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ABSTRACT

Generative text summarizers are good at content encapsulation but falter when
outlier paragraphs disrupt the primary narrative. We categorize these outliers into
cross-document outliers that are thematically inconsistent but within the same
domain, and cross-domain outliers, originating from distinct domains. Tradi-
tional methods lean on word embeddings and specialized classifiers, requiring
extensive supervised fine-tuning. Confidence-based strategies, despite bypassing
fine-tuning, are ill-suited due to the non-classification essence of summarization.
Leveraging the encoder-decoder cross-attention framework, we introduce an ap-
proach emphasizing the unique characteristics of infrequent words in detection.
We present CODE, a novel outlier detector using a closed-form expression rooted
in cross-attention scores. Our experimental results validate the superiority of
CODE under different datasets and architectures, e.g., achieving a 5.80% FPR at
95% TPR vs. 25.63% by supervised baselines on the T5-Large and Delve domain.
We further underscore the significance of cross-attention, word frequency normal-
ization and judicious integration of cross-document outliers during pretraining.1

1 INTRODUCTION

Generative text summarizers efficiently distill vast content into concise summaries (See et al., 2017;
Liu & Lapata, 2019; Radford et al., 2019; Brown et al., 2020; OpenAI, 2022). While adept at
capturing coherent sequences, these models struggle with outlier paragraphs interspersed within the
content. This limitation can distort the integrity and quality of the generated summary (Liu et al.,
2020; Tan et al., 2017). For instance, blending a paragraph on aquatic ecosystems into a desert-
focused sequence can produce a misleading and incongruous summary.

In this paper, we address the outlier paragraph detection, distinguishing between two main types,
i.e., cross-document and cross-domain. Cross-document outliers deviate thematically, even within
the same domain, while cross-domain outliers come from entirely different domains. For example,
a paragraph on aquatic plant evolution in an article on marine animals is a cross-document outlier,
while a section on quantum physics in the same piece is a cross-domain outlier.

A common approach is using the supervised methods, i.e., extracting embeddings from the sum-
marizer and fusing them with a detection classifier (Lewis et al., 2019; Li et al., 2022). This re-
quires extensive fine-tuning after the initial pre-training (Devlin et al., 2018; Yang et al., 2019),
especially with large language models. Confidence-based methods, suitable for out-of-distribution
tasks (Hendrycks & Gimpel, 2016; Hsu et al., 2020), sidestep fine-tuning by assigning a confidence
score to classification results but do not naturally fit text summarization, since it is not standard
classification task. Moreover, unlike out-of-distribution tasks that evaluate entire sequences, outlier
detection evaluates individual paragraphs for coherence.

In this paper, we investigate generative text summarizers built upon the encoder-decoder cross-
attention architecture (Vaswani et al., 2017). Our preliminary observation suggests that infrequent
words often exhibit domain-specific characteristics, which can potentially pinpoint their source do-
main. Notably, during pre-training with cross-document outlier paragraphs, such infrequent words

1Our code is available at: https://anonymous.4open.science/r/code-B649/
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in outlier paragraphs typically garner reduced cross-attention scores with the generated summary.
Conversely, those in coherent paragraphs tend to see elevated cross-attention scores. Leveraging
these observations, we introduce a method for pre-training text summarizers that incorporate cross-
document outlier paragraphs. Furthermore, we present CODE (Cross-Attention Outlier Detector),
an innovative anomaly detection mechanism that employs a closed-form expression based on the
cross-attention scores in generative language models. The core contributions of this paper are:

• Proposal of a method to pre-train generative text summarizers incorporating cross-
document outliers. We subsequently introduce the CODE detector, which computes av-
erage cross-attention scores, normalized by word occurrences, between the generated sum-
mary and each paragraph in the sequence.

• Introduction of data pipelines to devise four pre-training datasets integrated with cross-
document outlier paragraphs. Additionally, we present four cross-document outlier detec-
tion datasets and sixteen cross-domain outlier detection datasets. Our method consistently
surpasses two supervised baselines across three metrics. Notably, CODE achieves a 5.80%
FPR at a 95% TPR, in contrast to the 25.63% marked by the supervised fine-tuning baseline
on the T5-large architecture within the Delve domain.

• An ablation study underscoring the impact of cross-attention, word frequency normaliza-
tion, and the incorporation of cross-document outliers during pre-training.

The remainder of this paper is organized as follows: The problem is formulated in Section 2. Our
proposed methodology is detailed in Section 3. The data pipelines and datasets are introduced in
Section 4. Experimental results are presented in Section 5, followed by discussions in Section 6. We
draw our conclusions in Section 7. Additional results are included in Appendix.

2 PRELIMINARIES AND PROBLEM FORMULATION

Text Summarizers Pretrained with Cross-document Outliers. Let the paragraph X be a word
sequence contained within a document D, where the document is drawn from a domain set D. Let
X denote a paragraph sequence for summarization. For example, if D represents the domain con-
taining all research papers, each paper serves as a document and X consists of paragraphs from
their introductions. We refer to the domain D as the text summarization domain. We note that
paragraphs within X may originate from different documents. Let the word sequence Y (X ) denote
the summary of a paragraph set X . Let P(X|D) denote a paragraph sampling distribution defined
on the document D. Let C = {(Xi, Yi)}ni=1 represent the pre-training set for text summariza-
tion. Each paragraph in the sequence Xi is drawn from an underlying mixed paragraph distribution
P (X|Di, D

′
i), associated with two distinguished and unknown documents Di and D′

i,

P (X|Di, D
′
i) = (1− εi)P (X|Di) + εiP (X|D′

i),

where a small and non-negative number εi denotes the unknown probability that paragraphs in the
set Xi are drawn from the document D′

i. We refer to paragraphs in Xi ∩ D′
i as cross-document

outlier paragraphs, and those in Xi∩Di as coherent paragraphs. This implies that most paragraphs
in Xi originate from document Di, creating coherence, while outlier paragraphs come from a dif-
ferent document D′

i. We use “cross-document” to indicate that both coherent and outlier paragraphs
are sampled from the same domain but in different documents, distinguishing this from the outlier
detection problem where outlier paragraphs may originate from different domains.

A text summarizer G processes the paragraph set X to produce a summary Ŷ (X ). We employ the
generative language model (GLM) for this task. Given X , the summarizer G generates a summary
sequence Ŷ = (ŷ0, ..., ŷt, ŷt+1, ...) in an iterative way. The initial word ŷ0 is a special word that
signals the model to begin text generation. At each step t, the summarizer G takes the word ŷt as
input to generate the next word ŷt+1, i.e., ŷt+1 = G(ŷ0, ..., ŷt;X ). We use the function g denote the
output of all neurons in the summarizer G. Specifically, we use the vector g(ŷ0, ..., ŷt;X ) to denote
all neuron outputs in G when generating word yt+1 at time t with input X . Let g(X ) represent the
vector containing all neuron outputs in the generative model when generating sequence Ŷ . In the
text summarization, we train the generative language model G to ensure that the generated Ŷ (Xi)
aligns with the ground truth summary Yi for all samples in the training set C. As mentioned earlier,
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each paragraph set in the set C contains cross-document outliers, hence we refer to the summarizer
G pre-trained with cross-document outliers.

GLM-based Outlier Pargraph Detection Problem. Let the generative model G be a text summa-
rizer pre-trained on the pre-training set C. We are now investigating the transferability in the outlier
paragraph detection problem. Let Dout denote the outlier domain from which the outlier paragraphs
are drawn. Consider U as a paragraph sequence where coherent paragraphs in this sequence come
from the text summarization domain D, while outlier paragraphs are from the outlier domain Dout.
For U , we use the binary vector V ∈ {0, 1}|U| as the label vector, where Vi equals 1 if the i-th
paragraph in U is an outlier paragraph and 0 otherwise. Let PU×V denote the joint distribution of
paragraph sequence U and label vector V . Let Cdetect = {(Uk, Vk)}mk=1 be the training set for the
outlier paragraph detection. Notably, we allow the outlier domain to be the same as the text summa-
rization domain, where coherent and outlier paragraphs originate from different documents. In this
scenario, it is referred to as cross-document outlier detection. If the outlier domain differs from the
text summarization domain, it is referred to as cross-domain outlier detection.

