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Global News Synchrony During the Start of the COVID-19
Pandemic
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ABSTRACT
News coverage profoundly affects how countries and individuals

behave in international relations. Yet, we have little empirical ev-

idence of how news coverage varies across countries, languages,

locations, political blocs, and time, because of challenges related to

measuring and comparing news coverage at a global scale.

To address these challenges, we develop an efficient computa-

tional pipeline that comprises three components: 1) a transformer

model to estimate multilingual news similarity; 2) a global event

identification system that clusters news based on their similarity

network; and 3) a method estimating and explaining the synchrony

of news across countries and diversity of news within a country,

measured based on the news coverage of global events. Each com-

ponent achieves state-of-the art performance, scaling seamlessly to

massive datasets of millions of news articles.

We apply the pipeline to study news articles published between

January 1 and June 30, 2020, across 124 countries and 10 languages,

and identify the factors explaining biases in national and interna-

tional news coverage. Our analysis reveals that: (1) news media tend

to cover a more diverse set of events in countries that are internally

varied: those with federalist governments, larger populations, more

official languages, and higher inequality; (2) news coverage is more

synchronized between countries that not only actively participate in

commercial and political relations—such as, pairs of countries with

high bilateral trade volume, and countries that belong to the NATO

military alliance or BRICS group of major emerging economies—but

also countries that share certain traits—an official language, high

GDP, and high democracy indices.

CCS CONCEPTS
• Sociology→ Computational social science; • Information
systems →Web mining.

KEYWORDS
global news events, agenda setting, computational social science

1 INTRODUCTION
When news media choose to cover a story, they shape the way the

public perceives, understands, and discusses current events [48].

By selecting the events that are salient, news media serve a crucial

role in shaping the information and political ecosystems. Yet, the
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selection of news may differ from location to location even at the

same moment, and therefore readers over the globe may be offered

different images of the present.

Media and communication scholars offer insights on the factors

that may lead news media of different countries to cover similar

events. Selection of the news may be driven by the interests of the

readers [55], but also by larger forces in the informationmarket such

as editorial practices and agenda setting [23, 88]. Across borders,

several factors including cultural or political affinity, geographic

proximity, and economic relations may impact the synchrony of

news coverage [38].

These insights, however, derive mainly from theoretical frame-

works and case studies with limited geographic and event coverage.

Empirical studies characterized news coverage within a limited set

of countries [7, 35], or when they included more countries, they

focused on a limited set of news events [2, 87]. Hardly any study

compares coverage of events across multiple countries and lan-

guages. To obtain insights into media agenda setting at a global

scale, there is a need for comprehensive studies of international

news coverage.

The key challenges to examining the news coverage at a global

scale include the following. First, traditional data collection and val-

idation based on physical newspapers and questionnaires requires

human effort that scales linearly with the amount of data and the

number of languages. These practical considerations severely limit

data size and linguistic coverage of traditional studies. Second, it

is not clear how to identify global news events. Most empirical

studies focus on few, specific events. Existing methods for iden-

tifying which events are covered in the news prioritize precision

over coverage, since such methods are based on keywords or entity,

or on classification models [11], inevitably leading to the lack of

generality. Third, a variety of factors influence the international me-

dia market, including economic, political, and linguistic elements.

These factors often intertwine, exhibiting complex correlations. Ad-

ditionally, the measures used to quantify synchrony and diversity

of news coverage are not well established. To discern the impact of

individual factors on global news coverage, not only it is critical

to have a sufficiently large number of samples, it is also crucial to

develop robust measures and feature selection techniques.

We overcome these challenges by developing a novel computationally-

efficient methodology and applying it to a dataset of 60 million news

articles in 10 languages from 124 countries, spanning between Jan-

uary and June 2020. Although the dataset is comprehensive in that

it includes global news published in that period, it also includes the

onset of the COVID-19 pandemic. This event is uniquely suitable

for the study, since it is a rare occurrence of a phenomenon affect-

ing the whole of humanity, and that therefore offers grounds for

studying local variations in news coverage.

The main contributions of this work are:

• a computationally-efficient transformer model that infers

multilingual news similarity (§4.1),
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• a similarity-network-based method for identifying global

news events from large news corpora (§4.3),

• a unique information-theoretic approach for measuring

country-level synchrony and diversity in news coverage of

global events (§5.4), which performs better than a baseline

method that does not make use of global events (§5.3),

• by applying the above methods to 2.2 million news articles

published across 124 countries, we identify the country-

level characteristics that explain international news syn-

chrony and national news diversity globally (§5).

Our results have far-reaching implications for understanding

systematic differences in media agenda setting and international

relations around the globe. While limited to the first half of 2020

only, we offer unique empirical evidence and explanations for news

synchrony and diversity across countries. Our methodological con-

tributions enable studying news synchrony and diversity globally

across many years and millions of news articles, opening the door

for a wave of novel agenda-setting studies. To bolster the effort of

academics and media monitoring agencies, we share the data and

code of this study.
1

2 RELATEDWORK
We contextualize our contributions within a body of related work at

the intersection of media studies, computational social science, and

machine learning. First, we discuss the societal importance of how

news media can set the agenda for the public discourse by deciding

what to report on, and how this varies across countries. Then, we

delve into the characteristics of countries that may affect the news

flow within international media market. Finally, we review existing

approaches for quantification of media agenda setting, especially

looking at the computational methods that afford comparing news

at a global scale.

2.1 Agenda setting and newsworthiness
News organizations have to select and prioritize a subset of news to

report on each day, a process known as gatekeeping [69]. What the

media reports on (and what they do not) has consequences: many

studies have shown the ability of the media to “set the agenda”

[49, 50]. That is, the events that media select to report on shapes the

public dialogue and helps determine what issues are salient. In this

way, the media shape “not what to think, but what to think about”

[16]. Numerous studies have investigated the values by which news

organizations decide what stories are “newsworthy” enough to

report on. Beyond the typical effects of how novel, dramatic, or

unusual an event is, the spatial and cultural proximity of the event

to a media organization’s audience is important [28].

