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Abstract

We propose a new bootstrap-based online al-
gorithm for stochastic linear bandit problems.
The key idea is to adopt residual bootstrap
exploration, in which the agent estimates the
next step reward by re-sampling the residu-
als of mean reward estimate. Our algorithm,
residual bootstrap exploration for stochastic
linear bandit (LinReBoot), estimates the lin-
ear reward from its re-sampling distribution
and pulls the arm with the highest reward es-
timate. In particular, we contribute a theoreti-
cal framework to demystify residual bootstrap-
based exploration mechanisms in stochastic
linear bandit problems. The key insight is that
the strength of bootstrap exploration is based
on collaborated optimism between the online-
learned model and the re-sampling distribu-
tion of residuals. Such observation enables us
to show that the proposed LinReBoot secure
a high-probability Õ(d

Ô
n) sub-linear regret

under mild conditions. Our experiments sup-
port the easy generalizability of the ReBoot
principle in the various formulations of linear
bandit problems and show the significant com-
putational e�ciency of LinReBoot.

1 INTRODUCTION

Stochastic linear bandit is an online learning problem
that the learning agent acts by pulling arms, where
each arm is associated with a feature vector, then
learning the arms information from the corresponding
random rewards. In such problems, the typical goal
of a learning agent is to maximize its cumulative re-
ward. Learning more about an arm (explore) or pulling
the arm with the highest estimated reward (exploit)

leads to the well-known exploration- exploitation trade-
o�, which is the central trade-o� captured in many
decision-making applications in modern online service
industries. Consequently, the design of stochastic linear
bandit algorithms demands an easy-generalizable im-
plementation across various contextualize actions and
reward generation processes.

In the past decade of bandit literature, such demands
have invited researchers to investigate bootstrap-based
exploration-exploitation trade-o�s and have drawn ris-
ing attention [Baransi et al., 2014, Eckles and Kaptein,
2014, Osband and Van Roy, 2015, Vaswani et al., 2018,
Hao et al., 2019, Kveton et al., 2019b, Wang et al.,
2020]. Yet, prior works on bootstrap-based bandit al-
gorithms focus on provable multi-armed bandit algo-
rithms and only provide a limited empirical evaluation
of bootstrap-based stochastic linear bandit algorithms,
and their theoretical counterpart remains unknown.
Such knowledge gap of bootstrapping stochastic lin-
ear bandit persuades our investigation on the provable
bootstrap-based stochastic linear bandits: Can we
theoretically and empirically support the valid-
ity and easy-generalizability of bootstrapping
procedure in stochastic linear bandit algorithms
design? In particular, we aim to deliver a generic
framework to demystify the bootstrap optimism in
stochastic linear bandit problems and validate the easy
generalizability of the bootstrap principle across various
contextual linear bandit problems.

Contributions. We introduce LinReBoot algorithms
that implement Residual Bootstrap Exploration for
stochastic linear bandit problem with sub-linear regret.
We theoretically show that LinReBoot secures Õ(d

Ô
n)

regret where d is the dimension of features. This sub-
linear regret bound matches the regret bound of the
same order as those theoretical results of Linear Thomp-
son Sampling algorithms. The key to achieving such
sub-linear regret guarantee is to carefully manage and
collaborate sample and bootstrap optimism (Section
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4.1). In particular, by measuring the ”sample-bootstrap
optimistic estimated discrepancy ratio” of the optimal
arm, LinReboot successfully avoids over or under explo-
ration and theoretically secures sub-linear mean regret
with high-probability. To our knowledge, this is the
first theoretical analysis to support the validity and
e�ciency of the residual bootstrap-based procedure
for stochastic linear bandit problems. We empirically
show that LinReBoot rivals or exceeds competing al-
gorithms including Linear Thompson Sampling, Linear
PHE, Linear GIRO, and Linear UCB under stochastic
linear bandit problem as well as more complicated lin-
ear bandit settings. These significant results support
the easy-generalizability of proposed LinReBoot. In
summary, our contributions are as follows:

• Propose LinReBoot algorithms that implement Resid-
ual Bootstrap Exploration in linear bandit problems
without boundness assumption of rewards.

• Theoretically show that LinReBoot secures Õ(d
Ô

n)
regret, matching the regret bound of the same order as
those theoretical results of Linear Thompson Sampling
algorithms.

• Empirically show that LinReBoot rivals or exceeds
baseline algorithms and supports that LinReBoot is
easy-generalizable among linear bandit problems.

