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ABSTRACT

Pooling is a widely used method for classification problems. In the time series
classification (TSC) domain, pooling considering temporal information has been
proposed. However, we found that each temporal pooling has a distinct and fixed
perspective, which causes data dependency. In this paper, we propose a novel
pooling architecture for diverse perspective learning: switch over multiple pooling
(SoM-TP). SoM-TP dynamically selects the optimal pooling method suitable for
each data. The massive case study using layer-wise relevance propagation (LRP)
reveals the distinct perspective each pooling has and ultimately demonstrates the
need for diverse perspective learning. The ablation study on SoM-TP shows how
diverse perspective learning is achieved and performed. Furthermore, the pooling
classification experiment also supports the need for diverse perspective learning
by showing that more suitable pooling exists depending on the data. Extensive
experiments are done with the UCR/UEA repository.

1 INTRODUCTION

Time series classification (TSC) has been one of the most valuable subjects in data mining
(Längkvist et al., 2014). Also, the revolutionary success of deep neural networks (DNN) has led
to their application on TSC (Wang et al., 2017; Le Guennec et al., 2016; Zhao et al., 2017; Tanisaro
& Heidemann, 2016; Serrà et al., 2018). Especially the convolutional neural networks (CNN) based
model architecture, fully convolutional networks (FCNs) (Long et al., 2015) and residual networks
(ResNet) (He et al., 2016), achieved the current state-of-the-art (SOTA) in an end-to-end manner
(Ismail Fawaz et al., 2019; LeCun et al., 2015).

In CNN, pooling is the key component with two primary purposes: 1) Decreasing the number of pa-
rameters for less computational cost and preventing overfitting, and 2) Position invariance learning.
To this end, pooling combines the high-dimensional values of feature outputs into low-dimensional
(Gholamalinezhad & Khosravi, 2020). Thus, global pooling is widely used as the most suitable
pooling method for the above purposes.

However, a simple structure of global pooling has a drawback in the time series domain by los-
ing the temporal information of hidden vectors. To solve this limitation, temporal poolings have
been proposed to conserve temporal position information from convolutional hidden vectors(Lee
et al., 2021). Global temporal pooling (GTP) outputs only one position-invariant feature, which is
a simplified version of common global pooling. However, time-segmented pooling methods, static-
temporal-pooling (STP) and dynamic-temporal-pooling (DTP) use the given number n ∈ Z+ to
segment the time-axis by temporal order. STP divides equally, while DTP does dynamically with
different segmentation lengths via soft dynamic time warping (soft-DTW) (Lee et al., 2021). Due
to the segmentation, STP and DTP represent multiple local features, whereas GTP represents only
one. With multiple local features, the temporal order information in each segment is conserved by
each pooled vector.

How to aggregate convolution features in pooling is a significant matter. Each temporal pooling has
a distinct mechanism for aggregation, and we term the different mechanisms of temporal pooling
as a ‘perspective’. Depending on the use of segmentation in pooling, the perspective is divided into
‘global’ and ‘local’, and according to the segmentation method, the local is divided into ‘rigid’ and
‘dynamic’. However, each temporal pooling only deals with a single perspective on hidden features
as defined. And this fixed-perspective learning has the following constraints. A global view cannot
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Figure 1: SoM-TP architecture. After a convolutional stack, each temporal pooling compresses
the hidden features that conserve temporal position information. The pooling block consists of
three types of temporal pooling: GTP, STP, and DTP, then it outputs pooled vectors (blue square,
P̄ = [p1,p2,p3]) in different perspectives. The attention weight, which is a learnable parameter,
exists for selecting proper pooling by each data. The attention weight (A0) is multiplied by all
pooled vectors (P̄) to reflect all the perspectives of the pooling block, resulting in a weighted pooled
vector (M). The final attention score (A) is the encoded weight vector formed after a weight pooled
vector (M) passes through the convolutional layer (blue box). Then, this final attention score (A)
selects the best poolings in the block by the score value. Next, the parameters are updated with the
following procedure; 1) a diverse perspective learning network (green) uses ensembled input (E)
which is the multiplication of the final attention score (A) and all the pooled vectors (P̄); 2) The
main network with (orange) gets only selected pooled vector (in here, p2) from one pooling method;
3) Each network predicts ypred1 and ypred2 respectively, and ypred2 works as a regularizer; 4) With
these two outputs, SoM-TP is optimized with various perspectives.

capture multiple classification points, while a local view cannot concentrate on one dominant classi-
fication point. Therefore, the performance loss is inevitable if the task requires diverse viewpoints to
simultaneously capture a dominant feature and hidden local features. Motivated by the limitations,
the novel approach of pooling to fully utilize diverse perspectives is suggested.

