Modeling Function Relation for Automatic Code Comment Generation

Anonymous ACL submission

Abstract

Comments are essential for software mainte-
nance and comprehension. However, com-
ments are often missing, mismatched or out-
dated in software projects. This paper presents
a novel approach to automatically generate de-
scriptive comments for methods and functions.
Our work targets a practical problem where
hand-written comments are only available for
a few methods in a source file — a common
problem seen in real-world software develop-
ment. We develop a novel learning framework
to model the code relation among methods
based on graph neural networks. Our model
learns to utilize the partially contextual infor-
mation extracted from the existing comments
to generate missing comments for all methods
in a source file. We evaluate our approach by
applying it to Java programs. Experimental re-
sults show that our approach outperforms prior
methods by a large margin by generating com-
ments that are judged to be helpful by human
evaluators and of a higher quality measured by
quantified metrics.

1 Introduction

Providing appropriate and adequate comments in
the source code is important for software mainte-
nance and comprehension (Xia et al., 2018). How-
ever, comments are often missing, incomplete or
outdated in real-life software projects (Fluri et al.,
2007). One solution to tackle this issue is to auto-
matically generate descriptive comments from the
source code.

Prior work in automatic code comment gener-
ation processes the target code region (e.g., func-
tions or basic blocks) in isolation (Hu et al., 2018a;
Alon et al., 2019; LeClair et al., 2020; Yu et al.,
2020; Zhang et al., 2020). They often do not utilize
the developer-written comments of other functions
presented in the same source file. However, code
components within the same source file are often
closely related (McConnell, 2004). Such relation

1 /* Get the Action-Event associations for the
current Event and create an XML Event
definition. =/

private ResultSet getEventDefinition () {

return actevtValues;

}

/* Get the Trigger-Action associations for
the current Action and create an XML
Action definition. =/

private ResultSet getActionDefinition () {

AN B W

return trigactValues;

E\DOO\]

Figure 1: An example to illustrate the implicit relation-
ship between functions in a JAVA class.

is widely seen in object programming languages
like Java and C++, where function implementations
of a class are typically coded in the same source
file. We argue that the human-written comments
of other methods within the same source file can
provide useful contextual information to generate
missing comments of other functions or methods
of the same file and hence cannot be ignored for
code comment generation.

Some of the most recent works attempt to gen-
erate code comments that incorporates class level
context. For example, the method presented in
(Haque et al., 2020) first encodes each function of
the same class with GRU (Cho et al., 2014) and
then applies an attention mechanism towards the
encoded functions during the generation process.
Other work constructs a call graph to connect the
functions within a class and applies a graph neural
network (GNN) to extract information to gener-
ate code comments (Yu et al., 2020). These studies
demonstrate the usefulness of exploiting class-level
context to generate comments for functions.

While promising, existing techniques apply
rough and coarse methods to model functions of
the class. They neglect the diverse and subtle rela-
tionship between class methods. Because not all
the function implementations are closely related,

indiscriminately utilizing all functions can intro-
duce noise, which in turn degrades the performance
of a machine learning method. Furthermore, we
observe that there are other implicit relationships
between functions, which can be useful in assist-
ing code comment generation but are overlooked
by prior work. As an example, consider Figure 1
that shows a Java class example from a real-world
project. Here, methods getEventDefinition
and getActionDefinition do not invoke
each other in their function body. However, the two
functions have closely related semantics because
they both implement a get interface. Looking at
the developer’s comments closely, we see that the
text descriptions are also similar, albeit the sub-
jects in the sentence are different. This example
shows that one can utilize the written comment of
one function (or method) to automatically generate
comments for another. However, doing so require
carefully modeling and capturing the implicit re-
lationship among functions. Prior work cannot do
this because they only capture the function calling
relation. Our work aims to bridge this gap.

In light of the observation described above, our
approach models both explicit (like function calls)
and implicit relationships of methods (such as two
functions implementing similar operations). We
want to model implicit relationships because we
wish to capture the common programming idioms
and patterns, where programmers often write pair-
ing functions with closely related functionalities.
For example, a Java class that implements a read
related function is likely to also provide a write
interface to access the same or other data members
of the class. Figure 1 gives another example of this
programming pattern, where the class implements
a get method to access class members of Event
and Action types.

This paper presents a new framework for auto-
matic code generation by leveraging both explicit
and implicit relationships. Our approach utilizes
both relationships to extract key information from
the source file to generate the intent description of a
target function. To this end, we develop an encoder-
decoder framework based on the GNN architecture.
We do so by first encoding the the explicit and im-
plicit code relationships as a heterogeneous graph.
We then apply a GNN to enable different types
of relationships to guide and communicate with
each other. In the encoding stage, we design an
attention-interactive GNN to embed all functions

and the available comments within a class file. We
then use a bi-GRU module to embed the source
code of the target method. In the decoding stage,
we use an attentive GRU decoder. To generate com-
ments, we employ a by-copy mechanism to copy
words from the code implementation of the target
function and existing comments of other related
functions.

