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Abstract

Comments are essential for software mainte-001
nance and comprehension. However, com-002
ments are often missing, mismatched or out-003
dated in software projects. This paper presents004
a novel approach to automatically generate de-005
scriptive comments for methods and functions.006
Our work targets a practical problem where007
hand-written comments are only available for008
a few methods in a source file – a common009
problem seen in real-world software develop-010
ment. We develop a novel learning framework011
to model the code relation among methods012
based on graph neural networks. Our model013
learns to utilize the partially contextual infor-014
mation extracted from the existing comments015
to generate missing comments for all methods016
in a source file. We evaluate our approach by017
applying it to Java programs. Experimental re-018
sults show that our approach outperforms prior019
methods by a large margin by generating com-020
ments that are judged to be helpful by human021
evaluators and of a higher quality measured by022
quantified metrics.023

1 Introduction024

Providing appropriate and adequate comments in025

the source code is important for software mainte-026

nance and comprehension (Xia et al., 2018). How-027

ever, comments are often missing, incomplete or028

outdated in real-life software projects (Fluri et al.,029

2007). One solution to tackle this issue is to auto-030

matically generate descriptive comments from the031

source code.032

Prior work in automatic code comment gener-033

ation processes the target code region (e.g., func-034

tions or basic blocks) in isolation (Hu et al., 2018a;035

Alon et al., 2019; LeClair et al., 2020; Yu et al.,036

2020; Zhang et al., 2020). They often do not utilize037

the developer-written comments of other functions038

presented in the same source file. However, code039

components within the same source file are often040

closely related (McConnell, 2004). Such relation041

1 /* Get the Action-Event associations for the
current Event and create an XML Event
definition. */

2 private ResultSet getEventDefinition () {
3 ...
4 return actevtValues;
5 }
6 /* Get the Trigger-Action associations for

the current Action and create an XML
Action definition. */

7 private ResultSet getActionDefinition () {
8 ...
9 return trigactValues;

10 }

Figure 1: An example to illustrate the implicit relation-
ship between functions in a JAVA class.

is widely seen in object programming languages 042

like Java and C++, where function implementations 043

of a class are typically coded in the same source 044

file. We argue that the human-written comments 045

of other methods within the same source file can 046

provide useful contextual information to generate 047

missing comments of other functions or methods 048

of the same file and hence cannot be ignored for 049

code comment generation. 050

Some of the most recent works attempt to gen- 051

erate code comments that incorporates class level 052

context. For example, the method presented in 053

(Haque et al., 2020) first encodes each function of 054

the same class with GRU (Cho et al., 2014) and 055

then applies an attention mechanism towards the 056

encoded functions during the generation process. 057

Other work constructs a call graph to connect the 058

functions within a class and applies a graph neural 059

network (GNN) to extract information to gener- 060

ate code comments (Yu et al., 2020). These studies 061

demonstrate the usefulness of exploiting class-level 062

context to generate comments for functions. 063

While promising, existing techniques apply 064

rough and coarse methods to model functions of 065

the class. They neglect the diverse and subtle rela- 066

tionship between class methods. Because not all 067

the function implementations are closely related, 068
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indiscriminately utilizing all functions can intro-069