In this paper, we propose “Switch over Multiple Temporal Pooling (SoM-TP)”, a pooling architec-
ture with diverse perspective learning. Diverse perspective learning is the opposite concept of fixed-
perspective learning, which can overcome the limitation of existing temporal poolings. SoM-TP can
reflect various views by dynamically selecting proper pooling based on attention. The challenge
here is to train attention weight to dynamically select the optimal pooling for each specific data
sample. For this, we propose three methods: 1) convolutional encoded attention weight; 2) diverse
perspective learning network which is a sub-network to deal with various poolings; 3) perspective
loss which is the combination of KL divergence and cross-entropy loss function.

The attention score selects proper pooling by highlighting important pooled vector’s index. To get
an attention score, the convolutional layer encodes the vectors of multiplying pooling features and
attention weight to compress the information from all pooling features. Also, the sub-network and
perspective loss is for effective optimization to SoM-TP to learn diverse perspectives. Next, by
minimizing perspective loss from the KL divergence between each output from the main network
and a diverse perspective learning network, all learnable weights in the SoM-TP learns diverse per-
spectives. By making the two output distributions similar, the model learns various views, which is
considered as using the concept of parameter tying. This process makes a model robust by learning
any pooled observations from different views.
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The research scope is limited to temporal pooling methods with CNN. A model architecture with
FCN and ResNet, customized with three primary temporal pooling schemes, is specifically used.

2 BACKGROUND

2.1 DEFINE THE PERSPECTIVE OF TEMPORAL POOLINGS

Convolutional Neural Network in Time Series Classification CNN outperformed conventional
methods such as nearest neighbor classifiers (Yuan et al., 2019a) or COTE (Bagnall et al., 2015;
Lines et al., 2016) by capturing local patterns in TSC problems (Ismail Fawaz et al., 2019; Wang
et al., 2017).

As for TSC, the CNN model can be generally formulated as follows: a time series data T =
{(X1, y1), ..., (Xt, yt)}, where X ∈ Rd×t of length t with d variables and y ∈ {1, ..., C} from
C classes. Then, convolution stack Φ of out channel dimension k encodes features as hidden repre-
sentations with temporal position information H = {h0, ..., ht} ∈ Rk×t (Lee et al., 2021).

H = Φ(T) (1)

Global Temporal Pooling. GTP is a global pooling by using H as input. GTP pools just one
representation p1 = [p1] ∈ Rk×1 in whole time range with ignoring temporal information. GTP
entirely aggregates the hidden convolution output features by the time axis t. As a result, GTP has
a global view since the whole time axis information is represented as one pooled vector.

p1 = ϕ1(H) (2)

However, GTP has the crucial limitation that it cannot contain sequential information which can be
an important feature. To utilize temporal position from H, other temporal pooling methods have
been proposed (Figure 1 with a pooling block) (Lee et al., 2021).

Both STP and DTP are multiple local pooling methods with time-axis segmentation. The main
difference between the two methods is whether to consider a temporal relationship which means
the relationship between each time steps in a time series data. Considering that time series data
generally consist of a combination of specific local patterns, the reflection of temporal relationship
can be effective in terms of loss of meaningful sequential information.

Static Temporal Pooling. STP divides the time axis equally into n segments with a length ℓ = t
n .

In other words, STP ϕ2 pools each of the segments hℓ, where H̄ = {h0:ℓ,hℓ:2ℓ, ...,h(n−1)ℓ:nℓ} (Lee
et al., 2021). Note that hℓ keeps local temporal information within each time segment, but there is
no consideration of temporal relationship in the segmentation process. The pooling representations
increase as p2 = [p1, ..., pn] ∈ Rk×n. In terms of the pooling perspective, STP has a rigid local
view since the whole time axis is represented by n equally segmented pooled vectors.

p2 = ϕ2(H̄) (3)

Dynamic Temporal Pooling. DTP is the layer that is optimized by soft-DTW to segment the time
axis while considering temporal relationship (Algorithm 1 in Appendix B). The DTW distance is
calculated by point-to-point matching with temporal consistency,

