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ABSTRACT

Concealed objects are often hard to identify from still images, as often camou-
flaged objects exhibit patterns seamless to the background. In this work, we pro-
pose a novel video concealed object detection (VCOD) framework, called SLT-
Net, as the concealed state is likely to break when the object moves. The pro-
posed SLT-Net leverages on both short-term dynamics and long-term temporal
consistency to detect concealed objects in continuous video frames. Unlike previ-
ous methods that often utilize homography or optical flows to explicitly represent
motions, we build a dense correlation volume to implicitly capture motions be-
tween neighbouring frames. To enforce the temporal consistency within a video
sequence, we utilize a spatial-temporal transformer to jointly refine the short-term
predictions. Extensive experiments on existing image and VCOD benchmarks
demonstrate the architectural effectiveness of our approach. We further collect
a large-scale VCOD dataset named MoCA-Mask with pixel-level handcrafted
ground-truth masks and construct a comprehensive VCOD benchmark with pre-
vious methods. Videos and codes can be found at: [Link].

1 INTRODUCTION

Video Concealed Object Detection (VCOD) is the task of discovering objects in a video that
appearance-wise exhibit a great deal of similarity to the background scene. Despite enjoying wide
applications (e.g., surveillance and security (Liu et al., 2019a) , autonomous driving (Ranjan et al.,
2019), medical image segmentation (Fan et al., 2020b; Wu et al., 2021), locust detection (Kumar &
Rahman, 2021) and robotics (Michels et al., 2005)), the problem of COD is a daunting task as con-
cealed objects are often indistinguishable to naked-eyes. This, in turn, has made VCOD a relatively
new and unexplored problem in computer vision, as compared to several related problems such as
video object detection (VOD) (Yang et al., 2019; Beery et al., 2020), video salient object detection
(VSOD) (Ji et al., 2021b) and video motion segmentation (VMS) (Yang et al., 2021) tasks.

In majority of problems in computer vision (e.g., instance segmentation, saliency detection), it is
assumed that objects have clear boundaries. This allows us to formulate the problem at the image-
level, and even consider improvements if motion information is available to us. In contrast, object
boundaries are ambiguous and indistinguishable when it comes to detecting concealed objects. This
not only makes detection from images challenging, but also results in inaccurate estimation of optical
flow and motion information in videos (Lamdouar et al., 2020).

The lack of clear boundaries means that the appearance of the concealed object resembles the back-
ground. This shows itself as two fundamental difficulties: 1) the object boundaries are often seam-
lessly blended into the background and is observable only when the object moves; 2) the object
often has repetitive textures to the environment, hence determining the movement of pixels across
frames to estimate the motion (e.g., as done in optical flow) is erratic and erroneous. Therefore
and to successfully address VCOD, a neural network needs to successfully discovers the nuances
between the concealed object and the background with the help of motion information as a result of
the first difficulty. However, the motion information is itself noisy and inaccurate according to the
second difficulty. As such, employing techniques developed for VOD, VSOD, and VMS may fail
miserably if naively employed or combined to address the problem VCOD.

In this work, we introduce a novel VCOD framework (SLT-Net) that utilize a short-term dynamics
and long-term temporal consistency to detect concealed objects in videos. Specifically, we employ
a short-term dynamic module to implicitly capture the motion between consecutive frames. Rather
than using optical flow to explicitly represent motions, we use a full-range correlation pyramid strat-
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egy to implicitly represent them. The main motivation behind the use of a correlation-pyramid is that
even SOTA optical flow algorithms fail to estimate motions for concealed objects and their errors
get accumulated over the duration of the video. To provide stable estimation, we further introduce a
long-term refinement module to alleviate the effect of accumulated inaccuracies that occurred in the
short-term dynamic module.

We realize the SLT-Net as a hybrid neural network with both transformer and CNN components. In
particular, we use a transformer structure to encode features for constructing correlation pyramid.
Aside from its design flexibility, features extracted by the transformer contain global contextual
information with long-range dependencies and less inductive bias (Wang et al., 2021b), which we
observe to be more distinguishable in estimating the motion.

While the correlation pyramid strategy can effectively capture motions for detecting concealed ob-
jects, it cannot scale gracefully to long video sequences due to its computational complexity. To
solve this issue, we adopt a sequence-to-sequence model with a spatial-temporal transformer to re-
fine the pair-wise prediction with long-term consistency across the videos as we empirically find it
is more accurate than standard ConvLSTM model.