We evaluate our approach on a JAVA dataset
using automatic and human evaluation metrics. Ex-
perimental results show that our framework can
generalize to different settings. It can efficiently
capture both explicit and implicit relationships be-
tween methods. It outperforms prior approaches by
generating comments that are judged to be more ac-
curate by human evaluators and of a higher quality
measured by automatic, quantified metrics.

This paper makes the following contributions:

* It is the first work to leverage multiple code
relationships between functions of a class file
to automatically generate code comments by
utilizing partially presented comments.

* It presents a novel GNN model with an
attention-interactive mechanism for function-
level code comment generation.

2 Our Approach

2.1 Relation Extraction

In order to distinguish explicit and implicit relation-
ships, we need to respectively extract them from
the source code. As explicit relationship mainly
consists of function calls, we use available toolkit
to extract them. We observe that there is usually a
syntactic pattern lying in function names between
functions who have implicit relationship. There-
fore, we propose two heuristic rules targeting func-
tion names to extract implicit relationship:

* If the verbs in function names are antonyms
and they share the same object entities or there
are no object entities in their names, we will
consider an implicit relationship. This rule
captures pairing functions such as start and
stop, add and delete.

* If the verbs in function names are the same
and their object entities have overlap, we will
consider an implicit relationship. This rule
captures pairing functions such as in Figure 1.

Target-to-other

'
building 1+ (X
Attention

JAVA) graph | o1
Class - i— --
'
: <
' -

Pgen
Attention Attention Fi A% (L= pgen) (1= 2) % (1 = pyen)
had 1 aalla

Puocan Yeom

’
-

Figure 2: The overall architecture of our approach.

2.2 Graph Construction

In the task scenario, only a small part of com-
ments are already presented and we do not have
to model them independently from the functions.
As a comment can be viewed as a super detailed
and long function name, we mix the known com-
ments with function names together, all as "names".
Eventually, we build a heterogeneous graph struc-
ture to model both functions and their "names".
Given a graph G = {(f3, 7, ¢;) U (fis Teaplicit: [) U
(Cis Timplicit, ¢j) }» where vertex f; € F represents
a function and vertex ¢; € C represents its name.
We define three types of edges, where edge rezpiicit
represents an explicit connection between func-
tions, which is a two-way function calling relation-
ship and 7y, p15ci¢ TEpresents an implicit connection
between function names, which is determined by
our heuristic rules. We also add an edge between a
function and its name.

2.3 Individual Encoder

Our individual encoder extracts features from
source codes of the target function. Given the
source code of a function X = (z1,z3...2),
we use a bi-GRU (Cho et al., 2014) to en-
code it into a dense representation sequence
{(@, &), ., (@, &n)}. where g; and g; are the
hidden states of x; in both directions. We concate-
nate the hidden states of both directions as the final
representation of the target function:

Q=1{aq1,92...9n} (1)
4 = @) 2)

2.4 Graph Neural Network
2.4.1 Vertex Initialization

When encoding a function vertex, we want to main-
tain more useful information regarding the target
function, so we apply a target-to-other attention
mechanism. We firstly apply the individual encoder
to each individual function and get their individ-
ual representation {Q1, Q2...Q¢, ...Qx } and then
calculate the attention between target function and
other functions in the class.

exp(ai Wigqij)

Bii =
' EQijeQiexp(q?j;mqij)

3)

where q; is the last hidden state in (); and W is a
learnable matrix. Then we use the weighted sum
of individual representation (); as the initial vertex
representation for functions, {g?|v; € V;}:

g = Sq,¢0. P95 4

To encode a function name vertex, we apply
a name encoder which shares the same structure
with the individual encoder and concatenate the last
hidden states in both directions as the initial vertex
representation for function names, {d?|v; € V.}.

2.4.2 Our Graph Attention Network

In order to let explicit and implicit relationships
communicate with each other, we propose an
attention-interactive module on GAT. In each layer,
we first apply two individual GAT modules on func-
tions and names and get two attention distributions,
Qjjname and ;. func, calculated as :

eij = LeakyReLU((aT[Wagél|Wag;-])) 5)

exp(e;j)

_— 6
Yrexp(ei) ©

a;j = softmax(e;;) =

where W, and a are learnable parameters and [-||-]
means the concatenation of two matrices. We then
calculate the context vector under these two atten-
tion distributions.

