coefficients {ai}ni=1 for a total number of nd parameters.

If a data-driven basis is desired, we set H to be the space of neural networks with the same depth,
number of neurons, and activation functions in the hidden layers. Furthermore, we find f̂ by
minimizing the loss given by the definition in (11) using any deep learning optimizer, such as
Stochastic Gradient Descent or Adam, from well-known deep learning packages.

A.3 PROOF OF THE THEOREM

We present the following definition about two different convergences of random variables.
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Definition 1. A sequence {x1, x2, · · · , xn} of scalar random variables, with cumulative distribu-
tion functions, {F1, F2, · · · , Fn}, is said to converge in distribution to a random variable x with
cumulative distribution function F if

lim
n→∞

Fn(x) = F (x),

for every number x ∈ R at which F is continuous. We denote such convergence as

xn
D−→ x.

We say xn convergences to x in probability if for any ϵ > 0, we have

lim
n→∞

P(|xn − x| > ϵ) = 0.

We denote such convergence as
xn

P−→ x.

The following lemma is needed for the convergence theorem.
Lemma 1. Consider the space (Sn++, ∥ · ∥F ) with Sn++ being the set of all n× n SPD matrices and
|| · ||F denoting the Frobenius norm, then the inversion map g : Sn++ → Sn++ defined by g(A) = A−1

forA ∈ Sn++ is continuous.

Proof. For anyA ∈ Sn++ with det(A) > 0, we have

A−1 =
adj(A)

det(A)
,

where adj(A) is the adjugate matrix of A. Each entry of adj(A) is a polynomial in the entries ofA,
and det(A) is also a polynomial in the entries ofA. Since polynomials are continuous, both maps
A 7→ adj(A) and A 7→ det(A) are continuous on Rn×n. For A ∈ Sn++, we have det(A) > 0, so
the mapA 7→ adj(A)

det(A) is continuous atA as the composition of continuous functions. Therefore, g is
continuous on Sn++.

We present the following uniform law of large numbers theorem. For the proof, please see (Newey &
McFadden, 1994).
Theorem 2 (Uniform Law of Large Numbers (Newey & McFadden, 1994)). Let {xi}∞i=1 be i.i.d.
and let f(x, θ) be some function defined for θ ∈ Θ. Assume:

1. Θ is compact;

2. for almost every x, the map θ 7→ f(x, θ) is continuous on Θ, and for each θ ∈ Θ the map
x 7→ f(x, θ) is measurable;

3. there exists a dominating function h such that E[h(x)] <∞ such that ∥f(x, θ)∥ ≤ h(x) for
all θ ∈ Θ.

Then θ 7→ E[f(x, θ)] is continuous in θ and

sup
θ∈Θ

|| 1
n

n∑
i=1

f(xi, θ) − E[f(x, θ)]|| P−→ 0.

The following theorem is needed to show convergence of vector-valued random variables. For the
proof, please see (Vaart, 1998).
Theorem 3 (Theorem 5.9 in (Vaart, 1998)). Let Ψn : Θ → Rk be random vector–valued functions
and Ψ : Θ → Rk a fixed vectored valued function of θ. Suppose that for every ε > 0:

sup
θ∈Θ

∥Ψn(θ)−Ψ(θ)∥ P−→ 0, inf
θ: ||θ−θ0||≥ε

∥Ψ(θ)∥ > 0 = ∥Ψ(θ0)∥.

Then any sequence of estimator θ̂n such that Ψn(θ̂n) = op(1) converges in probability to θ0.
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We are now ready to show the proof of the convergence theorem.

Proof. We need to introduce a few quantities before we can establish the proof. First, we introduce
the continuous form of EM . As M → ∞, by law of large numbers, we have

lim
M→∞

EM (f̃) = E∞(f̃) =
1

2
E
[ ∫ T

0

⟨f̃t, (Σt)
−1f̃t⟩ dt− 2

∫ T

0

⟨f̃t, (Σt)
−1 dxt⟩

]
,

where f̃t = f̃(xt), Σt = Σ(xt). When H is finite dimensional, then for any f̃ ∈ H, we have

f̃(x) =

n∑
η=1

αηψη(x) = Ψ(x)α, α =

α1

...
αn

 .
Therefore, the two losses can be re-written as

EM (f̃) =
1

2M

M∑
m=1

(∫ T

0

(Ψm
t α)

⊺(Σm
t )−1Ψm

t α dt− 2

∫ T

0

(Ψm
t α)

⊺(Σm
t )−1 dxm

t

)
,

E∞(f̃) =
1

2
E
[ ∫ T

0

(Ψtα)
⊺(Σt)

−1Ψtα dt− 2

∫ T

0

(Ψtα)
⊺(Σt)

−1 dxt

)
,

Abusing the notation, we will use EM (f̃) and EM (α) interchangeably; similarly for E∞(f̃) and
E∞(α), since α and f̃ have a one-on-one correspondence once a H is chosen.