Related Works. Bootstrap-based contextual bandit
algorithms design has been actively studied in the last
half-decade and drawn a surge of interest from both
theoretical studies and industrial practice [Elmachtoub
et al., 2017, Eckles and Kaptein, 2014, Osband et al.,
2016, Kveton et al., 2019b, Hao et al., 2019]. Bootstrap-
based bandit algorithm design is a paradigm of sequen-
tial decision-making based on an exploration mecha-
nism with no pre-defined mean reward model. Such
paradigm enjoys a decisive advantage that engineers
are free to deploy any reward model of interests without
painful adaption to problem structure [Kveton et al.,
2019b,a]. ReBoot [Wang et al., 2020] provided a the-
oretical logarithmic regret guarantee for multi-armed
bandit (MAB) and empirical investigation to validate
the easy generalizability of the ReBoot principle. Our
work aims to provide a theoretical guarantee for the
bootstrap-based linear bandit algorithms and empiri-
cally investigate more general contextual linear bandit
setting to validate the ReBoot principle.

One close related work is [Kveton et al., 2020a] which
introduces perturbation of past samples for exploration
under stochastic linear bandit problem. The limitation
of [Kveton et al., 2020a] is the boundness of rewards,
indicating many broader classes of rewards such as
Gaussian rewards are not applicable with a theoretical
guarantee. In contrast, the proposed LinReBoot algo-
rithms relax the boundness reward assumption and thus
validate bootstrap-based bandit algorithms in wider

bandit environments with a broader class of reward
generation processes.

Early works about exploration in bandit problems
[Abbasi-Yadkori et al., 2011, Langford and Zhang, 2007,
Dani et al., 2008] are practical but no guarantee of the
optimality. Some works [Wang et al., 2020, Kveton
et al., 2019b,a, Thompson, 1933, Auer et al., 2002] pro-
vide well designed exploration for bandit problems and
have their own principles for adopting to more general
problems. In these works, three principles including
ReBoot[Wang et al., 2020], GIRO[Kveton et al., 2019b]
and PHE[Kveton et al., 2019a] are devising exploration
mechanism based on up-to-now history instead of on
pre-defined reward model in the other two principles
TS[Thompson, 1933] and UCB[Auer et al., 2002]. Our
work generalizes ReBoot into stochastic linear bandit
problems.

Notations. Let [n] be set {1, 2, ..., n}. 1 is a vector
with all ones and I is the identity matrix. For a vector
v, ÎvÎ2 is 2-norm of v and ÎvÎ2

A :=
Ô

v€Av for a
semidefinite matrix A. Let È·, ·Í be the inner product
operation. Denote Ft as the history of randomness up
to round t. Et[·] := E[·|Ft≠1] is defined as the condi-
tional expectation given Ft≠1 and Pt(·) := P(·|Ft≠1) is
defined as the conditional probability given Ft≠1. I{·}
is indicator function. For a set or event E, we denote
its complement as Ē. N(µ, ‡

2) is Gaussian distribution
with mean µ and variance ‡

2. We use Õ for big O

notation up to logarithmic factor.

2 STOCHASTIC LINEAR BANDIT

Contextualize Action Set. In stochastic lin-
ear bandit problem, we identify the actions with
d≠dimensional features from A µ Rd and assume |A|,
the size of the action set, is finite. Let K := |A| be
the number of actions (arms), xk œ Rd be the context
vector of the k-th arm, that is, A = {x1, ..., xK}.

Reward generating mechanism. The reward func-
tion is parameterized by ◊ œ Rd such that, at time
t the agent chooses an action It œ [K] with feature
Xt = xIt œ A, the reward is generated by

Yt © ÈXt, ◊Í + ‘t. (1)

Specifically, the reward obtained by the agent at round
t when pulling arm It = k is generated from a distribu-
tion with mean µk := x€

k ◊, conditioning on context xk.
The property of noise ‘t is described in Assumption 2.
Furthermore, denote the recieved reward by rIt and
the reward random variable by Yt at round t.

Regret. Without loss of generality, assume that arm
1 is the unique optimal arm, that is µ1 > µk ’k ”= 1.



The optimal gap of the k-th arm is �k := µ1 ≠ µk Ø 0.
The expected n-round regret is denoted as

Rn :=
Kÿ

k=2
�kE[

nÿ

t=1
I{It = k}]. (2)

The goal of the agent is to maximize the expected
cumulative reward in n rounds, which is equivalent to
minimizing the expected regret Rn.

Assumption 1. (Boundness assumptions) True pa-
rameter ◊ is bounded: Î◊Î2 Æ S2.

Besides, we denote L as the upper bound for context
vectors: ÎxkÎ2 Æ L for all k œ [K]. Assumption 1 is
referred to the boundness assumptions in the stochastic
linear bandit literature and is to ensure the regret is
bounded if the agent pulls any sub-optimal actions (see
Section 5 in [Abbasi-Yadkori et al., 2011]).

Assumption 2. (Noise Clipping assumption) Noise
process {‘t}Œ

t=1 described in (1) satisfies that for some
L1, L2 > 0,

e
L1÷2

Æ E[e÷‘t |Ft≠1] Æ e
L2÷2

, ’÷ Ø 0, (3)

where Ft≠1 = {‘1, I1, · · · , ‘t≠1, It≠1}.