A classifier fθ utilizes neuron outputs g from the text summarizer G to predict the label vector.
Here, the vector θ encompasses all parameters in the classifier fθ. Consequently, a GLM-based
outlier paragraph detector consists of the composition of classifier fθ and neuron output function g,
i.e., fθ ◦ g. The predictor takes the paragraph sequence U as input and produces an |U|-dimensional
vector, where the k-th element in this output vector predicts whether the k-th paragraph in the
sequence U is an outlier paragraph or not. Let ℓ denote the cross-entropy loss function, evaluating
the difference between the output of the GLM-based relation predictor fθ ◦ g(U) and ground truth
V . During training, a set of parameters θ is chosen such that the following empirical loss Ln(θ) is
minimized,

Ln(θ) ≜
1

|Cdetect|
m∑

k=1

ℓ(fθ ◦ g(Uk), Vk). (1)

During testing, the GLM-based outlier detector fθ ◦ g is evaluated on the following testing loss to
determine whether it is capable of generalizing or not, L(θ) = EU×v [ℓ(fθ ◦ g(U), V )] .

3 GLM-BASED OUTLIER PARAGRAPH DETECTOR

In this paper, we primarily focus on generative language models using the Transformer encoder-
decoder architecture (Vaswani et al., 2017), specifically BART (Lewis et al., 2019) and T5 (Raffel
et al., 2020). To see the influence of the model size, we select BART-Base, BART-Large, T5-Base
and T5-Large. We pre-train all GLMs on each of the pre-training sets introduced in the next section.

3.1 BASELINES

We concatenate the neuron outputs inside the GLM with a multi-layer perception to construct two
supervised baselines. Given the potentially large number of neurons in GLMs, to reduce the compu-
tational complexity, we streamline the computation by using the input from the last encoder-decoder
attention layer as the input to the multi-layer perceptron.

Frozen. First, we feed a paragraph sequence into the GLM and obtain a generated summary. Prob-
ing the input of the last encoder-decoder attention layer, we obtain the word embeddings of the
paragraph sequence from the encoder, as well as the word embeddings of the corresponding sum-
mary from the decoder. Second, to get the embeddings of the entire sequence of the paragraph or
summary, we perform a mean pooling on the obtained word embeddings that are also adopted in
references (Reimers & Gurevych, 2019; Gao et al., 2021). Finally, we feed the word embedding into
a multi-layer fully-connected ReLU network to detect the outlier paragraphs in the input sequence.
In the supervised training phase, we freeze all parameters of the pre-trained GLM and only fine-tune
the parameters of the fully connected ReLU network.

Finetuning-all (FT-ALL). We adopt the same architecture used in the previous baseline for outlier
detection. The only difference lies in the training stage, where the parameters of the pre-trained
GLM are fine-tuned along with FNN parameters.
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3.2 CODE: CROSS ATTENTION-BASED OUTLIER PARAGRAPH DETECTOR

Both baselines presented in the previous section require further fine-tuning, which is usually time-
consuming, especially when we need to finetune all parameters in a large GLM. In this section,
we propose CODE, which eliminates the need for further fine-tuning once the GLM is pre-trained.
Similar to the baseline, we also probe the input embedding of the last encoder-decoder attention
layer. But, for each paragraph, we only calculate a closed-form metric based on the embedding and
compare it with a threshold to determine whether the paragraph is an outlier or not.

Now we formally present our method. We concatenate all paragraphs X = {X1, ..., Xm} and input
at once to the text summarizer G. The GLM G outputs a summary Ŷ . We input each word ŷ in the
summary Ŷ to the decoder independently. Now we get a cross-attention matrix between the gener-
ated summary and concatenated paragraphs. When the cross attention layer has multi-head (Vaswani
et al., 2017) and each head is equipped with a unique attention matrix of the same size, we average
all attention matrices across different heads into one matrix. For each word x in the concatenated
paragraph sequence and each word ŷ in the summary sentence Ŷ , let Att(ŷ, x) ∈ [0, 1] denote the
attention score in the attention matrix between the word ŷ and x. We use 1

|Ŷ |

∑
ŷ∈Ŷ Att(ŷ, x) to

measure the relevance between word x and generated summary Ŷ . Let p(x) denote the word fre-
quency of x ∈ X across all paragraphs in the training partition of the outlier detection set. We use
1

p(x) to assign more weights to the contribution of less frequent words. We define the relevance score

r(Ŷ , Xi) ∈ R+ between the generated summary Ŷ and the i-th paragraph Xi as follow,

r(Ŷ , Xi) =
1

|Xi|
∑
x∈Xi

1

pβ(x)

 1

|Ŷ |
∑
ŷ∈Ŷ

Attα(ŷ, x)

 (2)

Hyper-parameters α and β are used to control the contribution of the attention score and word
frequency in calculating the relevance. For a given threshold δ, we say that the paragraph Xi is an
outlier paragraph if r(Ŷ , Xi) ≤ δ and it is a coherent paragraph, otherwise.

4 DATASETS

4.1 DATA PIPELINE

Pipeline for Pre-training with Cross-document Outliers. The source text summarization dataset
includes coherent paragraph sequences and their corresponding summaries. To create a text summa-
rization dataset with cross-document outliers, we employ a two-phase data pipeline. In the coherent
paragraph splitting phase, we select a sample (X , Y ) from the source dataset, where X represents
a paragraph sequence and Y is its summary. We then randomly split the sequence X into two se-
quences, denoted as X = (X1, X2). We regard these two paragraphs as coherent paragraphs. Next,
in the outlier paragraph injection phase, we first randomly select two outlier paragraphs Z1 and Z2

from another two different paragraph sequences. These outlier paragraphs are randomly at three
positions: before X1, between X1 and X2 and after X2. After injection, the paragraph sequence,
along with the summary Y , constitutes a sample in our pre-training set. We note here that all outlier
paragraphs in the pre-training set are cross-document paragraphs since both coherent and outlier
paragraphs are sourced from the same source dataset but from different documents.

Pipeline for Outlier Detection. We employ the same pipeline to create outlier detection datasets.
The only difference is that the outlier detection dataset does not contain the ground truth summary.
In the cross-document outlier detection task, we sample the outlier paragraphs from the same source
text summarization dataset, while in the cross-domain outlier detection task, we sample the outlier
paragraphs from a different source dataset.

4.2 PRE-TRAINING DATASETS WITH CROSS-DOCUMENT OUTLIERS

We choose four source datasets: CNN/Daily Mail, SAMSum, Delve and S2orc to build our pre-
training dataset. The first dataset comes from the news domain, the second from dialogues, and the
last two belong to the academic domain. When selecting cross-document outlier paragraphs, we
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ensure that coherent and outlier paragraphs are from the same domain. Next, we present the details
of each pre-training dataset.

CNN/Daily Mail-PT dataset is transformed from the original summarization dataset, CNN/Daily
Mail (Nallapati et al., 2016) and comprises news articles sourced from CNN and Daily Mail web-
sites, along with their human-annotated summaries. SAMSum-PT dataset is derived from the
original text summarization dataset SAMSum (Gliwa et al., 2019) and contains dialogues with sum-
maries constructed from existing datasets and linguists. Delve-PT dataset is transformed from the
original summarization dataset Delve dataset (Akujuobi & Zhang, 2017; Chen et al., 2021) and con-
sists of abstract paragraphs along with their corresponding summaries within the field of computer
science. S2orc-PT dataset is transformed from the original summarization dataset S2orc dataset (Lo
et al., 2019; Chen et al., 2021) and contains the abstract paragraphs and corresponding summaries
in nineteen fields, including biology, physics, mathematics, etc.

Each data sample in the above pre-training datasets contains two coherent paragraphs, two outlier
paragraphs, and one summary. The dataset partitioning is shown in Table 1. See Appendix B for the
detailed statistics and construction method of each pre-training dataset.

4.3 OUTLIER PARAGRAPH DETECTION DATASETS

Table 1: The major statistics of datasets. ∗ indicates shared
validation set or test set.

