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Abstract
Low-bit quantization improves machine learn-001

ing model efficiency but surprisingly favors002

undertrained large language models (LLMs).003

Larger models or those trained on fewer tokens004

exhibit less quantization-induced degradation005

(QiD), while smaller, well-trained models face006

significant performance losses. To gain deeper007

insights into this trend, we study over 1500+008

quantized LLM checkpoints of various sizes009

and at different training levels (undertrained or010

fully trained) in a controlled setting, deriving011

scaling laws for understanding the relationship012

between QiD and factors: the number of train-013

ing tokens, model size and bit width.014

With our derived scaling laws, we propose a015

novel perspective that we can use QiD to mea-016

sure an LLM’s training levels and determine017

the number of training tokens required for fully018

training LLMs of various sizes. Moreover, we019

use the scaling laws to predict the quantization020

performance of different-sized LLMs trained021

with 100 trillion tokens. Our projection shows022

that the low-bit quantization performance of023

future models, which are expected to be trained024

with over 100 trillion tokens, may NOT be de-025

sirable. This poses a potential challenge for026

low-bit quantization in the future and highlights027

the need for awareness of a model’s training028

level when evaluating low-bit quantization re-029

search. To facilitate future research on this030

problem, we release all the 1500+ quantized031

checkpoints used in this work on the Internet.032

1 Introduction033

Quantization (Jacob et al., 2018; Krishnamoorthi,034

2018; Banner et al., 2019; Frantar et al., 2022; Shen035

et al., 2024; Lin et al., 2024; Zhang et al., 2024) is036

one of the most popular techniques for efficiently037

deploying large language models (LLMs) by reduc-038

ing the model’s disk size, memory footprint, and039

improving inference efficiency through lower preci- 040

sion weights and activations. As model sizes have 041

continued to grow over the past years, researchers 042

have moved beyond conventional 8-bit quantization 043

(Zafrir et al., 2019; Dettmers et al., 2022; Zhong 044

et al., 2024) and begun exploring even lower bit 045

width (Bai et al., 2020; Zhang et al., 2020; Wang 046

et al., 2023; Liu et al., 2023; Egiazarian et al., 2024; 047

Liu et al., 2024; Huang et al., 2024), sparking a 048

surge of research interest in low-bit quantization. 049

While low-bit quantization works well on some 050

LLM checkpoints with very little quantization- 051

induced degradation (QiD), we have observed that 052

these checkpoints typically with either larger model 053

sizes or fewer training tokens. In contrast, smaller 054

models or those trained with substantially more 055

tokens exhibit notable QiD when low-bit quantiza- 056

tion is applied. As shown in Figure 1(right), 3-bit 057

quantization results in negligible QiD for a 12 bil- 058

lion parameter LLM up to 1011 training tokens, 059

but beyond this point, QiD begins to become pro- 060

nounced; For smaller models (e.g., 160M and 1B 061

parameters), QiD degradation occurs much earlier 062

and is more severe. With even more extreme 2-bit 063

quantization as shown in Figure 1(left), the trend 064

is similar, but QiD worsens sooner and more sig- 065

nificantly. This observation suggests that low-bit 066

quantization tends to favor undertrained LLMs and 067

is less compatible with fully trained LLMs. 068

To gain deeper insights into this trend, we study 069

over 1500 quantized LLM checkpoints of various 070

sizes (ranging from 160M to 12B) and at differ- 071

ent training levels1 (trained with from 1B to 206B 072

training tokens), analyzing the impact of low-bit 073

quantization on them in a controlled setting. We de- 074

rive scaling laws to model QiD with respect to the 075

number of training tokens, model size, bit width. 076

1Training levels in this work refer to the extent to which
an LLM has been trained (e.g., undertrained, fully trained, or
overtrained), which are related to both the number of training
tokens and the model size.
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Figure 1: Performance of LLMs after low-bit quantization at different sizes and training levels. It is obvious that the
models which are smaller or trained with more tokens suffer from greater quantization-induced degradation.