Next, we will assume the following
E[
∫ T

0
||Ψ⊺

tΣ
−1
t Ψt||2 dt] <∞,

E[
∫ T

0
||Ψ⊺

tΣ
−1
t f(xt)||2 dt] <∞,

E[
∫ T

0
||Ψ⊺

t σ
−1
t ||2 dt] <∞,

Differentiating EM w.r.t to α gives

∇αEM (α) =
1

M

M∑
m=1

( ∫ T

0

(Ψm
t )⊺(Σm

t )−1(Ψm
t α dt− dxm

t )
)
.

Let

ϕm(α) :=

∫ T

0

(Ψm
t )⊺(Σm

t )−1(Ψm
t αdt− dxm

t ),

=

∫ T

0

(Ψm
t )⊺(Σm

t )−1(f̃m
t dt− fm

t dt− σm
t dwm

t ),

=

∫ T

0

(Ψm
t )⊺(Σm

t )−1(f̃m
t − fm

t ) dt−
∫ T

0

(Ψm
t )⊺(σm

t )−1 dwm
t .

and define ΦM (α) := 1
M

∑M
m=1 ϕm(α). First, by Itô’s formula

E[
∫ T

0

(Ψm
t )⊺(σm

t )−1 dwm
t ] = 0.

Then

E[ϕm(α)] = E[
∫ T

0

(Ψm
t )⊺(Σm

t )−1(f̃m
t − fm

t ) dt],

= E[
∫ T

0

Ψ⊺
tΣ

−1
t (f̃t − ft) dt]

Define
Φ∞(α) = lim

m→∞
ΦM (α) = E[ϕm(α)].

15
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By theorem 2, since H is compact, ϕm is continuous at each α and it is also bounded (by one of our
assumptions). Moreover

sup
f̃∈H

||ΦM (α)− Φ∞(α)|| = sup
f̃∈H

|| 1
M

M∑
m=1

ϕm(α)− E[Φm(α)]|| P−→ 0.

Since f ∈ H, then f(x) = Ψ(x)αf , then

Φ∞(α) = E[
∫ T

0

Ψ⊺
tΣ

−1
t (f̃t − ft) dt],

= E[
∫ T

0

Ψ⊺
tΣ

−1
t (Ψtα−Ψtαf ) dt],

= E[
∫ T

0

Ψ⊺
tΣ

−1
t Ψt dt](α−αf )

= A(α−αf ).

SinceA is SPD, Let λmin(A) > 0 be the minimal eignevalue ofA, then for all f̃ ∈ H,

||Φ∞(α)|| = ||A(α−αf )|| ≥ λmin(A)||α−αf ||.

Therefore, for any ϵ > 0, we have

inf
||α−αf ||≥ϵ

||Φ∞(α)|| ≥ inf
||α−αf ||≥ϵ

λmin(A)||α−αf || ≥ λmin(A)ϵ > 0,

observe that Φ∞(αf ) = 0. By theorme 3, we conclude that

f̂M
P−→ f , convergence in probability.

Next, recall

ΦM (α) =
1

M

M∑
m=1

∫ T

0

(Ψm
t )⊺(Σm

t )−1(Ψm
t αdt− dxm

t ),

define

AM =
1

M

M∑
m=1

∫ T

0

(Ψm
t )⊺(Σm

t )−1Ψm
t dt.