DTWγ(X,Y ) = minγ{⟨A,∆(X,Y )⟩,∀A ∈ A},

minγ{a1, ..., an} =
{

mini ≤ nai, γ = 0

−γlog
∑n

i=1 e
−ai/γ , γ > 0,

(4)

where X and Y are time series with lengths t1 and t2, and the cost matrix ∆(X,Y) ∈ Rt1×t2

represents the distance between Xt1 and Yt2 . DTW is defined as the minimum inner product of the
cost matrix with any binary alignment matrix A ∈ {0, 1}t1×t2 (Lee et al., 2021; Cuturi & Blondel,
2017). With the soft-DTW algorithm, a similar time sequence is grouped with different lengths. In
this way, H is segmented in diverse time length ℓ̄ = [ℓ1, ℓ2, ..., ℓn], where t =

∑
ℓ̄. Finally, DTP ϕ3

effectively optimizes all the parameters, and the optimal pooled vectors p3 = [pℓ1 , ..., pℓn] is pooled
from each of hℓ̄, where p(ℓ̄) = ϕ3(hℓ̄). Note that DTP has a dynamic local view with n segmentation
with different lengths, which is formed by considering the temporal relationship between time steps.

3



Under review as a conference paper at ICLR 2023

GTP 

(a) acc: 0.6282

GTP 

(b) acc: 0.6192

GTP 

(c) acc: 0.2900

STP 

(d) acc: 0.7280

STP 

(e) acc: 0.8925

STP 

(f) acc: 0.5768

(g) acc: 0.6487

DTP 

(h) acc: 0.6989 (i) acc: 0.4279

SoM-TP 

(j) acc: 0.7897

SoM-TP 

(k) acc: 0.9301

SoM-TP 

(l) acc: 0.6395

Figure 2: Input attribution comparison between fixed and diverse perspective learning. The
figure contains three different datasets in the UCR repository; CricketZ, Fungi, and WordSynonyms
by each column. The performance of independent data with each temporal pooling varies and is
highly dependent on each perspective. First, GTP focuses on dominant and extreme points as seen in
all datasets (a), (b), and (c). Second, STP has n segments that can catch multiple classification points
as (d). However, the compulsory segmentation to equal lengths has a high tendency of including
unnecessary segmentation (gray with red box) as in all examples of STP (d), (e), and (f). Third,
DTP has dynamic segmentation and forms more efficient segments. However, this segmentation
sometimes downgrades the performance because it divides important classification points as (g) and
(i). Both examples show that DTP divides the classification point SoM-TP highlights. SoM-TP
overcomes these limitations of each temporal pooling by global and local mixed perspectives. As
shown in (k) and (l), SoM-TP focuses on the humping point in a green circle as other poolings do
(global view), but also focuses on other lower points (local view) and leverages the performance
by diverse perspectives. Due to the flexibility of SoM-TP, it can also focus on the global important
point as (j). Note that the black circle is where pooling is highly focused and the green circle is
SoM-TP is highly focused on by new perspective.

2.2 CONSTRAINTS OF TEMPORAL POOLING METHODS

Each temporal pooling has different perspectives based on different mechanisms. And only one
viewpoint exists, we define it as fixed-perspective learning. Through qualitative analysis with layer-
wise relevance propagation (LRP) and loss landscape, we examine how the mechanisms of each
pooling operate in the model to capture time series patterns.

LRP is a gradient-based method of computing input attribution for input features to explain network
predictions (Binder et al., 2016b;a; Bach et al., 2015). The input attribution from LRP shows how
each temporal poolings focus on different points: LRP z+ rule for Φ1:l1 and ϵ rule for fl1+1:l2 .

GTP perspective. GTP focuses on dominant features with a global view. However, GTP cannot
capture multiple classification points dispersed on a time axis. Thus, the global view has constraints
on complex time series data.

STP Perspective. STP captures multiple local features. However, STP segments important con-
secutive patterns by compulsory segmentation of equal length. Also, STP pools the unimportant
segmentations. This inefficiency causes representation power to be distributed loosely, leading to a
performance loss.
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DTP Perspective. DTP has the most complexity by optimizing segmentation length dynamically.
This flexibility enables the model to fully utilize segmentation power. However, since DTP is based
on distance similarity, segmentation occurs at the change point. For this reason, DTP is hard to
capture the consecutive pattern divided at the change point, such as an inflection point.