Assumption 2 implies that stochastic process {‘t}Œ
t=1

is conditionally sub-gaussian with constant L2. L1
contributes to the lower bound of moment generat-
ing function suggested by [Zhang and Zhou, 2020].
Note that the Assumption 2 allows heteroscedasticity
among di�erent arms by choosing L2 as the largest
variance among arms. Such heteroscedasticity consid-
eration arises and has been identified as a challenge in
applications of Bayesian optimization [Kirschner, 2021,
Cowen-Rivers et al., 2020].

3 RESIDUAL BOOTSTRAP
EXPLORATION

3.1 REBOOT PRINCIPLE

This section presents essential proof of concepts to
implement ReBoot principle [Wang et al., 2020]. In
general, each round of interaction, the decision policy
admits four subroutines to implement ReBoot princi-
ple: 1) Learning, 2) Fitting, 3) Bootstrapping, and 4)
Exploring. Following elaborates on each subroutine:

1) Model Learning. The first subroutine outputs a
learned model based on current collected data. Our
implementation learns the parameter ◊ in Eq.(1) by
some user-specified model.

2) Data Fitting. The second subroutine fits the cur-
rent data set with the learned model in the previous

subroutine and then outputs the residual set. Intu-
itively, the residuals measure the goodness of fit of the
learned model and should drop a hint on the right
amount of exploration. In other words, the residuals
should suggest a right magnitude of exploration bonus
in decision policy (8). How to manage and integrate
uncertainty behind residuals into the exploration mech-
anism of policy is the main challenge.

3) Residuals Bootstraping. The third subroutine
associates the residuals obtained the last subroutine
with a bootstrapping distribution. Instead of maintain-
ing a belief distribution on a parameter in the Bayesian
approach, ReBoot principle maintains a bootstrapping
distribution on the statistical error based on residuals.
The challenge is to justify the e�cacy of residual-based
optimism construction in both theory and practice.

4) Actions Exploring. The fourth subroutines sam-
ple the exploration bonus from the bootstrapping dis-
tribution and output an index for each action. Such
bootstrap procedure is more computationally e�cient
than prior e�orts since this procedure only requires
drawing a sample from the bootstrapping distribution.
The challenge is to prove that such bootstrap procedure
secures sub-linear regret in theory.

3.2 LINREBOOT ALGORITHM

We propose the Linear Residual Bootstrap Exploration
algorithm (LinReBoot, Algorithm 1) for stochastic lin-
ear bandit problems. This section elaborates the four
subroutines in Section 3.1 for the proposed LinReBoot.

1) LinReBoot uses ridge regression procedure, whose
learned parameter is ◊̂t (4b) and estimated mean re-
ward for arm k is µ̂k,t (4c). Such way to estimate
mean reward is easy to manage the confidence [Abbasi-
Yadkori et al., 2011]. Thus, we focus on confidence
management for the bootstrap-based exploration.

Ridge Regression Procedure. LinReBoot fits linear
model at round t as follow,

V t = X€
t≠1Xt≠1 + ⁄I, (4a)

◊̂t = V ≠1
t X€

t≠1Y t≠1, (4b)
µ̂k,t = x€

k ◊̂t, ’k œ [K], (4c)

where Xt≠1 = (X1, ..., Xt≠1)€ œ R(t≠1)◊d. The · -
th row of Xt≠1 is the context X

€
· for · œ [t ≠ 1],

Y t≠1 = (Y1, ..., Yt≠1)€ is reward vector whose elements
are rewards up to round t ≠ 1. ⁄ denotes the regular-
ization level. V t denotes the sample covariance matrix
up to round t and ◊̂t is the ridge estimation of target
parameter ◊ in (1). µ̂k,t denotes the estimated mean of
arm k based on history. Note that the first K rounds
in proposed LinReBoot is fully exploring each arm



once. In other words, It = t when t œ [K], indicating
XK := (x1, ..., xK)€ œ RK◊d. We call this XK the
context matrix with rank r Æ min(K, d) and singular
values ‡1, ..., ‡r. Also define ‡

2
min Æ ‡

2
i Æ ‡

2
max, ’i œ [r].

With these definitions, we make a mild assumption
about the shrinkage e�ect of ridge regression:

Assumption 3. (Validity of Ridge Regression) The
singular value decomposition of context matrix XK

is denoted as XK := G�U where G œ RK◊K ,
� œ RK◊d and U œ Rd◊d. Define � := �(�€� +
⁄I)≠1�€ œ RK◊K and Z := G��U œ RK◊d. Let
z1 œ Rd be the first row of Z. Given any ⁄ > 0,
there exists a corresponding positive scalar S1 such that
|x€

1 ◊ ≠ z€
1 ◊| Ø S1 for the ◊ in (1).

