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ABSTRACT

Generative Pre-trained Transformer (GPT) architectures are the most popular de-
sign for language modeling. Energy-based modeling is a different paradigm that
views inference as a dynamical process operating on an energy landscape. We
propose a minimal modification of the GPT setting to unify it with the EBM frame-
work. The inference step of our model, which we call eNeRgy-GPT (NRGPT),
is conceptualized as an exploration of the tokens on the energy landscape. We
prove, and verify empirically, that under certain circumstances this exploration be-
comes gradient descent, although they don’t necessarily lead to the best performing
models. We demonstrate that our model performs well for simple language (Shake-
speare dataset), algebraic ListOPS tasks, and richer settings such as OpenWebText
language modeling. We also observe that our models may be more resistant to
overfitting, doing so only during very long training.

Transformers represent a dominant paradigm in autoregressive language modeling (Vaswani et al.,
2017). In a typical setting, a sequence of tokens describing a text is passed through several transformer
layers and mapped onto a new sequence, which is a copy of the original one shifted by one token
and appended by the token that follows the initial sequence. At training time, this network is trained
through self-supervised training, and at inference time the network is used for next token prediction.
This is the standard Generative Pre-trained Transformer (GPT) setting, which is the first step in Large
Language Model (LLM) design (Radford et al., 2018).

Energy-based modeling (LeCun et al., 2006) is another prominent paradigm in modern AI landscape
that historically goes back to Hopfield Networks (Hopfield, 1982). In this framework the operation of
the neural network is defined by a scalar energy function. Proper samples generated by the model
(those that resemble training data) correspond to low energy states, while unrealistic samples (with
large deviations from the training data distribution) correspond to high energy states.

Although at face value these two approaches look very different, in recent years a growing number of
studies hint at deep connections. Von Oswald et al. (2023) showed evidence that in-context learning
(ICL) may be gradient descent by constructed an explicit weights such that the forward pass was
GD on MSE loss. Ahn et al. (2024) further showed that transformers learn a preconditioned GD for
ICL. However, both of these works make significant simplifications, such as considering only linear
transformers, omitting the softmax.

Other works have have attempted to reconcile transformers and EBM from several angles. For
instance, the Energy Transformer (Hoover et al., 2023) is an architecture, which is simultaneously
a transformer and an energy-based model. In the image domain, the typical setting would be to
reconstruct a set of masked tokens (patches) given the set of open tokens. The network solves this
task by performing a gradient descent of the energy on the space of tokens at inference time. This
architecture is inspired by associative memory models (Krotov and Hopfield, 2016) and for this reason
solves the following problem: given a partially incomplete pattern – complete it in a meaningful way.
This aspect of the core design makes it difficult to apply Energy Transformers to GPT settings, in
which the sequence needs to be transformed to a shifted sequence by means of going through the
network. Intuitively, in Energy Transformers the masked tokens need to evolve rapidly to match the
missing parts of the pattern (e.g., image or graph), while the open tokens need to stay almost constant
to barely adjust for the smooth transitions between the masked and the open tokens within the pattern.
This is in drastic contrast with the GPT setting, in which there are no masked tokens at all. Rather,
every token needs to evolve into the following token in the sequence.

A different line of work is inspired by “System 2” thinking and attempts to design an energy-based
network for processing language (Gladstone et al., 2025). In this study, transformers are used as an
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Figure 1: NRGPT casts the standard GPT setting into an energy-based framework. The network
is defined as the sum of two energies: an attention energy and a feedforward energy. Each token
is transformed into the next token by exploring the energy landscape. Recurrent application of the
NRGPT block produces a dynamical system where each token can be thought of as a particle moving
on the network’s energy landscape.

architectural motif that casts text into a scalar energy function. While models of this nature have
benefits for language processing, they belong exclusively to the class of energy-based models, and
are unrelated to the GPT settings, commonly used in most LLMs.

Individual modules within the transformer block, such as attention, have also been studied from
the perspective of inference time optimization (Geshkovski et al., 2023; 2024). In this line of work,
peculiar clustering properties of tokens have been observed. Energy-based optimization has also been
studied in (Yang et al., 2022) from the perspective of majorization-minimization algorithms.

Despite this growing list of studies dedicated to synergies between autoregressive transformers and
energy-based models, at present it remains unknown how to cast the commonly used GPT setting into
a well-defined energy-based framework. Our work tackles this gap. We refer to our model as eNeRgy
Generative Pre-trained Transformer or NRGPT. The input sequence of tokens is mapped onto a
shifted sequence of tokens, which includes the next word, see Figure 1. The mapping is performed
by a neural network, which recurrently applies the NRGPT block to the sequence of tokens. Each
application of the block uses gradients of the network energy functions to update the state of the
tokens. Each token has its own energy landscape, which is dependent on the states of other tokens.
Specifically, our contributions are:

• We design an energy function and an update rule that describes the GPT setting with
several possible variants including learnable inference rate and normalization operations:
LayerNorm and RMSNorm.

