
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GROWING EFFICIENT ACCURATE AND ROBUST
NEURAL NETWORKS ON THE EDGE

Anonymous authors
Paper under double-blind review

ABSTRACT

The ubiquitous deployment of deep learning systems on resource-constrained Edge
devices is hindered by their high computational complexity coupled with their
fragility to out-of-distribution (OOD) data, especially to naturally occurring com-
mon corruptions. Current solutions rely on the Cloud to train and compress models
before deploying to the Edge. This incurs high energy and latency costs in trans-
mitting locally acquired field data to the Cloud while also raising privacy concerns.
We propose Growing Efficient, Accurate, and Robust neural networks (GEARnn)
to grow and train robust networks in-situ, i.e., completely on the Edge device.
Starting with a low-complexity initial backbone network, GEARnn employs One-
Shot Growth (OSG) to grow a network satisfying the memory constraints of the
Edge device using clean data, and robustifies the network using Efficient Robust
Augmentation (ERA) to obtain the final network. We demonstrate results on a
NVIDIA Jetson Xavier NX, and analyze the trade-offs between accuracy, robust-
ness, model size, energy consumption, and training time. Our results demonstrate
the construction of efficient, accurate, and robust networks entirely on an Edge
device.

1 INTRODUCTION

The ubiquitous practical deployment of deep neural networks is mainly hindered by their lack
of robustness and high computational cost. Prior art has shown that these deep networks are ex-
tremely fragile to adversarial perturbations Szegedy et al. (2013)Goodfellow et al. (2014) and
out-of-distribution (OOD) data Hendrycks & Dietterich (2019)Mintun et al. (2021). Natural corrup-
tions Hendrycks & Dietterich (2019) (a specific type of OOD data) are more commonly encountered
at the Edge where real-time data is being continually acquired, e.g., video sequences acquired by
on-board cameras in autonomous agents (self-driving cars, field robots, drones), which tend to
be distorted by weather and blur. The state-of-the-art defense against these corruptions employs
robust data augmentation Hendrycks et al. (2019; 2021); Modas et al. (2022) which incurs a huge
computational cost when implemented on an Edge device. Fig. 1 indicates that it takes more than
2 days to robustly train a VGG-19 network Simonyan & Zisserman (2014) on a simple CIFAR-10
dataset when implemented on NVIDIA Jetson Xavier NX Edge device NVIDIA (a). Even for a small
5% VGG-19 network it takes more than a day, thus highlighting the non-trivial nature of the problem.
This is a huge concern because Edge devices are typically battery-powered and such large training
costs reduce their operational life-time.

Traditional solutions for reducing network complexity such as pruning Han et al. (2015); Li et al.
(2016); Diffenderfer et al. (2021), quantization Rastegari et al. (2016); Hubara et al. (2016) and
neural architecture search (NAS) Liu et al. (2018); Zoph et al. (2018) mainly target Edge inference,
and are not suited for Edge training since they start with hard-to-fit over-parameterized networks
that require the large computational resources of the Cloud. However, transmitting local data to
the Cloud incurs energy and latency costs while raising privacy concerns, thus requiring training to
happen completely on the Edge. Given the above challenges, the primary objective of our work is: To
design and train compact robust networks completely in-situ on Edge devices. Our proposed solution
Growing Efficient, Accurate, and Robust neural networks (GEARnn) is based on the family of growth
algorithms Chen et al. (2015); Wu et al. (2020); Evci et al. (2022); Yuan et al. (2020) that gradually
increase the size of an initial backbone network to reach the robust accuracy of a full network but at a
fraction of its size, training complexity, and energy consumption.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

+12%

3x

+11%

5x

Figure 1: Improvements in robust accuracy, train-
ing time, and model size (area of circles) of our
proposed GEARnn method measured on NVIDIA
Jetson Xavier NX Edge device NVIDIA (a). Ro-
bust accuracy is evaluated on CIFAR-10-C for
GEARnn, full network baselines (VGG-19), and
small network baselines (5% VGG-19 networks
with same topology as GEARnn-2). For robust
training, we employ AugMix Hendrycks et al.
(2019). GEARnn demonstrates significant reduc-
tion in training complexity over robust baselines at
similar robust and clean accuracies (shown in Sec-
tion 6.2).

Prior work on network growth Wu et al. (2020;
2019); Yuan et al. (2023) do not consider ro-
bustness to common corruptions since they use
clean data during training, while works that con-
sider robustness train fixed-sized networks us-
ing augmented data Hendrycks et al. (2019);
Modas et al. (2022) without considering the ef-
ficiency of robust training. Hence, in order to
grow robust networks on the Edge and achieve
good robustness vs. training efficiency trade-
off, we ask the following questions: Q1) should
networks be grown using augmented data only
(1-Phase), or should they be grown using clean
data first and then trained with augmented data
(2-Phase)? Q2) for growth, how many steps
should be employed? We answer these ques-
tions by proposing our method GEARnn to effi-
ciently grow robust networks. Fig. 1 shows that
GEARnn achieves significant improvements in
robust accuracy over vanilla trained baselines
while requiring much smaller training energy
consumption compared to robustly trained base-
lines.

Contributions: We make the following contri-
butions (Fig. 2):

1. Problem Statement: To the best of our
knowledge, our work is the first to grow networks robust to common corruptions and the
first to train robust networks efficiently on an Edge device.

2. Key Questions: We answer Q1 as: 2-Phase (growth with clean data followed by robust
training using augmented data) provides improved robustness over a 1-Phase (growth
using augmented data) at iso-model size. This result indicates the importance of proper
initialization for efficient robust training (Sections 6.1, 6.2 & 6.3). We answer Q2 as: One-
Shot Growth (OSG) achieves the best training efficiency, clean and robust accuracies at
iso-model size compared to m-Shot (m > 1) Growth (Section 6.3).