Remark 1. Assumption 3 provides a lower bound of
the absolute di�erence between true mean x€

1 ◊ and
normalized mean z€

1 ◊ of the optimal arm. Note that
if ⁄ æ 0, then z1 æ x1 and S1 æ 0. Thus this scalar
S1 measures the small perturbation on the mean of
the optimal arm when the ridge regression procedure is
applied. This Z can be interpreted as a ridge shrink-
age context matrix [Goldstein and Smith, 1974]. One
important phenomenon of online ridge regression is
that even if the ridge estimator is biased, the shrinkage
e�ect from ridge estimation provides exploration for
the agent leading to making a correct decision. The
positive scalar S1 describes the shrinkage e�ect on the
context. That is, the existence of S1 indicates the ridge
procedure is valid and its shrinkage e�ect exists.

2) The fitting part of LinReBoot outputs the residuals
under the linear model framework,

ek,t,i = rk,i ≠ µ̂k,t, ’i œ [sk,t≠1], (5)

where sk,t≠1 :=
qt≠1

·=1 I{I· = k} is the number of
times pulling arm k by round t ≠ 1, rk,i is the i-th
reward of arm k by round t ≠ 1. The goodness of fit of
the learned ridge regression model can be summarised
by Residual Sum of Squares(RSS) [Archdeacon, 1994]
which is defined as

RSSk,t :=
sk,t≠1ÿ

i=1
e

2
k,t,i. (6)

Such measure plays an important role in the residual
bootstrap exploration mechanism.

3) The third part is Residuals Bootstrapping. This
subroutine is independent of the model which sug-
gests the power of generalizability of ReBoot prin-
ciple. ReBoot principle requires the computation of
the exploration bonus [Mammen, 1993], which is
s

≠1
k,t≠1

qsk,t≠1
i=1 Êk,t,iek,t,i, where {Êk,t,i}

sk,t≠1
i=1 is resid-

ual bootstrap weights for arm k at round t.

Algorithm 1 LinReBoot
Require: ⁄, s1,0 = ... = sK,0 = 0

for t = 1, ..., n do
if t < K + 1 then

It Ω t

else
V t Ω X€

t≠1Xt≠1 + ⁄I

◊̂t Ω V ≠1
t X€

t≠1Y t≠1
for k = 1, ..., K do

ek,t,i Ω rk,i ≠ x€
k ◊̂t, ’i œ {sk,t≠1}

Generate {Êk,t,i}
sk,t≠1
i=1

µ̃k Ω x€
k ◊̂t + s

≠1
k,t≠1

qsk,t≠1
i=1 Êk,t,iek,t,i

end for
It Ω arg max

kœ[K]
µ̃k

end if
sIt,t Ω sIt,t≠1 + 1 and sk,t Ω sk,t≠1. ’k ”= It

Pull arm It and get reward rIt,sIt

Xt Ω
5
Xt≠1
x€

It

6
and Y t Ω

5
Y t≠1
rIt,sIt

6

end for

Choice of Bootstrapping Weights. The bootstrap
weights considered in this work are i.i.d with zero mean
and variance ‡

2
Ê. They are independent of the noise pro-

cess {‘t}Œ
t=1. In the literature of bootstrap procedure

[Mammen, 1993] , the choices of bootstrap weights
distribution include Gaussian weights, Rademacher
weights and skew correcting weights. In LinReBoot,
we adopt the Gaussian bootstrap weights to enable an
e�cient implement described at section 3.3.

4) The last subroutine is the action exploring based
on residual bootstrap. More specifically, for arm k

at round t, LinReBoot adds exploration bonus from
residual bootstrapping on the estimated mean µ̂k,t as
follow,

µ̃k,t = µ̂k,t + 1
sk,t≠1

sk,t≠1ÿ

i=1
Êk,t,iek,t,i, (7)

then agent pulls arm with the highest bootstrapped
mean,

It © arg max
kœ[K]

µ̃k,t. (8)

Note that the variance of bootstrapped mean µ̃k,t is
‡

2
Ês

≠2
k,t≠1RSSk,t, indicating an adaptive amount of ex-

tra exploration is controlled by sk,t≠1 and RSSk,t.

Short Summary. Our proposed LinReBoot has fol-
lowing steps at round t > K,

1) Ridge estimation: compute V t, ◊̂t.
2) Finding residuals for each arm: for arm k, compute

µ̂k,t and {ek,t,i}
sk,t≠1
i=1 .



3) Compute Bootstrapped mean for each arm: for arm
k, generate {Êk,t,i}

sk,t≠1
i=1 and compute µ̃k,t (7).

4) Pull arm with the highest µ̃k,t then observe reward.

Algorithm 1 describes LinReBoot. The strength of
LinReBoot is its easy generalizability across di�erent
bandit problems including linear bandits and even more
complicated structured problems (Appendix D.1).