3 SOM-TP: TOWARDS DIVERSE PERSPECTIVE LEARNING

Diverse perspective learning is a new concept, fully utilizing all the views from each temporal pool-
ing. Note that one fixed view, which is fixed-perspective learning done by individual temporal pool-
ing, causes the model to have data dependency and performance degradation. However, SoM-TP
can overcome these limitations with diverse perspective learning.

We first introduce how SoM-TP obtains valuable information from multiple poolings. Next, we
analyze the performance of SoM-TP in two directions: 1) What are the mechanisms that make the
model learn diverse perspectives in SoM-TP? and 2) Is SoM-TP more robust than other pooling
methods?

3.1 SWITCH OVER MULTIPLE POOLING

SoM-TP is a framework to induce diverse perspective learning to achieve robustness through the
pooling method. To leverage existing temporal poolings, SoM-TP needs three components; attention
score, ensemble network, and perspective loss. Through these components, SoM-TP selects proper
pooling by specific time series samples in one dataset.

Learnable attention weight The critical component of SoM-TP is learnable attention weight vec-
tors for scoring the importance of each temporal pooling, which allows a single model to learn
diverse perspectives. The purpose of the attention score is to properly select a specific pooling for
data samples in each mini-batch unit. For data-specific learning, learnable attention weights and a
convolutional layer are used to calculate the attention score.

The attention score is derived from pooled vectors and one convolutional layer. The concatenated
pooled vector P̄ = [p1,p2,p3] ∈ Rk×3·n, where p ∈ Rk×n from each temporal pooling, and atten-
tion weight vector A0 ∈ R1×3·n are multiplied as the input of convolutional layer. For the attention
weight vector, A0 is the parameter to weight pooled vectors to highlight important pooling. The
multiplied input M ∈ Rk×3·n are encoded to attention score A ∈ R1×3·n through the convolutional
layer. The final attention sore is normalized with softmax, yj =

exp(xj)∑
i exp(xi)

, where x ∈ A, to com-
pare the contribution of each feature from temporal poolings. For selecting proper pooling based on
attention, there are two options: 1) One pooling output p ∈ P̄ with a maximum yj is selected, or
2) average yn =

∑
n yj

n is proceeded in each pooling output, in the unit of length n which is pooled
number, then the pooling output with the highest average yn is selected.

Diverse perspective learning network and KL Divergence. The SoM-TP framework has two
fully-connected networks; the main decision network which is termed a ‘classification network’ and
a sub-network which is termed a ‘diverse perspective learning network (DPLN)’. To optimize atten-
tion weight and the whole model to learn diverse perspectives, a new loss function is introduced. We
define “perspective loss” which is the addition of DPLN loss and KL-divergence. While the clas-
sification network only focuses on minimizing the whole model of cross-entropy loss with selected
pooling for each mini-batch, DPLN minimizes the classification loss with all pooled vectors. In
detail, the ensemble output E = A× P̄ ∈ Rk×3·n, from concatenated pooling vectors P̄ multiplied
by attention A, is given to DPLN. LDPLN is included in Lperspective to optimize attention A with
considering the classification result of DPLN.

The Kullback-Leibler divergence (KL-divergence) is specially used as a regularizer in the perspec-
tive loss. Through the optimization process, KL-divergence pulls ypred1 to ypred2 to reflect all
perspectives, which prevents a single perspective pooling to be dominant.

The perspective loss driven by DPLN is defined as follows,
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KL(ypred1, ypred2) = ypred2 · log
ypred2
ypred1

,

LDPLN ({W0}, {W(p)}) = −1

t

∑
n = 1tlogP (y = yt|Xt),

Lperspective = KL(ypred1, ypred2) + LDPLN ,

(5)

where input time series {(X1, y1), ..., (Xt, yt)}, Φ with learnable parameterW0 of CNN, ypred1 ∈
R1×c from the classification network W(c), and ypred2 ∈ R1×c from the DPLN W(p) . We
define pooling weight matrix W(p) = [w

(p1)
1 , ...,w

(p3)
3n ] ∈ RK×3·n, where w(p) ∈ Rk that

weighted importance of each latent dimension for pooling p by fully-connected layer, whereas
W(c) = [w

(c)
1 , ...,w

(c)
n ] ∈ Rk×n is the class weight matrix (Lee et al., 2021).