1
gi,—:il f= Yjen (vi, func) O‘ijvfuncwggz' %)

EjeN(vi,name)aij,namewg,crossgé

8)
where N (v;, func) is the neighbor nodes of v;
among functions, N (v;, name) is the neighbor
nodes of v; among function names and Wy cross
and W are learnable matrices. We aggregate these
two context vectors to get an integral context vector
considering both relationships.

l _
gi,cross -

gé,new = tanh((aggr([gé,cross‘|g£l,self]))) (9)

where aggr is the aggregation method for two rep-
resentations, we exploit addition, concatenation
and linear transformation in experiments. Moti-
vated by (Cho et al., 2014), we design an update
gate to control the final output of each layer:

gate - Singid(Wgate([gé,new"gé])) (10)

l
gi,—!l;;date = gate*gfl"i_(l_gate)*gil,new (1 1)

In each layer, except the first, we apply a linear
transformation to let functions directly communi-
cate with their corresponding names.

1 I+1 I+1
g; - f([gi,upda,te||di,update])

(12)

The calculations are same on function nodes and
name nodes. We apply L layers and get the final
outputs, represented as {gF|v; € V;},{dF|v; €
Vet

2.5 Decoder

In the decoding phase, we follow the standard
encoder-decoder framework and use a GRU mod-
ule as decoder. We aggregate representations from
both source codes and heterogeneous graph, con-
catenating the last hidden states of individual en-
coder and the last layer output of our graph neural
network, as the initial state of the decoder GRU.

2.5.1 Attention

We leverage an attention mechanism to attend on
both source codes and heterogeneous graph, de-
ciding which part should be paid more attention
to. Formally, we calculate multiple context vectors,

cx; towards the output of individual encoder, cg;
towards the final output of GNN and cy; towards
the output of name encoder, calculated as :

¢ = Yy;eGVij9j (13)
v = exp(hiTWSQj) (14)
i =
7 Syecexp(hl Wgy,)

where Wy is a trainable matrix. When calculat-
ing context vector towards graph, we respectively
compute two context vectors for function nodes
and name nodes and concatenate them as the final
context vector cg;.

By-Copy Both source codes and known com-
ments may contain information that is directly use-
ful towards target comment. Motivated by (See
et al., 2017; Sun et al., 2018), we propose a double-
source copy mechanism which can copy words
from source codes and known comments. In a
standard pointer mechanism, the final prediction
distribution is merged from a generative distribu-
tion and a copy distribution. Since we have two
sources to copy from, we propose to merge the two
distributions by a switch A. In the i*" decoding
step,

5)
(16)

where Wy, by, wp,, we, wy are all trainable param-
eters. Yeodes 1S the attention distribution between
representation of target function and current hidden
state, Scoms 1S the attention distribution between
representation of known comments and current hid-
den state, calculated by Eq 14.

Pcopy = Ax Yeodes T (1 - >\) * Yeoms

A= a(w,{hi + wfca:i + 'wgyz)

Pyocap = softmax(Wv[hiHciHcgﬂ|cyi] + bU)

7

Pgen = o(wi by + wi cws +wl cys + wy ;)
(18)

P(w) = pgeanocab + (]— - pgen)Pcopy (19)

/ ’ / 4 s
where W, b}, wy,, we, wy, are all trainable param-

eters. Ppocqp 18 the normal output prediction dis-
tribution and pge,, serves as a switch that chooses
between generating words normally from vocabu-
lary or from copying.

3 Experimental Setup
3.1 Data Collection

Since most public datasets only contain function-
level information by omitting function relation-
ships in a class, we create our evaluation dataset

from real-life projects. Specifically, we collected
our dataset from Google Code Archive and with
the help of Sourcerer (Bajracharya et al., 2014),
we manage to trace and recover the complete ar-
chitecture of 1,000 JAVA projects. To better suit
our task scenario, we only keep JAVA classes that
are well commented, which contains more than
3 functions in the class and at least 70% of them
have human written comments. In total, we have
collected 3,344 JAVA files with 3,344 classes and
40,328 functions.

To prepare our dataset, we set the commented
ratio as 10%, i.e., for each class, only 10% of func-
tions or at least one function have comments. To de-
cide which functions will be treated as commented,
we propose two different experimental settings, ran-
dom sampling and degree sampling. In addition to
testing the adaptation ability of our approach, this
will help us explore how the distribution of known
comments will affect the generation quality.

Random Sampling Assuming that writing com-
ments for programmers is a random behavior, with-
out any prior patterns, we randomly sample 10%
of functions in a class as commented.

Degree Sampling In a JAVA class, functions that
are more frequently related to others usually play a
vital role in the process of software developing, and
they may provide strong assist to programmers. In
this way, we sample top 10% functions according
to its degree in the heterogeneous graph we build
and use their comments as known comments.

After sampling the known comments, we split
our dataset by projects and use 80% of the project
data for training, 10% for validation and 10% for
testing. It gives 25,247 functions in train set, 3,900
functions in valid set and 2,770 functions in test
set.