Remark 2. (LinTS perturbs system parameter esti-
mate, LinReBoot perturbs expected reward estimates)
Compare with the LinTS in [Agrawal and Goyal, 2013b],
in which LinTS samples a perturbed parameter ◊̃

LinTS
t =

◊̂t+—tV
≠1/2
t ÷t with scaling —t and appropriate indepen-

dent noise ÷t (defined in [Agrawal and Goyal, 2013b]).
Our proposed LinReBoot samples a perturbed expected
reward µ̃

LinReBoot
k,t = È◊̂t, xkÍ + 1

sk,t≠1

qsk,t≠1
i=1 wk,t,iek,t,i.

That is, LinReBoot is perturbing the expected reward
estimate via prediction error uncertainty, which is su-
pervised by real reward. In contrast, LinTS is perturbing
the system parameter, when can be wrong if the system
modeling is wrong.

3.3 EFFICIENT IMPLEMENTATION

By the attractive computational properties of Gaus-
sian distribution, the computational cost of LinReBoot
can be reduced significantly when Gaussian Boot-
strap weights are generated. Formally: assume Êk,t,i ≥
N(0, ‡

2
Ê), ’k, t, i, recalling (7), for k œ [K] and any

t Ø 1, bootstrapped mean µ̃k,t follows a Gaussian dis-
tribution,

µ̃k,t|Ft≠1 ≥ N(µ̂k,t, ‡
2
Ês

≠2
k,t≠1RSSk,t). (9)

Such Gaussian-distributed property of µ̃k,t indicates
that if we can update µ̂k,t, sk,t≠1 and RSSk,t incre-
mentally for arm k, this bootstrapped mean µ̃k,t can
be generated by Gaussian generator without inner loop
for generating weights. The first two terms, µ̂k,t and
sk,t≠1, are naturally updated in incremental manner.
For RSSk,t, following decomposition ensures an incre-
mental update,

RSSk,t =
sk,t≠1ÿ

i=1
r

2
k,i + sk,t≠1µ̂

2
k,t ≠ 2µ̂k,t

sk,t≠1ÿ

i=1
rk,i.

Then an e�cient generation for µ̃k,t|Ft≠1 is ensured by
the incremental updates for µ̂k,t, sk,t≠1,

qsk,t≠1
i=1 r

2
k,i,qsk,t≠1

i=1 rk,i. Furthermore, since the residual bootstrap
weights are generated independently, µ̃k,t among arms
are also independent given historical randomness and
can be sampled from one multivariate Gaussian genera-
tion simultaneously. Formally, µ̃(t) = (µ̃1,t, . . . , µ̃K,t)€

is conditional distributed as

µ̃(t)|Ft≠1 ≥ NK(µ̂(t)
, �(t)

Ê ), (10)

where µ̂(t) = (µ̂1,t, . . . , µ̂K,t)€ and �(t)
Ê is a diago-

nal matrix with diagonal elements ‡
2
Ês

≠2
k,t≠1RSSk,t. De-

tailed steps and more illustration about e�cient imple-
mentation is provided in Appendix D.7.1. Moreover,
an empirical study about computational e�ciency is
conducted in Appendix D.7.2 and Table.3 provides the
computational cost of our proposed LinReBoot as well
as other baseline algorithms.

4 OPTIMISM DESIGN

Optimistic Estimated Discrepancy. This section
identifies and demystifies the technical challenge of im-
plementing ReBoot principle in the stochastic linear
bandit problem. The key is to conduct a detailed investi-
gation to produce probabilistic control on the behavior
of the ’Optimistic Estimate Discrepancy (OED)’ of
the LinReBoot policy (8). In principle, the OED is
given by

OED = Optimism ◊ Action Context Norm, (11)

where the Action Context Norm is given by ÎxkÎV ≠1
t

and Optimism is given by ct,k for the kth action at
time t, defined in (14). Design of ct,k will be elaborated
in Section 4.1.

Su�cient Explored Arms. We define the concept of
Su�cient Explore Arms to facilitate the formal regret
analysis of LinReBoot. Intuitively, an arm is su�cient
explored if its index produced by the policy (8) is less
than the mean reward of the optimal arm. Technically,
we say an arm k is su�ciently explored at time t if the
adopted OED (ct,kÎxkÎV ≠1

t
) is bounded by its optimal

gap (�k).

The above notion of su�cient explored arm defines the
concept of ”set of su�cient explored arms” St, formally

St := {k œ [K] : ct,kÎxkÎV ≠1
t

< �k}, (12)

where and ct,k is the collaborated optimism and
ct,kÎxkÎV ≠1

t
is an optimistic estimate of discrepancy

of policy index (8).

The key consequence of set (12) is that, any member
in St enjoys the property

’j œ St fl [K] : µ̃j,t < µ1; (13)

that is, the LinReBoot policy always avoids an index
(8) from su�ciently explored subset such that the boot-
strapped mean of this index is less than the optimal
mean reward unless all arm are su�ciently explored.
(see equation (82) in the proof of Lemma A.1 at section
B.1 for technical details).