2.2 International news flow
Beyond studies on which factors shape the choices of individual

media organizations, a related body of work investigates how these

choices aggregate at a national level to determine patterns of shared

media attention and news flow across borders. Grasping how news

disseminates across different regions is vital for comprehending

1
Zenodo link hidden to preserve double-blind policy.

Figure 1: Our pipeline for global news event detection.

the global media landscape and its impact on international rela-

tions. Mirroring the findings on news newsworthiness, geographic

proximity and cultural affinity are found to be important factors, as

evidenced by country distance, shared language, religious beliefs,

etc. [27, 44, 63, 64, 80, 81]. For example, Semmel [65] studied the

coverage of foreign news by four elite US newspapers, and found

that those stories that involved a country that was similar to the

US economically, politically, or culturally were more likely to be

included. Additionally, trade has been identified as a potent factor

influencing news connections between nations [30, 44, 63, 81]. Po-

litical factors, such as diplomatic relation also play a pivotal role in

shaping the news agenda, given that governments can influence

journalistic output through regulatory and legislative measures

or state-owned media [29, 30, 44]. Due to challenges in analyzing

vast amounts of news data, these works remained confined to spe-

cific regions. However, computational social science approaches

are promising avenues for providing a global perspective about the

phenomenon. For example, Zuckerman [88] leveraged the query

results from search engine for comparing media attention between

countries.

2.3 News similarity quantification
Communication scholarship has a longstanding concern in news

story diversity. This body of literature argues that news has become

less diverse [36, 39], and pointed to two sources of homogenization:

journalistic practice—such as the acceleration of the news cycle

and increasing reliance on wire service copy—and the monitoring

of other media [6]. Qualitative methods like content analysis, used

to derive such findings, enabled gaining deep insights while com-

paring news coverage from multiple outlets [see, e.g., 5, 15, 61].

The difference in how media represent the same news story may

be nuanced: it may span several communicative levels from lexi-

cal choices to the points of view endorsed by the journalists [68].

However, such qualitative methods are time-consuming and re-

quire expertise, thus they are prohibitively costly to perform at a

scale, which is necessary for answering questions about newsmedia

agenda setting globally. Computational methods are a promising

avenue to tackle large-scale analyses [52].

Computational research in this field made several attempts at

defining similarity between news articles. These definitions op-

portunistically fitted a computational task, such as automatically

detecting whether two articles cover the same real-world happen-

ing [4, 31, 73], story chain [46, 52], event [82, 83], or user preference

model [19, 57, 74]. These tasks enabled theoretical and technological

2
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advances, such as deduplicating news stories and recommending

personalized news feeds. Yet, the task-driven definition of similarity

of this body of research limits its applicability to determining the

similarity of news articles in a general sense, such as articles that

cover stories that are analogous but happen in different locations.

Quantification of news article similarity is a fundamental step

that allows comparisons of news articles across countries and

over time. Recently, researchers conceptualized and operational-

ized news similarity as a broader construct that generalizes across

event, temporal, and geographic contexts [13]. This broader defini-

tion, combined with a large, hand-labeled dataset, enabled NLP re-

searchers to develop machine learning models that achieve human-

level performance in estimating multilingual news article similarity.

2.4 News event detection
Recent studies also have initiated efforts to detect news events. A

common approach involves first obtaining a document represen-

tation for each news article [41, 86], e.g. TF-IDF [47], and then

clustering the news articles based on similarity metrics of their rep-

resentations [10, 33, 40]. Leveraging event detection technologies,

extensive event data collections have been established to support

societal science research, such as ICEWS [75] and GDELT [45].

These collections offer insights of the details and coverage of news

events. However, they often limit the event schemes to a predefined
set, a process that typically demands significant manual effort and

is time-consuming in practice. Consequently, these schemes may

struggle to adapt to new, emerging events over time. Furthermore,

these collections are composed of fine-grain events, e.g., shootings.

Thus, they do not capture broader journalistic narratives created

around such events.

We take a different approach to news even detection that is not

tied to any task or time period, but rather relies on supervised

machine learning for news similarity computation and on unsu-

pervised graph clustering for event identification. This approach is

computationally efficient and scales well with the number of news

articles, enabling a new kind of agenda-setting studies.

3 DATASETS
To study international news coverage at scale, we collect a large

dataset of news articles published in the first half of 2020. To esti-

mate similarity between news articles from this large dataset, we

develop a transformer model by training it on a smaller set of pairs

of news articles annotated for their similarity.

3.1 Large dataset of news articles
We collect news data from Media Cloud, a platform that maintains

a list of news outlets organized by country
2
. This list is diligently

updated by communication scholars affiliated with the Media Cloud

consortium [59].

To study the phenomenon world-wide, the dataset includes news

in ten languages, chosen for their global significance. We adopt the

same ten languages as those in the recent work of Chen et al. [13],

which also allows us to measure news similarity with high accuracy.

To ensure the reliability and validity of our news content from a

social science perspective, we excluded all URLs from popular social

2
https://sources.mediacloud.org/#/collections/country-and-state

Figure 2: The number of news articles per country. The color
bar is scaled logarithmically.

media platforms (such as twitter.com, facebook.com, reddit.com,

etc). In total, we collected metadata and full text of all news articles

from January 1, 2020 to June 30, 2020 in the ten languages, total-

ing ∼60M news articles in the following languages: English (31M

articles), Spanish (8.2M), Russian (7.2M), German (3.2M), French

(3.2M), Arabic (2.9M), Italian (2.4M), Turkish (1.1M), Polish (595K),

and Mandarin Chinese (342K).

3.2 Annotated news article pairs
To develop and train a news similarity transformer model, we adopt

the dataset and resources provided by a recent study that introduced

a nuanced labeling scheme for news similarity [14]. The authors

generously shared with us additional data beyond their publicly

available dataset from Zenodo.
3
This addition comprises 21,700

(mostly cross-lingual) news article pairs. The extended dataset will

be released on Zenodo by the end of 2023.
4

4 METHODOLOGY FOR GLOBAL NEWS
EVENT COVERAGE STUDIES

We devise the following novel methodology for global news event

coverage (illustrated in Figure 1). First, we develop an efficient

transformer model of pariwise news similarity (§4.1). Using this

model, we compute similarity between news articles from our large

dataset, creating a global news similarity network (§4.2). Then, we

cluster this network to identify global news events (§4.3). Once we

have such events, we can measure which countries cover each of

the events. In this study, we measure whether countries cover a

diverse set of events (§5.5) and whether they synchronize in their

news event coverage (§5.6).

4.1 Multilingual news article similarity model
Measuring news similarity at a global scale is a challenging task,

because of the amount of information included in long-form articles,

the inherently cross-lingual setting, and the amount of computation

it takes. To address these challenges, we refined a multilingual

deep learning model to embeds the articles and represents them

as numerical vectors. The similarity between news articles is then

quantified using the cosine similarity between these vectors. We

3
Dataset: https://zenodo.org/record/6507872#.YtgBhOzMLPY

4
The final version of this manuscript will include a Zenodo link to the extended dataset.

3
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Architecture Model Performance

Cross-encoder HFL 0.811

Bi-encoder

MPNet 0.492

MUSE 0.636

LaBSE 0.680

GateNLP 0.791

This work 0.803

Table 1: Performance of pairwise news article similaritymod-
els, measured as Pearson correlation on the annotated news
dataset, following the prior benchmark [13]. Best models for
each architecture are in bold.

discuss next the model’s architecture, and defer implementation

details to Appendix A.