Being an emerging problem, no large-scale dataset was available to evaluate and benchmark VCOD
systems. To promote new developments in this domain, we have curated a large-scale VCOD dataset
based on the Moving Camouflaged Animals (MoCA) (Lamdouar et al., 2020). The new dataset, or
MoCA-Mask for short, contains 87 video sequences with 22,939 frames in total with pixel-level GT
masks. MoCA-mask encapsulates a variety of challenges such as complex background, and tiny and
well camouflaged objects. We provide annotations, bounding boxes and dense segmentation masks
for every 5th frame for all the videos in the dataset. For the frames without dense annotations, we
provide pseudo GT masks generated by a SOTA optical flow algorithm (Teed & Deng, 2020). We
also provide the first comprehensive benchmark for existing VCOD methods.

In a nut, our contributions are as follows:

• A new framework called SLT-Net and achieve the new SOTA performance.
• The largest-scale MoCA-Mask dataset for the challenging VCOD task.
• The comprehensive VCOD benchmarks, which can facilitate the progress of this field.

2 RELATED WORKS
COD. As the opposite of “salient” object detection, “concealed” object detection aims to identifying
a camouflaged object from its background. Prior work ANet (Le et al., 2019) incorporated classifi-
cation information into representation learning. MGL (Zhai et al., 2021) presented a joint learning
framework for detecting camouflaged objects and their edges by two mutual graph-based modules.
PFNet (Mei et al., 2021) introduced a novel mining strategy to discover false-positive predictions
and remove false-negative ones. SINet (Fan et al., 2020a) address the problem by first performing a
coarse search for camouflaged objects and then refining it by segmentation. An improvement called
SINet-v2 (Fan et al., 2021a) was proposed with the neighbor connection decoder and the reverse
attention mechanism. Lately, Lv et al. (2021) introduced two new tasks for camouflaged object
detection, namely camouflaged object discriminative region localization and camouflaged object
ranking, along with relabeled new NC4K testing dataset.

SOD. In order to find the most visually distinctive objects in an image, classical studied used hand-
crafted features. A deep network is often trained to benefit the task in one of the following aspects:
1) to learn better salient object edges or features, e.g., EGNet (Zhao et al., 2019), BASNet (Qin
et al., 2019) 2) to learn better refinement network, e.g., RFCN (Wang et al., 2016), CPD (Wu et al.,
2019) 3) to better handle scale variation, e.g., DSS (Hou et al., 2017), GateNet (Zhao et al., 2020)
4) to better integrate the information, e.g., DCL (Li & Yu, 2016), TSPOANet (Liu et al., 2019b),
ICON (Zhuge et al., 2021).

VSOD. To detect salient objects in videos, DLVS (Wang et al., 2017) introduced fully convolutional
networks for pixel-wise saliency prediction. DSR3 (Le & Sugimoto, 2017) exploited an end-to-end
3D neural network to produced video sequences, which incorporates 3D CNN modules combined
with recurrent refinement units to predict saliency maps. To better learn temporal information over
frames, following works considered SpatioTemporal CRF (Le & Sugimoto, 2018), pyramid dilated
convLSTM (Song et al., 2018) in the design of their networks. FGRN (Li et al., 2018), RCRNet (Yan
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Figure 1: The overall pipeline of the SLT-Net. The SLT-Net consists of a short-term detection mod-
ule and a long-term refinement module. The short-term detection module takes a pair of consecutive
frames and predicts the concealed object mask for the reference frame. The long-term refinement
module takes T predictions from the short-term detection module along with their corresponding
referenced frames to generate the final predictions.

et al., 2019) adopted extra flow guided networks to improve temporal coherence. Later, SSAV (Fan
et al., 2019) specifically focused on saliency shift phenomenon and established a comprehensive
benchmark for VSOD. FSNet (Ji et al., 2021b) leveraged the mutual constraints of appearance and
motion cues, demonstrating superior performances to many existing methods.

VMS. The task of VMS focuses on discovering moving objects in dynamic videos. Traditional
approaches normally address this problem by extracting motion boundaries in the flow field and then
refining the initial estimate with appearance features (Papazoglou & Ferrari, 2013), or combining
motion and appearance information by a fusion architecture (Jain et al., 2017). Another line of
work explicitly leverage optical flow as the input to train a CNN based network and generate pixel-
level motion labels rely on supervised learning, i.e., (Tokmakov et al., 2017) or in an unsupervised
manner, i.e., (Yang et al., 2021).