Since f(x) = Ψ(x)αf , hence

ϕm(αf ) =

∫ T

0

(Ψm
t )⊺(Σm

t )−1(Ψm
t αf dt− dxm

t ),

=

∫ T

0

(Ψm
t )⊺(Σm

t )−1(fm
t dt− dxm

t ),

= −
∫ T

0

(Ψm
t )⊺(Σm

t )−1σm
t dwm

t ,

= −
∫ T

0

(Ψm
t )⊺(σm

t )−1 dwm
t

This Itô integral is square-integrable, and E[ϕm(αf )] = 0, and by Itô isometry

Var(ϕm(αf )) = E[
∫ T

0

Ψ⊺
tΣ

−1
t Ψt dt] = A <∞.

Sincr xm
t is i.i.d, ϕm(αf ) is also i.i.d. Therefore, by the multivariate Central Limit Theorem, we

have
√
MΦM (αf ) =

1√
M

M∑
m=1

ϕm(αf )
D−→ N (0,A).
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Furthermore, we also have the following (recall f̂(x) = Ψ(x)α̂)

ΦM (α̂)− ΦM (αf ) = AM (α̂−αf ),

Since ΦM (α̂) = 0, we obtain
√
M(α̂−αf ) =

√
MA−1

M ΦM (αf ).

Each entry of AM is square-integrable and by law of large numbers AM → A as M → ∞ in
probability entrywise, hence

||Am −A||F
P−→ 0.

By lemma 1, the inversion mapping is continuous, hence

A−1
M

P−→ A−1.

Putting them all together and by Slutsky’s theorem, we end up with
√
M(α̂−αf )

D−→ N (0,A−1).

Furthermore, for a fixed x, since f̂(x) = Ψ(x)α̂ and f(x) = Ψ(x)αf , we finally have
√
M(f̂ − f) D−→ N (0,A−1).

B EXAMPLES

In this section, we discuss the additional details for setting up the numerical examples and show
additional examples. In all examples, we use fairly complex covariance matrices, i.e., state-dependent
matrices, in order to showcase the effectiveness of our learning. The drift and noise estimations
are carried out in both basis method and deep learning method with 3 and 2 being loss functions
for estimating drift and covariance, respectively. The observations, serving as the input dataset for
testing our method, are generated by the Euler-Maruyama scheme Higham (2001), utilizing the
drift functions as we just mentioned. The basis space H is constructed employing either B-spline or
piecewise polynomial methods for maximum degree p-max equals 2. For higher order dimensions
where d ≥ 2, each basis function is derived through a tensor grid product, utilizing one-dimensional
basis defined by knots that segment the domain in each dimension.

The parameters will be specified in each subsection of examples. The estimation results are evaluated
using several different metrics. We record the noise terms, dwt, from the trajectory generation
process and compare the trajectories produced by the estimated drift functions, f̂ , under identical
noise conditions. We examine trajectory-wise errors using equation ρ(x) = E

[
1
T

∫ T

t=0
δxt

(x)
]

with

relative trajectory error and plot both f and f̂ to calculate the relative L2(ρ) error using 6, where ρ is
derived by equation ??. When plotting, trajectories with different initial conditions are represented by
distinct colors. In trajectory-wise comparisons, black solid lines depict the true trajectories, while blue
dashed lines represent those generated by the estimated drift functions. Additionally, the empirical
measure ρ is shown in the background of each 1d plot. Furthermore, we assess the distribution-wise
discrepancies between observed and estimated results, computing the Wasserstein distance at various
time steps with equation 8.

B.1 EXAMPLE: BENCHMARK MODEL

We consider an SDE model with state dependent noise matrix, as follows{
dxt = C1xt dt+

√ytxt dbxt
dyt = C2(C3 − yt) dt+ C4

√yt dbyt ,

where (xt, yt) is the pair of state-variables, (bxt , b
y
t ) are standard Brownian motion, the constants

C1, C2, C3, C4 > 0 are model parameters. If 2C2C3 > C2
4 , then yt remains strictly positive. We

use this benchmarking model to test the effectiveness of our learning framework on identifying

17
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(a) Comparison of true Σ11 vs learned Σ̂11. (b) Comparison of true Σ22 vs learned Σ̂22.

Figure 8: Benchmark model: Σ vs Σ̂.

the SDE without any knowledge of the noise and drift terms. We evaluated our learning method
on the benchmark model. Trajectories were simulated using the parameters C1 = 0.5, C2 = 3.0,
C3 = 0.04, and C4 = 0.45. Both the drift function f(x, y) = [f1(x), f2(y)], where f1(x) = C1x

and f2(y) = C2(C3 − y), and the diffusion matrix σ(x, y) =
[√

yx 0
0 C4

√
y

]
were learned using

the neural network method described in the previous section 3.5.

