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Abstract

While many pipelines for extracting informa-
tion from tables assume simple table structure,
tables in the financial domain frequently have
complex, hierarchical structure. The main ex-
ample would be parent-child relationships be-
tween header cells. Most prior datasets of ta-
bles annotated from images or .pdf and most
models for extracting table structure concen-
trate on the problems of table, cell, row, and
column bounding box extraction. The area of
fine-grained table structure remains relatively
unexplored. In this study, we present a dataset
of 887 tables, manually labeled for cell types
and column hierarchy relations. The tables are
selected from IBM FinTabNet, a much larger
dataset of more than 100,000 financial tables
having cell, row, and column bounding boxes
extracted by deep learning, but not including
semantic cell type or cell-to-cell relation la-
bels, which we add. Selection of these 887
tables is performed using heuristics which re-
sult in a much larger proportion, roughly half,
of the selected tables having complex hierar-
chical structure, than a random sample from
FinTabNet. Further, we fine-tune models based
on LayoutLM on the cell-type classification
task and on the identification of hiearchical re-
lations among column headers. We achieve F1
scores of 95% and 70% on the respective tasks.
Finally, we use the trained model to create soft
labels for the entirety of FinTabNet.

1 Introduction

Most work on automatic information extraction
from tables assume that the table’s structure is ade-
quately represented by grouping of cells into simple
rows and columns, in exactly the same way that
the structure of a two-dimensional m X n array is
represented by assigning each entry to a pair of
integers (4,7) € [0,m — 1] x [0,n — 1]. In the
case of tables found on the web, as in Wikipedia
and related resources, for example, this assump-
tion is largely borne out by experience. However,
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Figure 1: Financial table annotated with fine structure

in some specialized domains, many of the tables
do not have such a simple structure. In particu-
lar, in finance and financial reporting, there is an
entrenched, culturally reinforced tendency to use
rather complex table structure to convey informa-
tion more concisely than a simple array-like table
can. While such structures are intuitive to a human
reader, they present an obstacle to the automation
of information extraction from financial tables.
Fortunately, some analysis shows that the vast
majority of deviations from simple table structure
occurs in one of two main directions. The first
is that the financial table has multiple layers of
row or column headers, and there is a hierarchical
tree-like structure to the row or column headers
of the table. The second is that the table has text
cells within the table that span multiple columns of
mainly numerical cells. In analogy with the usual
table captions which apply to the whole table, we
can think of these cells as a special type of captions
which apply only to a contiguous region of the table.
In both cases, certain aspects of the table’s structure
that are not adequately captured by row-column
assignments, can be represented by a directed tree
structure. The nodes are row/column header cells
(in the first case), or caption cells/content blocks (in
the second case), and the edges correspond to the
relation between two nodes that can be interpreted
as "parent cell modifies or governs meaning of
child cell". For example, in Figure 1, each of the
three of the “child” column header cells (2009,



%2009, “2007) has its meaning modified or by
the “parent” cell (“Years Ended December 317).
The caption “(in millions)" modifies the meaning
of the “child” block of content cells outlined in
yellow. In making these definition, we are simply
rephrasing an observation made previously in, e.g.,
(Chen et al., 2017) and (Xue et al., 2019).

The main contributions of this work are as fol-
lows.

* We decompose the task of understanding the
table structure, understood as identifying the
correct tree structure as just outlined, as two
simpler tasks. The first is a classification of
all the cells in the table into four semantic
classes, with labels content, row header, col-
umn header, caption, where “caption” is un-
derstood in the extended sense above. The
second is a classification of all the potential
relationship edges, as identified from all pos-
sible edges by some simple heuristics, into
true/existing and false/non-existing relation-
ship edges.

* We address both problems within a unified
deep learning framework, namely the one pro-
vided by (Xu et al., 2020), which allows us to
take advantage of the representations incorpo-
rating both semantic content of the cells and
their surroundings and visual cues from the
layout of the document.

* We produced and plan to release two datasets.
The first is manually labelled with almost 900
tables, roughly half of which have complex
structure. The second is a much larger dataset
of 100K financial tables which are “soft-
labeled" using a LayoutLM-based (Xu et al.,
2020) model fine-tuned on the first dataset.

Because the data annotation procedures and pro-
tocols are a central part of our contribution, we
devote an entire section, 3 below, to describing the
dataset creation process in detail. Since row hierar-
chy structure tends to be more subjective than col-
umn hierarchy structure, we labelled only column
header hierarchy. We intend to label row-header
hierarchy in a future version, an effort which will
require more resource-intensive review and resolu-
tion of inter-annotator disagreement. Despite this
limitation, our manually labeled dataset of almost
900 tables is much larger than the typical dataset

in this field (cf. (Chen et al., 2017) with 72 la-
beled examples, and no column hierarchy, only
row-hierarchy).