3. Algorithm: We propose two Growing Efficient Accurate and Robust neural networks
(GEARnn) algorithms (see Fig. 2 and Section 4.3) by combining 1-Phase/2-Phase with OSG
and Efficient Robust Augmentation (ERA). We show that GEARnn generated networks
shine on all four metrics simultaneously – clean accuracy, robust accuracy, training efficiency
and inference efficiency – by implementing them on a real-life Edge device, the NVIDIA
Jetson Xavier NX (Section 6.2).

4. Interpretability: We explain the network topologies generated during OSG, and also provide
rationale for the efficacy of 2-Phase approach (Section 8).

2 BACKGROUND AND RELATED WORK
Robust Data Augmentation: This is the most commonly used method for addressing corruptions
due to its ease of integration into the training flow and ability to replicate low-level structural
distortions. AugMix Hendrycks et al. (2019), PRIME Modas et al. (2022) and FourierMix Sun
et al. (2021) combine chains of stochastic image transforms and enforce consistency using a suitable
loss function to generate an augmented sample from a clean image. DeepAugment Hendrycks
et al. (2021) randomly distorts the parameters of an image-to-image network to generate augmented
images. CARDs Diffenderfer et al. (2021) combines data augmentation Hendrycks et al. (2019)
and pruning Frankle & Carbin (2018) to find compact robust networks embedded in large over-
parameterized networks. Adversarial augmentations Zhao et al. (2020); Rusak et al. (2020); Calian
et al. (2021) have also been proposed to handle common corruptions. Unlike our proposed GEARnn
algorithm, all these techniques significantly increase the complexity over vanilla training and are thus
inappropriate for Edge deployment.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

GEARnn-1

OSG

ℒaug

GEARnn-2

OSG

ℒCE

Train

ℒaug

Phase-1

Phase-1 Phase-2

ERA
𝒟aug

𝒟in

𝑓1𝑝
∗

𝑓2𝑝
∗𝑓2

ERA𝒟in

𝒟aug

Figure 2: Proposed approach: GEARnn-1 performs One-Shot Growth
(OSG) on augmented data (Daug) generated by Efficient Robust Aug-
mentation (ERA) (using clean data (Din)) in a single phase (1-Phase).
GEARnn-2 performs OSG using Din first followed by parametric train-
ing on Daug in two consecutive phases (2-phase). Here LCE and Laug
denote the cross-entropy loss and augmented loss, respectively.

Growth Techniques: A
typical growth algorithm
starts with a small ini-
tial backbone model whose
size is gradually increased
until the desired perfor-
mance or network topology
is reached. Neural network
growth has been previously
used in optimization Fuku-
mizu & Amari (2000), con-
tinual learning Rusu et al.
(2016); Hung et al. (2019)
and in speeding up the train-
ing of large networks Chen
et al. (2015). Recent
works Evci et al. (2022);
Yuan et al. (2023) look at
improving the training dy-
namics and efficiency for growth by using better neuron initializations. Others find efficient networks
by growing the width Wu et al. (2019), depth Wen et al. (2020) or both Wu et al. (2020); Yuan et al.
(2020). However, none of these methods address the issue of robustness to common corruptions
or demonstrate the utility for training on a resource-constrained Edge setting, which is our focus.
Though our work GEARnn builds upon Firefly Wu et al. (2020), it is flexible and can incorporate
other growth methods mentioned above.

3 NOTATION AND PROBLEM SETUP

Notation: Let f : Rd → [C] be a hard classifier which classifies input x ∈ Rd into one of C classes.
We choose f to be a convolutional neural network (CNN) with L layers (depth), {wl}Ll=1 output
channels (widths), and (K,K) sized kernels. The network f is trained on n samples (x, y) ∼ Din,
where (x, y) ∈ Rd × [C] and Din denotes the “in-distribution” or “clean” data. LCE represents the
cross-entropy loss and Laug = LCE + λLJSD represents the augmentation loss where LJSD is the
Jensen-Shannon divergence loss described in Hendrycks et al. (2019).

During inference, f can be exposed to samples from both Din and Dout (“out-of-distribution” or
“corrupted” data). In case of common corruptions, (xout, y) ∼ Dout is obtained by xout = κ(xin, s),
where (xin, y) ∼ Din, κ is a corruption filter and s is the severity level of the corruption. We denote
pe = Pr(ŷ ̸= y) as the classification error at inference where ŷ = f(xtest). When (xtest, y) ∼ Din,
we define (1− pe) as clean accuracy Acln, and when (xtest, y) ∼ Dout, we define (1− pe) as robust
accuracy Arob. The value of pe is determined empirically in this work.

Problem: Our primary objective is to maximize the empirical clean and robust accuracies (Acln and
Arob) while ensuring the network complexity (

∑L
l=1 wl) is small. Along with these two criteria, we

also prioritize reduction in training time (ttr) and training energy consumption (E) on hardware.

4 GROWING EFFICIENT ACCURATE AND ROBUST NEURAL NETWORKS
(GEARNN)

As shown in Fig. 2, two flavors of GEARnn algorithms are proposed – GEARnn-1 and GEARnn-2.
While GEARnn-1 leverages the 1-Phase (joint growth and robust training) training, GEARnn-2
employs the 2-Phase (sequential growth and robust training) approach. Both flavors incorporate
One-Shot Growth (OSG) and Efficient Robust Augmentation (ERA) in different ways. In this section,
we first describe OSG and ERA, and then formally present the GEARnn algorithms.

