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Abstract

While many pipelines for extracting informa-001
tion from tables assume simple table structure,002
tables in the financial domain frequently have003
complex, hierarchical structure. The main ex-004
ample would be parent-child relationships be-005
tween header cells. Most prior datasets of ta-006
bles annotated from images or .pdf and most007
models for extracting table structure concen-008
trate on the problems of table, cell, row, and009
column bounding box extraction. The area of010
fine-grained table structure remains relatively011
unexplored. In this study, we present a dataset012
of 887 tables, manually labeled for cell types013
and column hierarchy relations. The tables are014
selected from IBM FinTabNet, a much larger015
dataset of more than 100,000 financial tables016
having cell, row, and column bounding boxes017
extracted by deep learning, but not including018
semantic cell type or cell-to-cell relation la-019
bels, which we add. Selection of these 887020
tables is performed using heuristics which re-021
sult in a much larger proportion, roughly half,022
of the selected tables having complex hierar-023
chical structure, than a random sample from024
FinTabNet. Further, we fine-tune models based025
on LayoutLM on the cell-type classification026
task and on the identification of hiearchical re-027
lations among column headers. We achieve F1028
scores of 95% and 70% on the respective tasks.029
Finally, we use the trained model to create soft030
labels for the entirety of FinTabNet.031

1 Introduction032

Most work on automatic information extraction033

from tables assume that the table’s structure is ade-034

quately represented by grouping of cells into simple035

rows and columns, in exactly the same way that036

the structure of a two-dimensional m× n array is037

represented by assigning each entry to a pair of038

integers (i, j) ∈ [0,m − 1] × [0, n − 1]. In the039

case of tables found on the web, as in Wikipedia040

and related resources, for example, this assump-041

tion is largely borne out by experience. However,042

Figure 1: Financial table annotated with fine structure

in some specialized domains, many of the tables 043

do not have such a simple structure. In particu- 044

lar, in finance and financial reporting, there is an 045

entrenched, culturally reinforced tendency to use 046

rather complex table structure to convey informa- 047

tion more concisely than a simple array-like table 048

can. While such structures are intuitive to a human 049

reader, they present an obstacle to the automation 050

of information extraction from financial tables. 051

Fortunately, some analysis shows that the vast 052

majority of deviations from simple table structure 053

occurs in one of two main directions. The first 054

is that the financial table has multiple layers of 055

row or column headers, and there is a hierarchical 056

tree-like structure to the row or column headers 057

of the table. The second is that the table has text 058

cells within the table that span multiple columns of 059

mainly numerical cells. In analogy with the usual 060

table captions which apply to the whole table, we 061

can think of these cells as a special type of captions 062

which apply only to a contiguous region of the table. 063

In both cases, certain aspects of the table’s structure 064

that are not adequately captured by row-column 065

assignments, can be represented by a directed tree 066

structure. The nodes are row/column header cells 067

(in the first case), or caption cells/content blocks (in 068

the second case), and the edges correspond to the 069

relation between two nodes that can be interpreted 070

as "parent cell modifies or governs meaning of 071

child cell". For example, in Figure 1, each of the 072

three of the “child” column header cells (“2009”, 073
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“2009”, “2007”) has its meaning modified or by074