In the field of natural language processing, two predominant

architectures for text similarity are widely recognized: (1) cross-

encoders which ingest two texts as inputs and directly output a

similarity score; and (2) bi-encoders, which independently trans-

form each input text into a fixed-length vector, and the similarity is

then computed as the closeness between these vectors. We favor the

bi-encoder approach because of its computational efficiency: rep-

resentations for bi-encoders can be pre-computed once at an 𝑂 (𝑛)
cost and subsequently used for all comparisons. In other words, the

computational cost scales linearly with the number of articles. By

contrast, a cross-encoder requires separate computation for each

article pair, thus incurring an 𝑂 (𝑛2) cost—a computational burden

that becomes unsustainable for millions of articles, as in our case.

Recent research suggested that bi-encoders achieve comparable

performance to cross-encoders in assessing news similarity [13].

We confirm this observation by comparing the performance of our

model on the benchmark developed by Chen et al. [13] against

the state-of-art models [13, 17, 20, 70] (Table 1). However, our bi-

encoder model is an order of magnitude times faster than cross-

encoders, which makes the computation of news similarity across

millions of news articles computationally feasible.

4.2 Inference on millions of articles
Given that our dataset comprises millions of news articles and,

hence, many trillions of news article pairs, despite having an ef-

ficient transform model for estimating news similarity, it is still

computationally infeasible to compute similarity for every potential

pair. However, vast majority of randomly selected news article pairs

share little in common. By exploiting this property, we develop a

heuristic to identify a smaller set of 13.6 million news article pairs

that are more likely to be similar than random pairs and compute

news similarity only for this reduced set of pairs. The heuristic

preserves the computational viability of this study and it is based

on the observation that related articles tend to mention the same

named entities, e.g., people, organizations, or locations.

To this end, we extracted named entities from each news article.

As those are expressed in natural language, and crucially, in the

language of the article, we normalized them by linking them via

WikiData, echoing techniques found in other research that utilized

Wikipedia for semantic annotation [e.g., 9]. Then, we focused on

a subset of articles for which we can compute meaningful named

Figure 3: The histograms of the characteristics of news events:
their duration (left), the number of articles (middle), and the
numbers of languages (right).

entity overlap and similarity measures, i.e., those containing a min-

imum of 100 words (after translating to English) and mentioning

at least 10 named entities. This filtering resulted in 15.6 million

articles published across 124 countries (visualized in Figure 2). This

set of countries covers 64% of all countries and about 76% the world

population. To identify pairs of news articles that may be similar, we

filter all pairs whose sets of named entities have a Jaccard similarity

exceeding 0.25 that were published within a 5-day window of each

other. These thresholds are chosen based on the probability that a

pair of articles is similar (see details in Appendix B). To illustrate

the computational challenge of dealing with such large dataset, we

note that the filtering process alone took about a week, utilizing

thirty 50-core computing nodes equipped with 200 GB RAM each.

Overall, the above steps resulted in a final set of 13.6 million

news article pairs across 2.2 million unique news articles. To create

a graph of global multilingual news similarity, we applied the trans-

former model for news similarity on this filtered dataset. The news

similarity graph represents articles as nodes and their similarity as

weighted edges connecting the nodes.

4.3 Identification of global news events
We identify news events by clustering the news similarity net-

work. Thanks to this step, we can move from an article-level to
an event-level analysis of global news. Then, we treat all news ar-
ticles within a cluster as reporting on the same news event. This

level of description has a few advantages. First, news event clusters

provide an interpretable summary of the major happening during

the studied period of time, as we show in this subsection. Second,

the event-level description alleviates the limitations deriving from

the heuristics we introduced in the previous subsection to preserve

computational feasibility, i.e., article pairs that do not share named

entities and, thus, were excluded from news similarity computa-

tion can still end up in the same news event cluster. Down the

stream, this can lead to more accurate estimates of news diversity

and synchrony, which we explain in the following section (§5).

4.3.1 Clustering method. To identify news events, we apply the

OSLOM algorithm [42], which identifies statistically significant,

overlapping clusters by optimizing a local fitness function that

compares the clusters against random fluctuations in a null network

model using order statistics. The method has been successfully used

in computational social science [26].

4.3.2 Results. Overall, we identified 4357 news events. The major-

ity of events lasted between 1 to 4 weeks and were covered by 10

to 100 news articles (Figure 3). Around 25% of events were covered

4
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Figure 4: The top 3 largest news event clusters in each month. The majority of these clusters are multilingual and translated
into English for interpretation. Color corresponds to different branches of an event—U.S Presidential primary elections (black),
military operations (red), pandemic (purple) and its two derivative branches: pandemic control (blue) and economic recovery
(orange), anti-racism protests (green), and SpaceX rocket launches (yellow). Photos are fromWikipedia. Colors, connections,
and descriptions are based on an interpretation of one of the authors.

by 100 to 500 news articles. Finally, most events spanned multiple

languages and nearly half of events were covered in more than 5

languages (out of 10 languages that we studied).

4.3.3 Evaluation of news event clusters. We evaluate the quality of

the identified news events. To begin with, we find that two articles

sharing a cluster are more likely to be similar than two articles

sharing a named entity, which validates the effectiveness of event

clusters in aggregating similar news to a degree (see details in

Appendix C).

To evaluate the coherence of the detected news events, we de-

vised an intrusion task, which is commonly used to evaluate topic

models [12]. In this task, human evaluators are presented with 11

articles, all but one sampled from the same cluster. If the “intruding”

article can be identified consistently, the cluster is considered to

be semantically coherent. Three annotators evaluated 40 clusters.

For this evaluation, we chose the 20 largest clusters and 20 random

clusters. For each news cluster, evaluators were presented with the

titles and URLs of the 11 corresponding articles.

We recorded an average precision of 85.8% across the annota-

tors, which is bolstered by substantial inter-rater agreement (0.962

Gwet’s AC1 and 0.809 Krippendorff’s alpha coefficient). The anno-

tator that spent the most time on the task, achieved 97.5% precision.

Compared to analogous results for topic model evaluation [12],

these precision values are relatively high, which lends confidence

in the coherence of the news event clusters.

4.3.4 News event interpretation. Figure 4 shows summaries of the

top 3 events with the most news articles published each month in

the first half of 2020. Consecutive events are sometimes related and

can form simple narratives (color-coded in the figure).