duce noise, which in turn degrades the performance070

of a machine learning method. Furthermore, we071

observe that there are other implicit relationships072

between functions, which can be useful in assist-073

ing code comment generation but are overlooked074

by prior work. As an example, consider Figure 1075

that shows a Java class example from a real-world076

project. Here, methods getEventDefinition077

and getActionDefinition do not invoke078

each other in their function body. However, the two079

functions have closely related semantics because080

they both implement a get interface. Looking at081

the developer’s comments closely, we see that the082

text descriptions are also similar, albeit the sub-083

jects in the sentence are different. This example084

shows that one can utilize the written comment of085

one function (or method) to automatically generate086

comments for another. However, doing so require087

carefully modeling and capturing the implicit re-088

lationship among functions. Prior work cannot do089

this because they only capture the function calling090

relation. Our work aims to bridge this gap.091

In light of the observation described above, our092

approach models both explicit (like function calls)093

and implicit relationships of methods (such as two094

functions implementing similar operations). We095

want to model implicit relationships because we096

wish to capture the common programming idioms097

and patterns, where programmers often write pair-098

ing functions with closely related functionalities.099

For example, a Java class that implements a read100

related function is likely to also provide a write101

interface to access the same or other data members102

of the class. Figure 1 gives another example of this103

programming pattern, where the class implements104

a get method to access class members of Event105

and Action types.106

This paper presents a new framework for auto-107

matic code generation by leveraging both explicit108

and implicit relationships. Our approach utilizes109

both relationships to extract key information from110

the source file to generate the intent description of a111

target function. To this end, we develop an encoder-112

decoder framework based on the GNN architecture.113

We do so by first encoding the the explicit and im-114

plicit code relationships as a heterogeneous graph.115

We then apply a GNN to enable different types116

of relationships to guide and communicate with117

each other. In the encoding stage, we design an118

attention-interactive GNN to embed all functions119

and the available comments within a class file. We 120

then use a bi-GRU module to embed the source 121

code of the target method. In the decoding stage, 122

we use an attentive GRU decoder. To generate com- 123

ments, we employ a by-copy mechanism to copy 124

words from the code implementation of the target 125

function and existing comments of other related 126

functions. 127

We evaluate our approach on a JAVA dataset 128

using automatic and human evaluation metrics. Ex- 129

perimental results show that our framework can 130

generalize to different settings. It can efficiently 131

capture both explicit and implicit relationships be- 132

tween methods. It outperforms prior approaches by 133

generating comments that are judged to be more ac- 134

curate by human evaluators and of a higher quality 135

measured by automatic, quantified metrics. 136

This paper makes the following contributions: 137

• It is the first work to leverage multiple code 138

relationships between functions of a class file 139

to automatically generate code comments by 140

utilizing partially presented comments. 141

• It presents a novel GNN model with an 142

attention-interactive mechanism for function- 143

level code comment generation. 144

2 Our Approach 145

2.1 Relation Extraction 146

In order to distinguish explicit and implicit relation- 147

ships, we need to respectively extract them from 148

the source code. As explicit relationship mainly 149

consists of function calls, we use available toolkit 150

to extract them. We observe that there is usually a 151

syntactic pattern lying in function names between 152

functions who have implicit relationship. There- 153

fore, we propose two heuristic rules targeting func- 154

tion names to extract implicit relationship: 155

• If the verbs in function names are antonyms 156

and they share the same object entities or there 157

are no object entities in their names, we will 158

consider an implicit relationship. This rule 159

captures pairing functions such as start and 160

stop, add and delete. 161

• If the verbs in function names are the same 162

and their object entities have overlap, we will 163

consider an implicit relationship. This rule 164

captures pairing functions such as in Figure 1. 165
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Figure 2: The overall architecture of our approach.

2.2 Graph Construction166

In the task scenario, only a small part of com-167

ments are already presented and we do not have168

to model them independently from the functions.169

As a comment can be viewed as a super detailed170

and long function name, we mix the known com-171

ments with function names together, all as "names".172

Eventually, we build a heterogeneous graph struc-173

ture to model both functions and their "names".174

Given a graph G = {(fi, r, ci)∪(fi, rexplicit, fj)∪175

(ci, rimplicit, cj)}, where vertex fi ∈ F represents176

a function and vertex ci ∈ C represents its name.177

We define three types of edges, where edge rexplicit178

represents an explicit connection between func-179

tions, which is a two-way function calling relation-180

ship and rimplicit represents an implicit connection181

between function names, which is determined by182

our heuristic rules. We also add an edge between a183

function and its name.184

2.3 Individual Encoder185

Our individual encoder extracts features from186

source codes of the target function. Given the187

source code of a function X = (x1, x2...xn),188

we use a bi-GRU (Cho et al., 2014) to en-189

code it into a dense representation sequence190

{(−→q1,←−q1), ..., (−→qn,←−qn)}, where −→qj and←−qj are the191

hidden states of xj in both directions. We concate-192

nate the hidden states of both directions as the final193

representation of the target function:194

Q = {q1, q2...qn} (1)195

196

qi = [−→qi ||←−qi ] (2)197

2.4 Graph Neural Network 198

2.4.1 Vertex Initialization 199

When encoding a function vertex, we want to main- 200

tain more useful information regarding the target 201

function, so we apply a target-to-other attention 202

mechanism. We firstly apply the individual encoder 203

to each individual function and get their individ- 204

ual representation {Q1, Q2...Qt, ...QK} and then 205

calculate the attention between target function and 206

other functions in the class. 207

βti =
exp(qTt Wlqij)