the “parent” cell (“Years Ended December 31”).075

The caption “(in millions)" modifies the meaning076

of the “child” block of content cells outlined in077

yellow. In making these definition, we are simply078

rephrasing an observation made previously in, e.g.,079

(Chen et al., 2017) and (Xue et al., 2019).080

The main contributions of this work are as fol-081

lows.082

• We decompose the task of understanding the083

table structure, understood as identifying the084

correct tree structure as just outlined, as two085

simpler tasks. The first is a classification of086

all the cells in the table into four semantic087

classes, with labels content, row header, col-088

umn header, caption, where “caption” is un-089

derstood in the extended sense above. The090

second is a classification of all the potential091

relationship edges, as identified from all pos-092

sible edges by some simple heuristics, into093

true/existing and false/non-existing relation-094

ship edges.095

• We address both problems within a unified096

deep learning framework, namely the one pro-097

vided by (Xu et al., 2020), which allows us to098

take advantage of the representations incorpo-099

rating both semantic content of the cells and100

their surroundings and visual cues from the101

layout of the document.102

• We produced and plan to release two datasets.103

The first is manually labelled with almost 900104

tables, roughly half of which have complex105

structure. The second is a much larger dataset106

of 100K financial tables which are “soft-107

labeled" using a LayoutLM-based (Xu et al.,108

2020) model fine-tuned on the first dataset.109

Because the data annotation procedures and pro-110

tocols are a central part of our contribution, we111

devote an entire section, 3 below, to describing the112

dataset creation process in detail. Since row hierar-113

chy structure tends to be more subjective than col-114

umn hierarchy structure, we labelled only column115

header hierarchy. We intend to label row-header116

hierarchy in a future version, an effort which will117

require more resource-intensive review and resolu-118

tion of inter-annotator disagreement. Despite this119

limitation, our manually labeled dataset of almost120

900 tables is much larger than the typical dataset121

in this field (cf. (Chen et al., 2017) with 72 la- 122

beled examples, and no column hierarchy, only 123

row-hierarchy). 124

Since tables that we are targeting for structure un- 125

derstanding are primarily in .pdf format, including 126

in images, as found in the wild, they do not typi- 127

cally even have defined cell boundaries or content. 128

It is a separate also challenging problem to group 129

text lines or segments, as output by an OCR sys- 130

tem, into cells with techniques similar to the ones 131

used in this paper. There are already many works 132

on this problem, and we wished to keep the focus 133

on a more specific problem for which solutions 134

are not already available. As a result, we lever- 135

aged the already publicly available IBM FinTabNet 136

dataset (Zheng et al., 2021), which has more than 137

100K real tables from SEC filings already anno- 138

tated with cell, row, and column boundaries, to cre- 139

ate out datasets. In a realistic deployment scenario, 140

our model would occupy a place in a multi-stage 141

pipeline, downstream from the systems performing 142

OCR, table recognition, and table and cell bound- 143

ary detection. 144

Data & Code: We will open source our data and 145

code on our website (details suppressed for double 146

blind review). 147

2 Related Work 148

At the highest level, we can draw a sharp distinction 149

between the problem of fine-grained table structure 150

considered in this work and the vast majority of 151

table-understanding literature, which focus on; 152

Upstream tasks. Detection of tables in the con- 153

text of a larger, scanned document, and identifi- 154

cation of the basic table structures, namely cells, 155

rows, and columns, usually in the form of bounding 156

boxes. Representative works on these tasks include 157

(Paliwal et al., 2019; Prasad et al., 2020; Zheng 158

et al., 2021). For a comprehensive recent survey on 159

this topic, see (Hashmi et al., 2021). 160

Downstream tasks. Information extraction 161

tasks which take as input table(s) which have al- 162

ready been extracted into a machine-readable form. 163

These tasks include Question answering (Yin et al., 164

2020; Herzig et al., 2020, 2021; Zayats et al., 2021), 165

Fact retrieval (Dong and Smith, 2021), Table to text 166

generation (Wang et al., 2020; Parikh et al., 2020). 167

For a comprehensive survey of recent advances on 168

this topic, see (Pujara et al., 2021). 169

For the remainder of this section, we will fo- 170

cus on explaining the much smaller number ex- 171
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isting works which address table structure more172