4.1 COLLABORATE OPTIMISM

Here we elaborate on the collaborated optimism
adopted in the definition of su�cient explored arms
(12). Concretely, the collaborated optimism has a form

ct,k = c1(t, k) + c2(t, k), (14)

where c1(t, k) is called sample optimism and c2(t, k) is
called bootstrap optimism for arm k at time t.

Sample Optimism. The sample optimism c1(t, k)
serves as a control on the event that ”the realized sam-
ple estimate discrepancy (ED) is bounded by sample
OED”:

Et,k := {|µ̂k,t ≠ µk| Æ c1(t, k)ÎxkÎV ≠1
t

, } (15a)

Et :=
K‹

k=1
Et,k, (15b)

where c1(t, k) is a constant which can be tuned by our
LinReBoot algorithm, making the bad event Ēt,k and
Ē become unlikely. In fact, this Et,k is the event that
the least squared estimation is "close" to the true mean
reward for arm k at round t. In section 5, the probability
of the bad event Ēt is controlled by a parameter tuned
by users based on lemma 5.1.

Bootstrap Optimism.

The bootstrap optimism c2(t, k) serves as a control on
the event that ”the realized bootstrap ED is bounded
by bootstrap OED”:

E
Õ
t,k := {|µ̃k,t ≠ µ̂k,t| Æ c2(t, k)ÎxkÎV ≠1

t
}, (16a)

E
Õ
t :=

K‹

k=1
E

Õ
t,k, (16b)

where c2(t, k) is also a constant controlling the condi-
tional probability of the bad event Ē

Õ
t. This c2(t, k) can

be tuned by our LinReBoot algorithm as well. Similar
to Et,k, this E

Õ
t,k is the event that the residual boot-

strap based estimation is "close" to the least squared
estimate µ̂k,t for arm k at round t. In section 5, the
probability of bad event ĒÕ

t is controlled by a parameter
tuned by users based on lemma 5.2.

4.2 OPTIMISM DESIGN

Choice of sample optimism (–). The goal of this
part is to illustrate how to pick the sample OED such
that the event (15) holds with probability at least
1≠– for a given confidence budget – œ (0, 1). Formally,
the goal is to find a sample OED function c1(t, k) :

[n] ◊ [K] ‘æ R such that the event (15a) holds with
probability at least 1 ≠ –k. To meet the purpose of the
risk control, we specify the sample OED function with
form

c1(t, k) := R2


d log((1 + tL2/⁄)/–k) + ⁄
1/2

S2. (17)

Lemma 5.1 gives the formal result on why such choice
has confidence budget at most –k. For regret analysis,
define –min = min

kœ[K]
–k and – = (–1, ..., –K)€.

Choice of bootstrap optimism (—). The goal of
this part is to pick bootstrapped OED such that the
event (16) holds with probability at least 1≠— for given
confidence budget — œ (0, 1). Formally, the goal is to
find a sample OED function c2(t, k) : [n] ◊ [K] ‘æ R
such that the event (16a) holds with probability at
least 1 ≠ —k. To meet the purpose of the risk control,
we specify the bootstrapped OED function with form

c2(t, k) :=
Ò

(2‡2
ÊRSSk,t log(2/—k))/s2

k,t≠1ÎxkÎ2
V ≠1

t
.

(18)

Lemma 5.2 gives the formal result on why such choice
has a confidence budget at most —k. For regret anal-
ysis, let —min be the smallest —k, ’k œ [K] and — =
(—1, ..., —K)€.

4.3 OPTIMISM FOR OPTIMAL ARM

Sample-Bootstrap OED ratio of the optimal
arm (b). Indicated by the regret analysis in [Kveton
et al., 2020a], instead of controlling the exploration
independently, the relation between two sources of ex-
plorations needs to be considered because this relation
is critical for finding the optimal action. To meet such
observation, we define a good event,

E
ÕÕ
t := {µ̃1,t ≠ µ̂1,t > c1(t, 1)Îx1ÎV ≠1

t
}. (19)

Given the good event E
ÕÕ
t , the policy index µ̃1,t of the

optimal arm enjoys further positive bias, hence the
agent will have better chance to make optimal action.

In particular, we highlight a constant b used to measure
the ratio of the sample optimism (17) to the bootstrap
optimism (18); formally, we require b satisfies

c1(t, 1)/c2(t, 1) Ø b ·


2 log (2/—1). (20)

Intuitively, the constant b measures the relation be-
tween sample OED and bootstrap OED of the optimal
arm. This b plays an important role of the probability
lower bound of event (19) (See Lemma 5.3). Note that,
if (20) holds, we have the lower bound (26) ; otherwise,
we have the lower bound (27). In both cases, we have
a lower bound for the event (19).
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Table 1: Notations in Regret Analysis

Good event for optimal arm (“). Here we introduce
the event that over exploration and under exploration
of the optimal arm have been avoided simultaneously.
Formally, the constant “ is the probability that the
bandit index (8) is not over-exploration (Event E

Õ
t) and

also not under-exploration (Event E
ÕÕ
t )

{c1(t, 1) < (µ̃1,t ≠ µ̂1,t)/Îx1ÎV ≠1
t

< c2(t, 1)}. (21)

Technically, we can show that the probability of the
event (21) is lower bounded by the term

Pt(EÕÕ
t ) ≠ Pt(ĒÕ

t), (22)

with probability at least 1≠“ (Lemma 5.4). Such lower
bound is translated into an upper bound in regret
analysis.

