

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 NOISE-AWARE SYSTEM IDENTIFICATION FOR HIGH-DIMENSIONAL STOCHASTIC DYNAMICS

Anonymous authors

Paper under double-blind review

ABSTRACT

Stochastic dynamical systems are ubiquitous in physics, biology, and engineering, where both deterministic drifts and random fluctuations govern system behavior. Learning these dynamics from data is particularly challenging in high-dimensional settings with complex, correlated, or state-dependent noise. We introduce a noise-aware system identification framework that jointly recovers the deterministic drift and full noise structure directly from the trajectory data, without requiring prior assumptions on the noise model. Our method accommodates a broad class of stochastic dynamics, including colored and multiplicative noise, that scales efficiently to high-dimensional systems, and accurately reconstructs the underlying dynamics. Numerical experiments on diverse systems validate the approach and highlight its potential for data-driven modeling in complex stochastic environments.

1 INTRODUCTION

Stochastic differential equations (SDEs) provide a fundamental and versatile framework for modeling systems in which random fluctuations are intrinsic to the dynamics (Evans, 2013; Särkkä & Solin, 2019). Compared to deterministic ordinary differential equations (ODEs), SDEs incorporate noise explicitly—often through a Brownian motion term—allowing them to capture variability and uncertainty that strongly influence system behavior. This capability is essential for representing complex phenomena in physics, biology, chemistry, and finance, where stochasticity can be a dominant factor. By incorporating deterministic forces and random fluctuations in a unified mathematical description, SDEs offer a flexible modeling approach that is both theoretically rigorous and practically relevant.

We consider SDEs of the form

$$d\mathbf{x}_t = \mathbf{f}(\mathbf{x}_t) dt + \sigma(\mathbf{x}_t) d\mathbf{w}_t, \quad \mathbf{x}_t, \mathbf{w}_t \in \mathbb{R}^D,$$

where the drift $\mathbf{f} : \mathbb{R}^D \rightarrow \mathbb{R}^D$ and the diffusion coefficient $\sigma : \mathbb{R}^D \rightarrow \mathbb{R}^{D \times D}$ are potentially unknown. The driving noise \mathbf{w}_t is a vector of independent standard Brownian motions. The noise structure of the SDE system is described by a state dependent covariance matrix $\Sigma : \mathbb{R}^D \rightarrow \mathbb{R}^{D \times D}$, where $\Sigma = \sigma\sigma^\top$. This general formulation encompasses many classical and modern models. In physics, the Langevin equation (Sachs et al., 2017; Coffey & Kalmykov, 2012; Ebeling et al., 2008; Talay, 2002) describes microscopic particle dynamics under both systematic forces and thermal fluctuations. In biology, stochastic Lotka–Volterra models (Takeuchi et al., 2006) capture population interactions in fluctuating environments, while other SDE-based models describe cellular processes and gene expression noise (Székely & Burrage, 2014; Dingli & Pacheco, 2011). In chemistry, the chemical Langevin equation (Wu et al., 2016) accounts for reaction kinetics in small-molecule regimes, where random molecular collisions cannot be neglected. In finance, SDEs form the basis of models such as Black–Scholes (Black & Scholes, 1973; Hull, 2017), Vasicek (Vasicek, 1977), and Heston (Heston, 1993), which incorporate uncertainty in asset prices, interest rates, and volatility. More recently, SDE formulations have emerged as the mathematical backbone of diffusion models in machine learning (Ho et al., 2020; Song et al., 2021), enabling state-of-the-art generative modeling methods.

Accurate application of SDEs requires careful calibration to empirical data so that both the deterministic drift and stochastic noise are faithfully represented. This is crucial for predictive power and for preserving physical interpretability. In many traditional settings, the functional forms of \mathbf{f} and σ are assumed known up to a small set of parameters, which can be estimated via least squares or

related regression techniques (Mrázek & Pospíšil, 2017; Abu-Mostafa, 2001). However, in modern applications—particularly those involving high-dimensional data where these functional forms are often unknown, and both the drift and the diffusion must be learned directly from the observed trajectories. Statistical inference for SDEs has a rich history (Kutoyants, 2004), with maximum-likelihood methods playing a central role when full trajectory data are available (Liptser & Shiryaev, 2001, Chapter 7). Recent advances have extended such methods to data-driven drift recovery Guo et al. (2024), but typically under restrictive noise assumptions, such as independence or constant variance.

In this work, we develop a noise-informed, trajectory-based learning framework for discovering the governing structures of SDEs directly from observational data. Unlike methods that estimate the drift alone or treat noise as a secondary effect, our approach embeds the noise process explicitly into the learning procedure and leverages information from the entire trajectory evolution, rather than focusing on isolated time points. This enables simultaneous recovery of both the drift f and the noise structure $\Sigma(x)$, including scalar or matrix-valued forms and fully state-dependent, correlated noise. We conduct a systematic investigation of the method’s stability, accuracy, and computational efficiency across a variety of SDE models with different noise structures, demonstrating consistently superior performance in reconstructing complex stochastic dynamics.

The remainder of the paper is organized as follows. We discuss the general SDE model which our learning is based on in Section 2. Section 3 introduces the noise-informed likelihood formulation and the associated learning framework for recovering drift and noise. Section 4 presents numerical experiments on representative stochastic systems, highlighting accuracy and robustness across diverse noise settings. Section 5 concludes with a discussion of the implications, limitations, and potential extensions of our approach.

1.1 RELATED WORKS

System identification of the drift term from deterministic dynamics has been studied in many different scenarios, e.g. identification by enforcing sparsity such as SINDy (Brunton et al., 2016), neural network based methods such as NeuralODE (Chen et al., 2018), PINN (Raissi et al., 2019) and autoencoder (Xu et al., 2024), regression based Cucker & Smale (2002)p, and high-dimensional reduction variational framework (Lu et al., 2019). There are statistical methods which can be used to estimate the drift and noise terms using pointwise statistics. SINDy for SDEs was also developed in (Wanner & Mezić, 2024).

The observation data generated by SDEs can be treated as a time-series data with a mild assumption on the relationship between x_t and $x_{t+\Delta t}$. Various deep neural network architectures can be used to learn the drift term as well as predicting the trajectory data, using RNN, LSTM, and Transformers, see (Liao et al., 2019; Yang et al., 2023; Wen et al., 2023) for detailed discussion.

However, most of these methods use a regression type of loss function defined as follows

$$\mathcal{E}_{\mathcal{H}}^{\text{Reg}}(\tilde{f}) = \mathbb{E} \left[\frac{1}{T} \int_{t=0}^T \left\| \tilde{f}(x_t) - \frac{dx_t}{dt} \right\|^2 dt \right].$$

Here the derivative $\frac{dx_t}{dt}$ is loosely defined in the discrete sense (or weak sense). On the other hand, our likelihood induced loss of the form $\langle \tilde{f}, \Sigma^\dagger \tilde{f} \rangle dt - 2\langle \tilde{f}, \Sigma^\dagger dx_t \rangle$, is linked to the regression type loss through the expression

$$\left\| \tilde{f} - \frac{dx_t}{dt} \right\|^2 dt = \left\| \tilde{f} \right\|^2 dt - 2\langle \tilde{f}, dx_t \rangle + \left\| \frac{dx_t}{dt} \right\|^2 dt.$$

The major difference comes in the re-scaling by the noise and our loss is a derivation from a negative-log likelihood, which guarantees the existence and uniqueness of minimizers.

Furthermore, special high-dim drift terms living on low-dim manifolds with constant noise is investigated in (Lu et al., 2022); such loss is similar to ours when $\sigma(x) = \sigma > 0$. In (Guo et al., 2024), a constant correlated noise matrix is studied.

2 MODEL EQUATION

Before introducing our learning framework for system identification from observed stochastic dynamics, we first establish the modeling setting and notation for the observational data. Let

($\Omega, \mathcal{F}, (\mathbb{F}_t)_{0 \leq t \leq T}, \mathbb{P}$) be a filtered probability space, for a fixed and finite time horizon $T > 0$. As usual, the expectation operator with respect to \mathbb{P} will be denoted by $\mathbb{E}_{\mathbb{P}}$ or simply \mathbb{E} . For random variables X, Y we write $X \sim Y$, whenever X, Y have the same distribution. We consider governing equations for stochastic dynamics of the following form

$$dx_t = f(x_t) dt + \sigma(x_t) dw_t, \quad x_t, w_t \in \mathbb{R}^D, \quad (1)$$

with some given initial condition $x_0 \sim \mu_0$, here $f : \mathbb{R}^D \rightarrow \mathbb{R}^D$ is the drift term, $\sigma : \mathbb{R}^D \rightarrow \mathbb{R}^{D \times D}$ is the diffusion coefficient. Without Loss of Generality, we assume that σ is symmetric positive definite (SPD), i.e., $\sigma^T = \sigma$, $x^T \sigma x \geq 0$ with $x^T \sigma x = 0$ iff $x = \mathbf{0}$. Moreover, w represents a vector of independent standard Brownian motions. The covariance matrix of the SDE system is a symmetric positive definite matrix denoted by $\Sigma = \Sigma(x) : \mathbb{R}^D \rightarrow \mathbb{R}^{D \times D}$ where $\Sigma = \sigma \sigma^T$. We impose the following global regularity and growth conditions: there exist constants $C_1, C_2 > 0$ such that for all $x, y \in \mathbb{R}^D$

$$\begin{cases} \|f(x) - f(y)\| + \|\sigma(x) - \sigma(y)\|_{\text{Fro}} \leq C_1 \|x - y\|, \\ \|f(x)\|^2 + \|\sigma(x)\|_{\text{Fro}}^2 \leq C_2 (1 + \|x\|^2). \end{cases}$$

Under these assumptions, equation 1 admits a unique strong solution $\{x_t\}_{t \in [0, T]}$ adapted to the filtration $(\mathbb{F}_t)_{0 \leq t \leq T}$ for every square-integrable initial condition $x_0 \sim \mu_0$.

3 LEARNING FRAMEWORK

We now introduce the methodology for learning the drift f and the diffusion σ terms of stochastic differential equations from observed trajectory data. We assume continuous observation data $\{x_t\}_{t \in [0, T]}$ for $x_0 \sim \mu_0$, and that f and σ are the only unknowns. We estimate these functions in two stages.

3.1 ESTIMATION OF THE DIFFUSION TERM

The diffusion coefficient σ is first inferred using quadratic (co-)variation arguments. For two scalar stochastic processes x_t and y_t , the quadratic variation over time interval $[0, T]$ is defined by

$$[x_t, y_t]_0^T = \lim_{|\Delta t_k| \rightarrow 0} \sum_{k=1}^K (x(t_{k+1}) - x(t_k))(y(t_{k+1}) - y(t_k)),$$

where $\Delta t_k = t_{k+1} - t_k$ and $\{0 = t_1 < t_2 < \dots < t_K = T\}$ is a partition of the interval $[0, T]$. For a vector stochastic process $x_t = [x_1(t), x_2(t), \dots, x_D(t)]^T$, the quadratic variation matrix $[x, x]_0^T$ has entries $[x_i(t), x_j(t)]_0^T$ for $i, j = 1, \dots, D$. Using such notation, the estimation of $\Sigma = \sigma \sigma^T$ is the minimizer of the following loss function

$$\mathcal{E}_\sigma(\tilde{\Sigma}) = \mathbb{E} \left[([x_t, x_t]_0^T - \int_{t=0}^T \tilde{\Sigma}(x_t) dt)^2 \right]. \quad (2)$$

Since σ is SPD, $\sigma = \sqrt{\Sigma}$ is uniquely defined. If Σ is constant, then the estimation can be simplified to $\tilde{\Sigma} = \frac{1}{T} \mathbb{E} [[x_t, x_t]_0^T]$. Note that estimation of Σ does not depend on the drift function f .

3.2 ESTIMATION OF THE DRIFT TERM

Once Σ is obtained, we estimate f by finding the minimizer to the following likelihood-based loss

$$\mathcal{E}_H(\tilde{f}) = \frac{1}{2} \mathbb{E} \left[\int_{t=0}^T \langle \tilde{f}(x_t), \Sigma^\dagger(x_t) \tilde{f}(x_t) \rangle dt - 2 \langle \tilde{f}(x_t), \Sigma^\dagger(x_t) dx_t \rangle \right], \quad (3)$$

where $\tilde{f} \in \mathcal{H}$ with \mathcal{H} being restricted to a convex and compact (w.r.t to L_∞) function space determined by the observed data, $\langle \cdot, \cdot \rangle$ denotes the Euclidean inner product, and Σ^\dagger is the pseudo-inverse of Σ , under our setting $\Sigma^\dagger = \Sigma^{-1}$. The differential dx_t is approximated in practice by finite differences $dx_t \approx x_{t+\Delta t} - x_t$. This loss function arises from the Girsanov theorem and the Radon-Nikodym derivative for stochastic processes, see (Liptser & Shiryaev, 2001, Chapter 7) and Section 3.3 for details.