VCOD. Different from VMS, visual cues of camouflage tasks are considered less effective than
motion cues. Prior works mainly relied on homography or optical flows to detect motion patterns.
(Bideau & Learned-Miller, 2016; Bideau et al., 2018) segment moving objects from environment by
approximating different motion models computing from dense optical flow. In particular, (Bideau &
Learned-Miller, 2016) proposed a two step segmentation algorithm, which first compensated for the
camera rotation and then segmented the angle of the optical flow into objects and the background.
Although each motion model is updated with orientations of optical flow over the time, the initial
motion is heuristic. In (Bideau et al., 2018), a trainable network to segment from the angle field
rather than raw optical flow is developed. (Lamdouar et al., 2020) proposed a video registration
and motion segmentation framework, along with a larger camouflaged dataset (MoCA) labelled by
bounding boxes for every 5th frame. The explicit alignment method by optical flow builds spatial
correspondence between neighboring frames. However, the optical flow estimation may not be accu-
rate enough to support effective alignment, particularly in dynamic scenes with fast object motions.

3 THE PROPOSED FRAMEWORK
In this section, we provide a detailed description of our framework. The input of our SLT-Net is
a video clip that contains concealed objects, and the output is a set of pixel-wise binary masks of
the concealed objects for each frame in the video. Specifically, let us denote the video clip with T
frames by {It}Tt=1, I

t ∈ R3×H×W , where H,W are the height and the width of the frame. Our
network is to assign a binary mask Mt ∈ {0, 1}H×W for the video frame It at time t.

3.1 OVERVIEW

The overall framework of the SLT-Net is shown in Figure 1. The SLT-Net consists of a short-term
detection module and a long-term refinement module. The short-term detection module takes a pair
of consecutive frames and predicts the concealed object mask for the reference frame1. Then the

1The result for the last frame can be achieved by swapping the reference frame for the last pair.
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Figure 2: The overview of our short-term network pipeline. The network first extracts features from the input
frames by a transformer encoder, then computes a full-range volumetric correspondence between the reference
frame It and its neighboring frame It+1 to form a correlation volume pyramid. A CNN decoder is used to
predict the final prediction from the motions captured by the short-term correlation pyramid.

long-term refinement module takes T predictions from the short-term detection module as well as
their corresponding referenced frames to generate the final prediction results. To train the SLT-Net,
we adapt a two-stage strategy. We first train the short-term detection module using our pixel-wise
annotations only. Once the network converges, we attach the long-term refinement module to the
SLT-Net and train the whole model while fixing the short-term detection network.

3.2 SHORT-TERM ARCHITECTURE

We illustrate our short-term architecture in Figure 2. It takes two consecutive frames as input from a
video and predicts a binary mask of the reference frame. Our model consists of three main modules:
(1) Transformer Encoder for feature extraction; (2) Short-term Correlation Pyramid for captur-
ing short-term dynamics; and (3) CNN Decoder to predict the short-term segmentation. Below we
describe details of each module.

(1) Transformer Encoder. We adapt a Siamese structure with the pyramid vision transformer
(PVT) (Wang et al., 2021a) to extract features from two consecutive frames. The encoder con-
sists of four stages that generate feature maps at four different scales. All stages share a similar
structure, including a patch embedding layer and transformer blocks. The sizes of the features at
each stage are Ci × H/2i+1 ×W/2i+1, i ∈ {1, 2, 3, 4}, where the H,W,C represent the height,
the width and the channels. We set C = 32 in our experiments. Following (Fan et al., 2021a), we
adapt three texture enhanced modules (TEM) for the features from the last three stages. To attain
more discriminative feature representations, each TEM includes four parallel residual branches.

(2) Short-term Correlation Pyramid. Prior works, i.e., (Tokmakov et al., 2017; Yang et al., 2021)
explicitly incorporate motion by taking optical flow from consecutive frames as the inputs into a
deep network. However, inaccurate optical flow may result in error accumulation at subsequent pre-
dictions. If we would like to jointly optimize the optical flow module with the segmentation module,
the ground truth of optical flow will be needed. To solve this issue, we propose a correlation pyramid
to implicitly capture motion information. Since the features that form the correlation pyramid will
be updated with the segmentation ground truth. The motion estimation will be updated accordingly.

As shown in Figure 3, a correlation aggregation block (CAB) C is defined as the core unit of the
short-term correlation pyramid. It allows us to find correspondences at a global scale. Given a pair of
frame features{ft, ft+1} ∈ RC×H′×W ′

, the 4D correlation volume C(It, It+1) ∈ RH′×W ′×H′×W ′

is defined as:
C(It, It+1)xyuv = exp

(∑
c Fθ(It)xyc · Fθ(It+1)uvc

)
, (1)

with c being the index along the channel dimension of frame features. It pairs up all the pixels in the
neighboring features and computes their correlation by a radial basis function kernel.