During preprocessing, given a function, we ex-
tract the summative content in JavaDoc as the com-
ment. We keep the first two sentences in the com-
ment, remove all the format controlling tokens and
only contain comments that have at least three
words. After obtaining the function-comment pairs,
we serialize them and remove all non-alphabetical
letters and split identifiers that are written in the
Camel or underscore style into dependent words.
The average number of tokens in functions and
comments are 62.8 and 8.14, respectively. The
average number of functions in a class is 12.1.

3.2 Evaluation Metrics

We consider both automatic and human evaluation
metrics in our experiments. For automatic eval-
uation, we adopt several widely used metrics in
natural language generation tasks, including BLEU
(Papineni et al., 2002), BLEU-1, BLEU-2, BLEU-
3, BLEU-4, Rouge-1, Rouge-2 and Rouge-L (Lin,
2004). For human evaluation, we consider three as-
pects, fluency, relevance and informativeness. For
all the three human evaluation metrics, we ask an-
notators to rate from 0 to 2 (where 2 indicates
highly satisfied and O means highly unsatisfied).

3.3 Hyperparameters

We set both the embedding and the hidden dimen-
sion sizes to 256 and the word embeddings are
randomly initialized. The layer of encoder and de-
coder GRU is 2. The GAT network has 3 layers.
We set dropout (Srivastava et al., 2014) rate to 0.3,
the weight decay rate to 1e-6. We train our model
with Adam (Kingma and Ba, 2015) optimizer and
learning rate 0.0001, and we use a scheduler that
reduce learning rate by 0.1 every 15 epochs. We
report the best scores over five different seeds.

3.4 Baselines

Copy models. This approach directly copies one
comment from the known comment set as target
comment. MaxCopy is the best performance that
maximizes Rouge score between the target com-
ment and the copied comment.

Retrieval models. Rencos (Zhang et al., 2020)
retrieves a semantically similar and a syntactically
similar functions from a code database, combines
them together and applies a seq2seq model to gen-
erate comments.

Generation models. Seq2Seq (Sutskever et al.,
2014) is a bi-directional GRU model with an atten-
tion mechanism. ASTGNN (LeClair et al., 2020)
applies GCN (Kipf and Welling, 2017) on the AST
structure and uses an attentive GRU decoder. Class-
GAT (Yu et al., 2020) applies GAT module on the
Call-Graph to extract a class-level representation
while applies GRU on the target function to extract
a function-level representation, combines them to-
gether and applies an attentive GRU decoder with
pointer mechanism. We also conduct experiments
with the pretraining model CodeBert (Feng et al.,
2020) which demonstrates superior performance on
a variety of code-related tasks. We use it to initial-

Table 1: Comparison between our model and baseline models. "KC" refers to the known comments in a class.

Degree-Sampling

Models \ BLEU BLEU-1 BLEU-2 BLEU-3 BLEU-4 Rouge-1 Rouge-2 Rouge-L
MaxCopy 14.65 322 19.6 12.8 9.8 33.0 16.1 322
Rencos 14.15 33.6 16.6 11.7 10.2 32.0 15.7 315
Seq2Seq 15.45 38.2 19.0 12.3 10.0 374 19.1 37.0
ASTGCN 15.82 40.6 19.5 12.6 10.3 40.6 20.3 39.9
ClassGAT-CG 17.23 40.3 20.1 13.1 104 41.0 21.2 404
CodeBert 17.25 45.7 24.0 15.1 11.7 43.0 23.1 424
Seq2Seq + KC 17.44 404 20.8 12.7 9.5 41.9 22.1 414
ClassGAT + KC 18.58 43.1 22.6 15.0 12.3 42.8 23.4 419
CodeBert + KC 16.98 53.5 29.4 18.5 14.6 46.2 253 45.5
OurModel 20.38 46.1 25.8 17.7 15.1 44.2 24.5 43.2
w/ CodeBert 22.80 48.5 28.9 20.3 17.1 472 29.1 46.6

Table 2: Human evaluation results.

Models | Fluency Relevance Informativeness
Seq2Seq 1.52 1.30 0.84
ClassGAT 1.58 1.34 1.06
ClassGAT+KC 1.72 1.34 1.22
OurModel 1.82 1.46 1.28

ize a transformer encoder and train a decoder from
scratch. We incoporate CodeBert into our model
to verify whether function relationships still ben-
efits when strong pretraining models are involved.
We utilize CodeBert to embed functions instead of
a trainable embedding layer and employ a trans-
former decoder instead of GRU.

The above baselines are designed to work from
source code only, we thus modify them to intro-
duce known comments into the models for our task
setting. For Seq2Seq models, we follow (Zoph
and Knight, 2016) and combines a weighted sum
of known comment representations with the target
function representation to generate comment. To-
wards ClassGAT model, we experiment with two
different vertex initialization methods: concatena-
tion of function and comment representations or
a weighted sum of these two representations, and
report the best performance of them. As for Code-
Bert, we concatenate the target function and known
comments, separated by a SEP token, and use it as
input.