162 3.3 DERIVATION OF THE LOSS FOR THE DRIFT
163164 We discuss the theoretical foundation of our methods in this section. Consider two Itô processes
165 defined over measurable space (Ω, \mathcal{F}) and let $\mathbb{P}_X, \mathbb{P}_Y$ be probability measures corresponding to
166 processes \mathbf{x} and \mathbf{y} , where

167
$$d\mathbf{x}_t = \mathbf{f}(\mathbf{x}_t) dt + \sigma(\mathbf{x}_t) d\mathbf{w}_t,$$

168
$$d\mathbf{y}_t = \mathbf{g}(\mathbf{y}_t) dt + \sigma(\mathbf{y}_t) d\mathbf{w}_t, \quad \mathbf{y}_0 = \mathbf{x}_0,$$

169

170 satisfying all assumptions in (Liptser & Shiryaev, 2001, Theorem 7.18) and its following corollary.
171 Then, the Radon-Nikodym derivative, or the likelihood ratio, takes the form

172
$$\frac{d\mathbb{P}_X}{d\mathbb{P}_Y}(\mathbf{y}) = \exp \left(\int_0^T \langle (\mathbf{f}_t - \mathbf{g}_t), \Sigma^\dagger d\mathbf{y}_t \rangle - \frac{1}{2} \int_0^T \langle (\mathbf{f}_t - \mathbf{g}_t), \Sigma_t^\dagger (\mathbf{f}_t + \mathbf{g}_t) dt \rangle \right), \quad (4)$$

173

174 where $\mathbf{f}_t = \mathbf{f}(\mathbf{y}_t)$, $\mathbf{g}_t = \mathbf{g}(\mathbf{y}_t)$, and $\Sigma_t = \Sigma(\mathbf{y}_t)$. Here let us assume that the observations
175 are $\{\mathbf{x}_t\}_{t \in [0, T]}$. In view of the assumption of (Liptser & Shiryaev, 2001, Theorem 7.18), the n -
176 dimensional adapted process $\Theta = \sigma^\dagger(\mathbf{f}(\mathbf{x}_t) - \mathbf{g}(\mathbf{x}_t))$ is such that $\int_0^T \|\Theta\|^2 dt < \infty$. By Girsanov
177 theorem, $\tilde{\mathbf{w}}_t = \mathbf{w}_t + \int_0^t \Theta_s ds$ is an n -dimensional standard Brownian motion under probability
178 measure \mathbb{P}_Y . Hence, $d\mathbf{x}_t = \mathbf{f}(\mathbf{x}_t) dt + \sigma(\mathbf{x}_t)(d\tilde{\mathbf{w}}_t - \Theta_t dt) = \mathbf{g}(\mathbf{x}_t) dt + \sigma(\mathbf{x}_t) d\tilde{\mathbf{w}}_t$. For con-
179 venience, we take $\mathbf{g} = 0$, in which case \mathbf{x}_t becomes a Brownian process under \mathbb{P}_Y . Therefore
180 $\mathbb{P}_Y(\{\mathbf{x}_t\}_{t \in [0, T]} | \mathbf{f})$ is now independent from \mathbf{f} since \mathbf{x}_t has no drift term under \mathbb{P}_Y . Putting such
181 likelihood under the negative-log function, we arrive at our first loss as
182

183
$$\mathcal{E}_T(\tilde{\mathbf{f}}) = -\ln L(\mathbf{f} | \{\mathbf{x}_t\}_{t \in [0, T]}) = \int_0^T (\mathbf{f}(\mathbf{x}_t)^\top \Sigma^\dagger \mathbf{f}(\mathbf{x}_t) dt - 2\mathbf{f}(\mathbf{x}_t)^\top \Sigma^\dagger d\mathbf{x}_t).$$

184

185 Here such loss function is used to handle observation data from one long trajectory (i.e. observed
186 over large time), and it will be effective especially for ergodic systems. Moreover, we also consider
187 the situation where multiple medium (or short-burst) trajectories with different initial conditions are
188 observed, then we derive our loss function as the expectation (over trajectories with different initial
189 conditions) of the negative-log-likelihood function as
190

191
$$\mathcal{E}(\tilde{\mathbf{f}}) = \mathbb{E}[-\ln L(\mathbf{f} | \{\mathbf{x}_t\}_{t \in [0, T]})] = \frac{1}{2} \mathbb{E} \left[\int_0^T (\mathbf{f}(\mathbf{x}_t)^\top \Sigma^\dagger \mathbf{f}(\mathbf{x}_t) dt - 2\mathbf{f}(\mathbf{x}_t)^\top \Sigma^\dagger d\mathbf{x}_t) \right].$$

192

193 3.4 CONVERGENCE THEOREM
194195 We present the following convergence results in a theorem.
196197 **Theorem 1.** Given the continuous-time i.i.d trajectory data $\{\mathbf{x}_t^m\}_{m=1}^M$ for $t \in [0, T]$ and each \mathbf{x}_t^m
198 generated by equation 1, we define an estimator to \mathbf{f} through minimizing the following loss
199

200
$$\mathcal{E}_M(\tilde{\mathbf{f}}) = \frac{1}{2M} \sum_{m=1}^M \left(\int_0^T \langle \tilde{\mathbf{f}}_t^m, (\Sigma_t^m)^{-1} \tilde{\mathbf{f}}_t^m \rangle dt - 2 \int_0^T \langle \tilde{\mathbf{f}}_t^m, (\Sigma_t^m)^{-1} d\mathbf{x}_t^m \rangle \right),$$

201

202 where $\tilde{\mathbf{f}}_t^m = \tilde{\mathbf{f}}(\mathbf{x}_t^m)$, $\Sigma_t^m = \Sigma(\mathbf{x}_t^m)$, and $\tilde{\mathbf{f}} \in \mathbb{H}$ with \mathbb{H} being convex and compact (w.r.t to L^2 -
203 norm). When \mathbb{H} is finite dimensional, i.e., $n = \dim(\mathbb{H}) < \infty$, and $\mathbf{f} \in \mathbb{H}$, then the estimator,
204 given as $\hat{\mathbf{f}}_M = \arg \min_{\tilde{\mathbf{f}} \in \mathbb{H}} \mathcal{E}_M(\tilde{\mathbf{f}})$, has the following properties: $\hat{\mathbf{f}}_M \xrightarrow{P} \mathbf{f}$ (consistency) and
205 $\sqrt{M}(\hat{\mathbf{f}}_M - \mathbf{f}) \xrightarrow{D} \mathcal{N}(\mathbf{0}, \mathbf{B}^{-1})$ (Asymptotic normality). Here $\mathbf{B} = \mathbb{E}[\int_0^T \Psi_t^\top \Sigma_t^{-1} \Psi_t dt]$, where
206

207
$$\Psi_t = \Psi(\mathbf{x}_t) = [\psi_1(\mathbf{x}_t) \quad \dots \quad \psi_n(\mathbf{x}_t)] \in \mathbb{R}^{D \times n}.$$

208

209 with $\{\psi_1, \psi_2, \dots, \psi_n\}$ being a basis of \mathbb{H} where each $\psi_\eta : \mathbb{R}^D \rightarrow \mathbb{R}^D$. Notice that \mathbf{B} is SPD.
210211 3.5 DEEP LEARNING FOR HIGH-DIM FUNCTIONS
212213 In learning high dimensional \mathbf{f} and σ , we can employ the deep learning architecture, with one neural
214 network for learning \mathbf{f} and the other for σ . The learning of \mathbf{f} is rather straightforward, since the
215 loss is well-defined for deep learning and simply changing the functional space to be a space of

216 neural networks. We will discuss the learning of σ in details. Let $G : \mathbb{R}^D \rightarrow \mathbb{R}^{D(D+1)/2}$ be a neural
 217 network with outputs arranged as $\{\mathbf{u}_{ij}(\mathbf{x})\}_{1 \leq j \leq i \leq D}$. Since Σ is SPD, the Cholesky decomposition
 218 on Σ gives $\Sigma(\mathbf{x}) := L(\mathbf{x}) L(\mathbf{x})^\top$ where L is a lower-triangular matrix with positive diagonal entries.
 219 Therefore we can learn a lower-triangular mapping $\tilde{L} : \mathbb{R}^D \rightarrow \mathbb{R}^{D \times D}$ by
 220

$$221 \quad (\tilde{L}(\mathbf{x}))_{ij} = \begin{cases} h(\mathbf{u}_{ii}(\mathbf{x})) & \text{if } i = j \\ \mathbf{u}_{ij}(\mathbf{x}) & \text{if } i > j \\ 0 & \text{if } i < j \end{cases},$$

224 where $h : \mathbb{R} \rightarrow (0, \infty)$ is some chosen function to enforce positivity on the main diagonal. Hence,
 225 we define the model $\tilde{\Sigma}(\mathbf{x}) := \tilde{L}(\mathbf{x}) \tilde{L}(\mathbf{x})^\top \approx \Sigma(\mathbf{x})$. Given M trajectories, set $Y_l^m := \frac{\Delta \mathbf{x}_l^m (\Delta \mathbf{x}_l^m)^\top}{\Delta t}$.
 226 We learn the estimator by minimizing the Frobenius mean squared difference between Y_l and $\tilde{\Sigma}(\mathbf{x}_l)$
 227 over all observed trajectories:
 228

$$229 \quad \mathcal{E}(\tilde{\Sigma}) = \frac{1}{M} \sum_{m=1}^M \sum_{l=0}^{L-1} \|Y_l^m - \tilde{\Sigma}(\mathbf{x}_l^m)\|_F^2. \quad (5)$$

232 If σ is a full matrix, we use the matrix-square-root function to obtain $\sigma = \sqrt{\Sigma}$. If $\Sigma(\mathbf{x})$ is diagonal
 233 for all \mathbf{x} , i.e., $\Sigma(\mathbf{x}) = \text{diag}(\Sigma_{11}(\mathbf{x}), \dots, \Sigma_{DD}(\mathbf{x}))$, then we will learn each diagonal entry by a
 234 single-output positive network. Writing $Y_{l,ii}^m = \frac{(\Delta \mathbf{x}_l^{(m,i)})^2}{\Delta t}$, where $\mathbf{x}_l^{(m,i)}$ represents the i^{th} entry
 235 of \mathbf{x}_l^m and the loss function can be decoupled and become $\mathcal{E}(\tilde{\Sigma}_{ii}) = \frac{1}{M} \sum_{m=1}^M \sum_{l=0}^{L-1} (Y_{l,ii}^m -$
 236 $\tilde{\Sigma}_{ii}(\mathbf{x}_l^m))^2$. Hence $\hat{\sigma}_{ii}(\mathbf{x}) = \sqrt{\hat{\Sigma}_{ii}(\mathbf{x})}$.
 237

240 3.6 PERFORMANCE MEASURES

242 In order to properly gauge the accuracy of our learning estimators, we provide three different
 243 performance measures of our estimated drift. First, if we have access to original drift function \mathbf{f} , then
 244 we will use the following error to compute the difference between $\hat{\mathbf{f}}$ (our estimator) to \mathbf{f} with the
 245 following norm

$$246 \quad \|\mathbf{f} - \hat{\mathbf{f}}\|_{L^2(\rho)}^2 = \int_{\mathbb{R}^D} \|\mathbf{f}(\mathbf{x}) - \hat{\mathbf{f}}(\mathbf{x})\|_{\ell^2(\mathbb{R}^D)}^2 d\rho(\mathbf{x}), \quad (6)$$

248 where the weighted measure ρ , defined on \mathbb{R}^D , is $\rho(\mathbf{x}) = \mathbb{E}\left[\frac{1}{T} \int_{t=0}^T \delta_{\mathbf{x}_t}(\mathbf{x})\right]$. Here \mathbf{x}_t evolves from
 249 \mathbf{x}_0 by equation 1. The norm given by 6 is useful only from the theoretical perspective, e.g. showing
 250 convergence. Under normal circumstances, \mathbf{f} is most likely non-accessible. Thus we look at a
 251 performance measure that compares the difference between $\mathbf{X}(\mathbf{f}, \mathbf{x}_0, T) = \{\mathbf{x}_t\}_{t \in [0, T]}$ (the observed
 252 trajectory that evolves from $\mathbf{x}_0 \sim \mu_0$ with the unknown \mathbf{f}) and $\hat{\mathbf{X}}(\hat{\mathbf{f}}, \mathbf{x}_0, T) = \{\hat{\mathbf{x}}_t\}_{t \in [0, T]}$ (the
 253 estimated trajectory that evolves from the same \mathbf{x}_0 with the learned $\hat{\mathbf{f}}$ and driven by the same realized
 254 random noise as used by the original dynamics). Then, the difference between the two trajectories is
 255 measured as follows

$$256 \quad \|\mathbf{X} - \hat{\mathbf{X}}\| = \mathbb{E}\left[\frac{1}{T} \int_{t=0}^T \|\mathbf{x}_t - \hat{\mathbf{x}}_t\|_{\ell^2(\mathbb{R}^D)}^2 dt\right]. \quad (7)$$