4.1 ONE-SHOT GROWTH (OSG)

One-Shot Growth (OSG) employs labeled data to perform a single growth step sandwiched between
two training stages. The initial backbone f0 is first trained for E1 epochs. The resulting network f1 is
grown over Eg epochs to obtain the grown network fg, i.e., fg = G(f1|γ,D,L, Eg), where G is the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

One-Shot Growth (OSG)
Labeled Data

Grow (𝒟)

(ℒ, ℰ!)

Train (𝒟)Train (𝒟)

backbone 𝑓" trained backbone 𝑓! grown network 𝑓# trained grown network 𝑓$

(ℒ, ℰ#) (ℒ, ℰ$)

𝒟

𝑓$

Figure 3: OSG takes in labeled data (D) and backbone network f0, and performs a training step,
a growth step, and a training step in sequence to generate network f2. The 2-tuple (L, E) = (loss
function, number of epochs) employed in each step.

growth technique which is nominally Firefly Wu et al. (2020) in our work. The final network f2 is
obtained by training fg over E2 epochs. Either clean (Din) or augmented (Daug) data can be used in
OSG. For instance, OSG in GEARnn-1 and GEARnn-2 employs augmented data (D ∼ Daug) and
clean data (D ∼ Din), respectively.

The growth technique G is described below:
fg = argmin

f
L(f,D|f1)

s.t. f ∈ ∂(f1, ϵ)

C(f) ≤ (1 + γ) C(f1)

(1)

where ∂(f1, ϵ) represents the growth neighbourhood for topology search, C(f) =
∑L

l=1 wl represents
the complexity estimate of network f and γ denotes the growth ratio. The neighbourhood ∂(f1, ϵ) is
expanded in two ways - splitting and growing new neurons - as described in Wu et al. (2020; 2019).
We perform growth only in the width dimension and keep the number of layers L and the kernel size
(K,K) constant for reasons described in Wu et al. (2020) and Simonyan & Zisserman (2014).

Existing growth methods Wu et al. (2019; 2020); Evci et al. (2022) use several growth steps (typically
10 steps) and large number of training epochs (typically 1600 total epochs) which makes them
inefficient for training. This directs us to pick OSG over multi-step growth (validated in Section 6.3)
and reduce the training epochs significantly (20×) compared to prior growth algorithms. The drop
in accuracy observed due to these modifications is compensated for using a 2-Phase approach
(Section 6.1).
4.2 EFFICIENT ROBUST AUGMENTATION (ERA)

Efficient Robust Augmentation (ERA)

Augmented Data

clean
sample

stochastic row
of transforms𝑑!

stochastic row
of transforms𝑑"#!

𝐽 − 1
.
.
.

times

𝐽
samples

ℛ(𝒟!"|𝒯)

𝒟!" 𝒟#$%

𝑥!
"#$

𝑥%&!
"#$𝐴%&!(𝑥)

𝐴!(𝑥)

𝑥

Figure 4: ERA takes in clean data (Din) as input and
applies a set of stochastic transforms to generate aug-
mented data (Daug) in an efficient manner.

Efficient Robust Augmentation (ERA) em-
ploys clean data (Din) to generate aug-
mented data (Daug) in an efficient man-
ner. The clean sample x (where (x, y) ∼
Din) is passed through a set of transforms
a1, a2, ..., adj to obtain the transformed
sample Aj(x), which is then combined
linearly with the clean sample to give
the augmented sample xaug

j . We concate-
nate (J − 1) such augmented samples
{xaug

j }
J−1
j=1 along with the clean sample to

obtain our Efficient Robust Augmentation
R((x, y)|T).

Aj(x) = a1 ◦ a2 ◦ ... ◦ adj
(x)

xaug
j = px+ (1− p)Aj(x)

R((x, y)|T) = ({xaug
1 ,...,xaug

J−1,x}, y) =⇒ Daug := R(Din|T)
where ai ∼ Unif(T), p ∼ β(1, 1), dj ∼ Unif({1, ..., D}), j ∈ {1, ..., J − 1}

(2)

where T denotes the set of transforms, β() and Unif() represent the beta and uniform distributions,
respectively. SOTA robust data augmentation Hendrycks et al. (2019); Modas et al. (2022); Sun et al.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(2021) methods for common corruptions also employ stochastic chains of transforms with width W ,
depth D, and enforce consistency across J − 1 augmented and clean samples using the Laug loss
function (described in Section 3). The SOTA augmentation framework increases the training time
and energy by 3× to 4× compared to vanilla training. We choose (W,D, J) = (1, 3, 4) based on our
diagnosis (shown in Appendix B.1) to improve the efficiency without compromising on robustness
compared to SOTA approaches Hendrycks et al. (2019); Modas et al. (2022). In GEARnn-2, grown
network f2 (see Fig. 3) obtained using clean data OSG is trained for Er epochs using Daug generated
by ERA.

4.3 GEARNN ALGORITHMS

Algorithm 1 GEARnn-1

1: Input: clean training data Din, initial backbone network f0, growth ratio
γ, set of augmentation transforms T , training epochs {E1, Eg, E2}

2: Output: compact and robust model f∗
1p

3: /* Phase-1: OSG */
4: for e = 1, ..., E1 do
5: Daug := R(Din|T) // ERA
6: f1 ← argmin

f
Laug(f,Daug|f0) // backbone robust training

7: end for
8: fg ← G(f1|γ,Daug,Laug, Eg) // augmented growth
9: for e = 1, ..., E2 do

10: Daug := R(Din|T) // ERA
11: f2 ← argmin

f
Laug(f,Daug|fg) // grown-network robust training

12: end for
13: f∗

1p ← f2

14: return f∗
1p

Algorithm 2 GEARnn-2

1: Input: clean training data Din, initial backbone network f0, growth ratio
γ, set of augmentation transforms T , training epochs {E1, Eg, E2, Er}