Dataset Training Validation Test
CNN/Daily Mail-PT 42.387K 5.298K 5.298K

SAMSum-PT 3.273K 0.409K 0.409K
Delve-PT 8K 1K 1K
S2orc-PT 20K 2K 2K

CNN/Daily Mail-OD 20K 2.5K 2.5K×5
SAMSum-OD 3.273K 0.409K 0.409K×5

Delve-OD (1K) 1K 100* 1K×5*
Delve-OD (8K) 8K

S2orc-OD 2K 200 2K×5

We provide an overview of the cross-
document and cross-domain outlier para-
graph detection datasets in the following.

Cross-document outlier detection sets
consist of coherent and outlier paragraphs
sampled from the same domain. We get
four cross-document detection datasets
from CNN/Daily Mail, SAMSum, Delve
and S2orc, respectively.

Cross-domain outlier detection sets
comprise coherent and outlier paragraphs
from varying domains. For each domain
from which coherent paragraphs are sourced, outliers are extracted from the other three domains,
leading to three unique cross-domain test sets. To assess detection against random outliers, we
create a set with randomly generated paragraphs using words tokenized from four summarization
datasets. This results in four cross-domain test sets for each text summarization domain. Each cross-
domain test set size is consistent with the cross-document set, and both types share the same training
and validation datasets. In cross-domain detection, hyper-parameter tuning is exclusively done on
cross-document outliers, precluding prior knowledge of cross-domain outliers during testing.

Each data sample in the above outlier paragraph detection datasets (OD) contains two coherent
paragraphs and two outlier paragraphs. The dataset partitioning is presented in Table 1. Each outlier
paragraph detection dataset contains a cross-document training set, a cross-document validation set,
a cross-document test set and four cross-domain test sets.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Pre-training Summerizers. We employ Hugging Face Transformers2 Wolf et al. (2020) and
AdamW optimizer with default parameters. Additional pre-training details are in the Appendix C.1.
We select the checkpoint with the lowest evaluation loss for outlier detection. Generative quality is
assessed using ROUGE Mihalcea & Tarau (2004), with results in the Table 7 in Appendix C.2.

Baselines. We employ a three-layer FNN with ReLU neurons. The input dimension N is twice the
dimension of the attention layer. The dimension of the first, second, and third layer is 4N , 2N and

2https://huggingface.co/
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Table 2: Evaluation results of CODE and baselines for cross-document outlier paragraph detection. All values
are percentages. ↑ indicates that larger values are better, and ↓ indicates that smaller values are better. Charac-
ters “B” and “L” denote the Base and Large models, respectively. The hyper-parameters α and β of CODE are
searched by minimizing FPR at 95% TPR, and detail can be found in Table 11 in Appendix D.

Models FPR
(95%) TPR (↓) AUROC (↑) AUPR (↑)

CODE/Frozen/FT-All

Delve (1K) T5-L 5.80/30.30/25.63 98.08/92.87/94.59 97.03/93.57/92.60
T5-B 32.30/65.97/57.75 90.08/84.52/85.21 83.76/82.62/82.92

Delve (8K) T5-L 5.55/16.85/18.28 98.16/93.62/95.87 97.23/94.01/95.18
T5-B 31.50/60.22/47.98 90.36/86.32/87.64 84.34/85.40/87.49

S2orc T5-L 1.08/10.40/6.05 99.54/96.01/97.69 99.27/95.59/97.32
T5-B 2.53/15.82/11.65 99.00/96.68/96.87 97.95/96.51/96.01

SAMsum T5-L 0.60/5.50/0.65 99.87/98.67/99.68 99.87/98.78/98.60
T5-B 0.61/8.44/1.22 99.66/99.21/97.46 99.43/99.00/96.68

CNN/Daily Mail T5-L 0.00/0.20/0.32 99.99/99.85/99.77 99.99/99.81/99.79
T5-B 0.12/0.82/0.29 99.96/99.62/99.80 99.96/99.56/99.70

N , respectively. We utilize the AdamW optimizer to fine-tune the model and choose the model with
the lowest validation loss for testing. Training setup details are reported in Appendix C.3.

CODE. There are two hyper-parameters α and β in CODE. We note that our method does not
employ any fine-tuning in the detection phase, except that we run the hyper-parameter tuning on α
and β. Thus, CODE is deterministic and does not have standard deviations. We search the hyper-
parameters α in the range [0, 2] with an interval of 0.1 and β in the range [0, 2] with an interval of
0.2. This implies that we search for the best setting in 231 hyper-parameter combinations. We select
the model with the lowest FPR at 95% TPR for testing.

5.2 MAIN RESULTS
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Figure 1: The ROC curves of CODE (blue)
and Frozen (red) evaluated on T5-Large and
Delve-OD (1K).

In this subsection, we present the main results. Please
refer to Appendix D for further details.

CODE vs. Baseline. Figure 1 displays ROC curves
for CODE (blue) and the baseline Frozen (red) using
the T5-Large architecture on the cross-document outlier
detection dataset Delve (1K). A substantial performance
gap is evident, with CODE significantly outperforming
the baseline. For instance, at a 95% True Positive Rate
(TPR), CODE reduces the False Positive Rate (FPR) from
30.3% to 5.8%. Comprehensive evaluation results can
be found in Table 2, highlighting that CODE consistently
outperforms the baselines across all settings.

Fine-tuning Dataset Size. To assess the impact of fine-tuning dataset size, we conducted experi-
ments on Delve using various set sizes. Interestingly, we observed that CODE exhibits low sensi-
tivity to the set size, with consistent performance, such as a 5.80% FPR on Delve (1K) compared
to 5.55% on Delve (8K) with the T5-Large architecture. In contrast, both baselines show sensitiv-
ity to the set size, with notable differences in performance, such as a 25.63% FPR on Delve (1K)
compared to 18.28% on Delve (8K) using the T5-Large architecture.

GLM Architecture Size and Type.We investigated how the GLM architecture’s size and type inde-
pendently influence detection performance. Table 2 demonstrates that increasing GLM size consis-
tently enhances outlier detection across all data domains. For example, T5-Large achieves a 5.80%
FPR at 95% TPR on Delve (1K) compared to 32.30% using T5-Base. This boost can be attributed
to a greater amount of parameters in T5-Large, enabling better comprehension of paragraph rela-
tionships and coherent summaries, and contributing to improved detection. Additionally, T5-Large
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Figure 2: Performance of CODE under different settings. (a) Performance of CODE vs. pre-training valida-
tion loss under different checkpoints. (b) Performance of CODE vs. different choice of attention layers. (c)
Similarities between coherent and outlier paragraphs vs. detection performance. C1 to C5 represent CNN/Daily
Mail, S2orc, SAMSum, Delve (8K) and Delve (1K), respectively. (d) Performance of CODE vs. different
domains. The coherent paragraphs sourced from the Delve domain, and varying outlier domains represented as
C1 through C4, encompassing SAMSum, CNN/Daily Mail, Random Domain, and S2orc.

consistently outperforms BART-Large across various metrics. This highlights the critical role of
architecture choice in achieving robust outlier detection in document summarization tasks. For ad-
ditional insights into the performance of the BART architecture, refer to Table 9 in Appendix D.

Pre-training Checkpoint. We explored the impact of checkpoint selection during the pre-training
phase on outlier detection. To illustrate, we tracked the summarization and detection performance of
checkpoints during pre-training using the T5-Large architecture on Delve. In Figure 2 (a), we plot-
ted pre-training validation loss against the detection FPR of CODE at each checkpoint. Our findings
show that during the initial four epochs of pre-training, validation loss consistently decreases, lead-
ing to a notable reduction in detection FPR. This suggests that domain-specific pre-training enhances
detection within those domains. However, as the pre-training continues, we observed an increase
in validation loss, indicating potential overfitting. Intriguingly, the detection FPR remains relatively
stable, implying that while overfitting may occur during pre-training, it might not significantly im-
pact the outlier detection performance of CODE.