258 However, comparing two sets of trajectories (even with the same initial condition) on the same
 259 random noise is not realistic. Therefore we compare the distribution of the trajectories over different
 260 initial conditions and different noise at the same time instances using the Wasserstein distance at any
 261 given time $t \in [0, T]$. Let μ_t^M be the empirical distribution at time t for the simulation under \mathbf{f} with
 262 M trajectories, and $\hat{\mu}_t^M$ be the empirical distribution at time t for the simulation with M trajectories
 263 under $\hat{\mathbf{f}}$, where $\mu_t^M = \frac{1}{M} \sum_{i=1}^M \delta_{\mathbf{x}^{(i)}(t)}$, $\hat{\mu}_t^M = \frac{1}{M} \sum_{i=1}^M \delta_{\hat{\mathbf{x}}^{(i)}(t)}$. Then the Wasserstein distance of
 264 order two between μ_t^M and $\hat{\mu}_t^M$ is defined as

$$265 \quad \mathcal{W}_2(\mu_t^M, \hat{\mu}_t^M | \mu_0) = \left(\inf_{\pi \in \Pi(\mu_t^M, \hat{\mu}_t^M | \mu_0)} \int_{\mathbb{R}^D \times \mathbb{R}^D} \|x - y\|^2 d\pi(x, y) \right)^{1/2}. \quad (8)$$

268 Here, $\Pi(\mu_t^M, \hat{\mu}_t^M | \mu_0)$ is the set of all joint distributions on $\mathbb{R}^D \times \mathbb{R}^D$ with marginals μ_t^M and
 269 $\hat{\mu}_t^M$, and with the additional constraint that the joint distribution must be consistent with the initial
 270 distribution of \mathbf{x}_0 following μ_0 .

4 EXAMPLES

We demonstrate the application of our trajectory-based method for estimating drift functions and noise structures, showcasing a variety of examples. We focus on two major types of normal SDEs, interacting partial systems, and Stochastic Partial Differential Equations (SPDEs), where the dimension of the systems can increase rapidly.

4.1 EXAMPLE: INTERACTING PARTICLE SYSTEMS (IPS)

Figure 1: True ϕ vs learned $\hat{\phi}$; Empirical density of r shown in the background.

We consider a high dimensional SDE case where the drift term has a special structure. Such special structure will allow us to learn the high-dimensional SDE more effectively through an innate dimension reduction approach. This high dimensional SDE case is a presentation of an interacting partial system. Learning of such systems without stochastic noise terms had been investigated in (Lu et al., 2019; Zhong et al., 2020; Maggioni et al., 2021; Feng et al., 2022; Feng & Zhong, 2024). We consider such system with correlated and state-dependent stochastic noise, i.e. for a system of N particles, where each particle is associated with a state vector $\mathbf{x}_i \in \mathbb{R}^d$. The particles' states are governed by the following system of SDEs

$$d\mathbf{x}_i(t) = \frac{1}{N} \sum_{j=1, j \neq i}^N \phi(||\mathbf{x}_j(t) - \mathbf{x}_i(t)||) (\mathbf{x}_j(t) - \mathbf{x}_i(t)) dt + \sigma^x(\mathbf{x}_i(t)) d\mathbf{w}(t), \quad i = 1, \dots, N.$$

Here $\phi : \mathbb{R}^+ \rightarrow \mathbb{R}$ is an interaction kernel that governs how partial j influences the behavior of partial i , and $\sigma^x : \mathbb{R}^d \rightarrow \mathbb{R}^{d \times d}$ is a symmetric positive definite matrix that represents the noise strength and correlation. We test two interaction kernels

$$\text{Case (I)} : \phi(r) = r - 1,$$

$$\text{Case (II)} : \phi(r) = -\frac{\tanh(8(1-r)) + 0.67}{r}.$$

The diffusion is shared across particles, diagonal, and state-dependent, i.e., $\sigma^x(\mathbf{x}_i(t)) = \text{diag}(\sigma_{11}^x(\mathbf{x}_i(t)), \sigma_{22}^x(\mathbf{x}_i(t)))$ with

$$\begin{cases} \sigma_{11}^x(\mathbf{x}_i(t)) &= 0.08 \sin^2(\|\mathbf{x}_i(t)\|) + \varepsilon, \\ \sigma_{22}^x(\mathbf{x}_i(t)) &= 0.06 \cos^2(\|\mathbf{x}_i(t)\|) + \varepsilon, \end{cases} \quad \varepsilon = 0.01.$$

We run two experiments to justify our method. We take $N = 30$ particles in \mathbb{R}^d with $d = 2$ (so $D = Nd = 60$), time horizon $T = 1$, step size $\Delta t = 0.001$, and $M = 100$ i.i.d. trajectories. The initial distributions are i.i.d. $\mathbf{x}_0 \sim \text{Unif}([0, 1]^d)$ for each particle. Simulation uses Euler–Maruyama method. In estimating σ , following the general implementation of σ mentioned in A.2, for the diagonal case we learn each diagonal entry independently. **Conclusion:** the comparison of the trajectories in Fig. 2a and 2b shows that the learned $\hat{\mathbf{x}}$ is close to the true \mathbf{x} under the same noise. The comparison of ϕ vs $\hat{\phi}$ in Fig. 1a and 1b shows that when the data is abundant (the background shows the pairwise distance data used to obtain $\hat{\phi}$), the two are close to each other; for r close to zero, due to

Figure 2: True \mathbf{x} vs learned $\hat{\mathbf{x}}$ under the same noise. Top row: evolution from the same training IC. Bottom row: evolution from a new IC.

Figure 3: True Σ_{ii} vs learned $\hat{\Sigma}_{ii}$ for $i = 1, 2$.

the form of the system, i.e. $\phi(||\mathbf{x}_j - \mathbf{x}_i||)(\mathbf{x}_j - \mathbf{x}_i)$, the information is weighted by zero, our learning is not that promising. Figure 3 show our estimation result on state dependent σ under two different kinds of dynamics. Each diagonal entry is modeled by a shallow two-hidden-layer Tanh network with width 32. The estimators tracks the true σ closely even with such a lightweight network.

4.2 EXAMPLE: SPDE ESTIMATION

We extend our method of section 3 to the stochastic heat equation with additive noise

$$d\mathbf{u}(t, \mathbf{x}) - \theta(\mathbf{x}) \Delta \mathbf{u}(t, \mathbf{x}) dt = \sigma d\mathbf{w}(t, \mathbf{x}), \quad (9)$$

on a smooth bounded domain $G \subset \mathbb{R}^d$, with initial condition $\mathbf{u}(0, \mathbf{x}) = 0$, zero boundary condition, and where Δ denotes the Laplace operator on G with zero boundary conditions. The existence, uniqueness and other analytical properties of the solution \mathbf{u} are well understood, and we refer to (Lototsky & Rozovsky, 2017). Throughout this section, we fix the Hilbert space $H = L^2(G)$

equipped with the usual inner product denoted by $(\cdot, \cdot)_H$. We note that in this case, the Laplace operator Δ has only point spectrum, and we denote by $\{h_k : k \in \mathbb{N}\} \subset H$ its eigenfunctions and $-\lambda_k$ the corresponding eigenvalues, i.e. $\Delta h_k = -\lambda_k h_k$. It is well known that $\{h_k : k \in \mathbb{N}\}$ is a complete system in H , and without loss of generality we assume it is also orthonormal. The space-time noise, is assumed to be a cylindrical Brownian motion in H , which informally can be written as $\mathbf{w}(t, \mathbf{x}) = \sum_{k \in \mathbb{N}} q_k h_k(\mathbf{x}) \mathbf{w}_k(t)$, where $\{q_k\}_{k \in \mathbb{N}} \subset (0, \infty)$ and $\{\mathbf{w}_k\}_{k \in \mathbb{N}}$ are independent one dimensional Brownian motions and σ is a positive constant. Assume that θ is bounded, a.s. continuous on G , and $\theta(x) \geq c_0 > 0$, for some positive real c_0 . This guarantees the existence of the solution to equation 9 in an appropriate triple of Hilbert spaces. We are interested in the estimation of $\theta(x)$. To verify our theoretical result, we present two numerical experiments for the stochastic

Figure 4: Left: Exact $\theta_1(x)$ (solid) vs $\hat{\theta}_1$ (dashed). Right: $|\theta_1 - \hat{\theta}_1|$ in log-scale.

heat equation equation 9 on the spatial interval $[0, 2\pi]$. Throughout we consider Fourier basis as our estimation function space, i.e., $\mathcal{H}_n = \text{span}\{1, \sin(k\mathbf{x}), \cos(k\mathbf{x})\}_{k=1}^n$. In simulation of $\mathbf{u}(t, \mathbf{x})$, we apply a Galerkin projection of dimension N_{full} with time step $\Delta t = 10^{-3}$ up to horizon $T = 10$.

Figure 5: True θ_2 (solid) vs $\hat{\theta}_2$ (dashed).

and 5 show the effectiveness of our learning under two fundamentally different scenarios, one with $\theta \in \mathcal{H}_n$ and the other with $\theta \notin \mathcal{H}_n$.

4.3 CONVERGENCE STUDY

To illustrate the statistical consistency of our estimator defined in 3, we consider an SDE in $d = 1$ case with $\mathbf{f}(\mathbf{x}) = -\mathbf{x}^3 + \mathbf{x}$ and $\sigma(\mathbf{x}) = 1 + 0.4 \sin \mathbf{x}$ simulated by the Euler–Maruyama scheme with step-size $\Delta t = 10^{-3}$. The initial states are drawn i.i.d. from the invariant density, so the process is strictly stationary. In 1D, this density is

$$\pi(\mathbf{x}) = \frac{1}{G(\mathbf{f})} \sigma(\mathbf{x})^{-2} \exp \left\{ 2 \int_0^{\mathbf{x}} \frac{\mathbf{f}(\mathbf{v})}{\sigma(\mathbf{v})^2} d\mathbf{v} \right\}, \quad G(\mathbf{f}) = \int_{\mathbb{R}} \sigma(\mathbf{x})^{-2} \exp \left\{ 2 \int_0^{\mathbf{x}} \frac{\mathbf{f}(\mathbf{v})}{\sigma(\mathbf{v})^2} d\mathbf{v} \right\} d\mathbf{x}.$$

For a collection of M paths observed over $[0, T]$ our drift estimator $\hat{\mathbf{f}}$ is searched in the space $\mathcal{H} = \text{span}\{1, \mathbf{x}, \mathbf{x}^2, \mathbf{x}^3\}$ by minimizing the loss function 3. The estimation error is quantified in

432 the ρ -weighted norm introduced in equation 6. We test consistency in both time T and number of
 433 observed trajectories M with each replicated 20 times to obtain error bars. We first fix $M = 1$ and
 434 let $T \in \{4, 8, 16, 32, 64, 128\}$. Due to the ergodicity of the underlying SDE, we expect the following
 435 convergence rate $\|\hat{f} - f\|_{L^2(\rho)} = O(T^{-1/2})$, which is confirmed by Fig.6b. Next, we fix $T = 1$ and
 436

447 (a) Estimated drifts (colored) vs true drift (black).
 448 (b) Log-log of $\|\hat{f} - f\|_{L^2(\rho)}$ vs T .
 449
 450 Figure 6: Convergence Test with $M = 1$.
 451

452 let $M \in \{4, 8, 16, 32, 64, 128, 256\}$. The error decays at the rate $\|\hat{f} - f\|_{L^2(\rho)} = O(M^{-1/2})$, which
 453 is the rate confirmed by our theorem; see Fig.7b. In addition to Log-log plots 6b and 7b confirming
 454

467 (a) Estimated drifts (colored) vs true drift (black).
 468 (b) Log-log of $\|\hat{f} - f\|_{L^2(\rho)}$ vs M .
 469
 470 Figure 7: Convergence Test with $T = 1$.
 471

471 the predicted slopes $-1/2$ in both regimes, we plot the corresponding drift functions 6a and 7a to
 472 illustrate the qualitative tightening of \hat{f} towards f as information increases. These numerical findings
 473 demonstrate that the estimator remains statistically consistent when the diffusion coefficient is state
 474 dependent.
 475

476 5 CONCLUSION 477

478 We have demonstrated a novel learning methodology for inferring the drift and diffusion coefficient in
 479 general SDE systems driven by Brownian noise. Our estimation approach does not assume a specific
 480 functional structure for the drift or the diffusion, thereby enhancing its applicability across a diverse
 481 range of SDE models. This approach can handle high-dimensional SDE systems by leveraging deep
 482 learning architectures. The loss function for the drift is derived from the negative logarithm of the
 483 ratio of likelihood functions. For the diffusion coefficient, the loss function is based on the quadratic
 484 variation, which operates independently of the drift function. This independence makes our method
 485 particularly effective in scenarios where only trajectory observations are available. Additionally, our
 486 approach is adaptable to various noise structures.
 487

486 REFERENCES
487

488 Yaser S. Abu-Mostafa. Financial model calibration using consistency hints. *IEEE Transactions on*
489 *Neural Networks*, 12(4):791–808, 2001. doi: 10.1109/72.935092.