Therefore, the final loss function of the SoM-TP framework is defined as follows,

Lclassification({W0}, {W(c)}) = −1

t

t∑
n=1

logP (y = yt|Xt),

Lcost({W0}, {W}) = Lclassification + λ · Lperspective,

(6)

where W ∈ {W(c),W(p),A} of learnable parameters. With classification accuracy as a priority,
the loss of the classification network Lclassification from ypred2 is calculated through cross-entropy,
and Lperspective is added as λ decay. Therefore, CNN with learnable parameter W0 adopts two
fully-connected layers relatively while minimizing the similarity between each network output, as
the concept of parameter tying.

Furthermore, SoM-TP proceeds with additional optimization for A. The dot product similarity is
considered to regulate A. Lattn is learned in the direction of lowering the dot product similarity
between the outputs of the classification network and the DPLN.

Lattn = ypred1 · ypred2,
A← A− η · ∂Lattn/∂A,

(7)

Lattn plays a role similar to KL-divergence in perspective loss but directly affects only attention
weight.

Shortly, SoM-TP learns various perspectives through attention, DPLN, and perspective loss. Dif-
ferent pooled features affect convolutional and fully-connected networks to learn weight in distinct
ways with individual pooling. This is the most significant distinction between SoM-TP and fixed-
perspective learning.

3.2 ABLATION STUDY ON SOM-TP

The novel point of SoM-TP is to make diversification of pooling selection that fits specific data
even in one dataset. Therefore, the ablation study is done to show how diverse perspective learning
occurs.

3.2.1 EXPERIMENTAL SETTING

For extensive evaluation, 112 univariate and 21 multivariate time series datasets from the UCR/UEA
repositories are used (Bagnall et al., 2018; Dau et al., 2019); collected from a wide range of domains
and publicly available.

CNN classifiers with pooling layers are built on a common ground of model architecture. FCN and
ResNet are specifically designed for TSC (Wang et al., 2017), and three different temporal poolings
are customized with settings: normalization with BatchNorm (Ioffe & Szegedy, 2015), activation
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Table 1: Detailed experimental settings.

Network #Conv. #Pooled Prototypes #FC. Optim. lr batch window epoch
GTP STP&DTP

FCN 3 1 n 3 Adam 1e− 4 8 1 300ResNet 9

Table 2: Model capacity and performances. The best performance of SoM-TP is bolded and best
performance of other temporal poolings are underlined.

CNN # Params. of Conv. POOL (type) # Params. after Conv. UCR (uni-variate) UEA (multi-variate)
acc f1macro acc f1macro

FCN 363,520

GTP MAX
(1× 256× 512) + 527, 874

0.7077 0.6663 0.6516 0.6214
AVG 0.7227 0.6902 0.6642 0.6388

STP MAX
(n× 256× 512) + 527, 874

0.7400 0.7069 0.6810 0.6507
AVG 0.7302 0.6967 0.6816 0.6515

DTP

MAX-euc

(n× 256) + {(n× 256× 512) + 527, 874}
0.7480 0.7210 0.6687 0.6521

AVG-euc 0.7137 0.6815 0.6449 0.6157
MAX-cos 0.7318 0.7051 0.6648 0.6380
AVG-cos 0.7106 0.6774 0.6372 0.6088

SoM-TP MAX (n× 256) + {{(n× 256× 512) + 527, 874} 0.7503 0.7212 0.6969 0.6648
AVG +{(3n× 1) + (256× 1)}} 0.7485 0.7219 0.6909 0.6753

ResNet 1,103,744

GTP MAX
(1× 256× 512) + 527, 874

0.7162 0.6914 0.6612 0.6193
AVG 0.7544 0.7244 0.6419 0.6149

STP MAX
(n× 256× 512) + 527, 874

0.7464 0.7162 0.6480 0.6114
AVG 0.7583 0.7323 0.6612 0.6321

DTP

MAX-euc

(n× 256) + {(n× 256× 512) + 527, 874}
0.7512 0.7223 0.6420 0.6071

AVG-euc 0.7258 0.6967 0.6475 0.6227
MAX-cos 0.7425 0.7152 0.6572 0.6350
AVG-cos 0.7256 0.6963 0.6299 0.6044

SoM-TP MAX (n× 256) + {{(n× 256× 512) + 527, 874} 0.7690 0.7398 0.6766 0.6542
AVG +{(3n× 1) + (256× 1)}} 0.7518 0.7219 0.6669 0.6493

function with ReLU, optimizer with Adam (Kingma & Ba, 2014). The validation dataset is made
from 20% of the training set for a more accurate evaluation. For an imbalanced class, the weighted
loss is used to train. The prototype number n is distributed greedily while accounting for each
dataset’s unique class number. A more detailed experimental setting is in Appendix A.1.