fine-grained than simple row/column membership173

and how our approach differs from or enhances174

them.175

Heuristic-based approach. One of the earliest176

works on fine-grained table structure is (Chen et al.,177

2017). This work develops a heuristic approach,178

based on hand-crafted features, for elucidating se-179

mantic relationships between row headers only.180

More recently, (Wang et al., 2021) develops neural181

representations of tables with complex structure for182

use in downstream tasks, but relies on heuristics to183

elucidate the hierarchical structure itself. In con-184

trast, our approach, being data-driven and based on185

end-to-end training of neural networks, is designed186

to classify cell types and identifying hierarchical187

relationships between row headers, column head-188

ers, captions, and content blocks, without using any189

heuristics.190

Hybrid approach. The approach taken in (Sun191

et al., 2021) to automatically reconstructing table192

structure involves both the use of pre-trained net-193

works to embed cells and rules enforced via PSL194

that express the authors’ hypothesis of the rela-195

tionships that are likely to occur among cells and196

blocks with different (fine-grained) semantic con-197

tent types. (Chi et al., 2019) also use hand crafted198

features for representing table cells into vertices199

and edges, then use a graph neural network for200

predicting the horizontal and vertical relations be-201

tween cells. In contrast, we do not incorporate any202

such explicit rules or hand crafted features, but fine-203

tune all weights of LayoutLM, a network which is204

pre-trained on a large and diverse document corpus,205

harnessing transfer learning to automatically learn206

a general predictive model from the data.207

Neural Approaches. While there are a few com-208

pletely neural approaches to extracting the struc-209

ture of complex tables from images, most, such210

as (Xue et al., 2019) and (Qiao et al., 2021) rely211

on visual features alone. An exception is (Zhang212

et al., 2021), which relies on both visual and tex-213

tual features, but still differs in two important ways214

from our approach. First, in contrast to LayoutLM,215

their model has pre-trained, separate visual and216

textual embeddings of the cells which are melded217

in a somewhat ad-hoc way into a unified cell em-218

bedding. Second, since they interpret the problem219

of table hierarchy elucidation as one of drawing220

the cell boundaries correctly, they put a limitation221

on the sorts of relations their system can predict.222

For example, multi-level (beyond 2 layer) header 223

hierarchies, as well as parent-child relationships 224

between cells which do not border one another (as 225

is frequently seen in the case of row hierarchies) 226

cannot be elucidated by their system, whereas our 227

framework is able to handle such cases naturally. 228

3 Dataset Creation 229

In this section we discuss details of IBM Fintab- 230

net, followed by our annotation methodology and 231

neural model. 232

3.1 IBM Fintabnet 233

IBM FinTabNet (Zheng et al., 2021) contains 234

112,887 tables spread over 89,646 pages of 235

S&P500 companies earning reports. For each table 236

dataset provides table bounding boxes, cell bound- 237

ing boxes, and the textual content of the cell. The 238

dataset was created by passing images of PDF doc- 239

uments through a series of object detection and 240

image classification neural networks. IBM’s tech- 241

nique for producing FinTabNet achieves 99.31 F1 242

scores of ICDAR2013 (Göbel et al., 2013) table 243

recognition benchmark, making it the sate-of-the- 244

art technique at the time of writing this paper. 245

3.2 Data Annotation 246

Annotators labeled both the cell types and the 247

parent-children relationship present among the col- 248

umn header cells, helping us capture the hierarchy 249

structure of the table. Allen AI open-source tool 250

PAWLS (Neumann et al., 2021) was used to per- 251

form annotations. 252

Our annotations were performed in two rounds. 253

For the first round, we randomly sampled 500 sam- 254

ples from the base dataset. After a round of model 255

training (details in Section 3.3) on the initial sam- 256

ples, we used the trained model to help select the 257

samples for labeling in the second round. The aim 258

of this is to selectively sample and annotate tables 259

which are more likely to have complex column hier- 260

archy than tables randomly chosen from FinTabNet. 261

Finally, combining two rounds of annotation we 262

manually annotate 887 tables. Table 1 provides 263

label level information about our annotated dataset. 264

3.3 Modeling and Soft Labels 265

We tried three baseline methods: 1) Heuristics 2) 266

BERT(Devlin et al., 2018) and 3) LayoutLM(Xu 267

et al., 2020). For heuristic model, we detected the 268

largest consecutive group of numeric values and 269
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Table 1: Details of manually annotated dataset.