2: Output: compact and robust model f∗
2p

3: /* Phase-1: OSG */
4: for e = 1, ..., E1 do
5: f1 ← argmin

f
LCE(f,Din|f0) // backbone clean training

6: end for
7: fg ← G(f1|γ,Din,LCE, Eg) // clean growth
8: for e = 1, ..., E2 do
9: f2 ← argmin

f
LCE(f,Din|fg) // grown-network clean training

10: end for
11: /* Phase-2: Train */
12: for e = 1, ..., Er do
13: Daug := R(Din|T) // ERA
14: f∗

2p ← argmin
f

Laug(f,Daug|f2) // grown-network robust training

15: end for
16: return f∗

2p

Algorithms 1 and 2 describe GEARnn-
1 and GEARnn-2, respectively. Algo-
rithms 1 and 2 output final compact and ro-
bust models f∗

1p and f∗
2p, respectively. For

empirical results in Section 6, the growth
technique G and the set of transforms T
are chosen from Firefly Wu et al. (2020)
and AugMix Hendrycks et al. (2019), re-
spectively, though other growth Yuan et al.
(2023); Wu et al. (2019) and augmenta-
tion Modas et al. (2022); Sun et al. (2021)
methods can be substituted to obtain dif-
ferent GEARnn variants.

5 EXPERIMENTAL SETUP

Datasets and Architectures: All re-
sults are shown on CIFAR-10, CIFAR-
100 Krizhevsky et al. (2009) and Tiny
ImageNet Le & Yang (2015) (Din)
datasets. CIFAR-10-C, CIFAR-100-
C and Tiny ImageNet-C Hendrycks &
Dietterich (2019) (Dout) are used to
benchmark corruption robustness. Con-
volutional neural network architectures
MobileNet-V1Howard et al. (2017), VGG-
19Simonyan & Zisserman (2014), ResNet-
18He et al. (2016) are employed to demon-
strate the results.

Hardware: For the server-based experi-
ments, we use a single NVIDIA Quadro
RTX 6000 GPU with 24GB RAM, 16.3
TFLOPS peak performance and an Intel
Xeon Silver 4214R CPU. This machine
is referred to as “Quadro”. For the Edge-
based experiments, we use the NVIDIA
Jetson Xavier NX NVIDIA (a) which has

a Volta GPU with 8GB RAM, 21 TOPS peak performance and a Carmel CPU. We refer to this device
as “Jetson”.

Metrics: Clean accuracy Acln(%) measured on clean test data Din, and robust accuracy Arob(%)
measured on corrupted test data Dout, are used as accuracy metrics (both computed using Robust-
Bench Croce et al. (2021)). The number of floating-point parameters (model size), wall-clock training
time ttr (in minutes), per-sample wall-clock inference time tinf (in seconds) and energy consumption
E (in Joule) are used as the efficiency metrics. Size (%) represents the fraction of the full model
size. In case of growth algorithms, training times include both the time taken for training and growth.
The power is measured from the Quadro and Jetson using Nvidia-SMI NVIDIA (b) and Jetson
Stats Bonghi, respectively, and the energy E is computed by summing the mean power values polled.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Baselines: In the absence of prior work on robust growth, we propose our own baselines Small (Din)
and Small (Daug), both of which use 160 training epochs to be consistent with Diffenderfer et al.
(2021). They are networks with the same size and topology as the final GEARnn-2 network (f∗

2p in
Fig. 2) trained with random initialization on clean data and augmented data (AugMix Hendrycks et al.
(2019), unless specified otherwise), respectively.

We pick Small (Daug) as the main baseline for a fair comparison with GEARnn as it depicts a typical
private-Edge training scenario. We do not compare with compression techniques since they have
been shown to have worse training efficiency compared to growth Yuan et al. (2020), and require a
robust-trained full baseline, and this is clearly more expensive than training Small (Daug) (see Fig. 1).

6 MAIN RESULTS

Table 1: GEARnn hyperparameters for different networks
and datasets.

Dataset Growth Ratio (γ) Small(D) GEARnn-1 GEARnn-2
Mob. VGG Res. E E1 Eg E2 E1 Eg E2 Er

CIFAR-10 1.8 0.9 0.6 160 40 1 40 40 1 40 40
CIFAR-100 2.0 1.5 0.8 160 50 1 50 40 1 40 50

Tiny ImageNet 2.0 1.5 0.8 160 50 1 50 40 1 40 50

In this section, we first compare
the performance of GEARnn across
different network architectures and
datasets on Quadro. We then show
results for CIFAR-10 and CIFAR-100
using VGG-19 and MobileNet on Jet-
son. Finally, we compare OSG with
m-shot growth methods on Jetson.

6.1 RESULTS ACROSS NETWORK
ARCHITECTURES AND DATASETS

40 60 80 100 120 140 160
Epochs

45.0

47.5

50.0

52.5

55.0

57.5

60.0

Ro
bu

st
 A

cc
ur

ac
y

(%
)

Small (aug)
GEARnn-1
GEARnn-2

(a)

50 100 150 200
Training Time (min)

45.0

47.5

50.0

52.5

55.0

57.5

60.0
Ro

bu
st

 A
cc

ur
ac

y
(%

)

Small (aug)
GEARnn-1
GEARnn-2

(b)

Figure 5: GEARnn-2 achieves higher robustness at the same: (a)
number of robust training epochs at final model size, and (b) training
time, for VGG-19/CIFAR-100 on Quadro.