For instance, between February and March 2020 the events that

attracted the most news articles were the US presidential primaries

(black rectangles in the figure). During this period it was unclear

who the Democratic party nominee would be. Among Democratic

candidates Bernie Sanders led the primaries in February, but Joe

Biden later won the key “Super Tuesday" event in March. Interest

in the primaries quickly decreased in April after Sanders left the

race leaving Biden as the only competitive candidate for the Demo-

cratic nomination. During that time, news around the COVID-19

pandemic evolved from the identification of the virus in China in

January (violet rectangles), through realizations of its rapid trans-

missibility in February and March, to non-pharmaceutical interven-

tions in April and May.

5 NEWS COVERAGE ACROSS COUNTRIES
Being able to identify news events at global scale enables addressing

outstanding questions on how news differ across countries and flow

between them. Next, we leverage country characteristics that media

scholarship hypothesized as factors determining news coverage

(§5.2). Namely, we use the hypothesized country characteristics as

predictors in regression models of news diversity within a country

and news synchrony between countries. We compare two ways of

computing news diversity and synchrony: a naive baseline approach
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Type Predictor

Econ.

Trade [18, 30, 37, 44, 63, 81]

GDP [27, 30, 44, 62, 63]

Financial Investment [44]

Pol.

Democracy index [38, 53, 60, 63]

Political blocs

Press freedom [78, 81]

Mode of government [32, 77]

Diplomatic ties [29, 30, 44]

Military strength index [30, 38, 62, 81]

Conflict intensity (global peace index) [62, 63]

Soc.

Population [18, 27, 37, 38, 44, 63]

Immigration [35, 62, 63, 81]

Population density [18]

Gini index [63]

Geo.

Distance [18, 27, 37, 38, 63, 64]

Neighbors [27, 30, 37, 62, 81]

Area [27, 44, 63]

Continent [18, 30, 38]

Cul.

Language [18, 37, 38, 63, 64, 81]

Religion [44, 63, 64]

Media outlets number [24, 63, 80, 81]

Literacy rate [18, 44, 63]

Internet user rate

Table 2: Predictors considered in the regressions of news di-
versity and synchrony, including the references to studies
that mention them. We have not identified references men-
tioning political blocs and Internet user rate.

that only uses global news similarity network (§5.3) and our main

approach that also uses the global news events (§5.4), showing

empirically that in comparison to the former, the latter method

results in larger explanatory power of models regressing news

synchrony and diversity.

5.1 Regression structure and representativeness
For each country and country pair, we compute a value of news

diversity and synchrony. Then, we regress this value against many

predictors, described in the next subsection. To mitigate potential

news data biases across countries, we weight all countries equally.

For our news diversity models, we ensure an equal number of news

articles is sub-sampled from each of the 124 countries. Meanwhile,

in our news synchronymodels, we use country pairs as our samples,

resulting in a sample size of 7626.

5.2 Factor selection and preprocessing
We surveyed extensive literature for traits of countries and inter-

national relations that are related to similar news practices, and

categorized them into five types: economic, political, societal, ge-

ographic and cultural [44, 63]. All considered factors are listed

(color-coded by the type) in Table 2 with detailed explanation and

literature review in Appendix D. In addition to factors identified

by the literature, we took into account two additional factors: the

Internet user rate, to account for the relevance of online news in

today’s media landscape, and whether countries are members of

three major blocs—NATO, EU, and BRICS—given their importance

in geopolitics. Country indices are sourced from the World Bank

and The Organisation for Economic Co-operation and Development

(OECD).

5.2.1 Feature preprocessing. Each factor is either numeric or cate-

gorical. Categorical factors are represented as dummy vectors. For

news synchrony analysis, we categorize all numeric factors. Subse-

quently, the category combination of a country pair is treated as

the pairwise category and is also represented using dummy vectors.

We re-scaled all numeric predictors and the dependent variables

(diversity and synchrony) so that they take values between 0 and 1.

5.2.2 Feature andmodel selection. To avoid co-linearity, we applied
feature and model selection techniques. Namely, we employ two

well-known criteria—Variance Inflation Factor (VIF) and Akaike

information criterion (AIC)—and report results for the best models

according to each criterion. We report models constructed with

either of the techniques to showcase robustness of our results and

methodology. VIF is a popular feature selection technique, whereas

AIC is a model selection method that identifies the predictors that

best explain the dependent variables. For all regressions we apply

the same model and feature selection.

5.3 Baseline synchrony and diversity regression
A naive measure of news article synchrony or diversity could be the

average news similarity between two countries of within a country,

respectively. This measure, however, faces a few issues. First, it is

computationally infeasible to compute the similarity between all

news article pairs. We were able to compute news article similarity

for only 13.6 million news article pairs, which consitutes only 1%

of all pairs. If we used only these pairs for computing the average,

the results would be noisy and not representative. Second, it is not

clear whether such simple averages are good measures of news

diversity and synchrony.

To showcase these issues and their consequences, we first per-

form our analysis using this baseline approach, without relying on

the global news event clusters. Following this approach, to explain

diversity of news, we regress the average pairwise similarity of

news published in that country against the country characteristics.

To explain news synchrony, we regress the average similarity of

news published between a country pair. The resulting regression

models achieved very low adjusted 𝑅2 = 0.13 for news diversity

and relatively low 𝑅2 = 0.30 for news synchrony (for the AIC). By

contrast, our main method based on global events (described in the

next subsection) achieved adjusted 𝑅2 = 0.446 or above, which is

notable and significantly surpasses that of similar works in social

science studies [30, 81]. In other words, the baseline model explains

much less variance in the similarity and diversity measures than

the model based on global events. That said, when comparing the

coefficients of the baseline models to our primary regressions based

on global news events, we find qualitatively similar results (see

Appendix E).

5.4 News diversity and synchrony measures
By anchoring the news diversity and synchrony measures in global

news events, we progress from an analysis rooted in 13.6 million

news article pairs to an analysis encompassing 1.4 billion article
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Figure 5: News synchrony graph backbone for the top 100
countries with the largest populations. Each edge represents
95% confidence that the respective news synchrony is non-
random [66]. Some countries are not selected into the graph
backbone, e.g. China. The main clusters are marked with
squares: the US and the UK and its former colonies (red
square), 5 countries of the old European Union of 1958 (pur-
ple), Latin America and Spain (blue), the Arab world (brown).

pairs that are within clusters. To this end, for each global news event,

we compute the percent of a country’s news articles reporting on it.

In this way, we form a distribution of articles over news events for

each country. Then, we define the news diversity within a country

as Shannon’s entropy of this country’s distribution [67]. Higher

entropy indicates greater diversity.