4 Experimental Results

4.1 Main Results

Table 1 shows the performance of different models.
Overall, our model outperforms all baselines by a
large margin.

Both copy models and Rencos show relatively
low performance under all metrics, indicating that
known comments cannot be simply copy-paste to
assist other functions within the same class as they
may be beneficial in some cases but not all. In com-
parison, generation models typically perform better.
ASTGCN outperforms sequential models by uti-
lizing structural information from the AST. After
introducing explicit relationship between functions
within a class, ClassGAT outperforms all the non-
pretrain models. The performance of generation
models demonstrates that it is critical to incorpo-
rate both explicit and implicit relationships when
determining the purpose of a function in class.

The baseline models also benefit from known
comments. The Seq2Seq model with known
comments(Seq2Seq+KC) improves the best-
performing generation model by a little margin,
due to that it does not utilize any other functions in
the class as well as relationship between them, so
it fails to extract more precise information from the
known comments and the target function together.
Introducing known comments into ClassGAT
model leads to relatively strong performance,
successfully combining known comments with
given functions. However, this set of models only
exchange information guided by function callings,
while ignore the other possible relationship
between functions. Although CodeBert shows
strong performance due to the rich knowledge
extracted from pretraining process, our model still
manages to make a further improvement after
introducing CodeBert into our model and achieve
the best BLEU score among all the baseline
models. The experiment results show that it is
essential and beneficial to leverages both explicit

Table 3: Ablation results of our model.

Models BLEU BLEU-1 BLEU-2 BLEU-3 BLEU-4 Rouge-1 Rouge-2 Rouge-L
OurModel 20.38 46.1 25.8 17.7 15.1 442 24.5 432
w/o individual encoder 15.10 40.8 19.6 11.2 8.1 41.2 20.9 40.8
w/o graph encoder 15.82 38.3 19.1 11.4 8.6 39.5 20.5 39.1
w/o by-copy 19.26 45.0 242 16.3 13.5 43.8 24.0 43.0
w/o graph attention 17.12 40.1 20.2 12.0 8.9 43.1 22.7 43.1

Table 4: The performance of our model under different
sampling settings.

Setting | BLEU B-4 R-1 R-L
Degree-sampling 20.38 15.1 44.2 43.2
- ClassGAT + KC 18.58 12.3 42.8 41.9
Random-sampling | 17.64 11.8 43.8 429
- ClassGAT + KC 17.61 11.3 42.8 422
Degree-overlap 20.58 15.1 443 432
Random-overlap 18.05 12.3 44.2 43.1

and implicit relationships when comprehending
functions in a class.

4.2

We perform a human evaluation on the test dataset
to assess the quality of the generated comments by
our framework, Seq2Seq, ClassGAT and ClassGAT
with known comments. ! We randomly sample
twenty cases and ask 3 raters to give scores in three
aspects. As we can see in Table 2, our model out-
performs other strong baselines by a large margin,
especially on relevance and informativeness. Our
model can effectively utilize rich information in the
source file and generate comments that are more
relevant with the functions and give more details.

Human Evaluation

4.3 Ablation Study

To examine the effect of each component in our
framework, we evaluate the effect of removing
the individual encoder, graph encoder, the by-copy
mechanism, and the graph attention mechanism, as
shown in Table 3. By and large, all of the compo-
nents in our model contribute to the model’s overall
performance. We can see that after removing indi-
vidual encoder and graph encoder, the performance
all drops significantly, around 5 in BLEU score and
3 in Rouge score, indicating that both individual
and graph encoders play an indispensable role in
the final performance. Without graph attention or a
by-copy module, performance deteriorates signifi-
cantly. It is critical to use the attention mechanism

"More details of human evaluation are provided in Ap-
pendix A

Ours
—— TwoWayEncoding
- Delta

05
vos

“ o4

3

3

e anrnnn LDalil.

s H
Method Degree

Figure 3: Performance of our model and baselines on
functions of different degrees.

to determine which section should receive the most
attention and to copy useful words directly from
the target function and from known comments.

4.4 Analysis
4.4.1 Does different known comments matter?

To check if our starting point still stands if the pro-
grammers choose different functions to comment,
we conduct a set of experiments under different
sampling settings where different function com-
ments are known. As shown in Table 4, our model
outperform the most competitive baseline Class-
GAT+KC under both sampling settings. We can
see that any comments available in the class, even
randomly sampled, are helpful to produce quality
comments for other functions, thanks to both the
explicit and implicit relationship captured by our
model. So, always write comments if you can.