• We obtain excellent results on nested ListOPS tasks, including arithmetic operations,
min/max selection, etc.

• We show the feasibility of using NRGPT for language modeling on Shakespeare and
OpenWebText datasets.

• We do a systematic comparison of performance scaling of recurrent transformers and
NRGPT.

• We study empirically the properties of dynamical trajectories of tokens on the energy
landscapes of our models.

1 ENERGY-BASED MODELING

In generative modeling our goal is to generate samples with a distribution close to observed datapoints.
If we manage to learn an approximate likelihood function for the dataset, we can generate data by
sampling. This is also the premise Energy-Based Models (EBM). An example of EBM would be
Dense Associative Memory (Krotov and Hopfield, 2016), where datapoints are stored in minima
of an energy function. But more generally, the energy can represent a negative-log-likelihood,
E(x) = − logP (x). In this case, the global minima of the energy represent maximum likelihood
solutions. The deeper the energy, the higher the likelihood of that datapoint. One strategy to train an
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EBM is to first learn the energy function by fitting the distribution of the data. The sampling process
would then be separate from learning the energy.

However, in high dimensional data, learning the distributions is notoriously difficult due to the curse
of dimensionality. Diffusion models solve this problem by starting from high noise and cooling down.
Diffusion models do not learn an explicit energy function, only its gradients, the score function. Yet,
having an explicit energy function could enable us to explore the solution space in ways not easily
afforded by the implicit score function of diffusion models. So can we build a model which learns
the energy directly?

Similar to diffusion models, we use an end-to-end process, where learning the energy and generating
datapoints are all done in one pass. The key idea is to have a differentiable sampling process which
allows us to learn the parameters of the energy during sampling. Since real datapoints should have
low energies, we choose a gradient-based sampling process. Note that we do not need to descend all
the way to a minimum (i.e. maximum likelihood solution), since we want diverse samples. Instead,
we could do a fixed number of GD steps and demand that the final point match real datapoints.

Generated data: x(T ), x(t+1) = x(t) − η(t)∇E(x(t)) (1)

for a fixed number of steps T , where x(0) is some random initial point. Here η(t) is a matrix that
may depend on x. This matrix has many different names, e.g., kinetic rates in physics, preconditioner
in optimization, etc. We will call this matrix the inference rate, since it determines the size of the
steps that the inference dynamics takes on the energy landscape. But how do we judge whether the
output matches a real datapoint? One way would be to have a judge, like the discriminator in a GAN.
Another setting where judging the output is more natural is autoregressive language modeling where
the new datapoints are the next tokens and can be matched to the training text. In this case x ∈ RN×D

represents a real data sequence of length N embedded in D dimensions. In causal language modeling
the energy should take x<N = (x1 . . .xN−1) as input and predict xN , as in

x
(t+1)
N = x

(t)
N − η∇E(x

(t)
N |x(t)

<N ) (2)
Following the observations of the Energy Transformer (ET), we will show that one can choose a
parametrization for E such that the process of T -step GD closely resembles the forward-pass through
a T layer GPT transformer with a weight-sharing pattern.

2 NRGPT MODULE

EA = − 1

β

H∑
h=1

log

( ∑
B<A

exp
(
β gT

BJ
hgA

))
−

N∑
B=1

gT
BW2σ

(
W1gB

)
(3)

In this section we will start from the structure of the transformer model and derive the energy
function whose gradients yield a layer which is very close in structure to a transformer layer. Let
x ∈ RD×N be an input sequence of length N embedded in D dimensions. We will denote its
components by xAi with A = 1 . . . N and i = 1 . . . D, or xA suppressing the embedding index, but
keeping the token index. Let x(t) be the output sequence of layer t of the model with x(0) = x. A
conventional transformer layer has an Attention layer (AT) followed by a two-layer feedforward (FF)
and LayerNorm (LN) in series

x(t+1) = x(t) + FF
[
LN
(
x(t) + AT

(
LN(x(t))

))]
(4)

But subsequent works such as GPT-J (Wang and Komatsuzaki, 2021), PaLM (Chowdhery et al.,
2023), and Energy Transformer (Hoover et al., 2023) showed that the following parallel design has
good performance too

Parallel Transformer: x(t+1) = x(t) + AT(g(t)) + FF(g(t)), g(t) = LN(x(t)) (5)
We choose this parallel transformer design as it is more suitable for our goal of replacing the
transformer layer with the gradient of an energy.