490 Fischer Black and Myron Scholes. The pricing of options and corporate liabilities. *Journal of*
491 *Political Economy*, 81(3):637–654, 1973. ISSN 00223808, 1537534X. URL <http://www.jstor.org/stable/1831029>.

492

493 Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations from
494 data by sparse identification of nonlinear dynamical systems. *PNAS*, 113(15):3932 – 3937, 2016.

495

496 Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K. Duvenaud. Neural ordinary
497 differential equations. *Advances in Neural Information Processing Systems*, 31, 2018.

498

499 William T. Coffey and Yuri P. Kalmykov. *The Langevin Equation*. WORLD SCIENTIFIC, 3rd
500 edition, 2012. doi: 10.1142/8195. URL <https://www.worldscientific.com/doi/abs/10.1142/8195>.

501

502 Felipe Cucker and Steve Smale. On the mathematical foundations of learning. *Bulletin of the*
503 *American Mathematical Society*, 39(1):1–49, 2002.

504

505 David Dingli and Jorge M. Pacheco. Stochastic dynamics and the evolution of mutations in stem
506 cells. *BMC Biol*, 9:41, 2011.

507

508 Werner Ebeling, Ewa Gudowska-Nowak, and Igor M. Sokolov. On stochastic dynamics in physics -
509 remarks on history and terminology. *Acta Physica Polonica B*, 39(5):1003 – 1018, 2008.

510

511 Lawrence C. Evans. *An Introduction to Stochastic Differential Equations*. American Mathematical
512 Society, 2013.

513

514 Jinchao Feng and Ming Zhong. Learning collective behaviors from observation. In Simon Foucart
515 and Stephan Wojtywtsch (eds.), *Explorations in the Mathematics of Data Science*. Birkh"auser
516 Cham, 2024.

517

518 Jinchao Feng, Mauro Maggioni, Patrick Martin, and Ming Zhong. Learning interaction variables and
519 kernels from observations of agent-based systems. *IFAC-PapersOnLine*, 55(30):162–167, 2022.
520 25th International Symposium on Mathematical Theory of Networks and Systems MTNS 2022.

521

522 Ziheng Guo, Ming Zhong, and Igor Cialenco. Learning stochastic dynamics from data. In *ICLR 2024*
523 *Workshop on AI4DifferentialEquations In Science*, 2024. URL <https://openreview.net/forum?id=MdXtFDhy0H>.

524

525 Steven L. Heston. A closed-form solution for options with stochastic volatility with applications
526 to bond and currency options. *The Review of Financial Studies*, 6(2):327–343, 04 1993. ISSN
527 0893-9454. doi: 10.1093/rfs/6.2.327. URL <https://doi.org/10.1093/rfs/6.2.327>.

528

529 Desmond J. Higham. An algorithmic introduction to numerical simulation of stochastic differential
530 equations. *SIAM Review*, 43(3):525–546, 2001. doi: 10.1137/S0036144500378302. URL
<https://doi.org/10.1137/S0036144500378302>.

531

532 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
533 *Neural Information Processing Systems*, 33:6840–6851, 2020.

534

535 John C. Hull. *Options, Futures, and Other Derivatives*. Pearson Education, 2017. ISBN
536 9780134631493. URL <https://books.google.com/books?id=yfr0DQAAQBAJ>.

537

538 Yury A. Kutoyants. *Statistical Inference for Ergodic Diffusion Processes*. Springer Series in Statistics.
539 Springer-Verlag London Ltd., London, 2004.

540

541 Shujian Liao, Terry Lyons, Weixin Yang, and Hao Ni. Learning stochastic differential equations
542 using RNN with log signature features. *arXiv preprint arXiv:1908.08286*, 2019.

540 Robert S. Liptser and Albert N. Shiryaev. *Statistics of Random Processes: I. General Theory*. Applications of Mathematics Stochastic Modelling and Applied Probability Series. Springer, 2001. ISBN 541 9783540639299. URL <https://books.google.com/books?id=gKtK0Cjx0aIC>.

542

543

544 Sergey V. Lototsky and Boris L. Rozovsky. *Stochastic Partial Differential Equations*. Springer International Publishing, 2017. ISBN 9783319586472. doi: 10.1007/978-3-319-58647-2. URL 545 <http://dx.doi.org/10.1007/978-3-319-58647-2>.

546

547

548 Fei Lu, Ming Zhong, Sui Tang, and Mauro Maggioni. Nonparametric inference of interaction laws in 549 systems of agents from trajectory data. *Proceedings of the National Academy of Sciences*, 116(29): 550 14424 – 14433, 2019.

551

552 Fei Lu, Mauro Maggioni, and Sui Tang. Learning interaction kernels in stochastic systems of 553 interacting particles from multiple trajectories. *Foundations of Computational Mathematics*, 22: 554 1013 – 1067, 2022.

555

556 Mauro Maggioni, Jason D. Miller, Hongda. Qiu, and Ming Zhong. Learning interaction kernels for 557 agent systems on riemannian manifolds. In Marina Meila and Tong Zhang (eds.), *Proceedings of 558 the 38th International Conference on Machine Learning*, volume 139 of *Proceedings of Machine 559 Learning Research*, pp. 7290–7300. PMLR, 18–24 Jul 2021.

560

561 Milan Mrázek and Jan Pospíšil. Calibration and simulation of Heston model. *Open Mathematics*, 15 562 (1):679–704, 2017. doi: 10.1515/math-2017-0058.

563

564 Whitney K. Newey and Daniel McFadden. Chapter 36 large sample estimation and hypothesis 565 testing. volume 4 of *Handbook of Econometrics*, pp. 2111–2245. Elsevier, 1994. doi: [https://doi.org/10.1016/S1573-4412\(05\)80005-4](https://doi.org/10.1016/S1573-4412(05)80005-4). URL <https://www.sciencedirect.com/science/article/pii/S1573441205800054>.

566

567 Maziar Raissi, Paris Perdikaris, and George E. Karniadakis. Physics-informed neural networks: A 568 deep learning framework for solving forward and inverse problems involving nonlinear partial 569 differential equations. *Journal of Computational Physics*, 378:686–707, 2019. ISSN 0021-9991. 570 doi: <https://doi.org/10.1016/j.jcp.2018.10.045>. URL <https://www.sciencedirect.com/science/article/pii/S0021999118307125>.

571

572 Matthias Sachs, Benedict Leimkuhler, and Vincent Danos. Langevin dynamics with variable 573 coefficients and nonconservative forces: from stationary states to numerical methods. *Entropy*, 19(12): 574 647, 2017.

575

576 Simo Särkkä and Arno Solin. *Applied Stochastic Differential Equations*. Institute of Mathematical 577 Statistics Textbooks. Cambridge University Press, 2019.

578

579 Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben 580 Poole. Score-based generative modeling through stochastic differential equations. In *Proceedings 581 of the 9th International Conference on Learning Representations (ICLR)*, 2021.

582

583 Tamás Székely and Kevin Burrage. Stochastic simulation in systems biology. *Computational and 584 Structural Biotechnology Journal*, 12(20):14–25, 2014. ISSN 2001-0370. doi: <https://doi.org/10.1016/j.csbj.2014.10.003>. URL <https://www.sciencedirect.com/science/article/pii/S2001037014000403>.

585

586 Yasuhiro Takeuchi, Nguyen Huy Du, Nguyen Thai Hieu, and Kazunori Sato. Evolution of predator- 587 prey systems described by a Lotka–Volterra equation under random environment. *Journal of 588 Mathematical Analysis and Applications*, 323(2):938–957, 2006.

589

590 Daniel Talay. Stochastic Hamiltonian systems: Exponential convergence to the invariant measure, 591 and discretization by the implicit Euler scheme. *Markov Processes and Related Fields*, 8, 2002.

592

593 A. W. van der Vaart. *Asymptotic Statistics*. Cambridge Series in Statistical and Probabilistic 594 Mathematics. Cambridge University Press, 1998.

594 Oldrich Vasicek. An equilibrium characterization of the term structure. *Journal of Fi-*
 595 *nancial Economics*, 5(2):177–188, 1977. ISSN 0304-405X. doi: [https://doi.org/10.1016/0304-405X\(77\)90016-2](https://doi.org/10.1016/0304-405X(77)90016-2). URL <https://www.sciencedirect.com/science/article/pii/0304405X77900162>.

596

597

598 Mathias Wanner and Igor Mezić. On higher order drift and diffusion estimates for stochastic sindy.
 599 *SIAM Journal on Applied Dynamical Systems*, 23(2):1504–1539, 2024.

600

601

602 Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun.
 603 Transformers in time series: A survey. In *Proceedings of the Thirty-Second International Joint*
 604 *Conference on Artificial Intelligence (IJCAI 2023), Survey Track*, 2023. doi: 10.24963/ijcai.2023/759.

605

606 Fuke Wu, Tianhai Tian, James B. Rawlings, and George Yin. Approximate method for stochastic
 607 chemical kinetics with two-time scales by chemical Langevin equations. *The Journal of Chemical*
 608 *Physics*, 144(17):174112, 05 2016. ISSN 0021-9606. doi: 10.1063/1.4948407. URL <https://doi.org/10.1063/1.4948407>.

609

610 Zhongshu Xu, Yuan Chen, Qifan Chen, and Dongbin Xiu. Modeling unknown stochastic dynamical
 611 system via autoencoder. *Journal of Machine Learning for Modeling and Computing*, 5(3):87–112,
 612 2024.

613

614 Luxuan Yang, Ting Gao, Yubin Lu, Jinqiao Duan, and Tao Liu. Neural network stochastic dif-
 615 ferential equation: models with applications to financial data forecasting. *Applied Mathematical*
 616 *Modelling*, 115:279–299, 2023. ISSN 0307-904X. doi: <https://doi.org/10.1016/j.apm.2022.11.001>. URL <https://www.sciencedirect.com/science/article/pii/S0307904X22005340>.

615

616

617 Ming Zhong, Jason Miller, and Mauro Maggioni. Data-driven discovery of emergent behaviors in
 618 collective dynamics. *Physica D: nonlinear phenomenon*, 411:132542, October 2020.

619

620

621

622

A LEARNING FRAMEWORK

623 We discuss additional details related to the learning of drift and noise in this section.

A.1 SIMPLIFICATION OF THE LOSS

624 When $D \gg 1$ and $\sigma = \sigma(\mathbf{x}) \in \mathbb{R}^{D \times D}$ is a full matrix, the learning of the drift term \mathbf{f} can be
 625 computationally demanding, as all components of \mathbf{f} are coupled and one has to solve the optimization
 626 problem in high-dimensional space all at once. Stochastic gradient descent coupled with neural
 627 network solutions is one of the desired approaches; however the solutions become less interpretable.
 628 In this section, we discuss several scenarios this loss for learning drift can be simplified. In this
 629 section, we discuss several scenarios in which the loss for learning drift can be simplified.

630 In the case of the noise being a constant full matrix, i.e. $\sigma(\mathbf{x}_t) = \sigma \in \mathbb{R}^{D \times D}$, the loss is equivalent
 631 (in the optimization sense) to the following

$$632 \mathcal{E}_{\mathcal{H}}^{\text{Sim}}(\tilde{\mathbf{f}}) = \mathbb{E} \left[\int_{t=0}^T \|\tilde{\mathbf{f}}(\mathbf{x}_t)\|^2 dt - 2\langle \tilde{\mathbf{f}}(\mathbf{x}_t), d\mathbf{x}_t \rangle \right]$$

633 In the case of state-dependent uncorrelated noise, i.e. $\Sigma(\mathbf{x}) = \sigma^2(\mathbf{x})\mathbf{I}$, where \mathbf{I} is the $D \times D$ identity
 634 matrix and $\sigma : \mathbb{R}^D \rightarrow \mathbb{R}^+$ is a scalar function depending on the state and representing the noise level,
 635 the loss function equation 3 can be simplified to

$$636 \mathcal{E}_{\mathcal{H}}^{\text{Sim}}(\tilde{\mathbf{f}}) = \mathbb{E} \left[\sum_{d=1}^D \int_{t=0}^T \frac{|\tilde{f}_d(\mathbf{x}_t)|^2 dt - 2\tilde{f}_d(d\mathbf{x})_d(t)}{2\sigma^2(\mathbf{x}_t)} \right], \quad (10)$$

637 where $\tilde{\mathbf{f}}(\mathbf{x}_t) = (\tilde{f}_1(\mathbf{x}_t), \dots, \tilde{f}_D(\mathbf{x}_t))$. Hence the learning of each component of \mathbf{f} can be de-
 638 coupled. When Σ is a state-dependent full matrix, we consider the eigen-decomposition of Σ , i.e.