5 FORMAL RESULTS

5.1 REGRET BOUND FOR LINREBOOT

Theorem 5.1. Under Assumptions 1, 2, 3 and techni-
cal conditions (32) and (74), with probability at least
1≠(”+“), the expected regret of Algorithm 1 is bounded
as,

Rn ÆC1(–1, —, “, b)’1(n, d)
+C2(–, —, “, b, ”)’2(n, d)
+C1(–1, —, “, b)’3(n) + ’4(n),

(23)

where ’1, ’2, ’3 and ’4 are defined in Table.1 and C1,
C2, M1, M2 are described in Table.2.

Proof. See Appendix A.1.

Corollary 5.2. Let – = — = 1Ô
n

1, the order of high
probability upper bound in Theorem 5.1 is Õ(d

Ô
n).

Proof. See Appendix A.2.

Corollary 5.2 shows that our regret bound scales as the
regret bound of Linear Thompson sampling [Agrawal
and Goyal, 2013b] and Linear PHE [Kveton et al.,
2020a].

5.2 VALIDATE SAMPLE OPTIMISM

Lemma 5.1. Under Assumptions 1, 2, 3 and choose
c1(t, k) as (17), P(Ēt,k), the probability of bad event
corresponded to least squared estimation described in
(15), is controlled. Formally, ’k œ [K], ’–k > 0, ’t Ø
1,

P(|µ̂k,t ≠ µk| Æ c1(t, k)ÎxkÎV ≠1
t

) Ø 1 ≠ –k. (24)

Consequently, we have P(Ēt) Æ – :=
qK

k=1 –k.

Proof. See Appendix A.3.

Lemma 5.1 supports that the choice of c1(t, k) at (17)
for the sample optimism event (15) is valid with confi-
dence budget –.

5.3 VALIDATE BOOTSTRAP OPTIMISM

Lemma 5.2. Suppose bootstrap weights are Gaussian.
Pick c2(t, k) as (18). The conditional probability of
bad event corresponding to residual bootstrap explo-
ration described in (16), Pt(ĒÕ

t,k), is controlled. For-
mally, ’k œ [K], ’—k > 0, ’t Ø 1

Pt(|µ̃k,t ≠ µ̂k,t| Æ c2(t, k)ÎxkÎV ≠1
t

) Ø 1 ≠ —k. (25)

Consequently, we have Pt(ĒÕ
t) Æ — :=

qK
k=1 —k.

Proof. See Appendix A.4.

Lemma 5.2 supports that the choice of c2(t, k) at (18)
for the sample optimism event (16) is valid with confi-
dence budget —.

5.4 SAMPLE-BOOTSTRAP RATIO

Lemma 5.3. Under Assumptions 1, 2, 3. Suppose
bootstrap weights are Gaussian. The conditional proba-
bility of anti-concentration for optimal arm described in



Figure 1: Comparison of LinReBoot with Gaussian Bootstrap weights to baselines under three linear bandit
problems and three di�erent context dimension d. First row referred to the setting in Section 6.1, second row is
for Section 6.2 and the last row is for Section 6.3. Three columns refer to d = 5, d = 10 and d = 20 respectively.

(19), Pt(ĒÕÕ
t ), has lower bound. Formally, if b satisfies

(20),

Pt(EÕÕ
t ) Ø bÔ

2fi
exp

A
≠

3c
2
1(t, 1)s2

1,t≠1Îx1Î2
V ≠1

t

2‡2
ÊRSS1,t

B
.

(26)
Otherwise,

Pt(EÕÕ
t ) Ø �(≠b), (27)

where � is the CDF of standard normal distribution.

Proof. See Appendix A.5.

Lemma 5.3 provides the lower bound result for good
event E

ÕÕ
t . The result indicates that, if the bootstrap op-

timism is not ’too large’, then the LinReBoot procedure
can enjoy additional regret reduction.

5.5 VALIDATE GOOD EVENT

Lemma 5.4. Under Assumptions 1, 2, 3 and suppose
Bootstrap weights are Gaussian. Assume b satisfies a
technical condition (74). Then, with probability at least

1 ≠ “, Pt(EÕÕ
t ) ≠ Pt(ĒÕ

t) has lower bound,

bÔ
2fi

exp

Q

cca≠
3s

3/2
1,t≠1c

2
1(t, 1)Îx1Î2

2

8‡2
Ê(‡2

min + ⁄)
Ú

1
M2

log
1

M1
1≠“

2

R

ddb ≠ —,

(28)
where M1 and M2 are defined in Table.2.