(a) True f1 vs learned f̂1. (b) True f2 vs learned f̂2.

Figure 9: f vs f̂ with empirical distribution of xt is shown in the background.

The results are shown in Figure 8, 9 and 10.

Figure 10: Trajectory comparison with matched noise dbt. Left: true simulated paths (xt, yt) under
the benchmark parameters. Right: re–simulated paths using the learned drift f̂ and diffusion σ̂, driven
by the same (dbxt ,dbyt ).
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Conclusion: By using deep neural networks as the underlying function spaces, one can easily infer
those multi-variate drift and noise functions, without specifying the actual form of the functions.

B.2 EXAMPLE: INTERACTING PARTICLE SYSTEMS (IPS)

If we use the vectorized notations, i.e.

x =

x1

...
xN

 and w =

w1

...
wN

 ∈ RD=Nd,

and

fϕ(x) =


1
N

∑N
j=2 ϕ(||xj − x1||)(xj − x1)

...
1
N

∑N−1
j=1 ϕ(||xj − xN ||)(xj − xN )

 , σ =


σx(x1) 0 · · · 0

0 σx(x2) · · · 0
...

...
. . .

...
0 0 · · · σx(xN )

 .
Here each 0 is a d× d matrix, f : RD → RD and σ̃ : RD → RD×D. Then the system can be put
into one single SDE of the form dxt = f(xt) dt+ σ̃(xt) dwt. We will consider a weighted ℓ2 inner
product for these vectors, i.e. for u,v ∈ Rd with

u =

u1

...
uN

 , v =

v1

...
vN

 , ui,vi ∈ Rd

then

⟨u,v⟩N =
1

N

N∑
i=1

⟨ui,vi⟩, ||u||2N = ⟨u,u⟩N .

With this new norm, we can carry out the learning as usual in Rd yet with a lower dimensional
structure for fϕ and σx. With this setup, the loss of the noise in equation 2 will become

Eσ(Σ̃) = E
[ 1

N

N∑
i=1

(
[xi,t,xi,t]

T
0 −

∫ T

t=0

(σ̃x(xi,t))
2 dt

)2]
,

where we learn Σ̃x = (σ̃x)2 as one single SPD matrix using the Cholesky decomposition method
described in section 3.5, and then take σ̃x =

√
Σ̃x. Next, the loss of the drift will become

EH(φ) =
1

2
E
[ ∫ T

t=0

⟨fφ(xt),Σ
†(xt)fφ(xt)⟩N dt− 2⟨fφ(xt),Σ

†(xt) dxt⟩N
)]
.

The two terms with the weighted ℓ2 inner product can be rewritten as

⟨fφ(xt),Σ
†(xt)fφ(xt)⟩N =

1

N3

N∑
i,j,k=1

φ(rmi,j,l)φ(r
m
i,k,l)⟨rmi,j,l, (σ̃x(xm

i,l))
−2rmi,k,l⟩

and

⟨fφ(xt),Σ
†(xt) dxt⟩N =

1

N2

N∑
i,j=1

φ(rmi,j,l)⟨rmi,j,l, (σ̃x(xm
i,l))

−2(xm
i,l+1 − xm

i,l)⟩,

where xm
i,l = xm

i (tl), rmi,j,l = xm
j (tl) − xm

i (tl), and rmi,j,l = ||rmi,j,l||. In estimating ϕ, we use
[rmin, rmax] as the domain for estimation with rij = ∥xj − xi∥ represents the pairwise distance. We
use a piecewise local B-spline basis of order up to 3 on domain [rmin, rmax]. Let H = span({ψη}nη=1)
denote the associated compactly supported basis functions. Then an estimator φ ∈ H has the form,
i.e., φ(r) =

∑n
η=1 aη ψη(r). For x = (x⊤

1 , . . . ,x
⊤
N )⊤, define interaction features indexed by the

particle i = 1, . . . , N , then each ηth column of Φ is given as(
Φη(x)

)
i
=

1

N

N∑
j=1,j ̸=i

ψη

(
ri,j

)
(σx(xi))

−1ri,j ∈ Rd,
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where vi,j = xj − xi and ri,j = ||ri,j ||. For M trajectories {xm
l }L,M

l,m=1, set ∆xm
l = xm

tl+1
− xm

tl
.