648 $\Sigma(\mathbf{x}) = Q\Lambda(\mathbf{x})Q^\top$, then we rotate the system by Q^\top , i.e., $\mathbf{x}'_t = Q^\top \mathbf{x}_t$, $\mathbf{f}'(\mathbf{x}') = Q^\top \mathbf{f}(\mathbf{x})Q$,
 649 $\mathbf{w}'_t = Q^\top \mathbf{w}_t$, then we obtain the case when Σ is a diagonal matrix. Once we learn $\hat{\Lambda}$ and \mathbf{f}' , we will
 650 use the following to obtain the original functions, i.e., $\mathbf{f}(\mathbf{x}) = Q\mathbf{f}'(Q\mathbf{x})Q^\top$, and $\hat{\Sigma} = Q\hat{\Lambda}Q^\top$.
 651

652 **A.2 IMPLEMENTATION**

653 We discuss in details how the algorithm is implemented for our learning framework. Practically
 654 speaking, data are rarely sampled continuously in time. Instead, observers typically have access to
 655 fragmented data sets, gathered from multiple independently sampled trajectories at specific, discrete
 656 time points $\{\mathbf{x}_l^m\}_{l,m=1}^{L,M}$, where $\mathbf{x}_l^m = \mathbf{x}^{(m)}(t_l)$ with $0 = t_1 < \dots < t_L = T$ and \mathbf{x}_0^m is an i.i.d
 657 sample from μ_0 . We use a discretized version of 3,
 658

659
$$\mathcal{E}_{L,M,\mathcal{H}}(\tilde{\mathbf{f}}) = \frac{1}{2M} \sum_{l,m=1}^{L-1,M} \left(\langle \tilde{\mathbf{f}}(\mathbf{x}_l^m), \Sigma^{-1}(\mathbf{x}_l^m) \tilde{\mathbf{f}}(\mathbf{x}_l^m) \rangle \Delta t_l - 2 \langle \tilde{\mathbf{f}}(\mathbf{x}_l^m), \Sigma^{-1}(\mathbf{x}_l^m) \Delta \mathbf{x}_l^m \rangle \right), \quad (11)$$

660 for $\tilde{\mathbf{f}} \in \mathcal{H}$ and $\Delta \mathbf{x}_l^m = \mathbf{x}_{l+1}^m - \mathbf{x}_l^m$. Moreover, we also assume that \mathcal{H} is a finite-dimensional function
 661 space, i.e. $\dim(\mathcal{H}) = n < \infty$. Then for any $\tilde{\mathbf{f}} \in \mathcal{H}$, $\tilde{\mathbf{f}}(\mathbf{x}) = \sum_{i=1}^n \mathbf{a}_i \psi_i(\mathbf{x})$, where $\mathbf{a}_i \in \mathbb{R}^D$ is a
 662 constant vector coefficient and $\psi_i : \mathcal{D} \subset \mathbb{R}^D \rightarrow \mathbb{R}$ is a basis of \mathcal{H} and the domain \mathcal{D} is constructed
 663 by finding out the min / max of the components of $\mathbf{x}_t \in \mathbb{R}^D$ for $t \in [0, T]$. We consider two methods
 664 for constructing ψ_i : a) use pre-determined basis such as piecewise polynomials or Clamped B-spline,
 665 Fourier basis, or a mixture of all of the aforementioned ones; b) use neural networks, where the
 666 basis functions are also trained from data. Next, we can put the basis representation of $\tilde{\mathbf{f}}$ back to
 667 equation 11, we obtain the following loss based on the coefficients
 668

669
$$\mathcal{E}_{L,M,\mathcal{H}}(\{\mathbf{a}_\eta\}_{i=1}^n) = \frac{1}{2M} \sum_{l,m=1}^{L-1,M} \left(\sum_{i,j=1}^n \langle \mathbf{a}_i, \Sigma_{l,m}^{-1} \mathbf{a}_j \rangle \psi_{i,l}^m \psi_{j,l}^m \Delta t_l - 2 \sum_{i=1}^n \langle \mathbf{a}_i, \Sigma_{l,m}^{-1} \Delta \mathbf{x}_l^m \rangle \psi_{i,l}^m \right), \quad (12)$$

670 where $\psi_{i,l}^m = \psi_i(\mathbf{x}_l^m)$, $\Sigma_{l,m}^{-1} = \Sigma^{-1}(\mathbf{x}_l^m)$ and $\Delta t_l = t_{l+1} - t_l$. In the case of diagonal covariance
 671 matrix Σ , i.e., $\Sigma(\mathbf{x}) = \text{diag}(\sigma_1^2(\mathbf{x}), \dots, \sigma_D^2(\mathbf{x})) \in \mathbb{R}^{D \times D}$, for $\sigma_i > 0$ and $i = 1, \dots, D$; we can
 672 re-write equation 12 as
 673

674
$$\mathcal{E}_{L,M,\mathcal{H}}(\{\mathbf{a}_\eta\}_{i=1}^n) = \frac{1}{2M} \sum_{l,m=1}^{L-1,M} \left(\sum_{i,j}^n \frac{\langle \mathbf{a}_i, \mathbf{a}_j \rangle}{\sigma_k^2(\mathbf{x}_l^m)} \psi_{i,l}^m \psi_{j,l}^m \Delta t_l - 2 \sum_{i=1}^n \frac{\langle \mathbf{a}_i, \Delta \mathbf{x}_l^m \rangle}{\sigma_k^2(\mathbf{x}_l^m)} \psi_{i,l}^m \right).$$

675 Here $(\mathbf{x})_k$ is the k^{th} component of any vector $\mathbf{x} \in \mathbb{R}^D$. We define $\boldsymbol{\alpha}_k = [(\mathbf{a}_1)_k \ \dots \ (\mathbf{a}_n)_k]^\top \in$
 676 \mathbb{R}^n , with $A_k \in \mathbb{R}^{n \times n}$ and $\mathbf{b}_k \in \mathbb{R}^n$ given as
 677

678
$$A_k(i,j) := \frac{1}{2M} \sum_{l,m=1}^{L-1,M} \left(\frac{\psi_{i,l}^m \psi_{j,l}^m}{\sigma_k^2(\mathbf{x}_l^m)} \Delta t_l \right), \quad \mathbf{b}_k(i) := \frac{1}{2M} \sum_{l,m=1}^{L-1,M} \frac{\psi_{i,l}^m (\Delta \mathbf{x}_l^m)_k}{\sigma_k^2(\mathbf{x}_l^m)}.$$

679 Then the definition in (12) can be rewritten as $\mathcal{E}_{L,M,\mathcal{H}}(\{\mathbf{a}_\eta\}_{i=1}^n) = \sum_{k=1}^D (\boldsymbol{\alpha}_k^\top A_k \boldsymbol{\alpha}_k - 2 \boldsymbol{\alpha}_k^\top \mathbf{b}_k)$.
 680 Since each $\boldsymbol{\alpha}_k^\top A_k \boldsymbol{\alpha}_k - 2 \boldsymbol{\alpha}_k^\top \mathbf{b}_k$ is decoupled from each other, we just need to solve simultaneously
 681 $A_k \boldsymbol{\alpha}_k - \mathbf{b}_k = 0$, for $k = 1, \dots, D$. Then we can obtain $\hat{\mathbf{f}}(\mathbf{x}) = \sum_{i=1}^n \hat{\mathbf{a}}_i \psi_i(\mathbf{x})$. However when Σ
 682 does not have a diagonal structure, we will have to resolve to gradient descent methods to minimize
 683 equation 12 in order to find the coefficients $\{\mathbf{a}_i\}_{i=1}^n$ for a total number of nd parameters.
 684

685 If a data-driven basis is desired, we set \mathcal{H} to be the space of neural networks with the same depth,
 686 number of neurons, and activation functions in the hidden layers. Furthermore, we find $\hat{\mathbf{f}}$ by
 687 minimizing the loss given by the definition in (11) using any deep learning optimizer, such as
 688 Stochastic Gradient Descent or Adam, from well-known deep learning packages.
 689

700 **A.3 PROOF OF THE THEOREM**

701 We present the following definition about two different convergences of random variables.

702 **Definition 1.** A sequence $\{x_1, x_2, \dots, x_n\}$ of scalar random variables, with cumulative distribution functions, $\{F_1, F_2, \dots, F_n\}$, is said to converge in distribution to a random variable x with cumulative distribution function F if

$$703 \quad \lim_{n \rightarrow \infty} F_n(x) = F(x),$$

704 for every number $x \in \mathbb{R}$ at which F is continuous. We denote such convergence as

$$705 \quad x_n \xrightarrow{D} x.$$

706 We say x_n converges to x in probability if for any $\epsilon > 0$, we have

$$707 \quad \lim_{n \rightarrow \infty} \mathbb{P}(|x_n - x| > \epsilon) = 0.$$

708 We denote such convergence as

$$709 \quad x_n \xrightarrow{P} x.$$

710 The following lemma is needed for the convergence theorem.

711 **Lemma 1.** Consider the space $(\mathbb{S}_{++}^n, \|\cdot\|_F)$ with \mathbb{S}_{++}^n being the set of all $n \times n$ SPD matrices and $\|\cdot\|_F$ denoting the Frobenius norm, then the inversion map $g : \mathbb{S}_{++}^n \rightarrow \mathbb{S}_{++}^n$ defined by $g(\mathbf{A}) = \mathbf{A}^{-1}$ for $\mathbf{A} \in \mathbb{S}_{++}^n$ is continuous.

712 *Proof.* For any $\mathbf{A} \in \mathbb{S}_{++}^n$ with $\det(\mathbf{A}) > 0$, we have

$$713 \quad \mathbf{A}^{-1} = \frac{\text{adj}(\mathbf{A})}{\det(\mathbf{A})},$$

714 where $\text{adj}(\mathbf{A})$ is the adjugate matrix of \mathbf{A} . Each entry of $\text{adj}(\mathbf{A})$ is a polynomial in the entries of \mathbf{A} , and $\det(\mathbf{A})$ is also a polynomial in the entries of \mathbf{A} . Since polynomials are continuous, both maps $\mathbf{A} \mapsto \text{adj}(\mathbf{A})$ and $\mathbf{A} \mapsto \det(\mathbf{A})$ are continuous on $\mathbb{R}^{n \times n}$. For $\mathbf{A} \in \mathbb{S}_{++}^n$, we have $\det(\mathbf{A}) > 0$, so the map $\mathbf{A} \mapsto \frac{\text{adj}(\mathbf{A})}{\det(\mathbf{A})}$ is continuous at \mathbf{A} as the composition of continuous functions. Therefore, g is continuous on \mathbb{S}_{++}^n . \square

715 We present the following uniform law of large numbers theorem. For the proof, please see (Newey & McFadden, 1994).

716 **Theorem 2** (Uniform Law of Large Numbers (Newey & McFadden, 1994)). Let $\{x_i\}_{i=1}^\infty$ be i.i.d. and let $f(x, \theta)$ be some function defined for $\theta \in \Theta$. Assume:

- 717 1. Θ is compact;
- 718 2. for almost every x , the map $\theta \mapsto f(x, \theta)$ is continuous on Θ , and for each $\theta \in \Theta$ the map $x \mapsto f(x, \theta)$ is measurable;
- 719 3. there exists a dominating function h such that $\mathbb{E}[h(x)] < \infty$ such that $\|f(x, \theta)\| \leq h(x)$ for all $\theta \in \Theta$.

720 Then $\theta \mapsto \mathbb{E}[f(x, \theta)]$ is continuous in θ and

$$721 \quad \sup_{\theta \in \Theta} \left\| \frac{1}{n} \sum_{i=1}^n f(x_i, \theta) - \mathbb{E}[f(x, \theta)] \right\| \xrightarrow{P} 0.$$

722 The following theorem is needed to show convergence of vector-valued random variables. For the proof, please see (Vaart, 1998).