4.4.2 How should we write comments?

Then, our next question is which functions we
should first write comments for so that they can
benefit the most. In Table 4, we compare the per-
formance on the same (overlapped) test sets un-
der different sampling settings, and clearly, perfor-
mance under degree sampling is much better than
under random sampling. We can infer that writing
comments for functions with higher degrees may
provide more contextual information, hence can
benefit more functions in the class. Figure 3 de-
picts the trend of Rouge-1 scores over functions of
different degrees. We can see that our model outper-

Table 5: Examples of generated comments.

| Example 1

|| Example 2

Target Function

public void start ()
throws Exception
{
if (serverMode) {...
server.start ();}
waitForServer () ;
started = true;
}

public MAssociationEndRole
createAssociationEndRole ()
{
MAssociationEndRole modelElement = ...
super.initialize (modelElement) ;
return modelElement;

}

Known Function &
Comment

/+ Stop the Database
engine.x/

public void stop() {

if (server !'= null) ({

}
started = false;
}

/* Builds a message within some interaction
related to some assocation role. x/

public MMessage buildMessage (MInteraction
inter, MAssociationRole role) {

return message;

}

Golden Comments
Seq2Seq
TwoWayEncoding
Our Model

start the database engine
starts the application
starts the database

starts the database engine

create an empty but initialized instance of a uml association end role
returns the first association of the model

create an empty but do not read associated to this interaction

create an empty but initialized instance of a uml association role

forms TwoWayEncoding(do not consider function
relations) more in high degree functions than low
degree functions.

In all, when engineering in real life, it may be
a good idea to first write comments for those with
higher degrees.

4.5 Case Study

Now, we present two examples with generated
comments by different models in Table 5. As we
can see, in the first case, it is hard to know what
should be started only with source codes. How-
ever, it can be easily inferred from the known
comments. As start and stop is connected
by our defined rule, our model successfully cap-
tures this relevance and successfully generates key-
word database engine, while other models gen-
erate messy objectives. In the second case, the
commented function is less related to the target
function createAssociationEndRole, and
the main information should come from the source
code itself. As there is no connection between
these two functions under our relationship defini-
tion, our model is not affected by this known com-
ment and successfully generate a good comment,
while TwoWayEncoding is influenced too much by
the known comment and the generated comment
deviates a lot from the original intention.

5 Related Work

Code comment generation aims at generating de-
scriptive natural language for source codes.

Early works (Iyer et al., 2016; Allamanis et al.,
2016; Hu et al., 2018b) treats source codes as se-

quential text and employs attentive Seq2Seq meth-
ods to generate comments. Later works focus on
procedural structure of source codes. (Hu et al.,
2018a; Alon et al., 2019; Liang and Zhu, 2018; Al-
lamanis et al., 2018; LeClair et al., 2020; Ahmad
et al., 2020) applies a variety of models on Abstract
Synatx Tree(AST) to extract structural information.
(Shi et al., 2020) proposes to focus on more basic
information that can truly reflect how programs ex-
ecute and applies a GGNN(Li et al., 2016) module
on the assembly code and dynamic memory states
of the program. Some recent works start to take a
broader view. Some works exploit retrieval-based
methods. Zhang et al. (2020) proposes to utilize
similar functions through retrieval method. Liu
et al. (2020) makes a further efforts to combine the
retrieved function and comment together into the
generation process. Some works model functions
in a class level. Yu et al. (2020) builds a class-level
function graph and extract information from it as
global context.

6 Conclusion

We present a novel approach for automatic code
comment generation that targets a practical prob-
lem where human-written comments are only avail-
able for a few methods. We propose to focus on
both explicit and implicit relationships between
functions together and design a framework to ef-
fectively extract useful information from existing
comments and functions in the source file. Exper-
imental results show that our approach generates
comments that outperforms prior methods in both
automatic and human evaluation metrics.

References

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray,
and Kai-Wei Chang. 2020. A transformer-based ap-
proach for source code summarization. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, ACL 2020, Online,
July 5-10, 2020, pages 4998-5007. Association for
Computational Linguistics.

Miltiadis Allamanis, Marc Brockschmidt, and Mah-
moud Khademi. 2018. Learning to represent pro-
grams with graphs. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net.

Miltiadis Allamanis, Hao Peng, and Charles Sutton.
2016. A convolutional attention network for extreme
summarization of source code. In Proceedings of the
33nd International Conference on Machine Learning,
ICML 2016, New York City, NY, USA, June 19-24,
2016, volume 48 of JMLR Workshop and Conference
Proceedings, pages 2091-2100. JMLR.org.

Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav.
2019. code2seq: Generating sequences from struc-
tured representations of code. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Sushil Krishna Bajracharya, Joel Ossher, and
Cristina Videira Lopes. 2014. Sourcerer: An in-
frastructure for large-scale collection and analysis of
open-source code. Sci. Comput. Program., 79:241—
259.