According to the derived scaling laws, we propose077

a novel perspective that we can use QiD to measure078

an LLM’s training levels and determine the num-079

ber of training tokens required for fully training an080

LLM given its size. Moreover, we use the scaling081

laws to predict the performance of different-sized082

LLMs with 100 trillion training tokens when ap-083

plying low-bit quantization. Our projection shows084

that low-bit quantization of future models, which085

are expected to be trained with over 100 trillion086

tokens, may not be desirable, which indicates a087

potential challenge for low-bit quantization in the088

future and suggests that a model’s training level089

should be considered in the evaluation of future090

low-bit quantization research.091

The contributions of this work are threefold:092

• We reveal that low-bit quantization favors un-093

dertrained LLMs but suffers from significant094

quantization-induced degradation (QiD) when095

applied to fully trained LLMs. This insight096

has been largely overlooked in previous low-bit097

quantization research: very few studies have098

considered the training level of a quantized099

LLM when evaluating their proposed low-bit100

quantization approaches.101

• We derive scaling laws to model QiD with the102

number of training tokens, model size and bit103

width. Using these scaling laws, we propose to104

use QiD as a signal to measure whether an LLM105

is fully trained and estimate the number of train-106

ing tokens required for LLMs of different sizes107

to reach a fully trained state. Moreover, we use108

the scaling law to predict the performance of109

low-bit quantization for different-sized LLMs110

trained with 100 trillion tokens. Our projec-111

tion indicates potential challenges for the future112

application of low-bit quantization.113

• We release all the 1500+ quantized checkpoints 114

used in this work to facilitate future research. 115

2 Preliminary: Scaling Laws for Large 116

Language Models 117

Scaling laws for large language models (Kaplan 118

et al., 2020; Hoffmann et al., 2022) are crucial for 119

understanding how these models’ performance im- 120

proves with increased scale, including the number 121

of parameters and training tokens: 122

Number of Parameters LLMs’ performance 123

typically follows a power-law improvement as the 124

number of parameters increases, allowing larger 125

models to better fit on the same dataset: 126

L(N) =
a

Nα
+ ϵ (1) 127

where L(N) is the loss function2 dependent on N 128

(the number of non-embedding parameters), a is 129

a constant (i.e., coefficient), α is the scaling ex- 130

ponent, and ϵ represents the error term. This rela- 131

tionship indicates larger models are generally more 132

capable of capturing the complexities of language, 133

leading to better generalization and lower loss. 134

Training Tokens Increasing the number of train- 135

ing tokens enhances performance in a power-law 136

manner, enabling better capture of languages. 137

L(D) =
b

Dβ
+ ϵ (2) 138

where D denotes the number of training tokens, b 139

is a constant (i.e., coefficient) and β is the scaling 140

exponent for training tokens. More training tokens 141

enhance an LLM’s ability to learn and generalize, 142

2We mainly discuss cross entropy loss for language model-
ing in this paper.
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Figure 2: The fitted scaling law of QiD with respect to the number of training tokens in the form of (Equation 5),
where β is fitted to be 0.5316.