Σqij∈Qiexp(q
T
nWlqij)

(3) 208

where qt is the last hidden state in Qt and Wl is a 209

learnable matrix. Then we use the weighted sum 210

of individual representation Qi as the initial vertex 211

representation for functions, {g0
i |vi ∈ Vf}: 212

g0
i = Σqij∈Qiβtiqij (4) 213

To encode a function name vertex, we apply 214

a name encoder which shares the same structure 215

with the individual encoder and concatenate the last 216

hidden states in both directions as the initial vertex 217

representation for function names, {d0
i |vi ∈ Vc}. 218

2.4.2 Our Graph Attention Network 219

In order to let explicit and implicit relationships 220

communicate with each other, we propose an 221

attention-interactive module on GAT. In each layer, 222

we first apply two individual GAT modules on func- 223

tions and names and get two attention distributions, 224

αij,name and αij,func, calculated as : 225

eij = LeakyReLU((aT [Wag
l
i||Wag

l
j ])) (5) 226

227

αij = softmax(eij) =
exp(eij)

Σkexp(eik)
(6) 228
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where Wa and a are learnable parameters and [·||·]229

means the concatenation of two matrices. We then230

calculate the context vector under these two atten-231

tion distributions.232

gl+1
i,self = Σj∈N(vi,func)αij,funcWgg

l
j (7)233

234
gl
i,cross = Σj∈N(vi,name)αij,nameWg,crossg

l
j

(8)235

where N(vi, func) is the neighbor nodes of vi236

among functions, N(vi, name) is the neighbor237

nodes of vi among function names and Wg,cross238

and Wg are learnable matrices. We aggregate these239

two context vectors to get an integral context vector240

considering both relationships.241

gl
i,new = tanh((aggr([gl

i,cross||gl
i,self ]))) (9)242

where aggr is the aggregation method for two rep-243

resentations, we exploit addition, concatenation244

and linear transformation in experiments. Moti-245

vated by (Cho et al., 2014), we design an update246

gate to control the final output of each layer:247

gate = sigmoid(Wgate([g
l
i,new||gl

i])) (10)248

249
gl+1
i,update = gate∗gl

i+(1−gate)∗gil,new (11)250

In each layer, except the first, we apply a linear251

transformation to let functions directly communi-252

cate with their corresponding names.253

gl+1
i = f([gl+1

i,update||d
l+1
i,update]) (12)254

The calculations are same on function nodes and255

name nodes. We apply L layers and get the final256

outputs, represented as {gL
i |vi ∈ Vf}, {dL

i |vi ∈257

Vc}.258

2.5 Decoder259

In the decoding phase, we follow the standard260

encoder-decoder framework and use a GRU mod-261

ule as decoder. We aggregate representations from262

both source codes and heterogeneous graph, con-263

catenating the last hidden states of individual en-264

coder and the last layer output of our graph neural265

network, as the initial state of the decoder GRU.266

2.5.1 Attention267

We leverage an attention mechanism to attend on268

both source codes and heterogeneous graph, de-269

ciding which part should be paid more attention270

to. Formally, we calculate multiple context vectors,271

cxi towards the output of individual encoder, cgi 272

towards the final output of GNN and cyi towards 273

the output of name encoder, calculated as : 274

ci = Σvj∈Gγijgj (13) 275
276

γij =
exp(hT

i Wsgj)

Σvk∈Gexp(h
T
i Wsgk)