Attention Layer. In CODE, we input the output from the final cross-attention layer into the de-
tector. Both T5 and BART architectures consist of multiple cross-attention layers, prompting us
to investigate how the choice of cross-attention layers impacts detection performance, as shown in
Figure 2 (b). Our findings consistently show that the lowest FPR at 95% TPR and the highest AU-
ROC consistently occur in the cross-attention layer closest to the final layer, which is adjacent to the
output layer, across all configurations. Additionally, in Figure 2 (b), we observed that the last three
layers exhibit similar detection FPRs. This indicates that performance variation is minimal when
selecting attention layers near the output.

Cross-document Detection Domain. Detection performance is notably affected by the degree of
similarity between outlier and coherent paragraphs. Greater similarity between them poses a more
challenging outlier detection task. To quantify this similarity, we calculated the average cosine sim-
ilarity between the embeddings of coherent and outlier paragraphs within a paragraph sequence.
Specifically, we employed the Sentence-BERT model (Reimers & Gurevych, 2019) to extract para-
graph embeddings. The formal definition of similarity between outlier and coherent paragraphs in
dataset C is represented as follows, where H(X) denotes the embedding vector of paragraph X:

sim(C) = 1

|C|
∑
X∈C

 1

|X out|(|X | − |X out|)
∑

X∈X out

∑
X′∈X\X out

⟨H(X), H(X ′)⟩
∥H(X)∥2 · ∥H(X ′)∥2

 ,

In Figure 2 (c), we depicted dataset similarity and detection performance across various domains
using the T5-Large architecture. Our observations show that as outlier paragraphs become more
similar to coherent ones, the detection of FPR increases. This suggests a positive correlation between
the similarity of coherent and outlier paragraphs and detection errors. Additional results for other
architectures can be found in Appendix G.

Cross-domain Outlier Detection. Table 2 presents the detection performance of CODE when co-
herent and outlier paragraphs are from the same domain but different documents. We anticipate this
performance consistency even when fine-tuning hyper-parameters of CODE in one domain for de-
tecting outliers in another. Figure 2 (d) depicts performance variations in diverse cross-domain out-
lier detection scenarios. Specifically, we pre-trained the text summarizer and selected the best hyper-
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Figure 3: (a) FPR at a 95% TPR for our method under various hyper-parameters, evaluated on T5-Large and
S2orc testset. (b) Domain distribution of bigrams with different occurrences. Figures (c) to (f) show bi-gram
distributions. Bi-grams are from coherent paragraphs in (c) and (e) and from outlier paragraphs in (d) and (f).
GLM is pre-trained with outliers in (c) and (d) and without outliers in (e) and (f). The x and y-axis represent
the cross-attention A(x) and conditional distribution of A(x) under different occurrences, respectively.

parameters of CODE on the Delve domain. Next, we evaluated the detection performance against
outlier paragraphs from other domains, including S2orc, Random, SAMsum and CNN Daily/Mail
domains, utilizing the T5-Large architecture. Additional results for other pre-trained models are
in Appendix H. In Figure 2 (d), CODE demonstrates robust performance across different domains,
with a maximum false positive rate (FPR) at 95% true positive rate (TPR) of only 1.64%. We also
explored the influence of the similarity between cross-domain outlier and coherent paragraphs on
performance. We quantified this similarity for each cross-domain outlier detection dataset, as pre-
sented in Figure 2 (d). We observed that as the similarity between cross-domain datasets increased,
the FPR at 95% TPR also increased. This implies that when coherent and outlier paragraphs closely
resemble each other, the task becomes more challenging, resulting in higher detection errors.

6 DISCUSSIONS

In this section, we investigate the effectiveness of word frequency, cross-attention and cross-
document outlier paragraphs used in the pre-training phase.

Effectiveness of Word Frequency Hyper-parameter β. Given the richer semantic content in bi-
gram phrases compared to individual words, we use the bi-gram phrases as our primary unit of
analysis. In CODE, for each bi-gram x in paragraph X , we calculate the average attention scores
with words in the summary Ŷ and normalize it by the frequency of x raised to the power β. We
select a positive β to accentuate the effects of infrequent bi-grams. Figure 3 (a) showcases how
detection error varies with different β values. Optimal results are attained with a positive β, but per-
formance declines if β is too large, suggesting the importance of moderate emphasis on infrequent
words. To understand this, we conduct the following experiment. We determine their occurrence
in four domains: CNN/Daily Mail, SAMSum, S2orc and Delve, represented as f1(x) to f4(x).
The total occurrence of a phrase x is f(x) =

∑
i fi(x). The metric concentration is defined as

conc.(x) = maxi fi(x)
f(x) , representing how bi-gram phrases are concentrated among domains. In Fig-

ure 3 (b), bi-grams with fewer than five occurrences are domain-specific, whereas those with more
than 128 are domain-agnostic. Emphasizing infrequent bi-grams can enhance outlier paragraph
detection since domain-specific phrases differ significantly across domains. Moreover, infrequent
bi-grams typically exhibit higher average cross-attentions compared to their frequent counterparts,
which may also benefit outlier detection. To see this, let A(x) = 1

|Ŷ |

∑
ŷ∈Ŷ Attα(ŷ, x) repre-

sent the mean cross-attention between summary Ŷ and bi-gram x. Figures 3 (c) and (d) display
the distribution of A(x) for bi-grams in coherent and outlier paragraphs, respectively, across dif-
ferent bi-gram occurrence regimes. We observe higher average cross-attentions on less frequent
bi-grams. However, this does not imply that frequent bi-grams are inconsequential in identify-
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ing coherent paragraphs. Some, especially those with very high occurrence counts, may also be
domain-specific terminologies. For instance, the term “Manchester United” appears 1,552 times but
is exclusively found in the CNN/Daily Mail domain. Overemphasizing β can diminish the contri-
bution of these domain-specific terminology, potentially degrading performance. Hence, this may
explain Figure 3 (a) in which as β further increases after 0.2, the detection error increases.

Effectiveness of Cross-Attention Hyper-parameter α. Comparing Figure 3 (c) and (d), we ob-
serve that the bi-grams in coherent paragraphs tend to have larger average cross-attentions than the
outlier counterparts. To amplify the discrepancy between the cross-attentions of outlier and coher-
ent bi-grams, an optimal choice of α is required. To see this, given the cross-attention scores of a
coherent bi-gram a1 and an outlier bi-gram a2, with 0 < a2 < a1 < 1, the difference in the powered
cross-attention scores, aα1 − aα2 , can be maximized by selecting α∗ = ln | ln a1|−ln | ln a2|

ln a1−ln a2
> 0. The

difference escalates when α < α∗ and contracts when α > α∗. This observation aligns with Fig-
ure 3 (a), where detection error initially diminishes with increasing α up to 0.2, and subsequently
rises for all β choices.

syntacticsemantic
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Figure 4: Cross-attention scores on eight bi-grams
when T5-Large is pre-trained with and without outliers.
Bi-gram occurrences are in the parenthesis.

Effectiveness of Outlier Paragraphs in Pre-
training. We employed the T5-Large archi-
tecture for pre-training on the Delve dataset,
deliberately excluding all cross-document out-
lier paragraphs. Comprehensive pre-training
results can be found in Appendix J. Subsequent
deployment of CODE on this model yielded an
80.45% FPR at 95% TPR on the Delve outlier
detection dataset. This starkly contrasts with
the 5.8% FPR achieved when outliers were in-
corporated during pre-training. To understand
the discrepancy in detection performance, we
juxtapose the cross-attention distributions from
Figure 3 (e) and (f) against those from Figure 3
(c) and (d). Our observations underscore that incorporating outliers during pre-training can effica-
ciously diminish the cross-attention scores of outlier bi-grams (i.e., comparing Figure 3 (f) to (d)),
without impinging on the scores of coherent bi-grams (i.e., comparing Figure 3 (e) to (c)).