To measure the similarity of the events covered by news media

across countries, we introduce news synchrony. We define news syn-

chrony between a pair of countries as the negative Jensen-Shannon

divergence of their respective event distributions [22]. The more

negative the divergence, the more synchronized the countries’ me-

dia.We chose the term news synchrony over similarity because each

cluster encompasses a specific temporal span, and thus captures

both semantic and temporal alignment of news coverage.

5.5 News diversity within countries
The 5 countries with the highest internal news diversity are the

U.S.A., the United Kingdom, Canada, Switzerland, and Mexico.

To explain the news diversity of each country, we regress it

against country-level characteristics. The adjusted R
2
of the re-

gression models are 0.494 (for the best model with factors selected

through VIF) and 0.536 (for the best model selected via AIC). Table

3 lists the coefficients of the factors. The results indicate that the

Internet user rate within a country is the strongest predictor of

its news diversity. Internet adoption diversifies news consumption

within a population, probably due to the need of news outlets to

cater diverse interest and motivations of audiences [43]. The second

strongest predictor is the number of official languages and language

families within a country; similarly, religious diversity is a strong

Type Predictor

VIF

Cluster

similarity

model

coeeficient

AIC

Cluster

similarity

model

coeeficient

Intercept 0.347 0.414

Pol. Federalism? 0.118∗∗ 0.069∗∗

Within NATO? 0.073∗∗ 0.044∗∗

Within EU? −0.028∗∗ −0.093∗
Within BRICS? 0.006∗∗ 0.012∗∗

Democracy index 0.175∗∗

Peace index −0.195∗∗

Soc. Gini index 0.174∗∗ 0.196∗∗

Population 0.146∗ 0.102∗

Net Migration 0.027∗∗

Geo. Area 0.093∗∗

Cul. #media −0.148∗∗ −0.130∗∗
Same media? −0.069∗∗ −0.063∗∗
#languages 0.212∗∗ 0.025∗∗

#language families 0.058∗∗ 0.038∗∗

Religion diversity 0.154∗∗ 0.126∗∗

Internet user ratio 0.300∗∗ 0.371∗∗

Literacy Ratio −0.126∗∗

Table 3: News diversity regression coefficients. Positive coeffi-
cientsmeanmore news diversity. Predictor color corresponds
to its category. The top 2 predictors (according to both the
VIF and AICmodels) are in bold. Missing predictors or values
indicate they are dropped during feature selection process. **
and * symbols stand for 0.005 and 0.01 confidence intervals
respectively.

predictor, measured as the Shannon entropy of the distribution over

religions prevailing in a country. Overall, diverse culture is related

to diverse coverage of news events.

Among societal factors, a higher Gini index indicates greater

income inequality of the population and different incomes corre-

spond to different news consumption patterns [1, 34]. Gini index

is the third most predictive factor. Similarly, a larger population

is related to diversity of interests in news events. Among political

factors, federalist government mode is a predictor of diverse news,

perhaps because the policy aims of state governments are often

different from the national government [3], which poses political

power to media outlets and therefore decentralizes the media focus.

Unsurprisingly, news articles produced by the same media outlet

are more likely to be similar.

5.6 News synchrony betwen countries
Figure 5 depicts the backbone of the international news synchrony

network, extracted using an algorithm identifying non-random

edges [66]. In our case, edges indicate synchrony between the coun-

tries. The graph reveals four recognizable groups: Latin America,

the Arab world, five countries of the old European Union of 1958

(plus Lichtenstein, Austria, and Switzerland), and a group including

the US, the UK, and its former colonies. These groups align with

the geographic-linguistic communities in [38], which examined

the structure of international news flow by regressing the number

of international newspapers and trade amount between countries
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928

Type Predictor

VIF

Cluster

model

coefficient

AIC

Cluster

model

coefficient

Intercept 0.238 0.247

Econ. Trade 0.132∗ 0.155∗∗

GDP (high–high) 0.073∗ 0.073∗

GDP (low–high) 0.011∗∗

Pol. Same government mode 0.010∗

Both federalism 0.059∗ 0.057∗∗

Federalism and other 0.010∗

Both in NATO 0.051∗ 0.035∗

Both in BRICS 0.095∗ 0.086∗

Across NATO–BRICS groups 0.046∗ 0.060∗

Soc. Same Gini index category 0.020∗

Gini index (high–high) −0.037∗ −0.042∗∗
Gini index (low–high) −0.018∗

Democracy index (high–high) 0.076∗ 0.068∗∗

Democracy index (low–high) 0.023∗

Geo. Neighbor 0.016∗

Same Continent 0.012∗ 0.022∗∗

Cul. Same language 0.125∗ 0.139∗∗

Speak English −0.118∗ −0.130∗
Speak German 0.014∗

Speak French −0.079∗ −0.084∗
Speak Arabic 0.026∗

Speak Italian −0.135∗ −0.125∗
Speak Russian −0.036∗

Table 4: News synchrony regression coefficients. Positive
co-efficients mean more news synchrony between a pair of
countries. Predictor color corresponds to its category. The
top 2 predictors (according to both the VIF and AIC models)
are in bold. Missing predictors and values indicate they are
dropped during feature selection process. GDP is binarized
as “high" (>$500 billion) and “low" (<$500 billion). Democracy
index is encoded as “high" (>5) and “low" (<5). ** and * symbols
stand for 0.005 and 0.01 confidence intervals respectively.

against country characteristics. The most-connected countries in-

clude France, Canada, Belgium, Mexico, Switzerland, and the United

Kingdom. These nations consistently rank among the top 10 when

evaluated using both PageRank [54] and betweenness centrality.

Next, we regress news synchrony against the characteristics

of each country pair (Table 4). The adjusted R
2
of the models are

0.446 (VIF) and 0.448 (AIC). Trade volume is the strongest predictor,

which corroborates prior findings [63, 79]. While sharing a common

language is associated with higher news synchrony in general, this

effect varies for specific languages.
5
On the one hand, countries

speaking German or Arabic showed more news synchronization,

which might be attributed to their similarities in values, lifestyles,

and social norms. On the other hand, there is much less news syn-

chronization between countries speaking English or French, likely

due to the diversity of countries officially using these languages.

5
The effect for a particular country can be obtained by summing the "Same language"

coefficient with the coefficient of a particular language.

Speaking Italian and Russian also correlates with less news synchro-

nization. Italian-speaking countries are relatively idiosyncratic, e.g.,

Switzerland is arguably not influenced much by Italy, while Vatican

has a very particular role. On the other hand, Russian-speaking

countries, by the virtue of recent conflicts, may have different news

in their focus.