allowing it to achieve better language modeling143

performance with lower loss.144

When scaling both the number of parameters N145

and the amount of training data D simultaneously,146

the scaling law can be expressed as a function that147

accounts for the combined effects of both:148

L(N,D) = [(
Nc

N
)
αN
αD +

Dc

D
]αD (3)149

This scaling law allows us to estimate the perfor-150

mance of language models at unprecedented scales151

of model size and training data effectively before152

conducting actual training runs.153

3 Scaling Laws for Low-bit Quantization154

In this section, we propose scaling laws for low-bit155

quantization. Unlike the scaling laws discussed in156

section 2, the focus here is to understand how QiD157

changes when low-bit quantization is applied to158

LLMs of varying training scales. Formally, QiD is159

defined as follows:160

∆qLoss = Lossq − Loss16-bit (4)161

where Lossq is the cross-entropy loss of a quan-162

tized LLM, and Loss16-bit is the cross-entropy loss163

of its pre-quantized, fp16 or bf16 counterparts.164

∆qLoss, denoting QiD, represents the loss differ-165

ence before and after applying low-bit quantization.166

Inspired by conventional scaling laws for lan-167

guage modeling, we investigate the impact of168

model size and the number of training tokens on169

QiD. Additionally, we consider bit width (i.e., the170

precision of quantized weight values).171

3.1 Experimental Setting172

We utilize open-sourced LLMs from the Pythia173

suite (Biderman et al., 2023) in our experiments.174

The Pythia suite offers diverse model sizes and175

provides complete access to checkpoints across its176

training trajectory (spanning from initialization to177

300 billion tokens). This comprehensive access en- 178

ables controlled experimentation and facilitates the 179

derivation of scaling laws for low-bit quantization. 180

We choose 6 different sizes of Pythia LLMs: 181

160M, 410M, 1B, 2.8B, 6.9B, and 12B. For each 182

size, we sample 20 checkpoints (see Appendix A.1) 183

up to 98k steps.3 184

For quantization, we employ one of the most pop- 185

ular LLM quantization techniques – GPTQ (Frantar 186

et al., 2022) – to quantize the Pythia checkpoints 187

to 2-bit, 3-bit and 4-bit levels. 188

We evaluate QiD on 1,000 randomly sampled 189

texts from RefinedWeb (Penedo et al., 2023). 190

3.2 Training Tokens 191

In contrast to prior language modeling scaling laws 192

where the number of training tokens D appears 193

in the denominator, we propose the relationship 194

between training tokens and QiD as follows: 195

∆qLoss(D) ≈ b ·Dβ (5) 196

As observed in Figure 1, QiD becomes increas- 197

ingly pronounced with a greater number of training 198

tokens, emphasizing its growing significance. 199

We use the above functional form to fit the QiD 200

observed in the quantized Pythia checkpoints in 201

Figure 2, obtaining β = 0.5316, which fits the 202

trend of QiD with respect to the change in training 203

tokens quite well. 204

3.3 Model Size 205

As mentioned in Figure 1, the larger the size of the 206

model, the smaller the QiD tends to be. Therefore, 207

we propose the relationship between model size 208

(i.e., the number of non-embedding parameters) 209

398k steps correspond to approximately 206 billion tokens,
which is equivalent to one epoch of Pythia’s training data.
Although Pythia was trained for 143k steps, we skipped check-
points beyond 98k steps to avoid the influence of duplicated
data, as the data beyond 98k steps represents the second epoch.
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Figure 3: The fitted scaling law of QiD with respect to the model size (i.e., the number of non-embedding parameters)
in the form of Equation 6, where α is fitted to be 0.2276.
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Figure 4: The fitted scaling law of QiD with respect to the bit width in the form of Equation 7, where γ is fitted to
be 5.4812.