To provide more insights, we spotlight eight bi-gram phrases, of which half originate from coher-
ent paragraphs and the remainder from outlier paragraphs. Furthermore, half of these bi-grams
frequently appear, as indicated by their occurrence counts in parenthesis. Comparing the cross-
attention scores when the T5-Large model is pre-trained with (i.e., red bars) and without (i.e., blue
bars) outliers, we observed that including outliers enhances the attention scores of less frequent
bi-grams in coherent paragraphs, simultaneously depressing scores for the less frequent outlier bi-
grams. For instance, after incorporating outliers in pre-training, the coherent bi-gram “levinstyle
verb” with a single occurrence nearly doubles its attention score, whereas the outlier bi-gram “dis-
counted rate” with two occurrences sees an 80% attention reduction. Moreover, we observed that
the attention scores of domain-agnostic phrases also wane, potentially bolstering outlier detection
capabilities. For example, after incorporating outliers in pre-training, we observe notable reductions
in attention scores for the domain-agnostic phrases “can be” in coherent paragraphs and “continue
to” in outlier paragraphs.

7 CONCLUSIONS

In conclusion, while generative text summarizers excel at content representation, their vulnerabil-
ity to outlier paragraphs poses significant challenges. In this paper, we focus on cross-document
and cross-domain outlier paragraph detection. By exploiting the encoder-decoder cross-attention
structure and unique behaviors of infrequent words, we introduced CODE, a novel and efficient out-
lier detector. Experimental results validate the superiority of CODE over the traditional supervised
fine-tuning methods under various datasets and architectures. Our findings illuminate the potential
of harnessing cross-attention distribution, word frequency nuances and the strategic use of cross-
document outliers in the pre-training phase, setting a promising direction for future advancements
in the realm of text summarization.
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A RELATED WORK

The challenge of detecting out-of-distribution (OOD) samples by deep neural networks has received
extensive research attention (Sun et al., 2022; Lakshminarayanan et al., 2017; Hendrycks et al.,
2018; Yang et al., 2021; Fort et al., 2021). A class of methods used to solve the OOD problem is
softmax-based methods (Hendrycks & Gimpel, 2016; Liang et al., 2017; Hsu et al., 2020). As an
initial attempt, Hendrycks & Gimpel (2016) leverages the softmax probability of the model’s output
to identify OOD samples, effectively mitigating the issue of neural networks assigning excessively
high confidence scores to such data (Nguyen et al., 2015). A prominent representative of softmax-
based methods is ODIN (Liang et al., 2017), which incorporates temperature scaling and input
perturbations to significantly enhance the efficiency of both in-distribution and out-of-distribution
sample detection. Lee et al. (2018) opts for a different path by computing confidence scores for
input samples using the Mahalanobis distance (Mahalanobis, 2018) instead of relying on softmax.
Notably, this method fine-tunes the model using OOD data, and similar settings are used in (Vyas
et al., 2018). Diverging from the conventional softmax-based methodology, our approach utilizes
the cross-attention matrix within the generative language model for the purpose of detecting outlier
paragraphs. Importantly, our method retains the original model structure and eliminates the need for
additional fine-tuning. In addition, our method is to implement outlier paragraph detection inside
the sample instead of OOD sample detection. Our detection objective aligns with the concept of
anomaly detection using generative adversarial networks (Schlegl et al., 2017; 2019), albeit without
the extensive model fine-tuning typically associated with such endeavors.

B SUPPLEMENTARY MATERIALS FOR SECTION 4.2 AND SECTION 4.3

B.1 DETAILED DONSTRUCTION METHOD OF EACH PRE-TRAINING DATASET

In this subsection, we introduce the construction details of pre-training datasets CNN/Daily Mail-PT,
SAMSum-PT, Delve-PT, and S2orc-PT in detail.

CNN/Daily Mail-PT. For the limitation of model input length, we use samples whose source docu-
ment length is less than five hundred words as samples to be injected. We split the source document
in these samples into two coherent paragraphs. We split the source documents in the remaining sam-
ples into multiple paragraphs and collected them as candidate outlier paragraphs. For each sample
to be injected, we randomly select two outlier paragraphs to insert.

SAMSum-PT. We divide the dataset into two parts at a ratio of 1:1, one part is prepared to be
injected and the other part is used to provide outlier paragraphs. For the samples to be inserted, we
also split the source document into two paragraphs. We split the input document in another part of
the samples into two paragraphs. We collect these paragraphs as candidate outlier paragraphs. For
each sample to be injected, we randomly select two outlier paragraphs for insertion.

Delve-PT and S2orc-PT. We view the citation markers in the summary paragraphs to find coherent
paragraphs and outlier paragraphs. Specifically, we select summaries with at least two citation
markers. We randomly select two markers when a summary contains multiple citation markers.
Next, for each citation marker in a summary, we find the corresponding paper abstracts as coherent
paragraphs. To get outlier paragraphs, we use Microsoft Academic Graph (MAG) (Shen et al.,
2018) to determine the academic fields where the abstract belongs. For each abstract, MAG directly
provides their academic fields in a hierarchical manner with a progressively finer granularity from
L0 to L5. To get the outlier paragraphs, under L3 and more specific sub-fields, we select abstract
paragraphs whose fields do not intersect with coherent abstract paragraphs. We also insert two
outlier paragraphs into each sample.

B.2 ADDITIONAL DATASET STATISTICS

In this subsection, we report the statistics of the pre-training datasets, the cross-document outlier
paragraph detection dataset, and the test sets of cross-domain outlier paragraph detection. These
statistics are presented in Tables 3, 4 and 5, respectively.
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Table 3: Additional statistics of the pre-training datasets with outlier paragraphs.

# Examples # Words
(single)

# Words
(all)

CNN/Daily Mail Paragraph 202,220 avg: 223.19, std: 55.08 361,363
Summary 52,459 avg: 47.78, std: 21.13 85,486

SAMSum Paragraph 13,180 avg: 61.35, std: 48.36 22,005
Summary 4,092 avg: 23.53, std: 12.75 8,731

Delve Paragraph 34,159 avg: 173.66, std: 104.07 97,055
Summary 10,000 avg: 30.82, std: 15.71 19,667

S2orc Paragraph 85,444 avg: 217.12, std: 172.381 182,478
Summary 24,000 avg: 34.72, std: 18.64 42,019

Table 4: Additional statistics of the cross-document outlier paragraph detection datasets.

# Examples # Words
(single)

# Words
(all)

CNN/Daily Mail Paragraph 98,221 avg: 220.50, std: 55.42 239,549

SAMSum Paragraph 13,186 avg: 61.95, std: 50.00 22,349

Delve Paragraph 35,039 avg: 173.32, std: 91.25 98,778

S2orc Paragraph 16,167 avg: 216.81, std: 177.46 74,100

Table 5: Additional statistics of the cross-domain outlier paragraph detection test sets. A← B means
sampling the outlier paragraphs from dataset B and inserting them into dataset A.

# Examples # Words
(single)

# Words
(all)

CNN/Daily Mail← SAMSum Paragraph 5,495 avg: 185.32, std: 78.76 45,360

CNN/Daily Mail← Delve Paragraph 6,817 avg: 191.72, std: 79.56 55,659

CNN/Daily Mail← S2orc Paragraph 7,816 avg: 203.37, std: 111.46 63,996

CNN/Daily Mail← Random domain Paragraph 8,931 avg: 177.61, std: 60.25 279,440

SAMSum← CNN/Daily Mail Paragraph 1,581 avg: 150.11, std: 97.94 20,845

SAMSum← Delve Paragraph 1,488 avg: 110.57, std: 87.16 13,662

SAMSum← S2orc Paragraph 1,541 avg: 137.78, std: 154.99 17,940

SAMSum← Random domain Paragraph 1,607 avg: 105.78, std: 59.43 99,622

Delve← CNN/Daily Mail Paragraph 3,538 avg: 201.81, std: 68.32 38,924

Delve← SAMSum Paragraph 2,405 avg: 143.66, std: 81.65 18,064

Delve← S2orc Paragraph 3,468 avg: 184.48, std: 111.51 30,023

Delve← Random domain Paragraph 3,694 avg: 158.70, std: 57.67 185,256

S2orc← CNN/Daily Mail Paragraph 6,571 avg: 232.75, std: 160.62 61,800

S2orc← SAMSum Paragraph 2,405 avg: 143.66, std: 81.65 18,064

S2orc← Delve Paragraph 5,546 avg: 209.02, std: 184.34 41,473

S2orc← Random domain Paragraph 7,075 avg: 190.919, std: 159.76 255,651
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C SUPPLEMENTARY MATERIALS FOR EXPERIMENTAL SETUPS

C.1 PRE-TRAINING SETUPS

In this subsection, we report the pre-training hyper-parameter settings in Table 6.