Kyunghyun Cho, Bart van Merrienboer, Caglar
Giilgehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2014, October
25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a
Special Interest Group of the ACL, pages 1724-1734.
ACL.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
bert: A pre-trained model for programming and natu-
ral languages. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing: Findings, EMNLP 2020, Online Event, 16-20
November 2020, pages 1536-1547. Association for
Computational Linguistics.

Beat Fluri, Michael Wiirsch, and Harald C. Gall. 2007.
Do code and comments co-evolve? on the relation
between source code and comment changes. In /4th
Working Conference on Reverse Engineering (WCRE
2007), 28-31 October 2007, Vancouver, BC, Canada,
pages 70-79. IEEE Computer Society.

Sakib Haque, Alexander LeClair, Lingfei Wu, and
Collin McMillan. 2020. Improved automatic summa-
rization of subroutines via attention to file context.
In MSR ’20: 17th International Conference on Min-
ing Software Repositories, Seoul, Republic of Korea,
29-30 June, 2020, pages 300-310. ACM.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018a.
Deep code comment generation. In Proceedings of
the 26th Conference on Program Comprehension,
ICPC 2018, Gothenburg, Sweden, May 27-28, 2018,
pages 200-210. ACM.

Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and
Zhi Jin. 2018b. Summarizing source code with trans-
ferred API knowledge. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial
Intelligence, IJCAI 2018, July 13-19, 2018, Stock-
holm, Sweden, pages 2269-2275. ijcai.org.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2016. Summarizing source code
using a neural attention model. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2016, August 7-12, 2016,
Berlin, Germany, Volume 1: Long Papers. The Asso-
ciation for Computer Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.
OpenReview.net.

Alexander LeClair, Sakib Haque, Lingfei Wu, and
Collin McMillan. 2020. Improved code sum-
marization via a graph neural network. CoRR,
abs/2004.02843.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and
Richard S. Zemel. 2016. Gated graph sequence
neural networks. In 4th International Conference
on Learning Representations, ICLR 2016, San Juan,
Puerto Rico, May 2-4, 2016, Conference Track Pro-
ceedings.

Yuding Liang and Kenny Qili Zhu. 2018. Automatic
generation of text descriptive comments for code
blocks. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, (AAAI-18), the
30th innovative Applications of Artificial Intelligence
(IAAI-18), and the 8th AAAI Symposium on Educa-
tional Advances in Artificial Intelligence (EAAI-18),
New Orleans, Louisiana, USA, February 2-7, 2018,
pages 5229-5236. AAAI Press.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74-81, Barcelona, Spain.
Association for Computational Linguistics.

https://doi.org/10.18653/v1/2020.acl-main.449
https://doi.org/10.18653/v1/2020.acl-main.449
https://doi.org/10.18653/v1/2020.acl-main.449
https://openreview.net/forum?id=BJOFETxR-
https://openreview.net/forum?id=BJOFETxR-
https://openreview.net/forum?id=BJOFETxR-
http://proceedings.mlr.press/v48/allamanis16.html
http://proceedings.mlr.press/v48/allamanis16.html
http://proceedings.mlr.press/v48/allamanis16.html
https://openreview.net/forum?id=H1gKYo09tX
https://openreview.net/forum?id=H1gKYo09tX
https://openreview.net/forum?id=H1gKYo09tX
https://doi.org/10.1016/j.scico.2012.04.008
https://doi.org/10.1016/j.scico.2012.04.008
https://doi.org/10.1016/j.scico.2012.04.008
https://doi.org/10.1016/j.scico.2012.04.008
https://doi.org/10.1016/j.scico.2012.04.008
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.1109/WCRE.2007.21
https://doi.org/10.1109/WCRE.2007.21
https://doi.org/10.1109/WCRE.2007.21
https://doi.org/10.1145/3379597.3387449
https://doi.org/10.1145/3379597.3387449
https://doi.org/10.1145/3379597.3387449
https://doi.org/10.1145/3196321.3196334
https://doi.org/10.24963/ijcai.2018/314
https://doi.org/10.24963/ijcai.2018/314
https://doi.org/10.24963/ijcai.2018/314
https://doi.org/10.18653/v1/p16-1195
https://doi.org/10.18653/v1/p16-1195
https://doi.org/10.18653/v1/p16-1195
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
http://arxiv.org/abs/2004.02843
http://arxiv.org/abs/2004.02843
http://arxiv.org/abs/2004.02843
http://arxiv.org/abs/1511.05493
http://arxiv.org/abs/1511.05493
http://arxiv.org/abs/1511.05493
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16492
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16492
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16492
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16492
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16492
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013

Shangqing Liu, Yu Chen, Xiaofei Xie, Jing Kai Siow,
and Yang Liu. 2020. Automatic code summariza-
tion via multi-dimensional semantic fusing in GNN.
CoRR, abs/2006.05405.