Sharing a border, or being broadly located in the same continent,

intuitively correlates with news synchrony. However, controlling

for these factors, geographic distance does not show a significant

effect on news synchrony—a result that may be attributed to trans-

portation, globalization and the role of the Internet [30]. The coun-

tries with the same government mode are more likely to synchro-

nize with each other in the news event coverage, especially those

with federalist systems, which may indicate that these countries

share public interests, ideology, or face similar social issues.

Interestingly, countries that belong to NATO experience more

news synchrony, possibly because they have common security

concerns and some of the largest events correspond to military

operations (Figure 4). Countries belonging to BRICS exhibit more

synchronized news, possibly due to their common developmental

interests. A similar effect is not evident for the EU members, which

may be the result of the recent resurgence of nationalist feelings

among its member states.

6 CONCLUSIONS
This work takes a first step towards the systematic study of news

media similarity at a global scale. While correlational in nature,

our work opens up avenues for future studies on the relationships

between agenda setting and geographic, economic, social, political,

and cultural factors. Furthermore, our computational methodology

for processing global news article data enables future research to

explore important historic event, such as war outbreaks, at scale

across potentially long time periods. Such research could offer

a more comprehensive understanding of the complex interplay

between media, public opinion, and international relations.

By systematically measuring news diversity and news synchrony,

and by analyzing their relationship with the country characteristics

and international relations, our findings contribute to computa-

tional media scholarship. This work provides empirical evidence

that substantiates our understanding of the global news ecosys-

tem, and unpacks the factors that influence news coverage within

and across countries. In particular, media scholars signaled a de-

cline in global news diversity [36, 39]. Our results lend nuance

to this phenomenon. On the one hand, the internal diversity of a

country (in terms of population size, political fragmentation, and

economic disparity among other factors) appears to reflect in more

diverse news coverage. On the other hand, after accounting for

a country’s internal news diversity, nations that are structurally

similar (proximate not only geographically but also culturally and

socially) and maintain consistent interactions (economically but

also politically) tend to synchronize their coverage of news events.

Taking a broader perspective, despite the faster and increasingly

globalized news cycle, the synchrony of international news reflects

complex geopolitical histories and local realities. As such, this work

offers methodologies to observe and interpret our continuously

evolving global narrative, as seen through the lens of the news that

document it.
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APPENDIX A: TRANSFORMER MODEL OF
NEWS SIMILARITY
News article input selection. News articles can be quite long, yet

most of the state-of-the-art deep learning models have a restricted

input length, e.g., 512 word-pieces [58, 71, 85]. Therefore, we have

to select a subset of the text of each news article to embed. Given

that most articles follow the pyramid writing format [56, 72], the

important information is often at the start; hence, we select part

of the head and a part of the tail of a news. We treat decision on

how much of the head vs. the tail to select as a hyper-parameter

we optimize for.

News similarity model architectures. There are two types of
mainstream encoders for text similarity: (1) cross-encoders which

accept two texts as inputs and output a similarity score directly;

and (2) bi-encoders which embed each input document separately

as a fixed-length vector, and the similarity is then computed as

the distance between two embeddings. We use a bi-encoder struc-

ture for two reasons. First, bi-encoders are more computationally

efficient: the document representations for the bi-encoder may

be pre-computed once and then used in all comparisons, while a

cross-encoder requires computing the representations of each pair

separately, thus incurring an 𝑂 (𝑛2) cost which is computational

infeasible for millions of articles in our data. Second, because each

document is encoded individually, bi-encoders allow for more text

to included as input and thus capture more information. The 2022

SemEval task on news similarity suggested that bi-encoders could

achieve comparable performance to cross-encoders [13], and this

finding also mirrored our experimentation.

News similarity mapping. The news article similarity was

labeled using a four point scale [1,4] for Very Dissimilar (𝑥 = 1),

Somewhat Dissimilar (𝑥 = 2), Somewhat Similar (𝑥 = 3), and Very

Similar (𝑥 = 4). We use labels of each annotator individually to

train the news similarity models.

There are multiple ways to map these values into the same range

as cosine similarity to compute the training loss. We can map labels

from the four point scale [1,4] to range [𝑙, 𝑟 ] via a linear transforma-

tion 𝑡 = 𝑝𝑥 + 𝑞 without the loss of functional monotonicity. In this

case two boundary conditions to news are 𝑙 = 𝑝 + 𝑞 and 𝑟 = 4𝑝 + 𝑞
so that 𝑝 =

(𝑟−𝑙 )
3

and 𝑞 =
(−𝑟+4𝑙 )

3
. Specifically we attempted an

“unsigned" transformation 𝑡𝑢 where 𝑙𝑢 = 0 and 𝑟𝑢 = 1, as well as

a “signed" transformation 𝑡𝑠 where 𝑙𝑠 = −1 and 𝑟𝑠 = 1 when we

optimize our model performance.

In addition, we observed that annotators spent much more time

on distinguishing Somewhat Similar or Somewhat Dissimilar pairs

than identifying Very Similar and Very Dissimilar pairs, which indi-

cates the decision boundary is vague across “Similar" and “Dissimi-

lar." We therefore experiment with transforming the optimization

objective to make its learning gradient steeper around this decision

boundary, so that the model can better learn the decision boundary.

To this end, we take the cubes of unsigned and signed similarity

values, 𝜙 = 𝑡3𝑢 and 𝜙 =
(2𝑡𝑠−1)3

2
+ 1

2
, respectively, where 𝜙 is the

output of: (1) cross-encoders or (2) the result of cosine similarity

between two news article embeddings in the case of bi-encoders.

Multi-label learning. In our data annotation, the news simi-

larity is ordinal, but in realistic scenario the similarity should be a

continuous, real-valued function. So annotation causes inevitably

precision loss of similarity even though the annotators have a very

good understanding of news similarity in their minds. We posit that

the similarity ratings of other aspects (other than Overall) may

also reveal information as to overall similarity of a news pair. By

introducing them into the learning objective, precision loss from

annotation can be mitigated. Specifically we devised two integrated

similarities 𝑦1 and 𝑦2 for training, which incorporate the average

of multiple aspects for a single pair:

𝑦1 = 𝑤1 ∗ 𝑥 + (1 −𝑤1) ∗ 𝑥𝑖 , (1)

where 𝑥𝑖 is the similarity of the news pair in dimension 𝑖 , 𝑦 is the

overall similarity of the news pair, 𝑖 ∈ {ENT, NAR}, and

𝑦2 = 𝑤2 ∗ 𝑥 + (1 −𝑤2) ∗ 𝑥 𝑗 (2)

where 𝑗 ∈ {GEO, ENT, TIME, NAR, STYLE, TONE}. The weights𝑤1

and𝑤2 can be optimized by empirical study of model performance.