3.2.2 LEARNING PROCESS ANALYSIS

How specific pooling is chosen by each data? SoM-TP identifies data for each mini-batch unit
and dynamically selects appropriate pooling. In Figure 3, the learning process is introduced: How
the attention finds optimal pooling. SoM-TP reflects every data without converging to one dominant
pooling. Dynamic selection can be done during the inference process without the use of a sub-
network DPLN. SoM-TP extended ablation study on the individual datasets is in Appendix A.3.

The difference in perspective when compared to individual poolings. A qualitative analysis
using LRP is performed to examine how the perspectives of SoM-TP are different from those of
other temporal pooling methods. In Figure 2, SoM-TP overcomes the limitation of independent
pooling and learns better by taking mixed views of global and local. In detail, SoM-TP outperforms
by focusing on hidden important features that others are not concentrating on.

What is the role of DPLN? DPLN is an ensemble network in that the network uses the weighted
pooling outputs. SoM-TP employs DPLN’s result for the perspective loss. In other words, SoM-TP
uses its ensemble result for optimization. Furthermore, the λ ablation study on perspective loss is in
Appendix A.2.

3.2.3 PERFORMANCE ANALYSIS

SoM-TP shows robust performance for the various domain TSC datasets. To investigate the perfor-
mance of SoM-TP in detail, we analyzed both ways; quantitative results and robustness.

We calculated the average performance of the entire dataset (Table 2). We considered accuracy and
f1 macro score to deal with the imbalanced class in datasets. SoM-TP outperforms the existing
temporal pooling methods both in univariate and multivariate time series datasets. Furthermore,
Figure 4 histograms show the superior performance of SoM-TP than DTP which is the SOTA of
temporal pooling. SoM-TP has long tail than DTP, which means that highly beats the DTP in
accuracy. The most highest beaten in one dataset achieved a 5% increase. We take additional
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Epoch 0 Epoch 5 / Batch 0 - DTP Epoch 20 / Batch 0 - STP

Initial attention weight

Selected pooling

Epoch 0 / Batch 2 - STP Epoch 0 / Batch 4 - DTP Epoch 0 / Batch 8 - GTP Epoch 0 /Batch 10 - STP

Figure 3: SoM-TP learning process. Based on each data sample, attention score provides guidance
for selecting pooling with an appropriate view. This heatmap represents the attention score A. The
initial attention score before learning is initialized as zero. During the learning process, the attention
score is updated with every epoch For example, in epoch 5 of the first row, the attention picks DTP
as the best pooling with batch-0. In the second row, the attention picks different pooling by different
data samples. Therefore, after several epochs with learning, attention is optimized to select STP as
the best pooling on the same batch-0.
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(a) ResNet-MAX performance results on UCR.
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(b) ResNet-MAX performance results on UEA.

Figure 4: Detailed performance analysis between temporal poolings and SoM-TP on ResNet.
We choose histograms and bar charts to show the superiority of SoM-TP in a different way. The
performance in the graph is based on accuracy. For the histogram, the x-axis means the value
obtained by subtracting DTP from SoM-TP and the y-axis is the number of datasets. Here, we can
see that there are both cases in which each pooling performs better than the other. However, there
are more cases in that SoM-TP outperforms with a big gap in both UCR and UEA repositories.
Also, as shown in the bar charts with performance ranks between four temporal poolings, SoM-TP
has the most robust performance than any other pooling with rank 1 highest and the following ranks
becoming lower, clearly shown in UEA. However, for DTP, which is the SOTA of temporal pooling,
it is not clear that overall performance is better than STP. Through these results, we can check the
robustness and performance of SoM-TP compared to other temporal pooling.

evaluation metrics as a histogram under area. As shown in (a), (b)-histogram, the area of SoM-TP is
bigger than DTP’s as much as +1.1083 and +0.1763 respectively. Through (a), (b)-bar charts, we
also check that SoM-TP has the most rank 1 and least rank 4.