(14) 277

where Ws is a trainable matrix. When calculat- 278

ing context vector towards graph, we respectively 279

compute two context vectors for function nodes 280

and name nodes and concatenate them as the final 281

context vector cgi. 282

By-Copy Both source codes and known com- 283

ments may contain information that is directly use- 284

ful towards target comment. Motivated by (See 285

et al., 2017; Sun et al., 2018), we propose a double- 286

source copy mechanism which can copy words 287

from source codes and known comments. In a 288

standard pointer mechanism, the final prediction 289

distribution is merged from a generative distribu- 290

tion and a copy distribution. Since we have two 291

sources to copy from, we propose to merge the two 292

distributions by a switch λ. In the ith decoding 293

step, 294

Pcopy = λ ∗ γcodes + (1− λ) ∗ γcoms (15) 295
296

λ = σ(wT
hhi +wT

c cxi +wT
yyi) (16) 297

where Wv, bv, wh,wc,wy are all trainable param- 298

eters. γcodes is the attention distribution between 299

representation of target function and current hidden 300

state, βcoms is the attention distribution between 301

representation of known comments and current hid- 302

den state, calculated by Eq 14. 303

Pvocab = softmax(Wv[hi||ci||cgi||cyi] + bv)
(17) 304305

pgen = σ(w′T
h hi+w′T

c cxi+wT
cy′cyi+w′T

y yi)
(18) 306307

P (w) = pgenPvocab + (1− pgen)Pcopy (19) 308

where Wv, b′v, w′
h,w

′
c,w

′
y are all trainable param- 309

eters. Pvocab is the normal output prediction dis- 310

tribution and pgen serves as a switch that chooses 311

between generating words normally from vocabu- 312

lary or from copying. 313

3 Experimental Setup 314

3.1 Data Collection 315

Since most public datasets only contain function- 316

level information by omitting function relation- 317

ships in a class, we create our evaluation dataset 318
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from real-life projects. Specifically, we collected319