# of samples 525
# of tables 887
Mean Cell count 36.5±41.6
Mean Column header count 4.7±3.1
Mean Row header count 7.4±9.4
Mean Content count 23.6±32.4
# of tables with hierarchy 458

Table 2: Baseline Results

Accuracy Macro F1
Cell label prediction

Heuristic 48.27 ± 31 35.77 ± 27
BERT 95.84 ± 9 90.17 ± 17
LayoutLM 97.75 ± 9 95.08 ± 14

Cell relation prediction
Heuristic 73.21 ± 28 66.06 ± 32
BERT 77.27 ± 31 67.99 ± 35
LayoutLM 77.95 ± 30 69.70 ± 35

marked those as content cells. Cells above this270

group are labeled as column headers, and on the271

left of this group are marked as row headers.272

In case of neural models, we model the cell label273

prediction task as a token classification task (e,g,274

Named Entity Recognition). Input is passed to the275

model at the token level, and cell embeddings are276

created by performing average pooling over all the277

tokens of a cell. Column hierarchy prediction is278

modeled as a binary classification task. For all279

possible column header pairs, cell embeddings are280

concatenated and passed onto a non-linear classifier.281

All models are trained end-to-end.1282

LayoutLM achieves an F1 score of 95.08 and283

69.7 on cell label prediction and relation prediction284

respectively. Table 2 shows the full results for both285

the tasks. Finally, the model is used to create soft286

labels for entire IBM FinTabNet dataset.287

4 Discussion288

Practical importance of work As mentioned289

above, most work on information extraction from290

tables does little to take account of hierarchical291

relationships between header cells. While tables292

with such complex structure are relatively rare in293

public datasets, the situation is quite different for294

1Models are validated on a randomly sampled test set of
20% size and are implemented in Keras and huggingface. Each
model is trained with a learning rate of 3e−5, early stopping
(patience 5) on a Nvidia RTX A6000 GPU.

proprietary datasets. For example, of the hundreds 295

of different counterparties (external funds) submit- 296

ting capital statements to one department of a large 297

financial institution, it was found (by manual in- 298

spection undertaken by the authors) that roughly 299

30% regularly present financial results in tables 300

have complex hierarchical header structure. Giv- 301

ing the information extraction models access to the 302

finer aspects of the table structure may lead to more 303

accurate and interpretable predictions, and even en- 304

able the business user to define certain extractions 305

using simple business rules operating on the output 306

of our model. 307

Difficulty of task Although at first glance it may 308

seem that the problem can be adequately addressed 309

through simple heuristics, the heuristics we tried 310

were significantly outperformed by the best Lay- 311

outLM based model on our data (see results Ta- 312

ble). Further, even the strong LayoutLM baseline 313

have a high standard deviation leaveing room for 314

improvement, particularly on the column-header 315

relation-identficiation task. 316

FAIR: The community can find our dataset on our 317

website2 and will include all necessary metadata to 318

ensure machine Findable. To ensure Accescablity, 319

our data will be available using standard and univer- 320

sal protocols. Finally, to ensure Interoperablity and 321

Reusablity our data will be formatted in standard 322

formats like JSON, and we will provide detailed 323

documentation. 324

5 Conclusion and Future Work 325

By releasing a large public dataset (by augment- 326

ing the annotations in FinTabNet with further fine- 327

grained structure), and demonstrating performance 328

of some strong baselines, we hope to stimulate 329

work in the community on this still largely unsolved 330

problem. Among the next steps to be taken are fur- 331

ther expanding the annotations by increasing the 332

number and diversity of tables annotated manually, 333

and also annotating the row hierarchy structure, 334

and caption-to-content block relationships. Further, 335

we plan to use the structure annotations produced 336

by our model within a pipeline, and show their util- 337

ity in improving the performance of downstream 338

extractions. Additionally, we will use the observa- 339

tions above concerning failure modes of the current 340

models to motivate improvements in the structure- 341

resolution models in an effort to improve on the 342

LayoutLM-based baseline. 343

2details suppressed for blind review
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