However, there are a few cases where fixed-perspective learning is dominant due to its data nature.
The high degree of freedom of the SoM-TP mechanism can cause performance degradation for
data with simple classification points. This problem appears as an outlier, especially in the feature
extraction with FCN.

3.3 POOLING CLASSIFICATION

SoM-TP selects the most appropriate pooling method based on specific data. However, if there is no
relationship between data and pooling, selecting suitable pooling according to each characteristic of
the data samples cannot be generalized. Without this proposition, SoM-TP is not different from the
random selection of poolings. Through an empirical study of pooling classification, we prove the
existence of a relationship between distinct data and best-fitted poolings.
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Figure 5: Pooling classification model architecture. The input attribution of best temporal pooling
by fixed-perspective learning is first calculated with LRP; z+ rule for Φ1:l1 and ϵ rule for fl1+1:l2 .
Then multivariate input with raw time series and input attribution goes through the model to classify
the best pooling methods for each dataset. In this network, the simple global pooling layer is used.

The challenge here is to prove not only the relationship between data and pooling but also its per-
spective. Therefore, we use relevance score as a multivariate input along with raw time series. The
relevance score, which is input attribution, is the LRP result from fixed-perspective learning. By
adding LRP values as input, the model can recognize important features that contribute to classifi-
cation, which is captured by distinct perspective of each polings. This setting is also consistent with
the fact that TSC is mainly done by capturing a particular pattern in time series.

Experimental settings. Given a training set of N samples of time series and an LRP value, T =
{(X1,L1, y), ..., (XN ,LN , y)}, from class c of three temporal pooling {GTP: 0, STP: 1, DTP: 2},
we aim to learn the CNN classifier. Note that we set the best pooling method as a target class.

Performance analysis. Considering the imbalance of classification target labels, we use F1-score
as an evaluation metric. When only time series input is used as univariate classification, the perfor-
mance is 74% of the f1-score. However, with a relevance score, the performance increases to 78%.
This result shows that the data categorization is possible with the relationship proved; each time
series has appropriate pooling with distinct views.

4 CONCLUSION

This paper proposes SoM-TP, switch over multiple pooling that learns diverse perspectives to fully
utilize temporal pooling. The pooling perspective that we defined is from the distinct mechanism
of either segmentation on temporal order, or dynamic segmentation length by considering temporal
relationships. SoM-TP is not one pooling layer, but an architecture, which has a learning framework
with perspective loss. With the attention weight vector in SoM-TP, pooling is selected dynamically
based on the each data. The extensive experiment with the UCR/UEA repository validated the
performance of our new method, and with LRP, we saw SoM-TP view every data sample with a new
perspective that is not seen in existing temporal pooling methods.
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A EXTENDED ANALYSIS ON SOM-TP

A.1 DETAILED EXPERIMENTAL SETTING
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Figure 6: Convolutional stack used in the experiment. We use FCN and ResNet which are spe-
cially designed for TSC. In here, we can see the embedding dimensions of each convolutional layer
before the pooling and FC layers for the classification decision.

A.2 PERSPECTIVE LOSS: λ ABLATION STUDY
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(a) FCN SoM-TP λ study in UCR
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Figure 7: The λ ablation study for SoM-TP. λ is the decay value of the perspective loss, which is
one of the e most important hyper-parameter in SoM-TP. Therefore, in the range of [1, 1e-5] with
11 intervals, the ablation study is shown in the figure. The color of the line represents each pooling
type between MAX and AVG. And the optimal λ with the highest performance is circled with green.
We can see that scale of λ affects SoM-TP performance directly.
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A.3 EXTENDED SOM-TP ABLATION STUDY WITH AN INDIVIDUAL DATASET
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Figure 8: SoM-TP on different time lengths and data sizes. With different datasets which contain
different data sizes and time lengths, the SoM-TP works robustly and dynamically selects appropri-
ate pooling both at training and inference procedure. With the first column, the x-axis, we can see
the different time lengths of each dataset. Also, with the same 20 epoch and 8 batch size, the batch
number is different, which means the difference in data size of each individual dataset. However,
SoM-TP learns diverse perspectives from the training procedure and peaks different but appropriate
pooling by specific data samples.
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Figure 9: SoM-TP on different time lengths, data sizes, and dimensions. With different datasets
which contain different dimensions in the UEA repository, the SoM-TP works robustly and dynam-
ically select appropriate pooling both at training and inference procedure. In here, the multivariate
datasets with different dimensions and data sizes are shown and the detailed selection of pooling by
each data with SoM-TP robustly performs with proper selection.
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B DTP ALGORITHM