Next, we aggregate the features based on the correspondence, by normalizing the correlation vol-
ume C(It, It+1)xyuv along the last two dimensions uv over their sum. The normalized correlation
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Figure 4: The overview of the proposed long-term consistency architecture. It formulates the process
as a seq-to-seq problem and refines the pair-wise predictions with a spatial-temporal transformer.

volume is computed as follows:
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Figure 3: Correlation aggregation block (CAB) com-
putes the normalized correlation volume of feature
maps between the reference frame (green blocks) and
the target frame (yellow blocks).

Figure 3 only shows a correlation on one
scale. To make the network learn more de-
tailed information, we construct a correla-
tion pyramid {Ci}, i ∈ {2, 3, 4} by incor-
porating the extracted multi-scale features
from the transformer encoder.

(3) CNN Decoder. As shown by (Fan
et al., 2021a), the neighbor connection de-
coder is more reliable than conventional
connection decoder (i.e., densely connec-
tion or short connection). In addition,
the group-reversal attention (GRA) strat-
egy used in (Fan et al., 2021a) can pro-
vide more accurate segmentation results
around the object boundaries. Based on
these, we directly feed features from the short-term correlation pyramid, i.e., {f ′(i)t←t+1} ∈
RC×H/2i+1×W/2i+1

, i ∈ {2, 3, 4}, into the GRA blocks, and generate refined feature maps, pro-
gressively. The neighbor connection decoder (NCD) is used to generate a coarse map, which could
provide reversal guidance of rough location of the concealed object. In this way, we gather the
low-level features from the CNN decoder and the high-level features from the correlation pyramid.

Learning Strategy. We train the short-term training stage by minimizing the loss below:

L = Lwce + Lwiou. (3)

The weighted intersection-over-union loss Lwce increases the weights of hard pixels to emphasize
their importance. The weighted binary cross entropy loss Lwiou pays more attention to hard (i.e.,,
uncertainty) pixels rather than assigning all pixels with equal weights. Readers could refer to prior
work (Wei et al., 2020) to find more details regarding the definitions of these two loss functions.

3.3 LONG-TERM CONSISTENCY ARCHITECTURE

To encourage long-term temporal consistency, we introduce a refinement network with the spatial-
temporal information to generate final predictions. Given a sequence of I1:T = {I1, I2, . . . , IT }
and the pixel-wise predictions of Ps

1:T = {Ps
1,P

s
2, . . . ,P

s
T } from our short-term architecture, we

formulate the long-term consistency refinement process as a seq-to-seq problem.

Figure 4 illustrates the long-term consistency architecture. We use the same backbone as the short-
term architecture, i.e., transformer encoder and CNN decoder modules, since it has been already
pre-trained on concealed datasets that could largely accelerate the long-term training processing.
For each frame of the input sequence, we concatenate the color frame It with its corresponding
prediction Ps

t , t ∈ [1 : T ] on the channel dimension, and then stack every concatenated frame
within the sequence to form a 4D tensor X1:T ∈ RT×4×H×W . The network takes X1:T as the input
and output the final prediction sequence Pl

1:T ∈ RT×1×H×W .
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There are two kinds of seq-to-seq modeling architecture: one is to use convLSTM to model the
temporal information, and the other is to use a transformer. We implement both architectures and
compare their results in Section 4.3. We empirically find that using the transformer structure can
lead to better results, so we select the spatial-temporal transformer (STT) (Ji et al., 2021a) to enforce
the long-term consistency.

We show the details of STT on the right side of Figure 4. For each target pixel, to reduce the com-
plexity for building a dense spatial-temporal affinity matrix, we select a fixed number of relevance
measuring blocks to construct the affinity matrix within a constrained neighborhood of it.

We apply the hybrid loss (Fan et al., 2021b) during the training:

Lhybrid = Lwce + Lwiou + Le, (4)

where Le is the Enhanced-alignment loss. The hybrid loss can guide the network to learn pixel-,
object- and image-level features.

3.4 SEMI-SUPERVISED TRAINING PROCEDURE

As the annotations are provided in the form of dense segmentation masks every 5th frame, we adopt
a bi-directional consistency check strategy to generate pseudo masks for unlabelled frames. Given
five consecutive frames {It, It+1, It+2, It+3, It+4} and labelled ground-truth gtt, we first estimate
forward and backward optical flow fields between frame It and It+n, n ∈ [1, 4]. Then we can
produce the warped ground-truth ĝtt+n with the inverse warping from ground-truth gtt.

Step 1 - Flow Estimation. We take the ground-truth mask of the reference frame It as an example,
to generate pseudo ground-truth of its immediate following frame It+1. The optical flow estimation
module2 O takes It and It+1 and predicts the optical flow field:

uxt,t+1, uyt,t+1 = O(It, It+1), (5)

where uxt,t+1 and uyt,t+1 denote the x, y components of the estimated flow field, respectively.
The flow field maps each pixel (x, y) in It+1 to its corresponding coordinates (x′, y′) = (x +
uxt,t+1(x), y + uyt,t+1(y)) in It.