Table 12 shows GEARnn
is consistently better in
terms of training time and
training energy consump-
tion over the best baseline
Small (Daug) over multiple
network architectures and
datasets. Specifically, an av-
erage reduction in training
time (energy consumption)
of 3.5×, 2.9× and 1.8×
(3.7×, 2.0× and 2.0×)
is observed for CIFAR-10,
CIFAR-100 and Tiny Im-
ageNet, respectively. Fur-
thermore, we find GEARnn-
1 is inferior to GEARnn-2
on all the four metrics thereby answering Q1 in Section 1 – 2-Phase approach is better than 1-Phase
approach for efficiently growing robust networks.

A key reason underlying GEARnn-2’s training efficiency is the reduction in the number of robust
training epochs Er made possible by the OSG initialization in Phase-1. Fig. 5 shows that for the
same training time, GEARnn-2 provides better robustness than Small (Daug) and GEARnn-1. Similar
results were obtained for CIFAR-10 and other network architectures as shown in Appendix C.1.

6.2 RESULTS ON THE EDGE

We now study GEARnn when mapped onto the Edge device NVIDIA Jetson Xavier NX. The training
hyperparameters for Jetson are described in Appendix A. Results on Jetson (Table 13) show similar
trends to those on Quadro (Table 12).

Specifically, Table 13 shows that GEARnn-2 achieves comparable clean and robust accuracies to
the baseline Small (Daug) but at a fraction of its training cost – a 2.3× (2.8×) reduction in training
time (training energy) when averaged across both networks and datasets. Additionally, GEARnn-2
beats GEARnn-1 on almost all metrics, again confirming our answer to Q1 in favour of 2-Phase.
Interestingly, GEARnn-2 achieves a clean accuracy within 1% of Small (Din) at a similar training
cost. These results confirm that it is possible to grow efficient and robust networks on the Edge.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Comparison of accuracy, robustness, and efficiency between the baselines and GEARnn
across various network architectures for CIFAR-10, CIFAR-100 and Tiny ImageNet on Quadro.
See Fig. 5 for robustness comparison between Small (Daug) and GEARnn-2 at similar training cost.

Architecture CIFAR-10 CIFAR-100 Tiny ImageNet

(full model Method Size Accuracy Training Size Accuracy Training Size Accuracy Training
size) (%) Acln(%) Arob(%) ttr(min) E(kJ) (%) Acln(%) Arob(%) ttr(min) E(kJ) (%) Acln(%) Arob(%) ttr(min) E(kJ)

Small (Din) 8 92.28 66.31↓ 42 192 8 67.66 39.04↓ 45 274 8 55.13 18.48 ↓ 262 2030

MobileNetV1 Small (Daug) 8 92.90 83.21 211 1130 8 68.88 54.95 212 1330 8 56.46 28.17 765 7200
(3M) GEARnn-1 7 90.64 80.71 88 379 8 65.07 51.46 93 651 8 54.57 27.46 506 4410

GEARnn-2 8 91.35 81.96 56 270 8 67.95 53.28 72 432 8 56.16 28.56 429 3565

Small (Din) 5 92.69 70.57↓ 31 241 9 68.07 41.24↓ 38 335 9 53.9 17.78 ↓ 218 2040

VGG-19 Small (Daug) 5 93.08 85.73 215 1140 9 70.01 56.94 219 927 9 55.51 30.01 668 7120
(20M) GEARnn-1 5 91.25 82.86 86 552 9 65.73 52.68 111 779 9 54.38 28.56 428 4220

GEARnn-2 5 92.18 83.77 53 298 9 68.44 54.31 65 566 9 56.19 29.79 357 3219

Small (Din) 6 93.34 68.85↓ 61 546 7 68.74 40.83↓ 67 490 7 54.72 18.11 ↓ 381 3390

ResNet-18 Small (Daug) 6 94.18 86.50 217 1730 7 71.97 57.30 219 1250 7 54.50 25.74 1103 12400
(12M) GEARnn-1 6 92.36 83.86 108 747 8 69.15 55.62 142 1020 7 53.17 24.93 898 9100

GEARnn-2 6 93.14 84.45 77 567 7 70.94 56.54 97 905 7 54.79 26.64 649 7270

Table 3: Comparison of accuracy, robustness, inference and training efficiency between the baselines
and GEARnn for CIFAR-10 and CIFAR-100 using MobileNet-V1 and VGG-19 on Jetson. Due to
computational limitations, the results for Tiny ImageNet and ResNet-18 are excluded for Jetson.

CIFAR-10 CIFAR-100

Network Method Accuracy Inference Training Accuracy Inference Training
Acln(%) Arob(%) Size% tinf(ms) ttr(min) E(kJ) Acln(%) Arob(%) Size% tinf(ms) ttr(min) E(kJ)

MobileNet-V1

Small (Din) 91.88 68.35↓ 7 0.9 675 175 68.59 39.47↓ 8 0.9 744 166

Small (Daug) 92.58 83.84 7 0.9 1216 511 69.24 54.84 8 0.9 1333 586
GEARnn-1 90.20 79.65 7 0.9 560 238 65.48 50.46 8 1.0 704 226
GEARnn-2 91.43 81.64 7 0.9 553 162 67.42 52.39 8 0.9 690 216

VGG-19

Small (Din) 92.97 71.08↓ 5 1.0 533 128 67.92 40.49↓ 9 1.4 714 187

Small (Daug) 93.36 85.73 5 1.0 1543 522 70.07 56.68 9 1.4 2016 678
GEARnn-1 90.94 82.25 5 1.2 652 207 62.89 49.63 9 1.5 936 281
GEARnn-2 92.07 83.45 5 1.0 596 155 67.59 53.64 9 1.4 884 328

6.3 ONE-SHOT VS. MULTI-SHOT GROWTH

Since GEARnn employs OSG (One-Shot Growth) for growing networks, it begs the question if we
are missing anything if multiple growth steps (m-Shot Growth) were to be permitted, i.e., question
Q2 from Section 1. To answer this question, we compare the clean and robust accuracies along with
training time and energy for different growth steps between GEARnn-1 and GEARnn-2 in Table 4.
All m-Shot Growth methods start with the same initial backbone f0 (1.4% of full model size) and
perform growth to reach f2 (5% of full model size) using different growth ratios. All methods use
VGG-19 model and perform 80 epochs parametric training during the growth phase. The experiments
are done on CIFAR-10 data and the hardware measurements are taken from Jetson.