our dataset from Google Code Archive and with320

the help of Sourcerer (Bajracharya et al., 2014),321

we manage to trace and recover the complete ar-322

chitecture of 1,000 JAVA projects. To better suit323

our task scenario, we only keep JAVA classes that324

are well commented, which contains more than325

3 functions in the class and at least 70% of them326

have human written comments. In total, we have327

collected 3,344 JAVA files with 3,344 classes and328

40,328 functions.329

To prepare our dataset, we set the commented330

ratio as 10%, i.e., for each class, only 10% of func-331

tions or at least one function have comments. To de-332

cide which functions will be treated as commented,333

we propose two different experimental settings, ran-334

dom sampling and degree sampling. In addition to335

testing the adaptation ability of our approach, this336

will help us explore how the distribution of known337

comments will affect the generation quality.338

Random Sampling Assuming that writing com-339

ments for programmers is a random behavior, with-340

out any prior patterns, we randomly sample 10%341

of functions in a class as commented.342

Degree Sampling In a JAVA class, functions that343

are more frequently related to others usually play a344

vital role in the process of software developing, and345

they may provide strong assist to programmers. In346

this way, we sample top 10% functions according347

to its degree in the heterogeneous graph we build348

and use their comments as known comments.349

After sampling the known comments, we split350

our dataset by projects and use 80% of the project351

data for training, 10% for validation and 10% for352

testing. It gives 25,247 functions in train set, 3,900353

functions in valid set and 2,770 functions in test354

set.355

During preprocessing, given a function, we ex-356

tract the summative content in JavaDoc as the com-357

ment. We keep the first two sentences in the com-358

ment, remove all the format controlling tokens and359

only contain comments that have at least three360

words. After obtaining the function-comment pairs,361

we serialize them and remove all non-alphabetical362

letters and split identifiers that are written in the363

Camel or underscore style into dependent words.364

The average number of tokens in functions and365

comments are 62.8 and 8.14, respectively. The366

average number of functions in a class is 12.1.367

3.2 Evaluation Metrics 368

We consider both automatic and human evaluation 369

metrics in our experiments. For automatic eval- 370

uation, we adopt several widely used metrics in 371

natural language generation tasks, including BLEU 372

(Papineni et al., 2002), BLEU-1, BLEU-2, BLEU- 373

3, BLEU-4, Rouge-1, Rouge-2 and Rouge-L (Lin, 374

2004). For human evaluation, we consider three as- 375

pects, fluency, relevance and informativeness. For 376

all the three human evaluation metrics, we ask an- 377

notators to rate from 0 to 2 (where 2 indicates 378

highly satisfied and 0 means highly unsatisfied). 379

3.3 Hyperparameters 380

We set both the embedding and the hidden dimen- 381

sion sizes to 256 and the word embeddings are 382

randomly initialized. The layer of encoder and de- 383

coder GRU is 2. The GAT network has 3 layers. 384

We set dropout (Srivastava et al., 2014) rate to 0.3, 385

the weight decay rate to 1e-6. We train our model 386

with Adam (Kingma and Ba, 2015) optimizer and 387

learning rate 0.0001, and we use a scheduler that 388

reduce learning rate by 0.1 every 15 epochs. We 389

report the best scores over five different seeds. 390

3.4 Baselines 391

Copy models. This approach directly copies one 392

comment from the known comment set as target 393

comment. MaxCopy is the best performance that 394

maximizes Rouge score between the target com- 395

ment and the copied comment. 396

Retrieval models. Rencos (Zhang et al., 2020) 397

retrieves a semantically similar and a syntactically 398

similar functions from a code database, combines 399

them together and applies a seq2seq model to gen- 400

erate comments. 401

Generation models. Seq2Seq (Sutskever et al., 402

2014) is a bi-directional GRU model with an atten- 403

tion mechanism. ASTGNN (LeClair et al., 2020) 404

applies GCN (Kipf and Welling, 2017) on the AST 405

structure and uses an attentive GRU decoder. Class- 406

GAT (Yu et al., 2020) applies GAT module on the 407

Call-Graph to extract a class-level representation 408

while applies GRU on the target function to extract 409

a function-level representation, combines them to- 410

gether and applies an attentive GRU decoder with 411

pointer mechanism. We also conduct experiments 412

with the pretraining model CodeBert (Feng et al., 413

2020) which demonstrates superior performance on 414

a variety of code-related tasks. We use it to initial- 415
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Table 1: Comparison between our model and baseline models. "KC" refers to the known comments in a class.

Degree-Sampling

Models BLEU BLEU-1 BLEU-2 BLEU-3 BLEU-4 Rouge-1 Rouge-2 Rouge-L

MaxCopy 14.65 32.2 19.6 12.8 9.8 33.0 16.1 32.2
Rencos 14.15 33.6 16.6 11.7 10.2 32.0 15.7 31.5

Seq2Seq 15.45 38.2 19.0 12.3 10.0 37.4 19.1 37.0
ASTGCN 15.82 40.6 19.5 12.6 10.3 40.6 20.3 39.9
ClassGAT-CG 17.23 40.3 20.1 13.1 10.4 41.0 21.2 40.4
CodeBert 17.25 45.7 24.0 15.1 11.7 43.0 23.1 42.4

Seq2Seq + KC 17.44 40.4 20.8 12.7 9.5 41.9 22.1 41.4
ClassGAT + KC 18.58 43.1 22.6 15.0 12.3 42.8 23.4 41.9
CodeBert + KC 16.98 53.5 29.4 18.5 14.6 46.2 25.3 45.5

OurModel 20.38 46.1 25.8 17.7 15.1 44.2 24.5 43.2
w/ CodeBert 22.80 48.5 28.9 20.3 17.1 47.2 29.1 46.6

Table 2: Human evaluation results.

Models Fluency Relevance Informativeness

Seq2Seq 1.52 1.30 0.84
ClassGAT 1.58 1.34 1.06
ClassGAT+KC 1.72 1.34 1.22
OurModel 1.82 1.46 1.28