During the training process, the learning objective of the model is to

minimize the difference from its output to the integrated similarity,

i.e. min |𝑦𝑖 − 𝜙 | where 𝑖 ∈ {1, 2}.
Experiments.We optimized the selection of the proposed ap-

proaches and corresponding hyper-parameters according to model

performance. In this way we identify the best model for our news

article similarity task.

We take 64% of our dataset for training, 16% for development,

and 20% for testing. We evaluated multiple large pre-trained mul-

tilingual deep learning models as the base of comparison; these

models are the state-of-the-art for textual similarity: LaBSE [21],

MPNet [71], and MUSE [85]. Also we compared two state-of-the-

art models in the specific news comparison task: HFL [84] and

Gatenlp[70]. Table 1 shows the summary. All models are trained

on 4x NVIDIA Tesla M40, and the news similarities at global scale

are inferred on 8x NVIDIA GeForce GTX 2080 Ti.

LaBSE outperformed the other base models, perhaps supported

by its rich multilingual pre-training data. In general, all base models

perform much worse than the fine-tuned models, which reveals the

uniqueness of the news similarity task—i.e., the task is not just mea-

suring textual similarity—and thus the need of developing a dataset

for this task. By empirical test, we found the best hyperparameter

configuration of our multiligual news similarity model is to take

the first 456 wordpieces and last 56 wordpieces from each news

article, with the basis of LaBSE model. The best performance was

found using the “unsigned” range for embedding space with 𝑡𝑢 and

use 𝑦1 as the integrated similarity for learning with𝑤1 = 0.8. Our

best bi-encoder model is able to achieve comparable performance

to the HFL cross-encoder model while being an order of magnitude

times faster.

APPENDIX B: HEURISTIC REDUCING THE
NUMBER OF NEWS ARTICLE PAIRS
These thresholds were selected to optimize the proportion of similar

news article pairs (Figure 6), while still remaining computationally

viable. The sample percentage represents the percentage of news

article pairs that are labeled as (somewhat) similar in all the pairs

with the same threshold (publish date interval or Jaccard similarity

of named entities).
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Figure 6: Distribution of publish date intervals (left) and Jac-
card similarity of named entities (right) for the news article
pairs labeled as (somewhat) similar by human annotators in
the extended dataset of Chen et al. [13].

Figure 7: Average similarity of news article pairs between
and within clusters, sharing or not sharing named entities
(NE), using the similarity scale of Chen et al. [13].

APPENDIX C: SIMILARITY OF NEWS BETWEEN
ANDWITHIN NEWS EVENT CLUSTERS.
As a supplementary evaluation of the quality of the news clusters,

we briefly discuss their face validity and robustness. To assess face

validity, we analyzed ground-truth human assessment of news sim-

ilarity within and between clusters (as shared in the news similarity

dataset by Chen et al. [13]).

News article pairs that share no named entities but are within

the same cluster, exhibited higher average similarity than the news

pairs that share named entities but belong to different clusters

(Figure 7). This suggest that sharing a cluster is a more potent

indicator of news article similarity than sharing a named entity.

APPENDIX D: PREDICTORS USED TO EXPLAIN
NEWS COVERAGE ACROSS COUNTRIES
We surveyed extensive literature for traits of countries and inter-

national relations that are related to similar news practices, and

categorized them into five areas: economic, political, societal, ge-

ographic and cultural [44, 63]. Explanation for each area are pre-

sented in the rest of this section. Each factor is either numeric or

categorical, as described in Table 5.

Economic. Economy has been widely found as a strong factor to

influence media content and news flow in prior studies [44, 63, 79].

On the one side, financial limitations of media outlets, particu-

larly their dependence on advertising revenue, play a major role in

shaping their editorial policies [51]. A typical indicator of national

economy level can be gdp [29, 62]. On the other side, modern news

organizations become market-oriented and thus are often more fo-

cused on covering stories that will generate the most clicks, views,

or ad revenue. For example, a drop of United States in Chinese trade

volume would also lead to a decrease in its attraction in Chinese

news coverage and its agenda-setting power on Chinese media.

Also low income countries usually have different developing needs

for international news from each other [80].

Specifically economic factors include one national trait – gdp[27,

30, 44, 62, 63]; and two international relatedness – trade [18, 30, 37,

44, 63, 81] and investment [44].

Political. The governments can manipulate journalistic output

with their regulatory and legislative powers. Also the reporters

rely on dominant social and political institutions for routine access

to a significant volume of newsworthy information so that their

deadlines and demands can be met [28]. Therefore how the coun-

tries distribute and execute political power internally or externally

also play a role in shaping the perspectives and agendas of news

coverage. Furthermore military also affects the media agenda as it

guarantees the power execution procedure. Military aids to a coun-

try can support its national power while conflicts with or within a

country may threaten its government control.

Specifically political factors include national traits and inter-

national relatedness in terms of political freedom (democracy in-

dex) [38, 53, 60, 63], press freedom [78, 81], nation hierarchy (re-

public and federalism) [32, 77], diplomatic [29, 30, 44], military

power(military strength index)[30, 38, 62, 81], and conflict inten-

sity(global peace index) [62, 63].

Societal.As the foundation of society, people ourselves naturally
become a indispensable part in the media system. When news are

spread, not only the editors and journalists decide news coverage

policy [28], but also the audiences’ attention form the media mar-

ket and thus affect the newsworthiness [76]. Population size and

immigration size are two typical indicators of people diversity, and

population density can decide the frequency and strength of social

connection between people. Social inequality contribute audience

diversity too as individuals from different socioeconomic classes

may have different interests[1, 8], which can be reflected by gini

index.

Specifically societal factors include population [18, 27, 37, 38, 44,

63], immigration[35, 62, 63, 81], density [18], gini index [63].

Geographic. Geographic size and location of a country deter-

mines the pattern of its internal and external communications and

thus shape its news coverage. When events occur far away from

the media outlet’s base, reporters may face logistical and financial

challenges in covering them, which limit the amount and quality of

coverage. Additionally, distance can create language and cultural

barriers that may make it harder for journalists to fully understand

and accurately report on events.

Specifically geographic factors include area [27, 44, 63], distance

[18, 27, 37, 38, 63, 64], border [25, 27, 30, 37, 62, 81], continent or

region [18, 30, 38]

Cultural. One way that culture shape media agendas is through

the advocated values and norms within a particular society. For

example, some cultures have a strong emphasis on community and
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social responsibility, which may lead media outlets to prioritize sto-

ries about local issues and social justice. While some other cultures

may have a greater emphasis on individualism and consumerism,

which may result in more media attention to lifestyle and enter-

tainment. Culture can also influence the way that news stories are

framed and interpreted by media outlets, depending on factors such

as language, symbolism, and historical context.