Step 2 - Forward / Backward Pseudo Ground-truth. Given the forward optical flow se-
quences (flowt,flowt+n), n ∈ 1, 2, 3, 4, we can obtain the aligned neighboring frame ĝtt+n
by a warping interpolation on gtt using the mapped coordinates. After repeating the ex-
plicit alignment step for the preceding frame, we acquire the sequence of warped input frames
{gtt, ĝtt+1, ĝtt+2, ĝtt+3, ĝtt+4}. The backward pseudo ground-truth sequences are obtained by
performing warping ground-truth masks with backward optical flows in the reverse order.

Step 3 - Bi-directional Consistency Check. To identify valid masks, we adopt forward-backward
consistency check to eliminate inconsistent regions. Under the forward-backward consistency as-
sumption (Sundaram et al., 2010), traversing flow vector forward and then backward should arrive
at the same position. We mark pixels as invalid whenever this constraint is violated. As shown in
Figure 5, the invalid regions emphasized by the orange boxes are marked as background.

Forward Backward Bi-directional

Figure 5: Illustration of forward-backward consistency check. After bi-directional check, undesir-
able ghosting artifacts, i.e., the nose (red box) of the elephant in forward direction and the tail (blue
box) in backward direction, and occlusions can be effectively removed.

2In practice, we make use of RAFT (Teed & Deng, 2020) to obtain the optical flow.

6



Under review as a conference paper at ICLR 2022

4 EXPERIMENTS
Metrics. We adopt following evaluation metrics to measure the pixel-wise masks, including: (1)
MAE (M ), which assesses the pixel-level accuracy between prediction and labeled masks. (2)
Enhanced-alignment measure (Eφ) (Fan et al., 2018) , which simultaneously evaluates the pixel-
level matching and image-level statistics. This metric is naturally suited for assessing the overall
and localized accuracy of the concealed object detection results. Note that we report mean Eφ in the
experiments. (3) S-measure (Sα) (Fan et al., 2017), which evaluates region-aware and object-aware
structural similarity. (4) Weighted Fmeasure Fwβ (Margolin et al., 2014) can provide more reliable
evaluation results than the traditional Fβ . (5) meanDice, which measures the similarity between two
sets of data. (6) meanIoU, which measures the overlap between two masks.

Baseline Models. We select nine cutting-edge baselines, including I. six image based methods
i.e., EGNet (Zhao et al., 2019), BASNet (Qin et al., 2019) , CPD (Wu et al., 2019), PraNet (Fan
et al., 2020b), SINet (Fan et al., 2020a), SINet-v2 (Fan et al., 2021a), and II. three video based
methods, i.e., PNS-Net (Ji et al., 2021a), RCRNet (Yan et al., 2019), and MotionGroup (Yang et al.,
2021). Please refer to the Appendix for our implement details.

4.1 DATASETS

CAD. Camouflaged Animal Dataset (CAD) is a small set of camouflaged animals, first introduced
by (Bideau & Learned-Miller, 2016). It includes 9 short video sequences in total that were extracted
from YouTube videos and accompanying hand-labeled ground-truth masks on every 5th frame. We
also provide pseudo GT masks by bi-directional consistency check strategy (Teed & Deng, 2020) to
enable further works to train on this small dataset.

COD10K. We train and evaluate all still image based methods on COD10K (Fan et al., 2021a). It is
currently the largest COD dataset. It consists of 5,066 camouflaged images (3,040 for training, 2,026
for testing), which is divided into 5 super-classes and 69 sub-classes. This dataset also provides
high-quality fine annotation, reaching the level of matting.

MoCA-Mask. The original Moving Camouflaged Animals (MoCA) Dataset (Lamdouar et al.,
2020) includes 141 Video sequences. These sequences are collected from YouTube with mostly
resolution 720× 1280, and sampled at 24 fps, resulting in 37K frames. The dataset covers 67 kinds
of animals moving in natural scenes. However, it contains a number of video sequence where an-
imals are not well camouflaged and easily to be found. Also, the evaluation metrics only report
animals located in a bounding box. Our goal is to build a comprehensive benchmark with more
accurate evaluate criteria. To reach this, we reorganize the dataset as MoCA-Mask.

• Remove Invalid Scenes. We first select and exclude scenarios that animals are obvious
and easy to identified from the background at our first glance. After cleaning the dataset,
our new subset includes 87 video sequences, 22,939 frames in total.