ize a transformer encoder and train a decoder from416

scratch. We incoporate CodeBert into our model417

to verify whether function relationships still ben-418

efits when strong pretraining models are involved.419

We utilize CodeBert to embed functions instead of420

a trainable embedding layer and employ a trans-421

former decoder instead of GRU.422

The above baselines are designed to work from423

source code only, we thus modify them to intro-424

duce known comments into the models for our task425

setting. For Seq2Seq models, we follow (Zoph426

and Knight, 2016) and combines a weighted sum427

of known comment representations with the target428

function representation to generate comment. To-429

wards ClassGAT model, we experiment with two430

different vertex initialization methods: concatena-431

tion of function and comment representations or432

a weighted sum of these two representations, and433

report the best performance of them. As for Code-434

Bert, we concatenate the target function and known435

comments, separated by a SEP token, and use it as436

input.437

4 Experimental Results438

4.1 Main Results439

Table 1 shows the performance of different models.440

Overall, our model outperforms all baselines by a441

large margin.442

Both copy models and Rencos show relatively 443

low performance under all metrics, indicating that 444

known comments cannot be simply copy-paste to 445

assist other functions within the same class as they 446

may be beneficial in some cases but not all. In com- 447

parison, generation models typically perform better. 448

ASTGCN outperforms sequential models by uti- 449

lizing structural information from the AST. After 450

introducing explicit relationship between functions 451

within a class, ClassGAT outperforms all the non- 452

pretrain models. The performance of generation 453

models demonstrates that it is critical to incorpo- 454

rate both explicit and implicit relationships when 455

determining the purpose of a function in class. 456

The baseline models also benefit from known 457

comments. The Seq2Seq model with known 458

comments(Seq2Seq+KC) improves the best- 459

performing generation model by a little margin, 460

due to that it does not utilize any other functions in 461

the class as well as relationship between them, so 462

it fails to extract more precise information from the 463

known comments and the target function together. 464

Introducing known comments into ClassGAT 465

model leads to relatively strong performance, 466

successfully combining known comments with 467

given functions. However, this set of models only 468

exchange information guided by function callings, 469

while ignore the other possible relationship 470

between functions. Although CodeBert shows 471

strong performance due to the rich knowledge 472

extracted from pretraining process, our model still 473

manages to make a further improvement after 474

introducing CodeBert into our model and achieve 475

the best BLEU score among all the baseline 476

models. The experiment results show that it is 477

essential and beneficial to leverages both explicit 478
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Table 3: Ablation results of our model.

Models BLEU BLEU-1 BLEU-2 BLEU-3 BLEU-4 Rouge-1 Rouge-2 Rouge-L

OurModel 20.38 46.1 25.8 17.7 15.1 44.2 24.5 43.2
w/o individual encoder 15.10 40.8 19.6 11.2 8.1 41.2 20.9 40.8
w/o graph encoder 15.82 38.3 19.1 11.4 8.6 39.5 20.5 39.1
w/o by-copy 19.26 45.0 24.2 16.3 13.5 43.8 24.0 43.0
w/o graph attention 17.12 40.1 20.2 12.0 8.9 43.1 22.7 43.1

Table 4: The performance of our model under different
sampling settings.

Setting BLEU B-4 R-1 R-L

Degree-sampling 20.38 15.1 44.2 43.2
- ClassGAT + KC 18.58 12.3 42.8 41.9
Random-sampling 17.64 11.8 43.8 42.9
- ClassGAT + KC 17.61 11.3 42.8 42.2

Degree-overlap 20.58 15.1 44.3 43.2
Random-overlap 18.05 12.3 44.2 43.1

and implicit relationships when comprehending479

functions in a class.480

4.2 Human Evaluation481

We perform a human evaluation on the test dataset482

to assess the quality of the generated comments by483

our framework, Seq2Seq, ClassGAT and ClassGAT484

with known comments. 1 We randomly sample485

twenty cases and ask 3 raters to give scores in three486

aspects. As we can see in Table 2, our model out-487

performs other strong baselines by a large margin,488

especially on relevance and informativeness. Our489

model can effectively utilize rich information in the490

source file and generate comments that are more491

relevant with the functions and give more details.492

4.3 Ablation Study493

To examine the effect of each component in our494

framework, we evaluate the effect of removing495

the individual encoder, graph encoder, the by-copy496

mechanism, and the graph attention mechanism, as497

shown in Table 3. By and large, all of the compo-498

nents in our model contribute to the model’s overall499

performance. We can see that after removing indi-500

vidual encoder and graph encoder, the performance501

all drops significantly, around 5 in BLEU score and502

3 in Rouge score, indicating that both individual503

and graph encoders play an indispensable role in504

the final performance. Without graph attention or a505

by-copy module, performance deteriorates signifi-506

cantly. It is critical to use the attention mechanism507

1More details of human evaluation are provided in Ap-
pendix A
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Figure 3: Performance of our model and baselines on
functions of different degrees.

to determine which section should receive the most 508

attention and to copy useful words directly from 509

the target function and from known comments. 510

4.4 Analysis 511

4.4.1 Does different known comments matter? 512

To check if our starting point still stands if the pro- 513

grammers choose different functions to comment, 514

we conduct a set of experiments under different 515

sampling settings where different function com- 516

ments are known. As shown in Table 4, our model 517

outperform the most competitive baseline Class- 518

GAT+KC under both sampling settings. We can 519

see that any comments available in the class, even 520

randomly sampled, are helpful to produce quality 521

comments for other functions, thanks to both the 522

explicit and implicit relationship captured by our 523

model. So, always write comments if you can. 524

4.4.2 How should we write comments? 525

Then, our next question is which functions we 526

should first write comments for so that they can 527

benefit the most. In Table 4, we compare the per- 528

formance on the same (overlapped) test sets un- 529

der different sampling settings, and clearly, perfor- 530

mance under degree sampling is much better than 531

under random sampling. We can infer that writing 532

comments for functions with higher degrees may 533

provide more contextual information, hence can 534

benefit more functions in the class. Figure 3 de- 535

picts the trend of Rouge-1 scores over functions of 536

different degrees. We can see that our model outper- 537
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Table 5: Examples of generated comments.