Algorithm 1 DTP layer optimization
Function DTP(P, H):

δ(pl, ht) = 1− pl·ht

||pl||2||ht||2
Function forward(P, H):

▷ fill the alignment cost matrix R ∈ RL×T

R0,0 = 0, R:,0 = R0,: =∞
for l = 1, ..., L do

for t = 1, ..., T do
Rl,t = δ(pl, ht) +minγ{Rl−1,t−1, Rl,t−1}

return DTWγ(P,H) = RL,T

Function backward(P, H):
▷ fill the soft alignment matrix E ∈ RL×T

El,t = ∂RL,T /∂Rl,t

E:, T + 1 = EL+1,: = 0

R:,T+1 = RL+1,: = −∞
for l = L, ..., 1 do

for t = T, ..., 1 do
a = exp 1

γ (Rl,t+1 −Rl,t − δ(pl, ht+1))

b = exp 1
γ (Rl+1,t+1 −Rl,t − δ(pl+1, ht+1))

El,t = a · El,t+1 + b · El+1,t+1

return ∇PDTWγ(P,H) = (∂∆(P,H)
∂P )TE

Function optimization((X, y),P,Φ):
▷W: network Φ parameter
▷w(c) ∈ RK of class weight vector

▷Wc = [w
(c)
1 , ..., w

(c)
L ] ∈ Rk×L of class weight matrix

▷P (y = c|X) =
exp(

∑L
l=1 h̄l·w(c)

l )∑L
c′=1

exp(
∑L

l=1 h̄l·wc′
l )

of posterior

Lproto(P) = 1
N

∑
N DTWγ(P,Φ(X

n;W))

Lclass(W, {W(c)}) = − 1
N

∑N
n=1 logP (y = yn|Xn)

procedure OPTIMIZE(P,W,W)
P← P− η · ∂Lproto/∂P

W ←W − η · Lclass/∂W
W(c) ←W(c) − η · ∂Lclass/∂W

(c)
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C EXTENDED RELATED WORK

Conventional approach for TSC. In early TSC, there were various approaches to classifying time
series data based on the similarity of distance or feature pattern (Geurts, 2001; Alcock et al., 1999;
Fulcher & Jones, 2014; Abanda et al., 2019; Bagnall et al., 2017; Giusti & Batista, 2013). The
distance-based metric developed variously, and especially DTW, which is also used in DTP, is ap-
plied dynamically to TSC (Batista et al., 2014; Lines & Bagnall, 2015; Cuturi & Blondel, 2017;
Jeong et al., 2011; Marteau, 2008; Stefan et al., 2012; Yuan et al., 2019b; Zhao & Itti, 2018). There
are also various algorithms that serve as a noble foundation (Bagnall et al., 2015; Lines et al., 2016;
Baydogan et al., 2013; Lines et al., 2012; Ma et al., 2020; Schäfer, 2015; Yuan et al., 2019a). How-
ever, these baselines are defeated by DNN architecture (Lee et al., 2021; Ismail Fawaz et al., 2019).

Deep Neural Network for TSC. Especially, CNN has diverse architecture for TSC, which tried to
consider time series characteristics (Cui et al., 2016; Karim et al., 2017; Ismail Fawaz et al., 2020;
Zheng et al., 2016; Kashiparekh et al., 2019; He et al., 2022; Duan et al., 2022). Also, there were
novel trials to interpret time series data and its classification (Senin & Malinchik, 2013), specifically,
prototype and attention-based approaches were usually driven (Zhang et al., 2020; Gee et al., 2019;
Ghods & Cook, 2022; Cho et al., 2021). However, for TSC with CNN, there were few studies that
used LRP for explaining and interpreting the model and its time series input attribution (Rojat et al.,
2021).

Pooling for TSC. In other fields, especially computer vision and natural language processing, there
were many approaches to novel pooling methods (Mao et al., 2021; Sun et al., 2017; Ibrahim et al.,
2021; Christlein et al., 2019; Dong et al., 2020; Zhang et al., 2018; Williams & Li, 2018; Chan
et al., 2021; Zhai et al., 2017; Passalis & Tefas, 2017; Gao et al., 2019). There are, however, few
approaches for the time series domain (Dempster et al., 2020; Tan et al., 2021; Wang et al., 2016).
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