723 **Theorem 3** (Theorem 5.9 in (Vaart, 1998)). Let $\Psi_n : \Theta \rightarrow \mathbb{R}^k$ be random vector-valued functions and $\Psi : \Theta \rightarrow \mathbb{R}^k$ a fixed vectored valued function of θ . Suppose that for every $\varepsilon > 0$:

$$724 \quad \sup_{\theta \in \Theta} \|\Psi_n(\theta) - \Psi(\theta)\| \xrightarrow{P} 0, \quad \inf_{\theta: \|\theta - \theta_0\| \geq \varepsilon} \|\Psi(\theta)\| > 0 = \|\Psi(\theta_0)\|.$$

725 Then any sequence of estimator $\hat{\theta}_n$ such that $\Psi_n(\hat{\theta}_n) = o_p(1)$ converges in probability to θ_0 .

756 We are now ready to show the proof of the convergence theorem.
 757

758 *Proof.* We need to introduce a few quantities before we can establish the proof. First, we introduce
 759 the continuous form of \mathcal{E}_M . As $M \rightarrow \infty$, by law of large numbers, we have
 760

$$761 \lim_{M \rightarrow \infty} \mathcal{E}_M(\tilde{\mathbf{f}}) = \mathcal{E}_\infty(\tilde{\mathbf{f}}) = \frac{1}{2} \mathbb{E} \left[\int_0^T \langle \tilde{\mathbf{f}}_t, (\Sigma_t)^{-1} \tilde{\mathbf{f}}_t \rangle dt - 2 \int_0^T \langle \tilde{\mathbf{f}}_t, (\Sigma_t)^{-1} d\mathbf{x}_t \rangle \right],$$

764 where $\tilde{\mathbf{f}}_t = \tilde{\mathbf{f}}(\mathbf{x}_t)$, $\Sigma_t = \Sigma(\mathbf{x}_t)$. When \mathbb{H} is finite dimensional, then for any $\tilde{\mathbf{f}} \in \mathbb{H}$, we have
 765

$$766 \tilde{\mathbf{f}}(\mathbf{x}) = \sum_{\eta=1}^n \alpha_\eta \psi_\eta(\mathbf{x}) = \Psi(\mathbf{x})\boldsymbol{\alpha}, \quad \boldsymbol{\alpha} = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}.$$

769 Therefore, the two losses can be re-written as
 770

$$771 \mathcal{E}_M(\tilde{\mathbf{f}}) = \frac{1}{2M} \sum_{m=1}^M \left(\int_0^T (\Psi_t^m \boldsymbol{\alpha})^\top (\Sigma_t^m)^{-1} \Psi_t^m \boldsymbol{\alpha} dt - 2 \int_0^T (\Psi_t^m \boldsymbol{\alpha})^\top (\Sigma_t^m)^{-1} d\mathbf{x}_t^m \right),$$

$$774 \mathcal{E}_\infty(\tilde{\mathbf{f}}) = \frac{1}{2} \mathbb{E} \left[\int_0^T (\Psi_t \boldsymbol{\alpha})^\top (\Sigma_t)^{-1} \Psi_t \boldsymbol{\alpha} dt - 2 \int_0^T (\Psi_t \boldsymbol{\alpha})^\top (\Sigma_t)^{-1} d\mathbf{x}_t \right],$$

777 Abusing the notation, we will use $\mathcal{E}_M(\tilde{\mathbf{f}})$ and $\mathcal{E}_M(\boldsymbol{\alpha})$ interchangeably; similarly for $\mathcal{E}_\infty(\tilde{\mathbf{f}})$ and
 778 $\mathcal{E}_\infty(\boldsymbol{\alpha})$, since $\boldsymbol{\alpha}$ and $\tilde{\mathbf{f}}$ have a one-on-one correspondence once a \mathbb{H} is chosen.

779 Next, we will assume the following
 780

$$781 \begin{cases} \mathbb{E}[\int_0^T \|\Psi_t^\top \Sigma_t^{-1} \Psi_t\|_2 dt] < \infty, \\ \mathbb{E}[\int_0^T \|\Psi_t^\top \Sigma_t^{-1} \tilde{\mathbf{f}}(\mathbf{x}_t)\|_2 dt] < \infty, \\ \mathbb{E}[\int_0^T \|\Psi_t^\top \sigma_t^{-1}\|_2 dt] < \infty, \end{cases}$$

785 Differentiating \mathcal{E}_M w.r.t to $\boldsymbol{\alpha}$ gives
 786

$$787 \nabla_{\boldsymbol{\alpha}} \mathcal{E}_M(\boldsymbol{\alpha}) = \frac{1}{M} \sum_{m=1}^M \left(\int_0^T (\Psi_t^m)^\top (\Sigma_t^m)^{-1} (\Psi_t^m \boldsymbol{\alpha} dt - d\mathbf{x}_t^m) \right).$$

790 Let

$$791 \phi_m(\boldsymbol{\alpha}) := \int_0^T (\Psi_t^m)^\top (\Sigma_t^m)^{-1} (\Psi_t^m \boldsymbol{\alpha} dt - d\mathbf{x}_t^m),$$

$$793 = \int_0^T (\Psi_t^m)^\top (\Sigma_t^m)^{-1} (\tilde{\mathbf{f}}_t^m dt - \mathbf{f}_t^m dt - \sigma_t^m d\mathbf{w}_t^m),$$

$$795 = \int_0^T (\Psi_t^m)^\top (\Sigma_t^m)^{-1} (\tilde{\mathbf{f}}_t^m - \mathbf{f}_t^m) dt - \int_0^T (\Psi_t^m)^\top (\sigma_t^m)^{-1} d\mathbf{w}_t^m.$$

798 and define $\Phi_M(\boldsymbol{\alpha}) := \frac{1}{M} \sum_{m=1}^M \phi_m(\boldsymbol{\alpha})$. First, by Itô's formula
 799

$$800 \mathbb{E} \left[\int_0^T (\Psi_t^m)^\top (\sigma_t^m)^{-1} d\mathbf{w}_t^m \right] = \mathbf{0}.$$

803 Then

$$804 \mathbb{E}[\phi_m(\boldsymbol{\alpha})] = \mathbb{E} \left[\int_0^T (\Psi_t^m)^\top (\Sigma_t^m)^{-1} (\tilde{\mathbf{f}}_t^m - \mathbf{f}_t^m) dt \right],$$

$$805 = \mathbb{E} \left[\int_0^T \Psi_t^\top \Sigma_t^{-1} (\tilde{\mathbf{f}}_t - \mathbf{f}_t) dt \right]$$

808 Define
 809

$$\Phi_\infty(\boldsymbol{\alpha}) = \lim_{m \rightarrow \infty} \Phi_M(\boldsymbol{\alpha}) = \mathbb{E}[\phi_m(\boldsymbol{\alpha})].$$

810 By theorem 2, since \mathbb{H} is compact, ϕ_m is continuous at each α and it is also bounded (by one of our
811 assumptions). Moreover
812

$$813 \sup_{\tilde{f} \in \mathbb{H}} \|\Phi_M(\alpha) - \Phi_\infty(\alpha)\| = \sup_{\tilde{f} \in \mathbb{H}} \left\| \frac{1}{M} \sum_{m=1}^M \phi_m(\alpha) - \mathbb{E}[\Phi_m(\alpha)] \right\| \xrightarrow{P} 0.$$

816 Since $f \in \mathbb{H}$, then $f(x) = \Psi(x)\alpha_f$, then
817

$$818 \Phi_\infty(\alpha) = \mathbb{E} \left[\int_0^T \Psi_t^\top \Sigma_t^{-1} (\tilde{f}_t - f_t) dt \right],
819 = \mathbb{E} \left[\int_0^T \Psi_t^\top \Sigma_t^{-1} (\Psi_t \alpha - \Psi_t \alpha_f) dt \right],
820 = \mathbb{E} \left[\int_0^T \Psi_t^\top \Sigma_t^{-1} \Psi_t dt \right] (\alpha - \alpha_f)
821 = \mathbf{A}(\alpha - \alpha_f).$$

826 Since \mathbf{A} is SPD, Let $\lambda_{\min}(\mathbf{A}) > 0$ be the minimal eigenvalue of \mathbf{A} , then for all $\tilde{f} \in \mathbb{H}$,
827

$$828 \|\Phi_\infty(\alpha)\| = \|\mathbf{A}(\alpha - \alpha_f)\| \geq \lambda_{\min}(\mathbf{A}) \|\alpha - \alpha_f\|.$$

829 Therefore, for any $\epsilon > 0$, we have
830

$$831 \inf_{\|\alpha - \alpha_f\| \geq \epsilon} \|\Phi_\infty(\alpha)\| \geq \inf_{\|\alpha - \alpha_f\| \geq \epsilon} \lambda_{\min}(\mathbf{A}) \|\alpha - \alpha_f\| \geq \lambda_{\min}(\mathbf{A}) \epsilon > 0,$$

833 observe that $\Phi_\infty(\alpha_f) = \mathbf{0}$. By theorem 3, we conclude that
834

$$835 \hat{f}_M \xrightarrow{P} f, \quad \text{convergence in probability.}$$

837 Next, recall
838

$$839 \Phi_M(\alpha) = \frac{1}{M} \sum_{m=1}^M \int_0^T (\Psi_t^m)^\top (\Sigma_t^m)^{-1} (\Psi_t^m \alpha dt - d\mathbf{x}_t^m),$$

841 define
842

$$843 \mathbf{A}_M = \frac{1}{M} \sum_{m=1}^M \int_0^T (\Psi_t^m)^\top (\Sigma_t^m)^{-1} \Psi_t^m dt.$$

845 Since $f(x) = \Psi(x)\alpha_f$, hence
846

$$847 \phi_m(\alpha_f) = \int_0^T (\Psi_t^m)^\top (\Sigma_t^m)^{-1} (\Psi_t^m \alpha_f dt - d\mathbf{x}_t^m),
848 = \int_0^T (\Psi_t^m)^\top (\Sigma_t^m)^{-1} (f_t^m dt - d\mathbf{x}_t^m),
849 = - \int_0^T (\Psi_t^m)^\top (\Sigma_t^m)^{-1} \sigma_t^m d\mathbf{w}_t^m,
850 = - \int_0^T (\Psi_t^m)^\top (\sigma_t^m)^{-1} d\mathbf{w}_t^m$$

856 This Itô integral is square-integrable, and $\mathbb{E}[\phi_m(\alpha_f)] = \mathbf{0}$, and by Itô isometry
857

$$858 \text{Var}(\phi_m(\alpha_f)) = \mathbb{E} \left[\int_0^T \Psi_t^\top \Sigma_t^{-1} \Psi_t dt \right] = \mathbf{A} < \infty.$$

860 Since \mathbf{x}_t^m is i.i.d, $\phi_m(\alpha_f)$ is also i.i.d. Therefore, by the multivariate Central Limit Theorem, we
861 have
862

$$863 \sqrt{M} \Phi_M(\alpha_f) = \frac{1}{\sqrt{M}} \sum_{m=1}^M \phi_m(\alpha_f) \xrightarrow{D} \mathcal{N}(\mathbf{0}, \mathbf{A}).$$

864 Furthermore, we also have the following (recall $\hat{\mathbf{f}}(\mathbf{x}) = \Psi(\mathbf{x})\hat{\boldsymbol{\alpha}}$)
 865
 866 $\Phi_M(\hat{\boldsymbol{\alpha}}) - \Phi_M(\boldsymbol{\alpha}_f) = \mathbf{A}_M(\hat{\boldsymbol{\alpha}} - \boldsymbol{\alpha}_f),$
 867 Since $\Phi_M(\hat{\boldsymbol{\alpha}}) = \mathbf{0}$, we obtain
 868
 869 $\sqrt{M}(\hat{\boldsymbol{\alpha}} - \boldsymbol{\alpha}_f) = \sqrt{M}\mathbf{A}_M^{-1}\Phi_M(\boldsymbol{\alpha}_f).$
 870 Each entry of \mathbf{A}_M is square-integrable and by law of large numbers $\mathbf{A}_M \rightarrow \mathbf{A}$ as $M \rightarrow \infty$ in
 871 probability entrywise, hence
 872 $\|\mathbf{A}_M - \mathbf{A}\|_F \xrightarrow{P} 0.$
 873 By lemma 1, the inversion mapping is continuous, hence
 874
 875 $\mathbf{A}_M^{-1} \xrightarrow{P} \mathbf{A}^{-1}.$
 876 Putting them all together and by Slutsky's theorem, we end up with
 877
 878 $\sqrt{M}(\hat{\boldsymbol{\alpha}} - \boldsymbol{\alpha}_f) \xrightarrow{D} \mathcal{N}(\mathbf{0}, \mathbf{A}^{-1}).$
 879 Furthermore, for a fixed \mathbf{x} , since $\hat{\mathbf{f}}(\mathbf{x}) = \Psi(\mathbf{x})\hat{\boldsymbol{\alpha}}$ and $\mathbf{f}(\mathbf{x}) = \Psi(\mathbf{x})\boldsymbol{\alpha}_f$, we finally have
 880
 881 $\sqrt{M}(\hat{\mathbf{f}} - \mathbf{f}) \xrightarrow{D} \mathcal{N}(\mathbf{0}, \mathbf{A}^{-1}).$
 882
 883 \square

886 B EXAMPLES

887 In this section, we discuss the additional details for setting up the numerical examples and show
 888 additional examples. In all examples, we use fairly complex covariance matrices, i.e., state-dependent
 889 matrices, in order to showcase the effectiveness of our learning. The drift and noise estimations
 890 are carried out in both basis method and deep learning method with 3 and 2 being loss functions
 891 for estimating drift and covariance, respectively. The observations, serving as the input dataset for
 892 testing our method, are generated by the Euler-Maruyama scheme Higham (2001), utilizing the
 893 drift functions as we just mentioned. The basis space \mathcal{H} is constructed employing either B-spline or
 894 piecewise polynomial methods for maximum degree p-max equals 2. For higher order dimensions
 895 where $d \geq 2$, each basis function is derived through a tensor grid product, utilizing one-dimensional
 896 basis defined by knots that segment the domain in each dimension.