Table 4: Comparison of training complexities, clean and robust accu-
racies for different growth methods implemented using VGG-19 and
CIFAR-10 on Jetson. 2-Phase approach and OSG provide the best
solution for growing robust networks on the Edge.

Growth GEARnn-1 GEARnn-2
Steps Acln(%) Arob(%) ttr (min) E (kJ) Acln(%) Arob(%) ttr (min) E (kJ)

1 90.94 82.25 652 207 92.07 83.45 596 155
2 90.01 81.92 640 191 91.94 83.34 593 157
3 89.73 80.86 653 194 91.79 83.05 624 177
4 89.90 81.08 845 223 91.65 82.75 645 173

Table 4 indicates that OSG
is comparable or better than
the other m-Shot Growth
methods in all the metrics,
thereby answering Q2. This
result can be attributed to
the lower training overhead
of growth stage in OSG
compared to the m-Shot
Growth methods. It should
be noted that as the growth
steps increase, the accura-
cies go down and training
cost goes up, thus indicating that the optimal solution cannot be found by further increasing the
growth steps. Another comparison that is highlighted by Table 4 is the one between GEARnn-1
and GEARnn-2. For each growth step, GEARnn-2 is better than the corresponding GEARnn-1
solution on all the metrics. The numbers highlighted in red indicate the best solution across the
table. Thus, Table 4 clearly highlights that 2-Phase approach using One-Shot Growth is the best

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

combination to grow robust networks efficiently on the Edge. More comparisons between OSG and
Multi-Shot growth are shown in Appendix B.2.

7 ABLATION STUDY

In this section, we look at the generalization of GEARnn to other robust augmentations and then
understand the robustness and efficiency breakdowns for GEARnn.

7.1 GENERALIZATION ACROSS ROBUST AUGMENTATION METHODS

The results thus far employed AugMix Hendrycks et al. (2019) tranforms (T) to generate Daug
for robust training. In this section, we see if the benefits of GEARnn are maintained across other
augmentation transforms. Table 5 compares the implementation of PRIME Modas et al. (2022)
augmentation across different methods. The accuracy and efficiency trend observed are similar to the
results in Table 12. The important aspect to notice is the increase in training complexity gap (∼ 2×)
between GEARnn-1 and GEARnn-2. This is because OSG with PRIME is more expensive than OSG
with AugMix.

Table 5: Accuracy and Efficiency comparisons
for PRIME (Daug) augmentation implemented
for VGG-19 and CIFAR-10 on Quadro.

Method Acln(%) Arob (%) ttr (min) E (kJ)

Small (Din) 92.69 70.57↓ 31 241

Small (Daug) 91.30 87.01 829 2550
GEARnn-1 88.37 83.18 458 1410
GEARnn-2 90.26 84.45 234 856

Table 6: Training time and energy breakdown
for GEARnn on CIFAR-10 using VGG-19 on
Quadro.

Quantity GEARnn-1 GEARnn-2

OSG-1 OSG-2 Total OSG-1 OSG-2 ERA Total

training 38 48 86 5 10 38 53
time (min) 44% 56% 100% 9% 19% 72% 100%

energy 180 372 552 26 71 201 298
(kJ) 33% 67% 100% 9% 24% 67% 100%

7.2 EFFICIENCY AND ROBUSTNESS BREAKDOWN

Table 7: Impact of using OSG and ERA for
CIFAR-100 and VGG-19 on Quadro.

Phase-1 (Din) Phase-2 (Daug) Arob(%) ttr(min) E (kJ)
vanilla OSG AugMix ERA

✓ 38.72 18 161
✓ 38.01 16 118

✓ 46.50 62 385
✓ 46.13 46 406

✓ ✓ 53.74 79 534
✓ ✓ 54.31 64 515

Table 6 shows the breakdown of energy and training
time for different stages of GEARnn-1 and GEARnn-
2. OSG-1 involves the training of backbone f0 and
OSG-2 includes both the growth stage and training
of fg. The key aspect to notice in Table 6 is the
small fraction of training cost required by OSG-1 and
OSG-2 in GEARnn-2 to provide a good initialization.

Table 7 shows the ablation studies of different com-
ponents used in GEARnn-2 and compares it with a
fixed network robust training. Firstly, we notice that
OSG is more efficient than vanilla (fixed network)
training, both in terms of training time and energy
while achieving comparable accuracy. Similar observations can be made for ERA over AugMix.
Performing 2-Phase approach by using either vanilla or OSG as initialization provides a significant
boost in robustness while incurring a minimal overhead in training cost. Thus the 2-Phase approach
is a clear winner over the 1-Phase approach, and in particular the combination of OSG and ERA
used for GEARnn-2 is optimal. More comparisons between AugMix and ERA on Jetson are shown
in Appendix B.3.

8 DISCUSSION

Until now we have looked at extensive empirical simulations that highlight the efficacy of GEARnn-2.
In this section, we will look at the inner workings of this algorithm. Specifically, we will see what
network topologies are generated when OSG designs compact networks, and also understand why
clean data initialization benefits robust training.