If passing through a layer becomes one step of energy decent (ED), then all layers need to share
weights. Therefore, our model will consist of a single module replacing the transformer block. Instead
of different layers, we will be recurrently feeding the output of the layer back into itself, so that x(t)

will become step t of the ED instead of the layer number.
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Update Rule An important point to note is that the update rule of NRGPT is slightly different from
conventional gradient descent and is of the form

ẋ = x(t+1) − x(t) = −η(t) ∂E

∂g(t)
(6)

where η(t) ∈ RD×D is an inference rate matrix, which can be learnable. Nevertheless, this can
be a valid descent on E as we can show that E(t+1) − E(t) < 0 under certain conditions, which
depend on the normalization operation g. We will derive these conditions for LayerNorm as well
as RMSNorm, as well as when g = x, i.e., no normalization in Section 2.2. Next, we introduce the
energy of NRGPT module.

2.1 ENERGY OF NRGPT

Matching our update rule (6) to the parallel transformer (5), we define two terms in the energy, EAT

and EFF

E = EAT + EFF, η∂gE
AT = −AT(g), η∂gE

FF = −FF(g), (7)

We begin by introducing the attention layer and deriving the energy function for the self-attention
mechanism. Then, we derive the energy function for the FF. Finally, we combine the two energy
functions to obtain the total energy function for the transformer layer.

Attention. Consider a multi-head attention module with H heads, and hidden dimension Y = D/H ,
index h enumerates heads and runs h = 1 . . . H . Its query, key, value and projection weights are

WQ,WK ,W V ,W P ∈ RH×Y×D, (8)

Using the standard K = WKg,Q = WQg,V = W V g, The MHA output for token A is1

AT(g)A =

H∑
h=1

[
W P

h

]T
VhSM

(
KT

h QAh

)
(9)

denoting J =
[
WK

]T
WQ, the softmax is defined as (we omit the self-interaction term C = A)

SM(KTQ)BA =
exp

(
βgT

BJgA
)∑

C<A exp
(
βgT

CJgA
) , β =

1√
Y

(10)

Following Hoover et al. (2023), define the attention energy

EAT
A (g) = − 1

β

∑
h

αh log
[ ∑
B<A

exp
(
βgT

BJhgA
)]

(11)

where α ∈ RH is a learnable weight. Taking the gradient of EAT w.r.t. gA and using (7), the
resulting attention layer becomes

AT(g)A = −η
∂EAT

A (g)

∂gA
=

H∑
h=1

αhηJ
T
h gSM

(
gTJhgA

)
(12)

Comparing to the original attention, we see that some weights are replaced

Original:
[
W P

h

]T
W V

h → Energy: αhηJ
T
h (13)

In principle W V and W P can be merged into one matrix. (He and Hofmann, 2024) also experimented
with removing W V and W P and found that in the setting without skip connections, these two weights
could be largely omitted.

1Usually the projection weights W P are defined as D ×D and the head outputs are concatenated, into an
N × (Y H) = N ×D matrix before multiplying by WP . This is equivalent to our definition.
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Feed-Forward network. The FF network generally has two layers FF(gA) = W 2Tσ
(
W 1gA

)
with weights W 1,W 2 ∈ RM×D, with M being the size of the hidden layer. A possible choice for
this network is a Dense Associative Memory (Krotov and Hopfield, 2016). In this case

EFF = −
N∑

A=1

1TF
(
W 1gA

)
, s.t. F ′ = σ

FF(gA) = −η
∂EFF

∂gA
= ηW 1Tσ

(
W 1gA

)
(14)

where 1 is an M -dimensional vector of ones. So the energy gradient yields a structure similar to the
FF in transformers but with different weights

Original: W 2 → Energy: W 1ηT (15)

As an example, in order for EFF to reproduce the FF of transformers with σ(z) = ReLU(z) =
max(z, 0), the function F should be

F (z) =
1

2
σ(z)2 (16)

Of course, the FF module can be replaced by other, more general, MLP networks. Essentially, any
scalar function, which is additive in token index, can serve as a valid form of FF network. In the
experiments (Section 3) we will detail our choices of EFF.

2.2 NORMALIZATION OF TOKENS

These normalizations have the form

g = γ ⊙ x− µ√
1
D∥x− µ∥2 + ϵ

+ δ (17)

with µ = E[x] for LayerNorm, and µ = 0, δ = 0 for RMSNorm. Here γ, δ ∈ RD and ⊙ is
elementwise multiplication. Many recent models such as Qwen and Llama use RMSNorm.

Proposition 2.1 (Energy Descent). The update rule (6) results in decreasing energy, Ė = E(t+1) −
E(t) < 0, if the inference rate is η = c diag(γ) with c ∈ R>0.