897 The parameters will be specified in each subsection of examples. The estimation results are evaluated
 898 using several different metrics. We record the noise terms, $d\mathbf{w}_t$, from the trajectory generation
 899 process and compare the trajectories produced by the estimated drift functions, $\hat{\mathbf{f}}$, under identical
 900 noise conditions. We examine trajectory-wise errors using equation $\rho(\mathbf{x}) = \mathbb{E}\left[\frac{1}{T} \int_{t=0}^T \delta_{\mathbf{x}_t}(\mathbf{x})\right]$ with
 901 relative trajectory error and plot both \mathbf{f} and $\hat{\mathbf{f}}$ to calculate the relative $L^2(\rho)$ error using 6, where ρ is
 902 derived by equation ???. When plotting, trajectories with different initial conditions are represented by
 903 distinct colors. In trajectory-wise comparisons, black solid lines depict the true trajectories, while blue
 904 dashed lines represent those generated by the estimated drift functions. Additionally, the empirical
 905 measure ρ is shown in the background of each 1d plot. Furthermore, we assess the distribution-wise
 906 discrepancies between observed and estimated results, computing the Wasserstein distance at various
 907 time steps with equation 8.

908 909 B.1 EXAMPLE: BENCHMARK MODEL

910 We consider an SDE model with state dependent noise matrix, as follows

$$\begin{cases} d\mathbf{x}_t &= C_1 \mathbf{x}_t dt + \sqrt{y_t} \mathbf{x}_t db_t^x \\ dy_t &= C_2 (C_3 - y_t) dt + C_4 \sqrt{y_t} db_t^y, \end{cases}$$

911 where (\mathbf{x}_t, y_t) is the pair of state-variables, (b_t^x, b_t^y) are standard Brownian motion, the constants
 912 $C_1, C_2, C_3, C_4 > 0$ are model parameters. If $2C_2C_3 > C_4^2$, then y_t remains strictly positive. We
 913 use this benchmarking model to test the effectiveness of our learning framework on identifying

Figure 8: Benchmark model: Σ vs $\hat{\Sigma}$.

930 the SDE without any knowledge of the noise and drift terms. We evaluated our learning method
931 on the benchmark model. Trajectories were simulated using the parameters $C_1 = 0.5$, $C_2 = 3.0$,
932 $C_3 = 0.04$, and $C_4 = 0.45$. Both the drift function $f(x, y) = [f_1(x), f_2(y)]$, where $f_1(x) = C_1 x$
933 and $f_2(y) = C_2(C_3 - y)$, and the diffusion matrix $\sigma(x, y) = \begin{bmatrix} \sqrt{y}x & 0 \\ 0 & C_4\sqrt{y} \end{bmatrix}$ were learned using
934 the neural network method described in the previous section 3.5.
935

Figure 9: f vs \hat{f} with empirical distribution of x_t is shown in the background.

953 The results are shown in Figure 8, 9 and 10.

Figure 10: Trajectory comparison with matched noise db_t . Left: true simulated paths (x_t, y_t) under the benchmark parameters. Right: re-simulated paths using the learned drift \hat{f} and diffusion $\hat{\sigma}$, driven by the same (db_t^x, db_t^y) .

972
973 **Conclusion:** By using deep neural networks as the underlying function spaces, one can easily infer
974 those multi-variate drift and noise functions, without specifying the actual form of the functions.
975

976 B.2 EXAMPLE: INTERACTING PARTICLE SYSTEMS (IPS)

977 If we use the vectorized notations, i.e.

$$978 \quad \mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_N \end{bmatrix} \quad \text{and} \quad \mathbf{w} = \begin{bmatrix} \mathbf{w}_1 \\ \vdots \\ \mathbf{w}_N \end{bmatrix} \in \mathbb{R}^{D=Nd},$$

982 and

$$983 \quad \mathbf{f}_\phi(\mathbf{x}) = \begin{bmatrix} \frac{1}{N} \sum_{j=2}^N \phi(\|\mathbf{x}_j - \mathbf{x}_1\|)(\mathbf{x}_j - \mathbf{x}_1) \\ \vdots \\ \frac{1}{N} \sum_{j=1}^{N-1} \phi(\|\mathbf{x}_j - \mathbf{x}_N\|)(\mathbf{x}_j - \mathbf{x}_N) \end{bmatrix}, \quad \sigma = \begin{bmatrix} \sigma^x(\mathbf{x}_1) & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \sigma^x(\mathbf{x}_2) & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \sigma^x(\mathbf{x}_N) \end{bmatrix}.$$

988 Here each $\mathbf{0}$ is a $d \times d$ matrix, $\mathbf{f} : \mathbb{R}^D \rightarrow \mathbb{R}^D$ and $\tilde{\sigma} : \mathbb{R}^D \rightarrow \mathbb{R}^{D \times D}$. Then the system can be put
989 into one single SDE of the form $d\mathbf{x}_t = \mathbf{f}(\mathbf{x}_t) dt + \tilde{\sigma}(\mathbf{x}_t) d\mathbf{w}_t$. We will consider a weighted ℓ_2 inner
990 product for these vectors, i.e. for $\mathbf{u}, \mathbf{v} \in \mathbb{R}^d$ with

$$991 \quad \mathbf{u} = \begin{bmatrix} \mathbf{u}_1 \\ \vdots \\ \mathbf{u}_N \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_N \end{bmatrix}, \quad \mathbf{u}_i, \mathbf{v}_i \in \mathbb{R}^d$$

995 then

$$996 \quad \langle \mathbf{u}, \mathbf{v} \rangle_N = \frac{1}{N} \sum_{i=1}^N \langle \mathbf{u}_i, \mathbf{v}_i \rangle, \quad \|\mathbf{u}\|_N^2 = \langle \mathbf{u}, \mathbf{u} \rangle_N.$$

999 With this new norm, we can carry out the learning as usual in \mathbb{R}^d yet with a lower dimensional
1000 structure for \mathbf{f}_ϕ and σ^x . With this setup, the loss of the noise in equation 2 will become

$$1001 \quad \mathcal{E}_\sigma(\tilde{\Sigma}) = \mathbb{E} \left[\frac{1}{N} \sum_{i=1}^N \left([\mathbf{x}_{i,t}, \mathbf{x}_{i,t}]_0^T - \int_{t=0}^T (\tilde{\sigma}^x(\mathbf{x}_{i,t}))^2 dt \right)^2 \right],$$

1004 where we learn $\tilde{\Sigma}^x = (\tilde{\sigma}^x)^2$ as one single SPD matrix using the Cholesky decomposition method
1005 described in section 3.5, and then take $\tilde{\sigma}^x = \sqrt{\tilde{\Sigma}^x}$. Next, the loss of the drift will become
1006

$$1007 \quad \mathcal{E}_H(\varphi) = \frac{1}{2} \mathbb{E} \left[\int_{t=0}^T \langle \mathbf{f}_\varphi(\mathbf{x}_t), \Sigma^\dagger(\mathbf{x}_t) \mathbf{f}_\varphi(\mathbf{x}_t) \rangle_N dt - 2 \langle \mathbf{f}_\varphi(\mathbf{x}_t), \Sigma^\dagger(\mathbf{x}_t) d\mathbf{x}_t \rangle_N \right].$$

1009 The two terms with the weighted ℓ_2 inner product can be rewritten as

$$1011 \quad \langle \mathbf{f}_\varphi(\mathbf{x}_t), \Sigma^\dagger(\mathbf{x}_t) \mathbf{f}_\varphi(\mathbf{x}_t) \rangle_N = \frac{1}{N^3} \sum_{i,j,k=1}^N \varphi(r_{i,j,l}^m) \varphi(r_{i,k,l}^m) \langle \mathbf{r}_{i,j,l}^m, (\tilde{\sigma}^x(\mathbf{x}_{i,l}^m))^{-2} \mathbf{r}_{i,k,l}^m \rangle$$

1014 and

$$1015 \quad \langle \mathbf{f}_\varphi(\mathbf{x}_t), \Sigma^\dagger(\mathbf{x}_t) d\mathbf{x}_t \rangle_N = \frac{1}{N^2} \sum_{i,j=1}^N \varphi(r_{i,j,l}^m) \langle \mathbf{r}_{i,j,l}^m, (\tilde{\sigma}^x(\mathbf{x}_{i,l}^m))^{-2} (\mathbf{x}_{i,l+1}^m - \mathbf{x}_{i,l}^m) \rangle,$$

1018 where $\mathbf{x}_{i,l}^m = \mathbf{x}_i^m(t_l)$, $\mathbf{r}_{i,j,l}^m = \mathbf{x}_j^m(t_l) - \mathbf{x}_i^m(t_l)$, and $r_{i,j,l}^m = \|\mathbf{r}_{i,j,l}^m\|$. In estimating ϕ , we use
1019 $[r_{\min}, r_{\max}]$ as the domain for estimation with $r_{ij} = \|\mathbf{x}_j - \mathbf{x}_i\|$ represents the pairwise distance. We
1020 use a piecewise local B-spline basis of order up to 3 on domain $[r_{\min}, r_{\max}]$. Let $\mathcal{H} = \text{span}(\{\psi_\eta\}_{\eta=1}^n)$
1021 denote the associated compactly supported basis functions. Then an estimator $\varphi \in \mathcal{H}$ has the form,
1022 i.e., $\varphi(r) = \sum_{\eta=1}^n a_\eta \psi_\eta(r)$. For $\mathbf{x} = (\mathbf{x}_1^\top, \dots, \mathbf{x}_N^\top)^\top$, define interaction features indexed by the
1023 particle $i = 1, \dots, N$, then each η^{th} column of Φ is given as

$$1024 \quad (\Phi_\eta(\mathbf{x}))_i = \frac{1}{N} \sum_{j=1, j \neq i}^N \psi_\eta(r_{i,j}) (\sigma^x(\mathbf{x}_i))^{-1} \mathbf{r}_{i,j} \in \mathbb{R}^d,$$

1026 where $v_{i,j} = \mathbf{x}_j - \mathbf{x}_i$ and $r_{i,j} = ||\mathbf{v}_{i,j}||$. For M trajectories $\{\mathbf{x}_l^m\}_{l,m=1}^{L,M}$, set $\Delta\mathbf{x}_l^m = \mathbf{x}_{t_{l+1}}^m - \mathbf{x}_{t_l}^m$.
1027 Then the loss function reduces to
1028

$$1029 \quad \mathcal{E}(a) = \frac{1}{2} a^\top A a - b^\top a,$$

1030 where

$$1031 \quad \begin{cases} A_{ij} &:= \frac{1}{M} \sum_{m,l} \langle \Phi_i(\mathbf{x}_l^m), \Phi_j \rangle \Delta t, \\ 1032 \quad b_i &:= \frac{1}{M} \sum_{m,l} \langle \Phi_i(\mathbf{x}_l^m), \sigma^{-1}(\mathbf{x}_l^m) \Delta \mathbf{x}_l^m \rangle. \end{cases}$$

1033 The estimator is the solution of the normal equations $A \hat{a} = b$, hence $\hat{\phi}(r) = \sum_{i=1}^n \hat{a}_i \psi_i(r)$.
1034