8.1 IMPACT OF OSG ON NETWORK TOPOLOGY

In this section, we look at the growth topology patterns ({wl}Ll=1) as a function of layer index
l. Specifically, we investigate these patterns in the simple setting of OSG (Din) implemented on
CIFAR-10 for (E1, E2) = (40, 40) and an initial backbone f0 with {wl}Ll=1 = 45. The bar plots
represent the mean width (E[wl]) across four random seeds.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1 5 10 15
layer index

40

50

60

70

80

90

100

110

120

#o
ut

pu
t c

ha
nn

el
s

f2[VGG-19] f2[ResNet-18]

(a)

1 5 10 15
layer index

40

50

60

70

80

90

100

110

120

#o
ut

pu
t c

ha
nn

el
s

f2[VGG-19] g = 1 f2[VGG-19] g = 50

(b)

1 5 10 15
layer index

40

50

60

70

80

90

100

110

120

#o
ut

pu
t c

ha
nn

el
s

f2[VGG-19] GEARnn-2 f2[VGG-19] GEARnn-1

(c)

Figure 6: Average output channels vs. layer index for CIFAR-10 on Quadro is shown. Plot (a) looks
at the impact of network architecture and highlights the non-uniform growth pattern in plain CNNs
versus steady zigzag pattern in residual CNNs. Plots (b) and (c) indicate that modifying the number of
growth epochs (Eg) or performing 1-Phase robust growth does not affect the topology pattern much.

Backbone architecture: For plain CNNs like VGG-19 Simonyan & Zisserman (2014) - the initial
layers have higher number of convolutional filters compared to final layers. This correlates with the
observations seen in quantization Sakr & Shanbhag (2018) where the initial layers require higher
precision compared to the final layers. However, in case of residual networks like ResNet-18, the
pattern is largely invariant to network depth and is oscillating as shown in Fig. 6a. The invariance in
depth can be attributed to the direct gradient flow facilitated by the shortcut connections making each
residual block act independently of the depth. In each residual block, the macro-level pattern in plain
CNNs is observed at a micro-level, i.e. initial layer has more output channels than the final layer.

Growth Epochs and Data: All the above experiments were performed for a single growth epoch
(Eg = 1) and on clean data. The effect of increasing Eg to 50 and using ERA data for growth
(GEARnn-1) is shown in Fig. 6b and Fig. 6c. The topology pattern in both cases remains roughly the
same as OSG (Din) Eg = 1.

8.2 RATIONALE FOR 2-PHASE APPROACH

In this section, we provide insights for the efficacy of GEARnn-2 and the 2-Phase approach. In
particular, we highlight why training or growth done on clean data provides a good initialization
for robust training. We look at the loss curves for the 1-Phase approaches (Small (AugMix), Small
(ERA), GEARnn-1) and the 2-Phase approach (GEARnn-2) in Fig. 7. The initial dip in GEARnn-2
loss function in Fig. 7a is due to the loss landscape being different for Phase-1 done on clean data
compared to Phase-2 done on augmented data. One can clearly see that GEARnn-2 achieves a lower
loss at a faster rate compared to the other 1-Phase approaches, thus justifying the importance of clean
growth initialization. We also plot the filter normalized loss curves Li et al. (2018) in Fig. 7b to
observe the loss landscapes around the converged weights. GEARnn-2 finds the smallest minima
while also having a wide curve which enables better generalization Li et al. (2018).

The above explanation illustrates why GEARnn-2 has a good training and generalization performance.
However, in order to understand why initialization with clean data aids faster convergence of
robust training, we look at the Fourier spectrums of the clean, augmented and corrupted images
in Fig. 8. Fig. 8a indicates that the clean images lie in the low frequency domain, while the corrupted
samples occupy a wide range of frequencies (Figs. 8b & 8c). Crucially, the spectrum containing all
the augmentations (in AugMix) Fig. 8d and all the corruptions (in CIFAR-10-C) Fig. 8e is also in
the low-frequency domain, similar to the clean image spectrum Fig. 8a. This is unlike the scenario
of adversarial or Gaussian noise perturbations, which lie in the high-frequency domain Yin et al.
(2019) and hence may not benefit from clean data initialization. Thus, robust training for common
corruptions benefits from initialization with clean data.

9 LIMITATIONS AND BROADER IMPACTS

While our work has conclusively shown that a 2-Phase approach for growing robust networks is
computationally efficient, a theoretical convergence analysis for this result is currently lacking. Such
a result would help identify favorable initial conditions for robust training to achieve high accuracy in
fewer epochs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 20 40 60 80
Training time (min)

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ss

Small (AugMix)
Small (ERA)
GEARnn-1 (ours)
GEARnn-2 (ours)

(a)

0.10 0.05 0.00 0.05 0.10
Parameter Space

0

1

2

3

4

5

Lo
ss

Small (AugMix)
Small (ERA)
GEARnn-1 (ours)
GEARnn-2 (ours)

(b)

Figure 7: Loss comparisons for 2-Phase (GEARnn-2) and 1-Phase (rest) approaches for CIFAR-100
and VGG-19 on Quadro with 50 epochs of robust training at final model size. Fig. 7a highlights
that GEARnn-2 loss converges to the minimum faster than other approaches. Fig. 7b shows the loss
landscapes where GEARnn-2 achieves the smallest minima with a wide curve, thus aiding better
generalization Li et al. (2018).