Sketch of proof. See Appendix B for full proof. The Jacobian of gA can be written as ∂gA/∂xA =
1
rA

ΓPA, where Γ = diag(γ), rA > 0 is some norm of xA and PA is an approximate D × D

projection matrix and p.s.d. Using this and (6), we get Ė = −r−1
A

∑
A Tr

[
∂gA

EΓPAη
T∂gA

ET
]
.

When η = Γ we get Ė < 0.

There also exist x-dependent solutions of the form η = M(x)PAΓ where M(x) is an arbitrary
positive semi-definite (psd) matrix and c > 0, but they mean η is itself a neural network. To remain
close to the structure of conventional transformers, we work with the x-independent η = cΓ solution.
In principle, η can also have a part contributing to the anti-symmetric part of ΓPAη

T , but we
could not find an x-independent solution for it. While η(t) = c(t)Γ puts severe restrictions on the
preconditioning matrix, each layer is still allowed to have a different c(t) constant.

Preconditioner without layer normalization. Several works have shown careful initialization
and scaling can replace normalization entirely. . Doing so would remove much of the restrictions
on the preconditioner η. In an T -layer transformer, Instead of layer normalization, T-Fixup (Huang
et al., 2020) and DeepNet (Wang et al., 2024) initialize some weights and x by a scale proportional to
T−1/4 and change most layer outputs to f(g) → αf(x), with α ∝ T−1/2. In this case, η becomes
much less restricted.

Proposition 2.2 (Ė without normalization). When g = x, to get Ė < 0, the symmetric part,
η+ = (η + ηT )/2 needs to be psd.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Proof. In this case ẋ = −η∂xE and

Ė = −
∑
A

Tr
[
∂xA

Eη∂xA
ET
]
= −

∑
A

Tr
[
∂xA

Eη+∂xA
ET
]

(18)

which is negative when η+ is psd.

The antisymmetric part η− = (η− ηT )/2 is not constrained by this and can be arbitrary at this point.
Hence, without layer normalization, we can have η(t) as learnable parameters of the form

η = UTU + V − V T , U ∈ RD×D′
,V ∈ RD×D (19)

where D′ can be arbitrary, and each layer (depth) can have a different learnable U (t),V (t).

2.3 ASYMPTOTIC STABILITY OF NRGPT

A peculiar aspect of NRGPT is the phenomenon of asymptotic stability. In order to illustrate it,
consider a simplifying case when the inference rate matrix η is identity. In this case dynamical
equations for tokens can be written as

ẋiA = −∂EA

∂giA
(20)

Additionally, γ can always be absorbed into J and the weights of the FF model. This way, the
Jacobian becomes ∂gA/∂xA = PA, which is p.s.d.. The key observation is that due to causal
attention mask the energy EA of token A only depends on the states of tokens B ≤ A. Thus, for the
first token

ẋ1 = −∂E1

∂g1
(21)

Since the energy of that token decreases with time

Ė1 =
∂E1

∂g1

∂g1
∂x1

dx1

dt
= −ẋT

1 P1ẋ1 ≤ 0 (22)

since P1 is psd. Additionally, since energy only depends on g – layernormalized tokens – it is
bounded from below. Thus, the dynamics of g has to converge to a fixed point. This means that after
a transitory period of time Ttr the derivative dg1

dt vanishes.

Now, consider the network of two tokens

Ė2 =
∂E2

∂g1

∂g1
dt

+
∂E2

∂g2

∂g2
∂x2

dx2

dt
= −ẋT

2 P2ẋ2 ≤ 0 (23)

the second equality is written assuming that we are looking at this quantity at t > Ttr. Thus the first
term is zero. Same argument applies, the energy decreases with time and is bounded from below.
Thus, eventually g2 freezes.

One can apply this argument recursively to each token and conclude that after a transitory period
of time, all tokens stabilize and all gA will eventually become constants. From the perspective of
energy profiles, this leads to the following behavior: during transitory regime energies of individual
tokens will evolve in time (they can both increase and decrease). After that transitory period is over
the energies must stabilize and reach their constant values that become unchanged in the future. One
can run the inference dynamics as long as desired after that, but no changes in energies will occur.
This behavior is apparent from the numerical profiles of energies, see Figure 2. It is a distinct aspect
of our models - the phenomenon that we call asymptotic stability.