Since tables that we are targeting for structure un-
derstanding are primarily in .pdf format, including
in images, as found in the wild, they do not typi-
cally even have defined cell boundaries or content.
It is a separate also challenging problem to group
text lines or segments, as output by an OCR sys-
tem, into cells with techniques similar to the ones
used in this paper. There are already many works
on this problem, and we wished to keep the focus
on a more specific problem for which solutions
are not already available. As a result, we lever-
aged the already publicly available IBM FinTabNet
dataset (Zheng et al., 2021), which has more than
100K real tables from SEC filings already anno-
tated with cell, row, and column boundaries, to cre-
ate out datasets. In a realistic deployment scenario,
our model would occupy a place in a multi-stage
pipeline, downstream from the systems performing
OCR, table recognition, and table and cell bound-
ary detection.

Data & Code: We will open source our data and
code on our website (details suppressed for double
blind review).

2 Related Work

At the highest level, we can draw a sharp distinction
between the problem of fine-grained table structure
considered in this work and the vast majority of
table-understanding literature, which focus on;

Upstream tasks. Detection of tables in the con-
text of a larger, scanned document, and identifi-
cation of the basic table structures, namely cells,
rows, and columns, usually in the form of bounding
boxes. Representative works on these tasks include
(Paliwal et al., 2019; Prasad et al., 2020; Zheng
et al., 2021). For a comprehensive recent survey on
this topic, see (Hashmi et al., 2021).

Downstream tasks. Information extraction
tasks which take as input table(s) which have al-
ready been extracted into a machine-readable form.
These tasks include Question answering (Yin et al.,
2020; Herzig et al., 2020, 2021; Zayats et al., 2021),
Fact retrieval (Dong and Smith, 2021), Table to text
generation (Wang et al., 2020; Parikh et al., 2020).
For a comprehensive survey of recent advances on
this topic, see (Pujara et al., 2021).

For the remainder of this section, we will fo-
cus on explaining the much smaller number ex-



isting works which address table structure more
fine-grained than simple row/column membership
and how our approach differs from or enhances
them.

Heuristic-based approach. One of the earliest
works on fine-grained table structure is (Chen et al.,
2017). This work develops a heuristic approach,
based on hand-crafted features, for elucidating se-
mantic relationships between row headers only.
More recently, (Wang et al., 2021) develops neural
representations of tables with complex structure for
use in downstream tasks, but relies on heuristics to
elucidate the hierarchical structure itself. In con-
trast, our approach, being data-driven and based on
end-to-end training of neural networks, is designed
to classify cell types and identifying hierarchical
relationships between row headers, column head-
ers, captions, and content blocks, without using any
heuristics.

Hybrid approach. The approach taken in (Sun
et al., 2021) to automatically reconstructing table
structure involves both the use of pre-trained net-
works to embed cells and rules enforced via PSL
that express the authors’ hypothesis of the rela-
tionships that are likely to occur among cells and
blocks with different (fine-grained) semantic con-
tent types. (Chi et al., 2019) also use hand crafted
features for representing table cells into vertices
and edges, then use a graph neural network for
predicting the horizontal and vertical relations be-
tween cells. In contrast, we do not incorporate any
such explicit rules or hand crafted features, but fine-
tune all weights of LayoutLLM, a network which is
pre-trained on a large and diverse document corpus,
harnessing transfer learning to automatically learn
a general predictive model from the data.

Neural Approaches. While there are a few com-
pletely neural approaches to extracting the struc-
ture of complex tables from images, most, such
as (Xue et al., 2019) and (Qiao et al., 2021) rely
on visual features alone. An exception is (Zhang
et al., 2021), which relies on both visual and tex-
tual features, but still differs in two important ways
from our approach. First, in contrast to LayoutL.M,
their model has pre-trained, separate visual and
textual embeddings of the cells which are melded
in a somewhat ad-hoc way into a unified cell em-
bedding. Second, since they interpret the problem
of table hierarchy elucidation as one of drawing
the cell boundaries correctly, they put a limitation
on the sorts of relations their system can predict.

For example, multi-level (beyond 2 layer) header
hierarchies, as well as parent-child relationships
between cells which do not border one another (as
is frequently seen in the case of row hierarchies)
cannot be elucidated by their system, whereas our
framework is able to handle such cases naturally.

3 Dataset Creation

In this section we discuss details of IBM Fintab-
net, followed by our annotation methodology and
neural model.

3.1 IBM Fintabnet

IBM FinTabNet (Zheng et al., 2021) contains
112,887 tables spread over 89,646 pages of
S&P500 companies earning reports. For each table
dataset provides table bounding boxes, cell bound-
ing boxes, and the textual content of the cell. The
dataset was created by passing images of PDF doc-
uments through a series of object detection and
image classification neural networks. IBM’s tech-
nique for producing FinTabNet achieves 99.31 F1
scores of ICDAR2013 (Gobel et al., 2013) table
recognition benchmark, making it the sate-of-the-
art technique at the time of writing this paper.