Proof. See Appendix A.6.

Lemma 5.4 provided the a high probability lower bound
for the di�erence between probability of the event for
anti-concentration E

ÕÕ
t and probability of bad event

discussed in bootstrap optimism in Section 4.1. This
lower bound is also for probability of ‘not under and
not over exploration’ event (21). Lemma 5.4 links the
sample optimism and bootstrap optimism and holds a
right amount of exploration of the optimal arm.

6 EXPERIMENTS

In this section, we conduct empirical studies under
three settings: Stochastic Linear Bandit, Contextual



Linear Bandit and Linear Bandit with Covariates. Our
LinReBoot is compared to several baselines including
LinTS-G [Agrawal and Goyal, 2013b, Lattimore and
Szepesvári, 2020], LinTS-IG [Honda and Takemura,
2014, Riquelme et al., 2018], LinPHE [Kveton et al.,
2020a], LinGIRO [Kveton et al., 2019b] and LinUCB
[Abbasi-Yadkori et al., 2011, Lattimore and Szepesvári,
2020] . More details about baselines can be found in
Appendix D.6.

6.1 STOCHASTIC LINEAR BANDIT

We compare LinReBoot to other linear bandit algo-
rithms under stochastic linear bandit described in Sec-
tion 2. We experiment with several dimensions d in-
cluding 5, 10 and 20. K is chosen as 100. Synthetic
data generation for this setting is deferred to Appendix
D.2 in the supplementary material. Results. The first
row of Figure 1 reports the results for Stochastic Lin-
ear Bandit setting. Our LinReBoot rivals LinTS-G and
LinTS-IG while substantially exceeds LinGIRO, LinPHE
and LinUCB. When d increases, the performance of
LinReBoot rivals and exceeds the best of other meth-
ods.

6.2 CONTEXTUAL LINEAR BANDIT

In the second experiment, we compare LinReBoot to
other linear bandit algorithms under Contextual Linear
Bandit where the contexts are generated from some dis-
tributions by arms. Note that this setting matches pre-
vious work [Chu et al., 2011]. Linear bandit algorithms
can also be applied under this kind of environment.
In our experiment, the LinReBoot is implemented as
Algorithm 2 in Appendix D.1. Like the setting in Sec-
tion 6.1, the dimension of d is chosen as 5 or 10 or 20
and the synthetic data generation for this setting is
described in Appendix D.2. Results. The second row
of Figure 1 reports the results for Contextual Linear
Bandit. Our LinReBoot rival LinTS-G and substan-
tially exceed LinTS-IG, LinGIRO, LinPHE and LinUCB.
When d increases, the performance of LinReBoot rivals
LinTS-IG and exceeds others.

6.3 BANDIT WITH COVARIATES

Our last experiment is conducted under the setting of
linear bandit with covariates, which is also called linear
parametrized bandit by [Rusmevichientong and Tsitsik-
lis, 2010]. This problem is significantly di�erent from
the previous two problems in the following ways. Each
arm has its true parameter ◊k. That is, each arm has
its estimate ◊̂k from the ridge regression procedure in
Section 3.2. Also, unlike the setting in Section 6.2, the

contexts are generated from a distribution that is inde-
pendent of arms. Thus the overall task in this setting
is not only the estimation of the target parameter ◊,
but also the detection of which arm a context belongs
to. This case is also referred to as the online decision-
making under covariates [Bastani and Bayati, 2020].
For the LinReBoot in this setting, detailed algorithm is
provided as Algorithm 3 in Appendix D.1. d is chosen
as 5 or 10 or 20 and K = 10. Synthetic data generation
for this setting is described in Appendix D.2. Results.
The third row of Figure 1 reports the results for Lin-
ear Bandit with Covariates. Our LinReBoot exceeds
all competing algorithms LinTS-G, LinTS-IG, LinGIRO,
LinPHE and LinUCB.

Summary. From Figure 1, the proposed LinReBoot
is always the top 3 algorithms under all settings and
all choice of dimension d. More specifically, LinReBoot
is clearly comparable to the state-of-the-art Linear
Thompson Sampling algorithms(LinTS-G, LinTS-IG)
or even outperforms them in many cases. Regard-
ing the computational cost, from Table.3, our pro-
posed LinReBoot is consistently computational e�cient
among all settings compared to LinTS-G, LinTS-IG and
LinUCB under all three settings.

7 CONCLUSION

We propose LinReBoot algorithm for stochastic linear
bandit problems. In theory, we prove LinReBoot that
secures Õ(d

Ô
n) high probability expected regret. Em-

pirically, we show LinReBoot rivals LinTS-G, LinTS-IG
and exceeds LinPHE, LinGIRO and LinUCB, which sup-
ports the easy-generalizability of ReBoot principle in
[Wang et al., 2020] under various contextual bandit set-
tings including Stochastic Linear Bandit, Contextual
Linear Bandit, and Linear Bandit with Covariates.
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