3 EXPERIMENTS

We tested our model on three datasets: ListOps, Shakespeare and Open Web Text (OWT). The details
of the experimental settings and hyperparameters can be found in Appendix C. TO evaluate the
quality of text in the Shakespeare and OWT experiments, we use a number of metrics, including
perplexity and diversity scores, explained in Appendix C.1. For
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Model Variants. The choice of the energy function is equivalent to the choice of architectures in
neural networks. As our goal is to be as close to the original transformer architecture as possible, we
experimented with a few settings for the FF network and found the following variants to be the best
performing:

1. NRGPT_H_FF1: EFF = −∥σ(WgA)∥2, same as in equation 14, but with σ = GELU.
2. NRGPT_H_FF2W: EFF = −

∑
A gT

AW
2σ(W 1gA), which yields

FF(gA) = −η
(
W 2σ(W 1gA) + σ′(W 1gA)

T ⊙W 1Tσ(W 2gA)
)

(24)

Here, the first term is the conventional FF of transformers, but the second is a somewhat odd
network.

In case with two weights, we choose the hidden dimension between W 1 and W 2 to be 4 ×
D. All of these performed well, with the residual version showing best performance on ListOps,
learning at even smaller sizes than our baseline, while also easily training at larger sizes with
embedding size over 256. However, since some of these models deviate significantly from the FF of
a recurrent GPT (the gradient results in an FF module with four layers), we decided to focus more
on NRGPT_H_FF1 and NRGPT_H_FF2W, which are much closer to the GPT FF. As Baselines, we
used GPT_Rec_parallel, which is a GPT-J model with a single transformer layer, feeding back
recurrently into itself for a fixed number of times (mimicking number of layers). On Shakespeare and
OWT, we also show results of a conventional GPT2-style deep transformer model.

3.1 ENERGY DYNAMICS

Figure 2: In NRGPT, tokens converge
to stable states of low energy where
the causal attention mask allows each
token energy to fluctuate during infer-
ence. Shown are 64 tokens passed to
an NRGPT model trained to predict
ListOps equations.

NRGPT without constraints on the inference rate η is not
forced to strictly decrease energy during inference and it
may learn other exploration strategies for inference. Nev-
ertheless, we would like to examine whether models which
are explicitly forced to perform GD and reduce energy dur-
ing inference can learn the tasks well. To reach To better
understand how our gradient-based update rule performs
inference, we ran experiments on ListOps with large num-
ber of recurrent steps (30 steps). For these experiments,
we set η = 1, which according to Proposition 2.1 forces
the update rule to decreases energy. Figure 2 shows the
evolution of total E, EAT and EFF along these trajecto-
ries. We observe that indeed in all trajectories the final
energy is lower than initial. Each individual token trajec-
tory is not required to be monotonically decreasing, as the
dynamics of tokens is coupled. however, in accordance
with our result in Section 2.3, after a transient stage, once
all previous tokens start converging, the energy of the next
token monotonically decreases.

3.2 LISTOPS

We perform experiment on nested math operations on lists
of integers, which are a version of ListOps (Nangia and
Bowman, 2018). Our ListOps setting consists of three functions: maximum, median and sum
modulo 20. Our inputs range from 0 to 19. Each data sample begins with nested equations like
SUM(2,MAX(4,13,1),MEDIAN(5,3,16)). As performance metrics, we looked at accuracy
on the mixed task, as well as the training and validation loss. Figure 3 shows the results for two of
our model variants, NRGPT_H_FF1 and NRGPT_H_FF2W as compared to GPT_Rec_parallel.

3.3 SHAKESPEARE

We compare the performance of our NRGPT_H_FF2W and NRGPT_H_FF1 with
GPT_Rec_parallel and deep GPT for embeddings sizes less than 1024 (Figure 4 In
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Figure 3: Learning ListOps: NRGPT variants match performance with a recurrent GPT model
on ListOps accuracy parameter-transition points (top) and training/validation losses (bottom). The
accuracy of models is tested on nested, mixed arithmetic tasks of maximum, median and sum modulo
20. For all plots, the x axis shows the total parameter count of the model. The yellow star indicates
the transition to learning, which we define as where the logistic fit hit > 80% accuracy. The baseline
model GPT_Rec_parallel shows the earliest learning transition at size 2.3×104, but our NRGPT
variants are also similar, with NRGPT_H_FF1 at 2.4× 104 and NRGPT_H_FF2W at 2.98× 104.

Figure 4: Shakespeare scaling: NRGPT achieves performance parity with recurrent GPT on
Shakespeare across parameter sizes, as measured by best validation loss per number of parameters.
For many embedding sizes, NRGPT also follows the same optimal training loss trajectory-per-
parameter as both GPT and recurrent GPT baselines. However, NRGPT does not overfit Shakespeare
at large parameter sizes. Connecting lines show the best performance at fixed parameter sizes.
Transparent dots show different choices of hyperparameters — a larger spread indicates more
sensitivity to hyperparameters. See Appendix C.3 for details.

larger sizes, we ran many sweeps to find suitable hyperparameters such as the range of learning rates,
resulting in the wide spread. Interestingly, the well trained instances of our model at large sizes
achieve low validation losses, close to baselines do so with much less overfitting.