• Handy-craft Segmentation Masks. For annotations, we further provide accurate handy-
craft segmentation masks on every 5th frame. Thus our handy-craft GT consists of two
formats, that is 4,691 bounding box annotations as well as 4,691 pixel-level masks.

• Generate Pseudo Masks. We introduce a bidirectional optical flow-based strategy to gen-
erate our pseudo GT masks, refer to Section 3.4. Given a sequence of handy-craft GT with
5th interval, we first estimate the forward and backward directions of optical flows and
warp the GT with the corresponding optical flows. Then invalid pixels are eliminated by
processing the bi-directional check.

• Dataset Split. The whole dataset is split into 71 sequences, 19,313 frames for training,
and 16 sequences, 3,626 frames selected for testing purpose. The summary of each sub-
sequence distribution could be found in the Appendix.

4.2 BENCHMARKS

Settings. We compare with primarily top-performing approaches, both single image and video
baselines. As the architectures, input resolution, modality, pre-processing and post-processing are all
different, we try the best to conduct the comparison as fairly as possible. For single image baselines,
we adopt the same data pre-processing with (Fan et al., 2020a; 2021a) for all the compared methods.
Specifically, the input images are resized to 352× 352, after random flip, random rotation and color
enhance augmentation. In the training phrase, we apply random pepper noise on the GT images.
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Figure 6: Qualitative results on our MoCA-Mask benchmark.

As EGNet (Zhao et al., 2019) requires extra edge / boundary information for training, we adopt the
same pre-processing techniques in their paper to obtain the edge maps. This extra information could
also be found in our reorganised version of MoCA-Mask dataset.

Most of video approaches, i.e., PNS-Net (Ji et al., 2021a), RCRNet (Yan et al., 2019), apply the
pipeline that train the static model first on still image datasets, and then optimize the enhanced
architecture by interpolating temporal modules on video datasets. We follow this training setting
and pre-train all methods on COD10K training set, except MotionGroup (Yang et al., 2021) which
does not have a static model. Also, per our experimental experience, loading pre-trained weights
on COD10K dataset could further improve the model performance on MoCA-Mask. Compared
with COD10K image dataset, the video dataset MoCA-Mask is more challenging due to the camera
motions, blurring images, small ratio of animals and their tiny body structures, such as slim torso /
limbs. In some video sequences, the animals make up a very small proportion of the entire frame,
which are extremely hardly can be identified, i.e., ibex in Figure 6. Based upon considerations, we
provide the results based on the following setting: (a) Training the models on COD10K; (b) Fine-
tuning the models on MoCA-Mask, with pretrained weights on COD10K; (c) Evaluate the models
on the whole CAD, the test set of COD10K, and MoCA-Mask dataset.

Table 1: Quantitative results of single image base-
lines on COD10k dataset. Noting that all methods are
trained using their original setting.

Models Sα ↑ Fwβ ↑ Eφ ↑ M ↓

EGNet (Zhao et al., 2019) 0.749 0.557 0.780 0.048
BASNet (Qin et al., 2019) 0.788 0.646 0.857 0.044
CPD (Wu et al., 2019) 0.797 0.606 0.820 0.042
PraNet (Fan et al., 2020b) 0.812 0.681 0.884 0.036
SINet (Fan et al., 2020a) 0.796 0.660 0.876 0.039
SINet-v2 (Fan et al., 2021a) 0.816 0.685 0.890 0.035

PNS-Net (Ji et al., 2021a) 0.805 0.587 0.827 0.043
RCRNet (Yan et al., 2019) 0.795 0.614 0.829 0.043
SLT-Net - single (Ours) 0.853 0.754 0.922 0.026

Performance on COD10K. We use the
default training camouflaged images, and
evaluate all the single image networks
across all metrics on COD10k test set.
Our still image network can be conducted
easily by removing all the temporal cor-
relation calculation, i.e., short-term cor-
relation pyramid and the spatial-temporal
transformer module. Thus under the train-
ing setting on COD10k dataset, our net-
work does not exploit any temporal infor-
mation. As shown in Table 1, we observe that our network is better than other competitors.

Performance on MoCA-Mask. In Table 2, our short-term approach outperforms all the method
significantly, notably by 10.88% on Sα over the best one in this evaluation, RCRNet (Yan et al.,

Table 2: Quantitative results on our MoCA-Mask with (w/) and without (w/o) our pseudo labels.
Noting that MG (Yang et al., 2021) performs unsupervised learning that are trained without labels.