Steve McConnell. 2004. Code complete. Pearson Edu-
cation.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, July 6-12, 2002, Philadelphia,
PA, USA, pages 311-318. ACL.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics, ACL 2017, Vancouver, Canada, July 30 -
August 4, Volume 1: Long Papers, pages 1073-1083.
Association for Computational Linguistics.

Zhan Shi, Kevin Swersky, Daniel Tarlow, Parthasarathy
Ranganathan, and Milad Hashemi. 2020. Learning
execution through neural code fusion. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res., 15(1):1929—
1958.

Fei Sun, Peng Jiang, Hanxiao Sun, Changhua Pei,
Wenwu Ou, and Xiaobo Wang. 2018. Multi-source
pointer network for product title summarization. In
Proceedings of the 27th ACM International Confer-
ence on Information and Knowledge Management,
CIKM 2018, Torino, Italy, October 22-26, 2018,
pages 7-16. ACM.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys-
tems 27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014, Mon-
treal, Quebec, Canada, pages 3104-3112.

Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing,
Ahmed E. Hassan, and Shanping Li. 2018. Measur-
ing program comprehension: a large-scale field study
with professionals. In Proceedings of the 40th Inter-
national Conference on Software Engineering, ICSE
2018, Gothenburg, Sweden, May 27 - June 03, 2018,
page 584. ACM.

Xiaohan Yu, Quzhe Huang, Zheng Wang, Yansong
Feng, and Dongyan Zhao. 2020. Towards context-
aware code comment generation. In Proceedings of
the 2020 Conference on Empirical Methods in Natu-
ral Language Processing: Findings, EMNLP 2020,
Online Event, 16-20 November 2020, pages 3938—
3947. Association for Computational Linguistics.

10

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and
Xudong Liu. 2020. Retrieval-based neural source
code summarization. In ICSE "20: 42nd Interna-
tional Conference on Software Engineering, Seoul,
South Korea, 27 June - 19 July, 2020, pages 1385—
1397. ACM.

Barret Zoph and Kevin Knight. 2016. Multi-source
neural translation. In NAACL HLT 2016, The 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, San Diego California, USA,
June 12-17, 2016, pages 30-34. The Association for
Computational Linguistics.

A Human Evaluation Guidelines

Please assess the quality of comments towards the
provided function with regard to the following fea-
tures: fluency, relevancy and informativeness. Give
ratings from O to 2. In the following, we give ex-
planation towards each feature.

* Fluency: This metric evaluates whether the
generated comment is fluent to read. It de-
pends on the grammaticality and word usage
of the sentence.

Relevance: This metric evaluates how much
the generated comment is relevant to the cor-
responding function. It measures whether or
not the comment can describe or summarizes
the purpose of the function.

Informativeness: his metric evaluates how
much concrete information the comment con-
tains. The more informative comment should
give more details instead of using meaningless
words that can refer to a lot of things.

http://arxiv.org/abs/2006.05405
http://arxiv.org/abs/2006.05405
http://arxiv.org/abs/2006.05405
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://openreview.net/forum?id=SJetQpEYvB
https://openreview.net/forum?id=SJetQpEYvB
https://openreview.net/forum?id=SJetQpEYvB
http://dl.acm.org/citation.cfm?id=2670313
http://dl.acm.org/citation.cfm?id=2670313
http://dl.acm.org/citation.cfm?id=2670313
https://doi.org/10.1145/3269206.3271722
https://doi.org/10.1145/3269206.3271722
https://doi.org/10.1145/3269206.3271722
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks
https://doi.org/10.1145/3180155.3182538
https://doi.org/10.1145/3180155.3182538
https://doi.org/10.1145/3180155.3182538
https://doi.org/10.1145/3180155.3182538
https://doi.org/10.1145/3180155.3182538
https://doi.org/10.18653/v1/2020.findings-emnlp.350
https://doi.org/10.18653/v1/2020.findings-emnlp.350
https://doi.org/10.18653/v1/2020.findings-emnlp.350
https://doi.org/10.1145/3377811.3380383
https://doi.org/10.1145/3377811.3380383
https://doi.org/10.1145/3377811.3380383
https://doi.org/10.18653/v1/n16-1004
https://doi.org/10.18653/v1/n16-1004
https://doi.org/10.18653/v1/n16-1004

	Introduction
	Our Approach
	Relation Extraction
	Graph Construction
	Individual Encoder
	Graph Neural Network
	Vertex Initialization
	Our Graph Attention Network

	Decoder
	Attention

	Experimental Setup
	Data Collection
	Evaluation Metrics
	Hyperparameters
	Baselines

	Experimental Results
	Main Results
	Human Evaluation
	Ablation Study
	Analysis
	Does different known comments matter?
	How should we write comments?

	Case Study

	Related Work
	Conclusion
	Human Evaluation Guidelines