and QiD as follows:210

∆qLoss(N) ≈ a

Nα
(6)211

Using the described functional form, we fit the QiD212

of quantized Pythia checkpoints shown in Figure 3,213

yielding α = 0.2276.214

3.4 Bit Width215

Bit width is a factor not present in conventional216

scaling laws. Considering that the role of bit width217

is similar to that of the number of parameters (both218

aim to increase the model’s expressiveness), we219

propose a similar functional form as in subsec-220

tion 3.3 to model bit width in Equation 7:221

∆qLoss(P ) ≈ c

P γ
(7)222

We fit the QiD of quantized Pythia checkpoints223

shown in Figure 4, yielding γ = 5.4812.224

3.5 Unified Scaling Law225

With the basic scaling laws derived in Sections226

3.2 (the number of training tokens), 3.3 (model227

size), and 3.4 (bit width), we study how to model228

QiD with all three factors together. Inspired by229

Kaplan et al. (2020), we consider the following230

four principles for unifying the factors:231

• Fixing D and P, sending N → ∞, we expect232

∆qLoss → 0.233

• Fixing N and P, sending D → 0, we expect 234

∆qLoss → 0. 235

• Fixing N and D, sending P ≥ 16, we expect 236

∆qLoss → 0. 237

• Fixing N and D, sending P → 0, we expect 238

∆qLoss → ∞. 239

We propose the unified scaling law for low-bit 240

quantization as follows: 241

∆qLoss(N,D,P ) = k · Dβ

NαP γ
(8) 242

where k is the joint coefficient, and both the coeffi- 243

cient and exponents (α, β, γ) are positive. Figure 5 244

displays the fitted curves using this functional form. 245

The jointly fitted exponents α, β, and γ closely 246

match those obtained by fitting these variables in- 247

dependently, further validating the effectiveness of 248

the joint function form ∆qLoss(N,D,P ). 249

Given the unified scaling law for ∆qLoss and 250

the definition of ∆qLoss in Equation 4, we can 251

easily predict a quantized LLM’s performance as 252

Lossq = Loss16-bit + ∆qLoss, as illustrated in 253

Figure 6, which fits well with the observations. 254

3.6 Validation with Ablation Studies 255

We validate the scaling law derived in subsec- 256

tion 3.5 with different test data, quantization meth- 257

ods and foundation models. 258
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Figure 5: The unified scaling law we fit based on Equation 8 with the GPTQ-quantized LLMs from the Pythia suite:
∆qLoss(N,D,P ) = 0.017D0.5251/(N0.2261 · P 5.4967)
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with the LLMs in the Pythia suite as Loss16-bit = [(4.74e19/N)(0.045/0.399) + 7.63e10/D]0.399.

3.6.1 Test Data259

We compare the results obtained using RefinedWeb260

and Wikitext-2 (Merity et al., 2016) as test data261

in Figure 7, demonstrating that the QiD results on262

these two test datasets are almost identical. This263

suggests that the trends of QiD are largely indepen-264

dent of the test data.265

3.6.2 Quantization Methods266

We quantize Pythia checkpoints using two other267

popular quantization methods – AWQ (Lin et al.,268

2024) and bitandbytes4 in addition to GPTQ. We269

show the QiD results and fitted scaling laws in Fig-270

ure 8, and we find that QiD trends remain nearly271

identical across different quantization methods, de-272

spite slight variations in the fitted scaling laws.273

3.6.3 Foundation Models274

Figure 9 shows the fitting results of our scaling275

laws function form, Equation 8, on the Spectra276

suite (Kaushal et al., 2024) as well as the popular277

open-sourced Llama (Touvron et al., 2023; Dubey278

et al., 2024) and Qwen (Yang et al., 2024) models,279

which verifies our laws are not only valid for Pythia280

but are broadly applicable.281

4https://github.com/bitsandbytes-foundation/
bitsandbytes

4 Discussion: Low-bit Quantization 282

Favors Undertrained LLMs 283

4.1 Intuition 284

Based on the scaling laws we derived in section 3, 285

we confirm low-bit quantization tends to favor mod- 286

els with fewer training tokens or larger model sizes, 287

which are essentially undertrained LLMs. 288

Figure 10 demonstrates the relationship between 289

QiD, model size, training token number, and bit 290

width. Points located in the upper-left region 291

are more fully trained, resulting in a substantially 292

higher QiD, while those in the bottom-right are 293

undertrained, exhibiting a lower QiD. 294

To understand this observation intuitively, we 295

illustrate changes in sampled model weights be- 296

tween adjacent checkpoints in Figure 11. It can 297

be observed that the early checkpoints exhibit sig- 298

nificant changes in weights. Due to the signifi- 299

cant fluctuations in weights during training, the 300

model becomes inherently robust to weight vari- 301

ations, meaning that even if low-bit quantization 302

introduces some precision loss, the overall impact 303

on the model remains limited. On the other hand, 304

checkpoints from the later stages of training, which 305

are more fully trained, show very small changes in 306

weights (often at a very small scale, even beyond 307

5
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Figure 8: QiD results and fitted scaling laws for different quantization methods. Note that the GPTQ function here
differs slightly from that in Figure 5, as it is fitted exclusively with 4-bit quantized Pythia checkpoints, whereas the
function in Figure 5 is fitted using all quantized Pythia checkpoints.