3.2 Data Annotation

Annotators labeled both the cell types and the
parent-children relationship present among the col-
umn header cells, helping us capture the hierarchy
structure of the table. Allen Al open-source tool
PAWLS (Neumann et al., 2021) was used to per-
form annotations.

Our annotations were performed in two rounds.
For the first round, we randomly sampled 500 sam-
ples from the base dataset. After a round of model
training (details in Section 3.3) on the initial sam-
ples, we used the trained model to help select the
samples for labeling in the second round. The aim
of this is to selectively sample and annotate tables
which are more likely to have complex column hier-
archy than tables randomly chosen from FinTabNet.
Finally, combining two rounds of annotation we
manually annotate 887 tables. Table 1 provides
label level information about our annotated dataset.

3.3 Modeling and Soft Labels

We tried three baseline methods: 1) Heuristics 2)
BERT(Devlin et al., 2018) and 3) LayoutLM(Xu
et al., 2020). For heuristic model, we detected the
largest consecutive group of numeric values and



Table 1: Details of manually annotated dataset.

# of samples 525

# of tables 887

Mean Cell count 36.54+41.6
Mean Column header count 4.743.1
Mean Row header count 74494
Mean Content count 23.6+32.4

# of tables with hierarchy 458

Table 2: Baseline Results

Accuracy Macro F1
Cell label prediction

Heuristic | 48.27 £31 35.77 + 27
BERT 95.84+9 90.17 + 17
LayoutLM | 97.75+9 95.08 &+ 14

Cell relation prediction
Heuristic | 73.21 £28 66.06 4 32
BERT 7727 £31 67.99 £ 35
LayoutLM | 77.95 £30 69.70 & 35

marked those as content cells. Cells above this
group are labeled as column headers, and on the
left of this group are marked as row headers.

In case of neural models, we model the cell label
prediction task as a token classification task (e,g,
Named Entity Recognition). Input is passed to the
model at the token level, and cell embeddings are
created by performing average pooling over all the
tokens of a cell. Column hierarchy prediction is
modeled as a binary classification task. For all
possible column header pairs, cell embeddings are

concatenated and passed onto a non-linear classifier.

All models are trained end-to-end.!

LayoutLM achieves an F1 score of 95.08 and
69.7 on cell label prediction and relation prediction
respectively. Table 2 shows the full results for both
the tasks. Finally, the model is used to create soft
labels for entire IBM FinTabNet dataset.

4 Discussion

Practical importance of work As mentioned
above, most work on information extraction from
tables does little to take account of hierarchical
relationships between header cells. While tables
with such complex structure are relatively rare in
public datasets, the situation is quite different for

"Models are validated on a randomly sampled test set of
20% size and are implemented in Keras and huggingface. Each
model is trained with a learning rate of 3¢, early stopping
(patience 5) on a Nvidia RTX A6000 GPU.

proprietary datasets. For example, of the hundreds
of different counterparties (external funds) submit-
ting capital statements to one department of a large
financial institution, it was found (by manual in-
spection undertaken by the authors) that roughly
30% regularly present financial results in tables
have complex hierarchical header structure. Giv-
ing the information extraction models access to the
finer aspects of the table structure may lead to more
accurate and interpretable predictions, and even en-
able the business user to define certain extractions
using simple business rules operating on the output
of our model.

Difficulty of task Although at first glance it may

seem that the problem can be adequately addressed
through simple heuristics, the heuristics we tried
were significantly outperformed by the best Lay-
outLLM based model on our data (see results Ta-
ble). Further, even the strong LayoutL.M baseline
have a high standard deviation leaveing room for
improvement, particularly on the column-header
relation-identficiation task.
FAIR: The community can find our dataset on our
website? and will include all necessary metadata to
ensure machine Findable. To ensure Accescablity,
our data will be available using standard and univer-
sal protocols. Finally, to ensure Interoperablity and
Reusablity our data will be formatted in standard
formats like JSON, and we will provide detailed
documentation.

5 Conclusion and Future Work

By releasing a large public dataset (by augment-
ing the annotations in FinTabNet with further fine-
grained structure), and demonstrating performance
of some strong baselines, we hope to stimulate
work in the community on this still largely unsolved
problem. Among the next steps to be taken are fur-
ther expanding the annotations by increasing the
number and diversity of tables annotated manually,
and also annotating the row hierarchy structure,
and caption-to-content block relationships. Further,
we plan to use the structure annotations produced
by our model within a pipeline, and show their util-
ity in improving the performance of downstream
extractions. Additionally, we will use the observa-
tions above concerning failure modes of the current
models to motivate improvements in the structure-
resolution models in an effort to improve on the
LayoutL.M-based baseline.

%details suppressed for blind review
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