3.4 GPT-2 LEVEL MODEL ON OPEN WEB TEXT

Table 2 shows the best model configuration for baseline GPT and RGPT-parallel and our model
NRGPT with the respective generation quality metrics. We see that the generation quality of NRGPT
is very competitive with GPT and RGPT-parallel while it contains around 34M less parameters than
GPT. Figure 5 shows example of generated text by GPT, RGPT-parallel and NRGPT for which the
generation quality metrics are provide in Table 2.
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Table 1: OWT performance at nembed = 768.
Training loss

Model mean ± std min max # runs # Param.

GPT 2.905 ± 0.006 2.900 2.914 5 124M
GPT_Rec_parallel 3.447 ± 0.046 3.395 3.494 5 85M
NRGPT_H_FF2W 3.456 ± 0.076 3.391 3.540 3 90M

Validation loss
Model mean ± std min max # runs # Param.

GPT 2.921 ± 0.005 2.915 2.929 5 124M
GPT_Rec_parallel 3.454 ± 0.037 3.411 3.491 5 85M
NRGPT_H_FF2W 3.467 ± 0.073 3.404 3.548 3 90M

Table 2: Best Model Configurations and Quality Metrics for OWT. Note abbreviations: RGPT-parallel
→ RGPT-P, no of parameters → n_param, grammar quality score → gqs, average pariwise cosine
similarity → apcs, distinct-1 → d-1 and distinct-2 → d-2.

Model Configuration Metrics

lr min_lr n_layer n_head n_embed n_params perplexity gqs apcs d-1 d-2

GPT 7e-4 7e-5 12 12 768 124M 75 0.978 0.306 0.619 0.965
GPT_Rec_Parallel 1e-4 7e-5 12 12 768 90M 104 0.966 0.306 0.674 0.984
NRGPT_H_FF2W 6e-4 4e-4 12 12 768 85M 99 0.976 0.336 0.615 0.975

4 LIMITATIONS

NRGPT is an appealing theoretical construct for the inference process of GPT. In our experiments, we
observe that NRGPT can achieve similar performance to GPT and its recurrent variants on ListOps,
Shakespeare, and OWT. However, NRGPT is computationally the gradient of an energy, which
enforces weight sharing and limits how flexibly we can parameterize the architecture. We observe
that this constraint also causes a larger amount of hyperparameter sensitivity than GPT variants.
In contrast to standard transformers, increasing the number of attention heads in NRGPT actually
increases the parameters. We additionally observe that NRGPT has a more difficult time overfitting
the training set, which is beneficial in small data regimes but is undesirable in the massive datasets
used to train modern LLMs.

5 DISCUSSION AND CONCLUSIONS

We have presented NRGPT, a minimal modification of the GPT architecture that unifies autoregressive
language modeling with energy-based modeling. Our analysis show that under specific conditions on
the inference rate matrix η, this process provably decreases energy, providing a principled foundation
for the dynamics. Moreover, relaxing this constraint allows the model to learn its own energy
exploration strategy for inference. Thus, our work complements previous studies suggesting that
transformers perform GD during inference. Unlike past work, in our model inference is explicitly a
gradient-based dynamics, while still maintaining an architecture very similar to GPT. Our experiments
show that this framework performs comparably to a fully recurrent GPT model across parameter
sizes while generally requiring fewer parameters. NRGPT represents a meaningful step toward
understanding the architecture of transformers using energies.

6 REPRODUCIBILITY STATEMENT

The code for our model, experiments, and analysis is available at https://anonymous.4open.
science/status/nrgpt-iclr-E80F in a self-contained environment. The code began as a
fork of the excellent nanoGPT repositoryand as such all experiments and models are implemented
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using PyTorch (Paszke et al., 2019). Each Shakespeare and ListOps experiment was conducted on a
single H100 GPU. OWT experiments were conducted over 4 nodes of 8xH100 GPUs.
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A LLM USAGE STATEMENT

LLMs were not used for ideation, experiments, or model design. LLM generated code helped with
experimental analysis (e.g., plot layouts) and grammar checking of the submission.

B LEARNING RATE AND PRECONDITIONER OF THE FORWARD PASS

RMSNorm: gAi = γi
xAi√

1
D

∑
i x

2
Ai

=
√
Dγix̂Ai (25)

LayerNorm: gAi = γi
xAi − E[xA]√
Var[xA] + ϵ

+ βi (26)

where xAi are the components with A ∈ 1 . . . N and i ∈ 1 . . . D.