the 3rd-4th decimal place). In such cases, low-bit308

quantization is very likely to shift weights outside309

the small range of recent variations, potentially310

causing the model to degrade or even collapse.311

From another perspective, during the under-312

trained stage, the model’s weights undergo signifi-313

cant changes and have not yet fully exploited the314

precision dimension. In the later, more fully trained315

stage, as weight adjustments stabilize, the model316

increasingly relies on precision to continue optimiz-317

ing the training objective and improving language318

modeling performance. This aligns with the two319

phrases of representation learning in the informa-320

tion bottleneck theory (Shwartz-Ziv and Tishby,321

2017): during the early training phase, gradients322

have a large mean and small variance, making high323

precision unnecessary. However, in the later train-324

ing phase, gradients have a small mean and large325

variance, requiring higher precision for the model326

to converge effectively.327

4.2 QiD: A Signal that Measures an LLM’s328

Training Level329

Unlike previous work that often uses the inability of330

the loss to decrease further as a signal to determine331

whether an LLM is fully trained (i.e., saturated), we332

introduce a novel perspective that we can use QiD333

to determine whether an LLM is fully trained. If an334

LLM exhibits QiD ≈ 0 after low-bit quantization,335

it suggests that the LLM is likely undertrained, as it 336

has not yet exploited higher precision, as discussed 337

in subsection 4.1. 338

With the scaling law in Equation 8 derived in 339

subsection 3.5, we can estimate how many train- 340

ing tokens are needed for a given LLM size to be 341

considered fully trained based on QiD predictions. 342

Table 1 shows the number of training tokens re- 343

quired for different model sizes to achieve ∆qLoss 344

= {0.2, 0.3, 0.4, 0.5} when applying low-bit quan- 345

tization. For a 70B scale model, achieving a QiD 346

greater than 0.2 (corresponding to likelihood de- 347

crease by 20%) under 4-bit quantization requires 348

over 17 trillion training tokens. In contrast, for a 349

405B scale LLM, achieving a QiD above 0.2 un- 350

der 4-bit quantization requires nearly 50 trillion 351

training tokens – a scale far beyond what has been 352

achieved by now, indicating that current training 353

efforts for extremely large LLMs may be still far 354

from sufficient. 355

4.3 QiD Prediction When Scaling to 100 356

Trillion Training Tokens 357

Figure 14 in the Appendix shows the trend in the 358

number of training tokens for state-of-the-art 7B- 359

scale LLMs from 2020 to the present, showing that 360

the number of training tokens has increased nearly 361

50× over the past 4 years. Based on this trend, it is 362

very likely that LLMs in 2025-2026 will be trained 363

6



Figure 9: Left: Scaling laws for low-bit quantization, fitted on the LLM checkpoints of the Spectra suite, which are
all trained with 300B tokens; Right: Actual ∆qLoss VS Predicted ∆qLoss that is computed based on the scaling
laws fitted on Llama and Qwen.
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Figure 10: Fully trained LLMs suffer from much greater QiD (i.e., ∆qLoss) than undertrained LLMs.