MoCA-Mask w/o pseudo labels w/ pseudo labels

Models Sα ↑ Fwβ ↑ Eφ ↑ M ↓ mDic mIoU Sα ↑ Fwβ ↑ Eφ ↑ M ↓ mDic mIoU

EGNet (Zhao et al., 2019) 0.547 0.110 0.574 0.035 0.143 0.096 0.546 0.105 0.573 0.034 0.135 0.090
BASNet (Qin et al., 2019) 0.561 0.154 0.598 0.042 0.190 0.137 0.537 0.114 0.579 0.045 0.135 0.100
CPD (Wu et al., 2019) 0.561 0.121 0.613 0.041 0.162 0.113 0.550 0.117 0.613 0.038 0.147 0.104
PraNet (Fan et al., 2020b) 0.614 0.266 0.674 0.030 0.311 0.234 0.568 0.171 0.576 0.045 0.211 0.152
SINet (Fan et al., 2020a) 0.598 0.231 0.699 0.028 0.276 0.202 0.574 0.185 0.655 0.030 0.221 0.156
SINet-v2 (Fan et al., 2021a) 0.588 0.204 0.642 0.031 0.245 0.180 0.571 0.175 0.608 0.035 0.211 0.153
SLT-Net - single (Ours) 0.631 0.291 0.700 0.030 0.349 0.264 0.648 0.330 0.748 0.025 0.375 0.289
PNS-Net (Ji et al., 2021a) 0.544 0.097 0.510 0.033 0.121 0.101 0.576 0.134 0.562 0.038 0.189 0.133
RCRNet (Yan et al., 2019) 0.555 0.138 0.527 0.033 0.171 0.116 0.597 0.174 0.583 0.025 0.194 0.137
MG (Yang et al., 2021) 0.530 0.168 0.561 0.067 0.181 0.127 0.547 0.165 0.537 0.095 0.197 0.141
SLT-Net - short-term (Ours) 0.628 0.289 0.698 0.030 0.348 0.262 0.662 0.350 0.766 0.021 0.392 0.303
SLT-Net - long-term (Ours) 0.628 0.292 0.704 0.028 0.351 0.264 0.656 0.357 0.785 0.021 0.397 0.310
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2019), and 89.19% on Fwβ metric over SINet (Fan et al., 2020a). We also provide the qualitative
comparison of our method and other baselines in Figure 6. Our model can accurately locate and seg-
ment concealed objects in many challenging situations, such as objects with tinny torso or complex
appearance textures, blur or abrupt motions.

Performance on CAD. In Table 3, we assess these different approaches by studying their cross-
dataset generalization on CAD dataset. Again, the proposed network obtains the best performance
in terms of six golden evaluation metrics, further demonstrating its robustness.

4.3 ABLATION STUDIES

Table 3: Quantitative results on CAD dataset.
Models Sα ↑ Fwβ ↑ Eφ ↑ M ↓ mDic mIoU

EGNet (Zhao et al., 2019) 0.619 0.298 0.666 0.044 0.324 0.243
BASNet (Qin et al., 2019) 0.639 0.349 0.773 0.054 0.393 0.293
CPD (Wu et al., 2019) 0.622 0.289 0.667 0.049 0.330 0.239
PraNet (Fan et al., 2020b) 0.629 0.352 0.763 0.042 0.378 0.290
SINet (Fan et al., 2020a) 0.636 0.346 0.775 0.041 0.381 0.283
SINet-v2 (Fan et al., 2021a) 0.653 0.382 0.762 0.039 0.413 0.318

PNS-Net (Ji et al., 2021a) 0.655 0.325 0.673 0.048 0.384 0.290
RCRNet (Yan et al., 2019) 0.627 0.287 0.666 0.048 0.309 0.229
MG (Yang et al., 2021) 0.594 0.336 0.691 0.059 0.368 0.268
SLT-Net - short-term (Ours) 0.696 0.471 0.827 0.031 0.484 0.392
SLT-Net - long-term (Ours) 0.697 0.481 0.845 0.030 0.493 0.402

We perform ablation studies on the re-
built MoCA-Mask dataset. In particular,
we look into functionality analysis for our
pseudo masks, short-term and long-term
architectures.

Pseudo Masks. As shown in Table 2,
the generated pseudo labels can largely
improve the performance of all video ap-
proaches that require GT for supervision.
For still image baselines, we interestingly found all the method with CNN encoders cannot exploit
the pseudo masks well to further improve performance on MoCA-Mask test set. Although some
approaches could reach a smaller MAE value, such as i.e., CPD (Wu et al., 2019) and EGNet (Zhao
et al., 2019), they failed in achieve higher results on other metrics. However, the single image
version of our network could gain from the pseudo masks and achieve better performance.