Table 6: Pre-training settings of the GLMs. Characters “B” and “L” denote the model size of Base
and Large, respectively. All models are trained on the Tesla A100 machine. We set warm-up steps
to 200 and employ a linear learning rate scheduler.

Datasets Models Learning rate # Epochs Batch size

CNN/Daily Mail-PT BART-B 0.00003 15 8
BART-L 0.00003 15 4

SAMSum-PT BART-B 0.00003 15 8
BART-L 0.00003 15 4

Delve-PT BART-B 0.00003 15 16
BART-L 0.00003 15 8

S2orc-PT BART-B 0.00003 15 8
BART-L 0.00003 15 8

CNN/Daily Mail-PT T5-B 0.0002 15 6
T5-L 0.0001 15 6

SAMSum-PT T5-B 0.0002 15 6
T5-L 0.0001 15 6

Delve-PT T5-B 0.0002 15 6
T5-L 0.0001 15 6

S2orc-PT T5-B 0.0002 15 12
T5-L 0.0001 15 6
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C.2 PERFORMANCE OF THE PRE-TRAINED MODELS

In this subsection, we show the performance of text summarization on each dataset and pre-trained
model in Table 7. We use ROUGE to evaluate the quality of text summarization and performance of
all pre-trained models.

Additionally, the metrics used in this section are as follows:

• ROUGE-1 measures the overlap of unigrams between the reference and the generated
summary.

• ROUGE-2 extends the concept of ROUGE-1 to bigrams, measuring the overlap of consec-
utive pairs of words between the reference and the generated summary.

• ROUGE-L calculates the longest common subsequence between the reference and the
generated summary.

Table 7: Performance of the pre-trained models

Datasets Models ROUGE-1 ROUGE-1 ROUGE-L

Delve

T5-L 19.3443 3.3781 14.4185
T5-B 17.5721 2.8855 13.4359

BART-L 18.0474 2.7043 13.6427
BART-B 18.3348 2.8605 13.9695

S2orc

T5-L 20.4524 3.9853 15.1929
T5-B 19.9058 3.6515 14.7904

BART-L 20.7972 3.7129 15.4441
BART-B 19.9070 3.4996 14.8250

SAMsum

T5-L 44.3738 21.7557 38.7138
T5-B 43.1620 20.6720 38.6918

BART-L 50.4676 25.7701 41.8661
BART-B 44.9713 20.4162 36.2211

CNN/Daily Mail

T5-L 35.5728 12.0295 25.0173
T5-B 33.7640 14.7571 23.3762

BART-L 41.8007 20.1378 30.1265
BART-B 41.4113 19.7040 29.7622

We also note here that on the CNN/Daily Mail dataset, the reference Lewis et al. (2019) reports
44.16, 21.28, and 40.90 on the BART model, and the reference Raffel et al. (2020) reports 43.52,
21.55 and 40.69 on T5 model, respectively. Our pre-trained model generally has worse perfor-
mance, since (1) we add the outlier paragraphs in the pre-trained phrase; (2) the data for outlier
paragraph detection is constructed from the raw data, and some part of the training set from Lo
et al. (2019)Akujuobi & Zhang (2017)Gliwa et al. (2019)Nallapati et al. (2016) are used for hyper-
parameter search. Therefore, the total amount of training data is smaller than the original dataset,
which may lead to a worse performance of text summarization. Although the performance of our
pre-training model is worse, this does not affect the effectiveness of outlier paragraph detection.

C.3 TRAINING SETUPS OF THE BASELINES

In this subsection, we report the training settings of the Frozen and FT-ALL. Table 8 presents the
training epochs and batch sizes.

Frozen. We use the AdamW optimizer with exponential decay rates for the first and second mo-
ments of the gradient updates setting to 0.9 and 0.999, respectively. We choose a constant learning
rate scheduler with a warm-up period of 200 steps. The learning rates are selected from the set
{10−6, 10−5, 10−4, 10−3}. The weight decay parameter is configured to be 0.0001. For each hyper-
parameter setting, we run three times with different random seeds. In the main paper, we report the
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mean value of the results, while the standard deviations are presented in Table 10. We select the
model with the lowest validation loss for testing in outlier paragraph detection.

FT-ALL. We utilize the same hyper-parameter setting used in the baseline Frozen, except that the
learning rate is set to the one used in the summarizer pre-training. We repeat this baseline three
times with different random seeds.

Table 8: Epochs and batch size of the baselines. Characters “B” and “L” denote the model size of
Base and Large, respectively. All models are trained on the Tesla A100 machine.

Datasets Models # Epochs Batch size

Frozen

CNN/Daily Mail BART-B 40 64
BART-L 40 64

SAMSum BART-B 40 64
BART-L 40 64

Delve (1K) BART-B 40 64
BART-L 40 64

Delve (8K) BART-B 40 64
BART-L 40 64

S2orc BART-B 40 64
BART-L 40 64

CNN/Daily Mail T5-B 40 64
T5-L 40 64

SAMSum T5-B 40 64
T5-L 40 64

Delve (1K) T5-B 40 64
T5-L 40 64

Delve (8K) T5-B 40 64
T5-L 40 64

S2orc T5-B 40 64
T5-L 40 64

FT-ALL

CNN/Daily Mail BART-B 10 8
BART-L 10 8

SAMSum BART-B 10 8
BART-L 10 8

Delve (1K) BART-B 10 8
BART-L 10 8

Delve (8K) BART-B 10 8
BART-L 10 8

S2orc BART-B 10 8
BART-L 10 8

CNN/Daily Mail T5-B 10 8
T5-L 10 8

SAMSum T5-B 10 8
T5-L 10 8

Delve (1K) T5-B 10 4
T5-L 10 4

Delve (8K) T5-B 10 4
T5-L 10 4

S2orc T5-B 10 4
T5-L 10 4
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D SUPPLEMENTARY RESULTS IN MAIN RESULTS

In this section, we present all evaluation results to show the improvement of our method compared to
the baselines. Table 9 shows the performance of our proposed method and two baselines under each
dataset. The details of our method and the baselines can be found in section 3. We note here that
our method is deterministic and does not have an error bar. The other two baselines are randomly
re-initialized with three different seeds. We take the average of the results as the final performance
and calculate the standard deviation. Table 10 provides the standard deviation for different models.
Table 11 provides the hyper-parameters α and β of CODE are used in the evaluation process.

The evaluation metrics used in section 5 are as follows:

• FPR at 95% TPR refers to the rate that an outlier paragraph is misclassified as a coherent
paragraph when the true positive rate (TPR) is at 95%.

• AUROC is calculated as the Area Under the Receiver Operating Characteristic
curve (Fawcett, 2006). The ROC curve illustrates the relationship between TPR and FPR at
various thresholds. The higher the value of AUROC, the stronger the discriminative ability
of the model.

• AUPR stands for Area Under the Precision-Recall curve (Manning & Schutze, 1999; Saito
& Rehmsmeier, 2015). The PR curve depicts the trade-off between precision and recall at
various thresholds. For an ideal classifier, its AUPR score is 1.

Table 9: Evaluation results of CODE and baselines for cross-document outlier paragraph detection.
↑ indicates that larger values are better, and ↓ indicates that smaller values are better. Characters “B”
and “L” denote the Base and Large model, respectively.