1036 B.3 EXAMPLE: SPDE ESTIMATION

1038 For any $N \in \mathbb{N}$, let $H^N = \text{span}\{h_1, \dots, h_N\}$ and $P^N: H \rightarrow H^N$ the projection operator. Then
1039 denote $\mathbf{u}^N = P^N \mathbf{u} = \sum_{k=1}^N \mathbf{u}_k(t) h_k(\mathbf{x})$ as the Fourier approximation of the solution \mathbf{u} by the first
1040 N eigenmodes $\mathbf{u}_k(t) = (\mathbf{u}(t), h_k)_H$. The projected solution \mathbf{u}^N of equation 9 satisfies the following
1041 finite-dimensional SDE
1042

$$1043 \quad d\mathbf{u}^N(t, \mathbf{x}) = P^N(\theta(\mathbf{x}) \Delta \mathbf{u}(t, \mathbf{x})) dt + \sigma P^N d\mathbf{w}(t, \mathbf{x}). \quad (13)$$

1045 Since eigenmodes are coupled together in term $\theta(x) \Delta \mathbf{u}(t, \mathbf{x})$, P^N does not commute with $\theta(x)$, and
1046 to overcome this we consider a Galerkin type projection, i.e.

$$1048 \quad \tilde{\mathbf{u}}^N(t, \mathbf{x}) = \sum_{k=1}^N \tilde{\mathbf{u}}_k(t) h_k(\mathbf{x}) \approx \sum_{k=1}^{\infty} \mathbf{u}_k(t) h_k(\mathbf{x}) = \mathbf{u}(t, \mathbf{x}),$$

1050 and we have

$$1052 \quad d\tilde{\mathbf{u}}^N(t, \mathbf{x}) = P^N(\theta(\mathbf{x}) \Delta \tilde{\mathbf{u}}^N(t, \mathbf{x})) dt + \sigma P^N d\mathbf{w}(t, \mathbf{x}), \quad (14)$$

1053 that we write in a matrix form,

$$1055 \quad d\tilde{\mathbf{U}}^N(t) = -C_N(\theta) \Lambda_N \tilde{\mathbf{U}}^N(t) dt + \sigma Q_N d\mathbf{w}^N(t), \quad (15)$$

1056 where

$$1058 \quad \tilde{\mathbf{U}}^N = (\tilde{\mathbf{u}}_1, \dots, \tilde{\mathbf{u}}_N)^\top, \quad (16)$$

$$1059 \quad \Lambda_N = \text{diag}(\lambda_1, \dots, \lambda_N), \quad (17)$$

$$1060 \quad Q_N = \text{diag}(q_1, \dots, q_N), \quad (18)$$

1062 and where the matrix $C_N(\theta) \in \mathbb{R}^{N \times N}$ has entries

$$1063 \quad [C_N(\theta)]_{jk} = \langle \theta(x) h_k, h_j \rangle, \quad 1 \leq j, k \leq N.$$

1065 Choose any finite dimensional function space \mathcal{H} with basis $\{\psi_i\}_{i=1}^n$, and approximate $\theta(x)$ with
1066 respect to this basis,

$$1068 \quad \theta(x) \approx \sum_{i=1}^n a_i \psi_i(x), \quad \mathbf{a} = (a_1, \dots, a_n)^\top \in \mathbb{R}^n.$$

1070 For each i define the deterministic matrices

$$1072 \quad [B_N^{(i)}]_{jk} = \langle \psi_i h_k, h_j \rangle, \quad 1 \leq j, k \leq N, \quad (19)$$

1073 so that

$$1075 \quad C_N(\theta) = \sum_{i=1}^n \mathbf{a}_i B_N^{(i)}. \quad (20)$$

1077 Let $\Sigma = \sigma^2 Q_N Q_N^\top$. By our method in section 3,

$$1079 \quad \mathcal{E}(\mathbf{a}) = \frac{1}{2} \int_0^T \tilde{\mathbf{U}}^{N\top} \Lambda_N C_N(\mathbf{a}) \Sigma^{-1} C_N(\mathbf{a}) \Lambda_N \tilde{\mathbf{U}}^N dt + \int_0^T \tilde{\mathbf{U}}^{N\top} \Lambda_N C_N(\mathbf{a}) \Sigma^{-1} d\tilde{\mathbf{U}}^N. \quad (21)$$

Figure 11: Experiment 1. Left: relative $L^2(\rho)$ error of the drift vs. constant diffusion level σ . Right: true drift f_* and learned drifts \hat{f}_σ for several values of σ .

With the expansion defined by (20), we obtain a mass matrix A and RHS vector \mathbf{b} having entries given as

$$A_{mk} = \int_0^T \tilde{\mathbf{U}}^{N\top} \Lambda_N B_N^{(m)} \Sigma^{-1} B_N^{(k)} \Lambda_N \tilde{\mathbf{U}}^N dt, \quad \mathbf{b}_m = \int_0^T \tilde{\mathbf{U}}^{N\top} \Lambda_N B_N^{(m)} \Sigma^{-1} d\tilde{\mathbf{U}}^N,$$

for $1 \leq m, k \leq n$. A is apparently symmetric positive definite. Next, the loss becomes

$$\mathcal{E}(\mathbf{a}) = \frac{1}{2} \mathbf{a}^\top A \mathbf{a} + \mathbf{b}^\top \mathbf{a},$$

thus minimizing the loss is equivalent to solving the linear system $\nabla \mathcal{E}(\mathbf{a}) = 0$, which gives the estimation coefficient as $\hat{\mathbf{a}} = -A^{-1}\mathbf{b}$.

C SUPPORTING EXPERIMENTS

In this appendix we report three 1D experiments and one 2D experiment designed to directly address the reviewers' concerns on (i) robustness to stochastic noise magnitude, (ii) the effect of observation noise, (iii) the effect in learning time gap (between the actual learning time instances and integration time instances), and (iv) a correlated state dependent noise structure where we show the effects of using a learned noise diffusion matrix as well as a comparison to traditional methods. For the 1D cases, we consider the following examples

$$d\mathbf{x}_t = \mathbf{f}_*(\mathbf{x}_t) dt + \sigma_*(\mathbf{x}_t) d\mathbf{w}_t, \quad \mathbf{f}_*(\mathbf{x}) = \mathbf{x} - \mathbf{x}^3,$$

simulate trajectories by Euler–Maruyama with time step $\delta t = 10^{-3}$ on $[0, T]$ with $T = 10$, and use $M = 500$ independent trajectories. The drift is learned in the polynomial space using the discrete version of our noise-aware drift loss, and the error is measured in relative $L^2(\rho)$ -norm.

C.1 EXPERIMENT 1: VARYING THE DIFFUSION MAGNITUDE

The goal of the first experiment is to test how the noise-aware drift estimator behaves as the dynamical noise level varies. We fix

$$\sigma_*(x) = \sigma \in \{1, 2, \dots, 10\},$$

simulate \mathbf{x}_t with the true drift \mathbf{f}_* and diffusion σ_* . In the drift loss we treat σ^2 as known and plug in the true value. For each σ we compute the learned drift \hat{f}_σ and its relative $L^2(\rho)$ error.

C.2 EXPERIMENT 2: OBSERVATION NOISE

The second experiment investigates the effect of observation noise. We fix a smooth state-dependent diffusion,

$$\sigma_*(\mathbf{x}) = 0.5 + 0.2 \sin(\mathbf{x}),$$

Figure 12: Experiment 2. Left: relative $L^2(\rho)$ drift error vs. observation-noise level γ . Right: true drift f_* and learned drifts \hat{f}_γ for several values of γ .

Figure 13: Experiment 3. Left: relative $L^2(\rho)$ drift error vs. learning step Δt . Right: True drift f_* and learned drifts $\hat{f}_{\Delta t}$ for several values of the learning step Δt .

and simulate the true process \mathbf{x}_t as before. On a learning grid with $\Delta t = 10^{-3}$ we form clean states \mathbf{x}_{t_ℓ} and then noisy observations

$$\mathbf{y}_{t_\ell} = \mathbf{x}_{t_\ell} + \varepsilon_\ell, \quad \varepsilon_\ell \sim \mathcal{N}(0, \gamma^2),$$

with independent observation noise. In the loss we assume the diffusion is known and plug in $\sigma_*^2(\mathbf{y}_{t_\ell})$. We then learn the drift from the noisy increments $\Delta \mathbf{y}_{t_\ell} = \mathbf{y}_{t_{\ell+1}} - \mathbf{y}_{t_\ell}$.

This experiment illustrates that our estimator is designed for stochastic noise for SDE. And dealing with observation noise is filtering problem which is out of the scope of this paper.

C.3 EXPERIMENT 3: EFFECT OF THE LEARNING TIME STEP Δt

The third experiment studies the impact of sampling step size. We fix a constant diffusion

$$\sigma_*(x) \equiv 2,$$

simulate with step size $\delta t = 10^{-3}$, and then subsample the trajectories on learning grids with

$$\Delta t \in \{0.1, 0.05, 0.025, 0.0125\}.$$

Together, these three 1D experiments presents the theoretical properties of our estimator: (i) robustness to changes in the intrinsic noise magnitude; (ii) the expected sensitivity to observation noise, which is not included in our research target; and (iii) different sampling size being consistent with the discrete-time approximation of the continuous-time loss.

1188
1189 C.4 EXPERIMENT 4: 2D VAN DER POL SDE WITH CORRELATED STATE-DEPENDENT
1190 DIFFUSION1200
1201
1202
1203
1204
1205
1206
1207 Figure 14: Experiment 4 (2D Van der Pol with correlated, state-dependent diffusion). Top row: true
1208 $f_1(x, y) = y$ and learned f_1 obtained with Σ_\star^{-1} , $\widehat{\Sigma}^{-1}$, and the SINDy-like baseline $\Sigma_\star = I$. Bottom
1209 row: true $f_2(x, y) = \mu(1 - x^2)y - x$ and the corresponding learned f_2 for the same three choices.
12101211 We also include a 2D example based on the Van der Pol oscillator with a fully non-diagonal, state-
1212 dependent diffusion matrix. The drift is

1213
1214
$$f_\star(\mathbf{x}, \mathbf{y}) = \begin{pmatrix} \mathbf{y} \\ \mu(1 - \mathbf{x}^2)\mathbf{y} - \mathbf{x} \end{pmatrix}, \quad \mu = 1,$$

1215 and we choose a volatility matrix $\sigma_\star(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{2 \times 2}$ of the form

1216
1217
$$\Sigma_\star(\mathbf{x}, \mathbf{y}) := \sigma_\star(\mathbf{x}, \mathbf{y})\sigma_\star(\mathbf{x}, \mathbf{y})^\top = \begin{pmatrix} v_1(\mathbf{x})^2 & \rho(\mathbf{x}, \mathbf{y}) v_1(\mathbf{x}) v_2(\mathbf{y}) \\ \rho(\mathbf{x}, \mathbf{y}) v_1(\mathbf{x}) v_2(\mathbf{y}) & v_2(\mathbf{y})^2 \end{pmatrix},$$

1218 with

1219
1220
$$v_1(\mathbf{x}) = 0.1 + 0.03 \mathbf{x}^2, \quad v_2(\mathbf{y}) = 0.2 + 0.04 \mathbf{y}^2, \quad \rho(\mathbf{x}, \mathbf{y}) = 0.5 \tanh(0.2 \mathbf{x} \mathbf{y}),$$

1221 so that $\Sigma_\star(\mathbf{x}, \mathbf{y})$ is smooth, positive definite, and non-diagonal. We simulate $M = 500$ trajectories
1222 on $[0, 1]$ with time step $\delta t = 10^{-3}$.1223
1224 We compare our noise aware learning with existing SINDy-like regression methods where $\Sigma_\star = I$
1225 being an unweighted least-squares loss, see section 1.1 for details. This is exactly the structure used
1226 in traditional SINDy-type drift estimators, which ignore the correlated, state-dependent covariance.
1227

1228 D REPRODUCIBILITY STATEMENT

1229 We have taken several steps to ensure the reproducibility of our results.

- 1230 • The convergence theorem is accompanied by complete proofs in the appendix.
- 1231 • All algorithms are described in detail with hyperparameters, training procedures, and
1232 evaluation metrics fully specified either in the example section or in the additional details of
1233 exmaple section in appendix.
- 1234 • We will provide open-source code, along with scripts to reproduce the experiments, prepro-
1235 cessed datasets (or instructions to obtain them), and random seeds for training, once this
1236 paper is accepted.

1237 Together, these measures ensure that independent researchers can reliably reproduce and validate our
1238 findings.
1239

1242 E USE OF THE LLM STATEMENT
12431244 We did not employ large language models (LLMs) in the development of this work, including the
1245 design of methods, theoretical results, experiments, or analysis. The manuscript was written entirely
1246 by the authors, with the exception of occasional use of automated grammar and spelling checkers to
1247 improve readability.
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295