Then the loss function reduces to

E(a) = 1
2 a

⊤Aa− b⊤a,

where {
Aij := 1

M

∑
m,l⟨Φi

(
xm
l

)
, Φj⟩∆t,

bi := 1
M

∑
m,l⟨Φi

(
xm
l

)
, σ−1(xm

l )∆xm
l ⟩.

The estimator is the solution of the normal equations A â = b, hence ϕ̂(r) =
∑n

i=1 âi ψi(r).

B.3 EXAMPLE: SPDE ESTIMATION

For any N ∈ N, let HN = span{h1, . . . , hN} and PN : H → HN the projection operator. Then
denote uN = PNu =

∑N
k=1 uk(t)hk(x) as the Fourier approximation of the solution u by the first

N eigenmodes uk(t) = (u(t), hk)H . The projected solution uN of equation 9 satisfies the following
finite–dimensional SDE

duN (t,x) = PN
(
θ(x)∆u(t,x)

)
dt+ σPN dw(t,x). (13)

Since eigenmodes are coupled together in term θ(x)∆u(t,x), PN does not commute with θ(x), and
to overcome this we consider a Galerkin type projection, i.e.

ũN (t,x) =

N∑
k=1

ũk(t)hk(x) ≈
∞∑
k=1

uk(t)hk(x) = u(t,x),

and we have
dũN (t,x) = PN

(
θ(x)∆ũN (t,x)

)
dt+ σ PN dw(t,x), (14)

that we write in a matrix form,

dŨN (t) = −CN (θ)ΛN ŨN (t) dt+ σQN dwN (t), (15)

where

ŨN =
(
ũ1, . . . , ũN

)⊺
, (16)

ΛN = diag(λ1, . . . , λN ), (17)
QN = diag(q1, . . . , qN ), (18)

and where the matrix CN (θ) ∈ RN×N has entries

[CN (θ)]jk = ⟨θ(x)hk, hj⟩, 1 ≤ j, k ≤ N.

Choose any finite dimensional function space H with basis {ψi}ni=1, and approximate θ(x) with
respect to this basis,

θ(x) ≈
n∑

i=1

ai ψi(x), a = (a1, . . . , an)
⊺ ∈ Rn.

For each i define the deterministic matrices

[B
(i)
N ]jk = ⟨ψihk, hj⟩, 1 ≤ j, k ≤ N, (19)

so that

CN (θ) =

n∑
i=1

aiB
(i)
N . (20)

Let Σ = σ2QNQ
⊺
N . By our method in section 3,

E(a) = 1

2

∫ T

0

ŨN⊺

ΛNCN (a)Σ−1CN (a)ΛNŨN dt+

∫ T

0

ŨN⊺

ΛNCN (a)Σ−1 dŨN . (21)
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With the expansion defined by (20), we obtain a mass matrix A and RHS vector b having entries
given as

Amk =

∫ T

0

ŨN⊺

ΛNB
(m)
N Σ−1B

(k)
N ΛNŨN dt, bm =

∫ T

0

ŨN⊺

ΛNB
(m)
N Σ−1 dŨN ,

for 1 ≤ m, k ≤ n. A is apparently symmetric positive definite. Next, the loss becomes

E(a) = 1

2
a⊺Aa+ b⊺a,

thus minimizing the loss is equivalent to solving solving the linear system ∇E(a) = 0, which gives
the estimation coefficient as â = −A−1b.

C REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results.

• The convergence theorem is accompanied by complete proofs in the appendix.
• All algorithms are described in detail with hyperparameters, training procedures, and

evaluation metrics fully specified either in the example section or in the additional details of
exmaple section in appendix.

• We will provide open-source code, along with scripts to reproduce the experiments, prepro-
cessed datasets (or instructions to obtain them), and random seeds for training, once this
paper is accepted.

Together, these measures ensure that independent researchers can reliably reproduce and validate our
findings.

D USE OF THE LLM STATEMENT

We did not employ large language models (LLMs) in the development of this work, including the
design of methods, theoretical results, experiments, or analysis. The manuscript was written entirely
by the authors, with the exception of occasional use of automated grammar and spelling checkers to
improve readability.
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