Models FPR
(95%) TPR AUROC AUPR

↓ ↑ ↑
CODE/Frozen/FT-ALL

Delve (1K)

T5-L 5.80/30.30/25.63 98.08/92.87/94.59 97.03/93.57/92.60
T5-B 32.30/65.97/57.75 90.08/84.52/85.21 83.76/82.62/82.92

BART-L 11.10/43.02/44.45 96.09/91.23/91.84 93.41/90.08/90.47
BART-B 19.65/49.27/53.02 91.60/90.62/90.99 93.66/90.23/90.61

Delve (8K)

T5-L 5.55/16.85/18.28 98.16/93.62/95.87 97.23/94.01/95.18
T5-B 31.50/60.22/47.98 90.36/86.32/87.64 84.34/85.40/87.49

BART-L 11.10/33.52/33.45 96.09/93.17/92.75 93.41/92.96/91.61
BART-B 20.30/45.40/38.00 94.79/90.66/92.04 91.30/89.98/90.95

S2orc

T5-L 1.08/10.40/6.05 99.54/96.01/97.69 99.27/95.59/97.32
T5-B 2.53/15.82/11.65 99.00/96.68/96.87 97.95/96.51/96.01

BART-L 4.83/16.18/9.47 98.66/96.03/96.77 98.11/95.45/96.15
BART-B 3.00/6.94/5.07 98.72/97.91/97.71 97.56/97.55/97.26

SAMsum

T5-L 0.60/5.50/0.65 99.87/98.67/99.68 99.87/98.78/98.60
T5-B 0.61/8.44/1.22 99.66/99.21/97.46 99.43/99.00/96.68

BART-L 0.91/0.65/0.28 99.43/99.70/99.77 99.37/99.67/99.77
BART-B 2.26/3.83/3.67 97.23/99.15/97.83 94.61/99.18/97.83

CNN/Daily Mail

T5-L 0.00/0.20/0.32 99.99/99.85/99.77 99.99/99.81/99.79
T5-B 0.12/0.82/0.29 99.96/99.62/99.80 99.96/99.56/99.70

BART-L 0.14/0.57/0.44 99.71/99.69/99.78 99.60/99.73/99.75
BART-B 0.18/0.23/0.33 99.89/99.87/99.86 99.83/99.86/99.86
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Table 10: Standard deviation of the evaluation results.

Models FPR
(95%) TPR AUROC AUPR

↓ ↑ ↑
CODE/Frozen/FT

Delve (1K)

T5-L 0.00 /0.94/1.34 0.00/0.21/0.91 0.00/0.16/0.76
T5-B 0.00/1.53/7.42 0.00/0.20/9.83 0.00/0.16/12.46

BART-L 0.00/1.17/2.49 0.00/0.19/0.39 0.00/0.20/0.40
BART-B 0.00/1.42/0.34 0.00/0.13/0.06 0.00/0.21/0.10

Delve (8K)

T5-L 0.00/0.62/1.05 0.00/0.09/0.08 0.00/0.11/0.34
T5-B 0.00/1.08/0.55 0.00/0.13/1.12 0.00/0.15/0.92

BART-L 0.00/0.98/2.45 0.00/0.02/0.24 0.00/0.03/0.40
BART-B 0.00/1.18/0.76 0.00/0.45/0.20 0.00/0.62/0.34

S2orc

T5-L 0.00/0.35/0.31 0.00/0.27/0.93 0.00/0.33/0.86
T5-B 0.00/0.48/0.35 0.00/0.11/3.02 0.00/0.48/4.93

BART-L 0.00/0.01/1.04 0.00/0.01/0.11 0.00/0.01/0.13
BART-B 0.00/0.23/0.25 0.00/0.01/0.25 0.00/0.01/0.64

SAMsum

T5-L 0.00/0.46/0.24 0.00/0.03/0.01 0.00/0.04/0.02
T5-B 0.00/0.43/0.32 0.00/0.02/0.01 0.00/0.03/0.03

BART-L 0.00/0.11/0.06 0.00/0.01/0.02 0.00/0.01/0.01
BART-B 0.00/0.12/0.46 0.00/0.05/0.05 0.00/0.06/0.21

CNN/Daily Mail

T5-L 0.00/0.01/0.00 0.00/0.00/0.00 0.00/0.02/0.00
T5-B 0.00/0.01/0.01 0.00/0.01/0.00 0.00/0.00/0.01

BART-L 0.00/0.06/0.10 0.00/0.01/0.02 0.00/0.01/0.01
BART-B 0.00/0.02/0.46 0.00/0.01/0.05 0.00/0.01/0.21

Table 11: The hyper-parameters α and β of CODE are used in the main results. Characters “B” and
“L” denote the model size of Base and Large, respectively.

BART-B BART-L T5-B T5-L

α, β

CNN/Daily Mail-OD 0.2, 0.0 0.2, 0.3 0.2, 0.1 0.2, 0.1
SAMSum-OD 0.2, 0.0 0.2, 0.0 0.4, 0.2 0.4, 0.4

Delve-OD (1K) 1.2, 0.2 0.2, 0.1 1.2, 0.0 0.2, 0.0
Delve-OD (8K) 0.8, 0.0 1.0, 0.1 1.0, 0.2 0.6, 0.1

S2orc-OD 0.6, 0.1 1.0, 0.1 0.6, 0.0 0.4, 0.0
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E PERFORMANCE VS. PRE-TRAINED MODEL CHECKPOINTS

In this section, we show how the selection of checkpoints of the pre-trained model affects the detec-
tion performance of our method. Specifically, we present the relationship between the validation loss
for each checkpoint on the pre-trained dataset and their cross-document outlier paragraph detection
performance. Each figure in this section displays the validation loss and FPR at 95% TPR metric
of each dataset and model at different checkpoints. We find out that the pre-trained model with the
smallest validation loss is generally not the pre-trained model with the best outlier detection perfor-
mance, but the detection performance difference between the pre-trained model with the smallest
validation loss and the pre-trained model with the best outlier paragraph detection performance is
negligible.

The correspondence between the figures and the setting is as follows:

• Figure 5: performance on Delve (1K) dataset and four models.
• Figure 6: performance on Delve (8K) dataset and four models.
• Figure 7: performance on S2orc dataset and four models.
• Figure 8: performance on SAMsum dataset and four models.
• Figure 9: performance on CNN/Daily Mail dataset and four models.
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Figure 5: Performance vs. Checkpoints on Delve (1K)
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Figure 6: Performance vs. Checkpoints on Delve (8K).
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Figure 7: Performance vs. Checkpoints on S2orc
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Figure 8: Performance vs. Checkpoints on SAMsum
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Figure 9: Performance vs. Checkpoints on CNN/Daily Mail
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F PERFORMANCE VS. PRE-TRAINED MODEL ATTENTION LAYERS

In this section, we show how different attention layers affect the outlier detection performance of
our method. Specifically, we present the relationship between the attention layer and two evaluation
metrics of outlier paragraph detection. Each figure in this section displays FPR at 95% TPR and
AUROC of our method on each dataset and model when different attention layers are selected. We
observe that the lowest FPR at 95% TPR and the highest AUROC occur in the attention layer close
to the last layer (the layer closest to the output layer) for most types of models and datasets, except
BART-base, which contains only six attention layers. In fact, we can also observe that the last three
layers have similar performance and this indicates that the performance varies small if the attention
layers close to the output layer are selected.

The correspondence between the figures and the setting is as follows:

• Figure 10: performance on Delve (1K) dataset and each model.

• Figure 11: performance on Delve (8K) dataset and each model.

• Figure 12: performance on S2orc dataset and each model.

• Figure 13: performance on SAMsum dataset and each model.

• Figure 14: performance on CNN/Daily Mail dataset and each model.
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Figure 10: Performance vs. Attention Layers on Delve (1K)
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Figure 11: Performance vs. Attention Layers on Delve (8K)
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Figure 12: Performance vs. Attention Layers on S2orc
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Figure 13: Performance vs. Attention Layers on SAMsum
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Figure 14: Performance vs. Attention Layers on CNN/Daily Mail
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G PERFORMANCE VS. CROSS-DOCUMENT OUTLIER DETECTION
DIFFICULTY

In this section, we show how different dataset affects the cross-document outlier detection perfor-
mance of our method. We present the relationship between the dataset similarity and two evaluation
metrics of outlier paragraph detection. Figure 15 displays how FPR at 95% TPR changes with the
improvement of dataset similarity, while Figure 16 displays how AUROC changes with the improve-
ment of dataset difficulty. C1 to C5 represent CNN/Daily Mail, S2orc, SAMSum, Delve (8K), and
Delve (1K), respectively.