Specifically cultural factors include language [18, 37, 38, 63, 64,

81], religion [44, 63, 64], literacy rate [18, 44, 63], Internet user rate,

media numbers [24, 63, 80, 81].

APPENDIX E: BASELINE NEWS SYNCHRONY
MEASURE
We mirrored the analysis in §5 using the pairwise news similarity

and obtained qualitatively similar results, as shown in Table 6 and

Table 7 (blank values indicate the factors are not excluded from the

model by the feature selection process).
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Type Predictor Type

Econ.

Trade [18, 30, 37, 44, 63, 81] numeric

GDP [27, 30, 44, 62, 63] numeric

Financial Investment [44] numeric

Pol.

Democracy index [38, 53, 60, 63] numeric

Political blocs categorical from {NATO, EU, BRICS}

Press freedom [78, 81] numeric

Mode of government [32, 77] categorical from {Federalism, Unitary republic, Other}

Diplomatic ties [29, 30, 44] categorical from {Ambassador Relation, Other}

Military strength index [30, 38, 62, 81] numeric

Conflict intensity (global peace index) [62, 63] numeric

Soc.

Population [18, 27, 37, 38, 44, 63] numeric

Immigration [35, 62, 63, 81] numeric

Population density [18] numeric

Gini index [63] numeric

Geo.

Distance [18, 27, 37, 38, 63, 64] numeric

Neighbors [27, 30, 37, 62, 81] categorical from {Neighbors, Other}

Area [27, 44, 63] numeric

Continent [18, 30, 38] categorical from {Asia, Africa, North America, South America,

Antarctica, Europe, and Australia}

Cul.

Language [18, 37, 38, 63, 64, 81] categorical from {English, Spanish, German, French, Chinese,

Polish, Turkish, Italian, Arabic, Russian}

Religion [44, 63, 64] categorical from {Christian, Muslim, Unaffil, Hindu, Buddhist,

Jewish, Folk religion, Other religion}

Media outlets number [24, 63, 80, 81] numeric

Literacy rate [18, 44, 63] numeric

Internet user rate numeric

Table 5: Predictor types considered in the within-country and between-country models with references to studies that mention
them.
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1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

Predictor

VIF

Cluster

similarity

model

coeeficient

VIF

Cluster

similarity

model

p-value

AIC

Cluster

similarity

model

coeeficient

AIC

Cluster

similarity

model

p-value

Intercept 0.653 0.003 0.586 0.005

Republic?

Federalism? -0.1178 0.002 -0.0692 0.002
Within NATO? -0.726 0.002 -0.044 0.002

Within EU? 0.028 0.004 0.093 0.007

Within BRICS? -0.006 0.003 -0.012 0.003

GDP

Gini index -0.174 0.003 -0.196 0.003

Population -0.146 0.007 -0.102 0.010

Net Migration -0.027 0.006

Area -0.093 0.007

Democracy index -0.1750 0.004

Peace index 0.1950 0.004

#media 0.148 0.004 0.130 0.004

Same media? 0.069 0.001 0.063 0.001

#languages -0.2118 0.000 -0.0253 0.000

#language families -0.058 0.004 -0.0378 0.004

Same language?

Internet user rate -0.300 0.003 -0.371 0.004

Literacy Rate 0.126 0.004

Religion diversity -0.154 0.002 -0.126 0.002

Table 6: Predictors of within-country similarity regression model based on Ordinary least squares. Negative coefficients mean
less similarity and more diversity. Predictor color corresponds to its category. The coefficients align across Cluster model and
Similarity model are bold. The strongest predictor is highlighted. Missing value indicates either this factor is dropped during
factor selection process.
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1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

Predictor

VIF

Cluster

model

coefficient

VIF

Cluster

model

p-value

VIF

Pairwise

model

coefficient

VIF

Pairwise

model

p-value

AIC

Cluster

model

coefficient

AIC

Cluster

model

p-value

AIC

Pairwise

model

coefficient

AIC

Pairwise

model

p-value

Intercept 0.2378 0.000 0.6269 0.000 0.248 0.000 0.6448 0.000

Continent sim 0.0385 0.000 -0.0303 0.000 0.0372 0.000 -0.0305 0.000

Geographic distance -0.0389 0.000 -0.0393 0.000

Same government mode type 0.0153 0.000 0.0040 0.281 0.0128 0.000

Both republic

Both federalism 0.0523 0.000 0.0100 0.220 0.0527 0.000 0.0123 0.110
Neither republic nor federalism

Republic and federalism

Republic and other

Federalism and other 0.0034 0.384 0.0074 0.037 0.0055 0.053

Same political bloc -0.0319 0.012 -0.0287 0.000

Both in NATO 0.0046 0.762 -0.0082 0.659 -0.0235 0.005

Both in EU 0.0189 0.324

Both in BRICS -0.0031 0.930 -0.0374 0.221

Across NATO–EU groups -0.0189 0.273

Across NATO–BRICS groups 0.0043 0.819 -0.0090 0.602

Across EU–BRICS groups 0.0024 0.891 0.0096 0.555

Same GDP category -0.0008 0.803

GDP (low–low)

GDP (high–high) 0.0420 0.000 0.0077 0.257 0.0426 0.000

GDP (low–high) 0.0008 0.813

Same Democracy index category -0.0156 0.005

Democracy index (low–low)

Democracy index (high–high) 0.0632 0.000 0.0375 0.000 0.0557 0.000 0.0376 0.000
Democracy index (low–high) 0.0082 0.181 0.0158 0.005

Same language 0.107 0.000 0.1091 0.000

Speak English -0.0762 0.000 0.0294 0.000 -0.0777 0.000 0.0289 0.000

Speak German 0.0657 0.008 0.0702 0.002 0.0646 0.008 0.0705 0.001
Speak Spanish -0.0524 0.000 -0.0528 0.000

Speak Polish

Speak French -0.0426 0.001 0.0556 0.000 -0.0436 0.000 0.0560 0.000

Speak Chinese -0.1188 0.109 -0.0305 0.652 -0.1187 0.108

Speak Arabic 0.0138 0.243 -0.0387 0.000 -0.0397 0.000

Speak Turkish

Speak Italian -0.0855 0.251 0.0110 0.871

Speak Russian

Table 7: Predictors of between-country similarity where country pairs are taken as samples. Negative co-efficients mean less
similarity and more diversity (with country pairs). Predictor color corresponds to its category. The coefficients align across
Cluster model and Similarity model are bold. The strongest predictor is highlighted. Missing value indicates this factor is
dropped during factor selection process. GDP is binarized as “high" (>$500 billion) and “low" (<$500 billion). Democracy index
is encoded as “high" (>5) and “low" (<5)
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