Proof of Proposition 2.1: Energy Descent. Using chain rule

Ė = ∂gE · ∂xg · ẋ = ∂gE · ∂xg · η∂gE (27)

Defining Γ = diag(γ), the Jacobian of g becomes

∂gAi

∂xBρ
= Γij

δAB

rA
(δjρ − yAjyAρ) , (28)

where

RMSNorm: rA = ∥xA∥ /
√
D, yA = xA/rA (29)

LayerNorm: rA =
√

Var[xA] + ϵ, yA = (xA − iA)/rA. (30)

Since typically ϵ = 10−5 is a small constant, ∥yA∥ ≈ 1 for LayerNorm, and exactly 1 for RMSNorm.
Therefore

∂gA
∂xA

=
1

rA
ΓPA, PA = PT

A , P 2
A = PA +O(ϵ) (31)

where the approximate projection matrix PA is positive semi-definite, with ŷA/ ∥yA∥ being its sole
null eigenvector. Plugging into equation 27

δE = −
∑
A

1

rA
Tr

[
∂E

∂gA
ΓPAη

T ∂E

∂gA

T
]

(32)

We want δE < 0, which can be achieved if the symmetric part of ΓPAη
T is p.s.d.. Two simple

solutions to this are

η = cΓ, or η = M(x)PAΓ (33)

where M(x) is an arbitrary p.s.d. matrix and c > 0. If we want η to be simple weights instead of an
x dependent neural network, the solution is η = cΓ.

Note that equation 32 does not restrict the anti-symmetric part of ΓPAη. Using η = cΓ + B,
the antisymmetric part satisfies BTPAΓ = −ΓPAB. Since PA is rank D − 1 for each A, the
anti-symmetric part doesn’t seem to have an x-independent solution.

C EXPERIMENTS

C.1 EVALUATION METRICS

To assess the generation quality of our language models, we utilize several complementary metrics.
We use Perplexity as a measure of model uncertainty, computed using a pretrained GPT-2 model
to evaluate how well the generated text aligns with expected language patterns. Lower perplexity

12
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indicates more fluent and predictable text, with scores typically ranging from 10 (excellent) to 1000+
(poor quality). For lexical diversity, we utilize Distinct-1 and Distinct-2, which measure the ratio
of unique unigrams and bigrams to total n-grams (or total words) in the generated text, respectively.
These metrics range from 0 to 1, where higher values indicate greater vocabulary diversity and less
repetitive generation. A Distinct-1 score near 0 suggests highly repetitive text, while scores above 0.8
indicate rich vocabulary usage. We utilize Average Pairwise Cosine Similarity using Sentence-BERT
embeddings (Reimers and Gurevych, 2019) to measure semantic diversity within generated samples.
This metric calculates the mean cosine similarity between all pairs of generated sentences, ranging
from -1 to 1. Optimal values fall between 0.3 and 0.6, balancing semantic diversity with topical
coherence. Values below 0.3 indicate excessive divergence with potentially incoherent topic-jumping
between sentences, while values above 0.7 suggest repetitive or redundant content with insufficient
variation. The target range of 0.3-0.6 represents healthy diversity where generated sentences explore
different aspects of a topic while maintaining semantic relevance and coherent narrative flow.

Finally, We compute the Grammar Quality Score (GQS), a composite metric that combines rule-
based grammar error detection, spelling accuracy via spellchecker (Barrus, 2020), and readability
assessment using Flesch-Kincaid grade level (Flesch, 1948). GQS ranges from 0 (poor grammar)
to 1 (perfect grammar), weighting grammatical correctness (50%), spelling accuracy (30%), and
readability (20%). The metric identifies errors across ten categories including subject-verb agreement,
tense consistency, and punctuation, with severity-weighted scoring. For complete context and to
understand what the ideal ranges are for all of these metrics, see Table 3.

Table 3: Ideal ranges for generation quality metrics
Metric Good Range Interpretation
Perplexity 15-50 Lower is better (fluency)
Distinct-1 0.6–0.9 Higher is better (vocabulary diversity)
Distinct-2 0.8–0.95 Higher is better (bigram diversity)
GQS 0.8–1.0 Higher is better (grammatical quality)
Avg. Cosine Similarity 0.3–0.6 Moderate values best (semantic diversity)

C.2 LISTOPS

We perform experiment on nested math operations on lists of integers, which are a version of ListOps
(Nangia and Bowman, 2018). Our ListOps setting consists of three functions: maximum, median and
sum modulo 20. Our inputs range from 0 to 19.