Example 1 Example 2

Target Function p u b l i c vo id start()
throws Exception

{
i f (serverMode){...

server.start();}
waitForServer();
started = t rue;
}

p u b l i c MAssociationEndRole
createAssociationEndRole()

{
MAssociationEndRole modelElement = ...

super.initialize(modelElement);
re turn modelElement;

}

Known Function &
Comment

/* Stop the Database
engine.*/

p u b l i c vo id stop() {
i f (server != n u l l) {
...
}
started = f a l s e;
}

/* Builds a message within some interaction
related to some assocation role. */

p u b l i c MMessage buildMessage(MInteraction
inter, MAssociationRole role) {

...
re turn message;

}

Golden Comments start the database engine create an empty but initialized instance of a uml association end role
Seq2Seq starts the application returns the first association of the model
TwoWayEncoding starts the database create an empty but do not read associated to this interaction
Our Model starts the database engine create an empty but initialized instance of a uml association role

forms TwoWayEncoding(do not consider function538

relations) more in high degree functions than low539

degree functions.540

In all, when engineering in real life, it may be541

a good idea to first write comments for those with542

higher degrees.543

4.5 Case Study544

Now, we present two examples with generated545

comments by different models in Table 5. As we546

can see, in the first case, it is hard to know what547

should be started only with source codes. How-548

ever, it can be easily inferred from the known549

comments. As start and stop is connected550

by our defined rule, our model successfully cap-551

tures this relevance and successfully generates key-552

word database engine, while other models gen-553

erate messy objectives. In the second case, the554

commented function is less related to the target555

function createAssociationEndRole, and556

the main information should come from the source557

code itself. As there is no connection between558

these two functions under our relationship defini-559

tion, our model is not affected by this known com-560

ment and successfully generate a good comment,561

while TwoWayEncoding is influenced too much by562

the known comment and the generated comment563

deviates a lot from the original intention.564

5 Related Work565

Code comment generation aims at generating de-566

scriptive natural language for source codes.567

Early works (Iyer et al., 2016; Allamanis et al.,568

2016; Hu et al., 2018b) treats source codes as se-569

quential text and employs attentive Seq2Seq meth- 570

ods to generate comments. Later works focus on 571

procedural structure of source codes. (Hu et al., 572

2018a; Alon et al., 2019; Liang and Zhu, 2018; Al- 573

lamanis et al., 2018; LeClair et al., 2020; Ahmad 574

et al., 2020) applies a variety of models on Abstract 575

Synatx Tree(AST) to extract structural information. 576

(Shi et al., 2020) proposes to focus on more basic 577

information that can truly reflect how programs ex- 578

ecute and applies a GGNN(Li et al., 2016) module 579

on the assembly code and dynamic memory states 580

of the program. Some recent works start to take a 581

broader view. Some works exploit retrieval-based 582

methods. Zhang et al. (2020) proposes to utilize 583

similar functions through retrieval method. Liu 584

et al. (2020) makes a further efforts to combine the 585

retrieved function and comment together into the 586

generation process. Some works model functions 587

in a class level. Yu et al. (2020) builds a class-level 588

function graph and extract information from it as 589

global context. 590

6 Conclusion 591

We present a novel approach for automatic code 592

comment generation that targets a practical prob- 593

lem where human-written comments are only avail- 594

able for a few methods. We propose to focus on 595

both explicit and implicit relationships between 596

functions together and design a framework to ef- 597

fectively extract useful information from existing 598

comments and functions in the source file. Exper- 599

imental results show that our approach generates 600

comments that outperforms prior methods in both 601

automatic and human evaluation metrics. 602
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A Human Evaluation Guidelines 788

Please assess the quality of comments towards the 789

provided function with regard to the following fea- 790

tures: fluency, relevancy and informativeness. Give 791

ratings from 0 to 2. In the following, we give ex- 792

planation towards each feature. 793

• Fluency: This metric evaluates whether the 794

generated comment is fluent to read. It de- 795

pends on the grammaticality and word usage 796

of the sentence. 797

• Relevance: This metric evaluates how much 798

the generated comment is relevant to the cor- 799

responding function. It measures whether or 800

not the comment can describe or summarizes 801

the purpose of the function. 802

• Informativeness: his metric evaluates how 803

much concrete information the comment con- 804

tains. The more informative comment should 805

give more details instead of using meaningless 806

words that can refer to a lot of things. 807
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