To measure the similarity of the dataset, we use the Sentence-BERT model to obtain the embedding
of input documents and calculate the average cosine similarity between the embedding of coherent
and outlier paragraphs within a single data. Specifically, each paragraph contains two coherent
paragraphs and two outlier paragraphs. For each paragraph X in the dataset C, we use H(X) to
denote the embedding vector of paragraph X . Therefore, the difficulty of the dataset C is defined as:

sim(C) = 1

|C|
∑
X∈C

 1

|X out|(|X | − |X out|)
∑

X∈X out

∑
X′∈X\X out

⟨H(X), H(X ′)⟩
∥H(X)∥2 · ∥H(X ′)∥2

 (3)

The higher the cosine similarity, the smaller the difference between coherent and outlier paragraphs
in the dataset, indicating it is harder to detect outliers on this dataset. We observe that when the
coherent and outlier paragraphs in the dataset tend to be less similar to each other (i.e., the similarity
of the dataset is smaller), our method tends to have a smaller FPR at 95% TPR and a larger AUROC.
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Figure 15: FPR at 95% TPR vs. sim(C) in cross-document outlier detection.
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Figure 16: AUROC vs. sim(C) in cross-document outlier detection.
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H PERFORMANCE VS. CROSS-DOMAIN OUTLIER DETECTION DIFFICULTY

In this section, we show how our method transfers across different domains. Recall that we pre-
train the generative language model, find the best hyper-parameter setting, and test the detection
performance on the same domain. We hope that this pre-trained model together with the best hyper-
parameter setting can also transfer to other domains. Therefore, we constructed cross-domain test
sets to evaluate the cross-domain performance. The details of the cross-domain dataset can be found
in section 4.3, B.2, and we use equation 3 to measure the difficulty of cross-domain datasets.

We present the relationship between cross-domain dataset similarity and two evaluation metrics of
the outlier paragraph detection. Figure 17, 18, 19, 20 display FPR at 95% TPR, while figure Figure
21, 22, 23, 24 display AUROC on each model and dataset.

From the figures, we observe that for most settings, FPR at 95% TPR decreases, and AUROC
increases as the similarity of the dataset increases, except for one case. In Figure 18d, we observe
although the s2orc-random domain has a smaller difficulty, FPR is two times larger than that of
S2orc← Delve domain. The performance on the AUROC metric is also worse than that of S2orc
← Delve domain in Figure22d. We generally observe this on the smaller model, i.e., BART-Base,
consisting of nearly 140M parameters. On the larger model, we do not observe this. This may be
due to the fact that the large model models tend to perform better for cross-domain data. We also
observe that T5 model generally performs better than BART on most cross-domain datasets. We
also observe that the larger models yield better performance for both BART and T5.
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Figure 17: FPR at 95% TPR vs. sim(C); The coherent paragraphs sourced from the Delve
(1K) domain, and varying outlier domains represented as C1 through C4, encompassing SAMSum,
CNN/Daily Mail, Random Domain, and S2orc.
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Figure 18: FPR at 95% TPR vs. sim(C); The coherent paragraphs sourced from the S2orc domain,
and varying outlier domains represented as C1 through C4, encompassing SAMSum, CNN/Daily
Mail, Random Domain, and Delve.
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Figure 19: FPR at 95% TPR vs. sim(C); The coherent paragraphs sourced from the SAMSum
domain, and varying outlier domains represented as C1 through C4, encompassing Delve, S2orc,
Random Domain, and CNN/Daily Mail.
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Figure 20: FPR at 95% TPR vs. sim(C); The coherent paragraphs sourced from the CNN/Daily Mail
domain, and varying outlier domains represented as C1 through C4, encompassing Delve, S2orc,
SAMSum, and Random Domain.
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Figure 21: AUROC vs. sim(C); The coherent paragraphs sourced from the Delve (1K) domain, and
varying outlier domains represented as C1 through C4, encompassing SAMSum, CNN/Daily Mail,
Random Domain, and S2orc.
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Figure 22: AUROC vs. sim(C); The coherent paragraphs sourced from the S2orc domain, and
varying outlier domains represented as C1 through C4, encompassing SAMSum, CNN/Daily Mail,
Random Domain, and Delve.
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Figure 23: AUROC vs. sim(C); The coherent paragraphs sourced from the SAMSum domain,
and varying outlier domains represented as C1 through C4, encompassing Delve, S2orc, Random
Domain, and CNN/Daily Mail.
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Figure 24: AUROC vs. sim(C); The coherent paragraphs sourced from the CNN/Daily Mail domain,
and varying outlier domains represented as C1 through C4, encompassing Delve, S2orc, SAMSum,
and Random Domain.

27



Under review as a conference paper at ICLR 2024

I HYPER-PARAMETER SENSITIVITY

In this section, we show how different choice of the hyper-parameter α and β affects the cross-
document outlier detection performance of our method. Specifically, we present the relationship
between the selection of α and β and outlier paragraph detection performance. Each figure in this
section displays FPR at 95% TPR or AUROC of our method on each dataset and model when se-
lecting different combinations of α and β. The details of hyper-parameters can be found in Table 11
in D.

We observe that the best performance occurs near α = 0.6 for most choices of β and the best
performance occurs near β = 0.2 for most choices of α. We also observe that the performance does
not change much when α varies from 0 to 1. Similarly, the performance also changes slightly when
β varies from 0 to 0.4. We observed that the performance of CODE on both types of pre-trained
models is more sensitive to α compared to β.

The correspondence between the figures and the setting is as follows:

• Figure 25: FPR at 95% TPR on Delve (1K) dataset and each model.

• Figure 26: FPR at 95% TPR on Delve (8K) dataset and each model.

• Figure 27: FPR at 95% TPR on S2orc dataset and each model.

• Figure 28: FPR at 95% TPR on SAMsum dataset and each model.

• Figure 29: FPR at 95% TPR on CNN/Daily Mail dataset and each model.

• Figure 30: AUROC on Delve (1K) dataset and each model.

• Figure 31: AUROC on Delve (8K) dataset and each model.

• Figure 32: AUROC on S2orc dataset and each model.

• Figure 33: AUROC on SAMsum dataset and each model.

• Figure 34: AUROC on CNN/Daily Mail dataset and each model.
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Figure 25: FPR at 95% TPR vs. Hyper-parameter on Delve (1K)
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Figure 26: FPR at 95% TPR vs. Hyper-parameter on Delve (8K)
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Figure 27: FPR at 95% TPR vs. Hyper-parameter on S2orc
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Figure 28: FPR at 95% TPR vs. Hyper-parameter on SAMsum
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Figure 29: FPR at 95% TPR vs. Hyper-parameter on CNN/Daily Mail
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Figure 30: AUROC vs. Hyper-parameter on Delve (1K)
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Figure 31: AUROC vs. Hyper-parameter on Delve (8K)
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Figure 32: AUROC vs. Hyper-parameter on S2orc
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Figure 33: AUROC vs. Hyper-parameter on SAMsum
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Figure 34: AUROC vs. Hyper-parameter on CNN/Daily Mail
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J SUPPLEMENTARY MATERIAL FOR EFFECTIVENESS OF OUTLIERS IN
PRE-TRAINING

In this section, we study how the outlier paragraphs in the pre-training affect the performance.
Specifically, we pre-trained the T5-Large model using only coherent paragraphs from the Delve
dataset.

We evaluate the pre-trained models with three metrics for text summarization, and Table 12 presents
the results. We observe that outlier paragraphs can slightly improve the generation performance.
This may be due to the fact that outlier paragraphs may help enrich the corpus in that domain,
therefore enhancing the summarization performance.

Table 12: Performance of Pre-trained Model vs. outlier paragraphs

ROUGE-1 ROUGE-2 ROUGE-L

outlier paragraphs With 19.34 3.38 14.42
Without 17.00 2.45 12.87

Table 13 presents three metrics of outlier paragraph detection under the case where T5-Large is pre-
trained with and without outliers. We observe that outlier paragraphs plays an important role for
outlier detection task.

Table 13: Performance vs. outlier paragraphs (%)

FPR at 95% TPR AUROC AUPR

outlier paragraphs With 5.80 98.08 97.03
Without 80.45 62.92 66.99
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