C.3 SHAKESPEARE

As training data we used the full Shakespeare training set, tokenized such that each character
constitutes a single token. Models were evaluated across the same held out validation subset. Across
all models, we used a context window of 256 tokens, dropout of 10%, the AdamW(β1=0.9, β2=0.99),
and 40k maximum update iterations using a minibatch size of 64. We varied model sizes by sweeping
over embedding dimensions (32, 64, 128, 256, 380, 512, 768) and the number of attention heads
(1, 2, 8). For the recurrent models, we additionally varied the number of layers across (3, 6, 8),
though this does not affect the parameter count.

We found the recurrent models to be quite sensitive to choices of learning rate and learning rate
schedules. Hence, we explored several different maximum learning rates (1e − 3, 7.5e − 4, 3e −
4, 1e−4), schedules (cosine, exponential), and minimum learning rates (10×, 20×, and 100× smaller
than the max learning rate). LR warm-up was 100 updates for all experiments.

In Figure 4 we emphasize the best losses we were able to achieve for each model size. In addition,
we capture the model’s sensitivity to hyperparams by showing the top 50% performing models across
all hyperparameters.
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C.3.1 BEST MODEL CONFIGURATIONS AND METRICS

Table 4 shows the best model configuration for baseline GPTs and our model NRGPT with the
respective generation quality metrics. We see that NRGPT outperforms the baseline GPT, RGPT and
RGPT-parallel in terms of generation quality while it has only half of the nparams of GPT.

Table 4: Best model configurations and quality metrics for Shakespeare. Note abbreviations: RGPT-
parallel → RGPT-P, no of parameters → n_param, grammar quality score → gqs, average pariwise
cosine similarity → apcs, distinct-1 → d-1 and distinct-2 → d-2.

Model Configuration Metrics

lr min_lr n_layer n_head n_embed n_params perplexity gqs apcs d-1 d-2

GPT 5e-3 5e-4 8 4 64 0.4M 294 0.913 0.198 0.751 0.978
RGPT 1e-3 1e-4 8 1 256 0.8M 476 0.896 0.164 0.794 0.995
RGPT-P 2e-3 2e-4 8 1 128 0.2M 410 0.888 0.190 0.838 1
NRGPT_H_FF1 3e-4 3e-5 6 2 512 2M 318 0.901 0.218 0.797 0.995
NRGPT_H_FF2W 1e-3 1e-4 8 1 128 0.2M 283 0.975 0.176 0.765 0.995

C.4 OPENWEBTEXT

We perform experiments on natural language modeling using the OpenWebText corpus, which is
an open-source recreation of GPT-2’s WebText dataset (Radford et al., 2019). The dataset contains
approximately 17GB of text with 9B tokens that came from 8 million documents. We tokenize
using byte-pair encoding (BPE) with a vocabulary size of 50,257 tokens. Our training sequences are
fixed-length contexts of 1024 tokens. Table 5 lists the hyperparameters and respective values/ranges
used in our experiments.

Table 5: OWT Hyperparameters and range of values.

Hyperparameter Used Values

batch_size 12
block_size 1024
n_layer [3, 6, 9, 12, 24]
n_head [1, 2, 4, 6, 12, 16]
n_embed [768, 1020, 1536]
learning_rate, lr [1e-3 - 1e-5]
min_lr [lr/10 - lr]
beta1 0.9
beta2 0.99
weight_decay [1e-1, 1e-2]
gradient_accumulation_steps 40
eval_interval 1,000
eval_iters 200
max_iters 100000
warmup_iters [100, 2000]
dropout 0.0

C.4.1 BEST MODEL CONFIGURATIONS AND METRICS

Table 6 shows the best model configuration for baseline GPT and RGPT-parallel and our model
NRGPT with the respective generation quality metrics. We see that the generation quality of NRGPT
is very competitive with GPT and RGPT-parallel while it contains around 34M less parameters than
GPT. Figure 5 shows example of generated text by GPT, RGPT-parallel and NRGPT for which the
generation quality metrics are provide in Table 6.
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Table 6: Best Model Configurations and Quality Metrics for OWT. Note abbreviations: RGPT-parallel
→ RGPT-P, no of parameters → n_param, grammar quality score → gqs, average pariwise cosine
similarity → apcs, distinct-1 → d-1 and distinct-2 → d-2.

Model Configuration Metrics

lr min_lr n_layer n_head n_embed n_params perplexity gqs apcs d-1 d-2

GPT 7e-4 7e-5 12 12 768 124M 75 0.978 0.306 0.619 0.965
RGPT-P 1e-4 7e-5 12 12 768 90M 104 0.966 0.306 0.674 0.984
NRGPT 6e-4 4e-4 12 12 768 85M 99 0.976 0.336 0.615 0.975

Figure 5: Best Generation Examples from GPT (left column), RGPT-parallel (middle column) and
NRGPT (right column).
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