Short-term v.s. Long-term Architecture. To analyze the effectiveness and efficiency of short-term
and long-term architecture, we report their performances on MoCA-Mask dataset in Table 2 and
CAD dataset in Table 3. On MoCA-Mask dataset, as shown in Table 2, the long-term architecture
outperforms short-term architecture by an improved on Fwβ , Eφ, M , mDic, and mIoU, while only a
slightly reduction on Sα. From the last two rows in Table 3, we observe that long-term architecture
outperforms short-term architecture on all metrics.

Table 4: Ablation studies of different long-term archi-
tectures. The input resolution is 256×448, and metrics
are measured on MoCA-Mask test set.

Architecture Variant Achieved Network
Transformer ConvLSTM Params Sα ↑ Fwβ ↑ Eφ ↑ M ↓

√
179.03 MB 0.651 0.348 0.767 0.021√
82.30 MB 0.656 0.357 0.785 0.021

Spatial-temporal Transformer v.s. Con-
vLSTM. We evaluate two different ap-
proaches for constructing long-term ar-
chitecture, namely Spatial-temporal trans-
former, and ConvLSTM based refinement
network. For the latter ConvLSTM net-
work variant, we adopt a sequence model
proposed by (Denton & Fergus, 2018) but
modify the original VGG-style network for the CNN encoder and decoder with our transformer-style
backbone network. From the Table 4, we could observe that the spatial-temporal transformer variant
is more accurate than the ConvLSTM model but with a much lower number of parameters.

5 CONCLUSION
We present a new SLT-Net framework for learning to segment concealed objects in video that in-
cludes i) a short-term module to implicitly capture motions between consecutive frames ii) a long-
term module with a spatial-temporal transformer to enforce temporal consistency. To promote the
development of this field, we rebuild a new dataset called MoCA-Mask with 87 high-quality video
sequences including 22,939 frames in total. It is the largest-scale pixel-level annotated dataset which
allows object-level benchmark in VCOD. Compared with existing cutting-edge baselines, our pro-
posed network achieves fascinating results on three different camouflaged object benchmarks.

Acknowledgements. We thank the anonymous reviewers for the insightful comments on this paper.
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A APPENDIX

Short-term Correlation Pyramid Details We aggregate the channel information by a convolution
operation φ(·) and obtain a refined feature map φ(It+1) ∈ RC×H′×W ′

. Specifically, the aggregated
features f ′t←t+1 = ρ(It←t+1) ∈ RC×H′×W ′

was computed as follows:

ρ(It←t+1) = C̃(It, It+1)φ(It+1). (6)

To enable the network to learn detailed information, a correlation pyramid Ci, i ∈ {2, 3, 4}
is construct by incorporating multi-scale features. Thus for a sequence of frame features
{Fθ(It),Fθ(It+1)} ∈ RC×H/2i+1×W/2i+1

, our short-term correlation pyramid can be denoted
as Ci(It, It+1) ∈ RH/2i+1×W/2i+1×H/2i+1×W/2i+1

. It outputs an aggregated feature map
f
′(i)
t←t+1(It←t+1) at the pyramid scale i, i ∈ {2, 3, 4}, which has the same dimension as the reference

frame feature Fθ(It). We also repeat the correlative aggregation once on every other neighboring
frame. In this way, we obtain aggregated feature maps f ′(i)t←t+1(It←t+2).

Training Details We implement both long-term and short-term architecture in PyTorch. The input
images are resized to 352 × 352. We train the short-term architecture with a batch size of 8 on an
NVIDIA V100 GPU and use Adam optimizer with initial learning rate of 1e-4, decreasing every
50k iterations. For the long-term optimization, our model takes 10 frames as the input at one time
with the frame sampling rate 1. For our pseudo ground-truth generation, we exploit RAFT (Teed &
Deng, 2020) as the optical flow estimation module and pre-trained weights on Sintel dataset (Butler
et al., 2012).

Slim torsoComplex background

Lighting conditions

Camera motion 

Tiny objects

Figure 7: Representative samples from MoCA-Mask. The dataset is quite challenging including
diverse scenes, suash as various lighting conditions, i.e., dark and sunny, complex background,
camera motions, small ratio of animals and tiny body structures, such as slim torso /limbs.
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Figure 8: Summary for training and test set distribution. Our MoCA-Mask dataset includes 87 video
sequences in total, in which 16 sequences were tagged as “unknow” (colored in orange). This split
is used to validate the sensitivity of different models on novel samples. Zoom-in for details.
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Figure 9: Comparison of our proposed network with two top-performing baselines on MoCA-Mask
test dataset. Example squences of each row means: (a) (f) Frames, (b) (g) GT, (c) (h) SINet (Fan
et al., 2020a), (d) (i) RCRNet (Yan et al., 2019), (e) (j) SLT-Net (Ours).
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