with up to 100 trillion (1014) tokens5.364

Using the scaling laws derived, we predict the365

performance of quantized LLMs trained on 100366

trillion tokens, as illustrated in Figure 12 at the be-367

ginning of this paper. In particular, performance368

degradation with 2-bit and 3-bit quantization at the369

unprecedented training scale of 100 trillion tokens370

is predicted to be severe, which is in stark contrast371

to the acceptable performance at the current train-372

ing scale of 1013 tokens. This indicates a challenge373

for the practical application of low-bit quantization374

to future LLMs.375

4.4 From Low-bit Quantization to Low-bit376

LLMs377

Although this work mainly focuses on low-bit378

(post-)quantization, we suspect that native low-bit379

LLMs are also likely to favor undertrained LLMs.380

We replicated the popular 1-bit LLM – BitNet381

b1.58 (Ma et al., 2024) – to compare it with its bf16382

counterpart throughout training. Specifically, we383

trained 120M and 1.2B decoder-only models with384

5Although there have been claims that internet data is
nearing exhaustion, recent continuous innovations in synthetic
data creation (Ge et al., 2024) lead us to believe that the
milestone of 100 trillion training tokens is achievable in the
next few years.

both bf16 and BitNet. Figure 13 in the Appendix 385

shows the comparison of training losses between 386

BitNet and its 16-bit counterparts in the early- and 387

mid-training steps. It can be observed that, in the 388

early stages of training, the training loss curves of 389

BitNet closely match (and even outperform) those 390

of bf16, as BitNet tends to use a higher learning rate 391

than bf16 training according to its training recipe. 392

As training continues, the 120M BitNet gradually 393

begins to lag behind its bf16 counterpart, and after 394

further training steps, a noticeable gap starts to ap- 395

pear in the 1.2B models, which is consistent with 396

our observations for low-bit quantization. This in- 397

dicates that native low-bit LLMs such as BitNet6 398

may also favor undertrained LLMs, though the gap 399

manifests later compared to post-quantization, as 400

native low-bit training keeps the model capable of 401

operating under low bit throughout the training. 402

6We reviewed the original BitNet paper and some open-
sourced reimplementations, and found that their numbers of
training tokens were up to 100 billion. Considering their
model sizes and the fact that the performance gap of native low-
bit LLMs tends to emerge later compared to post-quantization,
we express concerns about their performance at larger training
scales (i.e., with more training tokens). We call for results of
native low-bit LLMs at larger training scales to better justify
their practical value.
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Figure 11: Changes in model weights between adjacent checkpoints. Early (undertrained) checkpoints exhibit
significant weight fluctuations during training, making the model relatively robust to weight variations. Therefore,
small changes introduced by quantization have a limited impact on the model’s performance. In contrast, fully
trained checkpoints demonstrate very little weight fluctuations during training. As a result, low-bit quantization is
likely to push weights beyond the narrow range of recent variations, leading to performance degradation or even
model collapse.

Model Size
∆qLoss = 0.2 ∆qLoss = 0.3 ∆qLoss = 0.4 ∆qLoss = 0.5

2 bits 3 bits 4 bits 2 bits 3 bits 4 bits 2 bits 3 bits 4 bits 2 bits 3 bits 4 bits

1B 0.001 0.109 1.442 0.003 0.199 2.679 0.004 0.305 4.156 0.007 0.425 5.842

7B 0.003 0.304 4.507 0.006 0.555 8.369 0.010 0.851 12.984 0.015 1.186 18.253

70B 0.007 1.023 17.350 0.015 1.869 32.219 0.027 2.866 49.985 0.041 3.993 70.272

405B 0.015 2.581 48.486 0.033 4.715 90.040 0.057 7.231 139.689 0.087 10.075 196.383

Table 1: Prediction of the number of training tokens (in trillion) needed to achieve a given training level measured by
∆qLoss for different model sizes and bit widths. Note that ∆qLoss = 0.2 means the likelihood is reduced to 80%
of its original value (e−0.2 ≈ 0.8), while ∆qLoss = 0.5 means the likelihood is reduced to 60% (e−0.5 ≈ 0.6).

Figure 12: Scaling laws for predicting Quantization-induced Degradation (QiD, denoted as ∆qLoss) in 7B, 70B,
and 405B models trained on up to 100 trillion (1014) tokens. While low-bit quantization yields acceptable QiD
for undertrained LLMs (trained with ≤ 1012 tokens), it is predicted to become undesirable when applied to fully
trained LLMs (e.g., trained with 100 trillion tokens, a milestone expected to be reached in the next few years),
particularly for smaller models. Note that the gray areas in this figure indicate levels of QiD that degrade the
model’s predictions to a level worse than random guessing.

5 Conclusion403

We derive scaling laws for low-bit quantization404

from over 1500 quantized LLM checkpoints and405

reveal that low-bit quantization favors undertrained406

LLMs. We provide an interpretation for this phe-407

nomenon and introduce a novel perspective of us-408

ing QiD as a signal to determine a model’s train-409

ing level. Moreover, we use the derived scaling410

laws to predict the effect of low-bit quantization411

on LLMs trained with 100 trillion tokens. This, on412

one hand, challenges the future practical value of 413

low-bit quantization, and on the other hand, sug- 414

gests that future research on low-bit quantization 415

should consider the model’s training level during 416

evaluation. Alongside concurrent research (Kumar 417

et al., 2024; Feng et al., 2024) that takes a serious 418

look at the limits of low-bit LLMs, we hope this 419

work can help the community cool down from the 420

surrounding hype, and foster deeper reflection and 421

critical examination in this field. 422
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6 Limitations423

This work includes the following limitations:424

• Although we have done our best to conduct ex-425

tensive experiments and derive the scaling laws426

from over 1500 quantized checkpoints, it is still427

not extensive enough. For example, the train-428

ing tokens used in our experiments with Pythia429

only amount to 300 billion. We expect more ob-430

servations from a greater number of quantized431

checkpoints in the future to refine the scaling432

laws we have derived.433

• The scaling laws derived in this work are pri-434

marily focused on single-stage pre-trained lan-435

guage models. However, advanced LLMs today436

often employ multi-stage training strategies in-437

cluding supervised fine-tuning and preference438

optimization, and even within pre-training, mul-439

tiple stages are often involved (e.g., Llama-3.1440

focuses more on high-quality text, math, reason-441

ing, and code data during the final pre-training442

stages). Such multi-stage training strategies may443

cause the behavior of the model after quantiza-444

tion to be significantly different, which we plan445

to explore in future work.446

• Alternative functional forms are also possible.447

Our scaling law, ∆qLoss(N,D,P ), is con-448

structed based on power-law formulations, which449

demonstrate strong empirical performance in450

modeling QiD, both independently and collec-451

tively. Nonetheless, we experimented with other452

functional forms, including linear, exponential,453

and logarithmic laws. These forms may also pro-454

vide reasonable empirical fits. We aim to conduct455

more comparisons based on experiment results456

in future work.457
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A Appendix 610

A.1 Implementation Details 611

Checkpoints of the Pythia We choose the fol- 612

lowing 20 checkpoints of the Pythia models at the 613

following steps for fitting the scaling laws: {512, 614

1k, 2k, 4k, 6k, 8k, 10k, 12k, 14k, 20k, 24k, 29k, 615

36k, 43k, 57k, 71k, 86k, 93k, 95k, 98k}. 616

Tokenization consistency To ensure consistency 617

in token counts for computing cross entropy loss, 618

which can vary with different tokenizers, we use the 619

token counts generated by the Llama-3 8B (Dubey 620

et al., 2024) tokenizer for all QiD calculations in 621

this work. 622
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Figure 13: Training losses of BitNet and its 16-bit counterparts show a trend similar to that of low-bit quantization –
they tend to perform well when undertrained but struggle to match the performance of fully trained LLMs.
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Figure 14: The number of training tokens for the state-of-the-art 7B-scale LLMs increase by nearly 50× over the
past 4 years. According to this trend, it is expected that the future models will have much more training tokens.
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