(a) clean data (b) snow (c) JPEG comp. (d) AugMix (e) all corruptions

Figure 8: The Fourier spectrum of clean images (from CIFAR-10), their corresponding augmented
(AugMix) and corrupted versions (CIFAR-10-C at severity 3) are shown. The augmentation and
corruption spectrums (Figs. 8b, 8c, 8d & 8e) are obtained by taking Fourier Transform of the
difference with the clean image (Eg: κ(xin, 3)− xin). Snow(Fig. 8b) and JPEG compression(Fig. 8c)
corruptions are shown to highlight the range of possible frequencies in the corrupted spectrums. The
similarity in the spectrums of clean (Fig. 8a), augmented (Fig. 8d) and all-corrupted (Fig. 8e) images
highlights the importance of OSG initialization using clean data.

The impact of our work is broadly positive since it enables efficient robust training on Edge devices.
We do not see any direct negative impact of our work.

10 CONCLUSION
We addressed the problem of growing robust networks efficiently on Edge devices. Specifically,
we concluded that a 2-Phase approach with distinct clean growth and robust training phases is
significantly more efficient than a 1-Phase approach which employs augmented data for growth. We
encapsulated this result into the GEARnn algorithm and experimentally demonstrated its benefits
on a real-life Edge device. An interesting and non-trivial extension of our work would be to use
unlabeled data for growing efficient and robust networks. Another extension would be to design
robust networks for complex tasks such as object detection on highly resource-constrained Edge
platforms.

11 REPRODUCIBILITY STATEMENT
We list all the experimental setup details in Section 5 and Appendix A. We use fixed seeds during the
simulation runs so that our results can be reproduced. We will make the code public along with the
software versions if the paper is accepted so that the community can use and reproduce our results.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Raffaello Bonghi. Jetson-stats. https://pypi.org/project/jetson-stats/.

Dan A Calian, Florian Stimberg, Olivia Wiles, Sylvestre-Alvise Rebuffi, Andras Gyorgy, Timothy
Mann, and Sven Gowal. Defending against image corruptions through adversarial augmentations.
arXiv preprint arXiv:2104.01086, 2021.

Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via knowledge
transfer. arXiv preprint arXiv:1511.05641, 2015.

Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flam-
marion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized adversarial
robustness benchmark. In Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2021. URL https://openreview.net/forum?id=
SSKZPJCt7B.

James Diffenderfer, Brian Bartoldson, Shreya Chaganti, Jize Zhang, and Bhavya Kailkhura. A
winning hand: Compressing deep networks can improve out-of-distribution robustness. Advances
in neural information processing systems, 34:664–676, 2021.

Utku Evci, Bart van Merrienboer, Thomas Unterthiner, Max Vladymyrov, and Fabian Pedregosa.
Gradmax: Growing neural networks using gradient information. arXiv preprint arXiv:2201.05125,
2022.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Kenji Fukumizu and Shun-ichi Amari. Local minima and plateaus in hierarchical structures of
multilayer perceptrons. Neural networks, 13(3):317–327, 2000.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi-
narayanan. Augmix: A simple data processing method to improve robustness and uncertainty.
arXiv preprint arXiv:1912.02781, 2019.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
analysis of out-of-distribution generalization. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 8340–8349, 2021.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. Advances in neural information processing systems, 29, 2016.

Ching-Yi Hung, Cheng-Hao Tu, Cheng-En Wu, Chien-Hung Chen, Yi-Ming Chan, and Chu-Song
Chen. Compacting, picking and growing for unforgetting continual learning. Advances in Neural
Information Processing Systems, 32, 2019.

11

https://pypi.org/project/jetson-stats/
https://openreview.net/forum?id=SSKZPJCt7B
https://openreview.net/forum?id=SSKZPJCt7B

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape
of neural nets. Advances in neural information processing systems, 31, 2018.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceedings
of the European conference on computer vision (ECCV), pp. 19–34, 2018.

Eric Mintun, Alexander Kirillov, and Saining Xie. On interaction between augmentations and
corruptions in natural corruption robustness. Advances in Neural Information Processing Systems,
34:3571–3583, 2021.

Apostolos Modas, Rahul Rade, Guillermo Ortiz-Jiménez, Seyed-Mohsen Moosavi-Dezfooli, and
Pascal Frossard. Prime: A few primitives can boost robustness to common corruptions. In
European Conference on Computer Vision, pp. 623–640. Springer, 2022.

Corporation NVIDIA. Nvidia jetson xavier nx for embedded and edge systems. https:
//www.nvidia.com/en-sg/autonomous-machines/embedded-systems/
jetson-xavier-nx/, a.

Corporation NVIDIA. System management interface smi. https://developer.nvidia.
com/nvidia-system-management-interface, b.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European conference on computer
vision, pp. 525–542. Springer, 2016.

Evgenia Rusak, Lukas Schott, Roland Zimmermann, Julian Bitterwolfb, Oliver Bringmann, Matthias
Bethge, and Wieland Brendel. Increasing the robustness of dnns against im-age corruptions by
playing the game of noise. 2020.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Charbel Sakr and Naresh Shanbhag. An analytical method to determine minimum per-layer precision
of deep neural networks. In 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 1090–1094. IEEE, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Jiachen Sun, Akshay Mehra, Bhavya Kailkhura, Pin-Yu Chen, Dan Hendrycks, Jihun Hamm, and
Z Morley Mao. Certified adversarial defenses meet out-of-distribution corruptions: Benchmarking
robustness and simple baselines. arXiv preprint arXiv:2112.00659, 2021.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Wei Wen, Feng Yan, Yiran Chen, and Hai Li. Autogrow: Automatic layer growing in deep con-
volutional networks. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 833–841, 2020.

Lemeng Wu, Dilin Wang, and Qiang Liu. Splitting steepest descent for growing neural architectures.
Advances in neural information processing systems, 32, 2019.

Lemeng Wu, Bo Liu, Peter Stone, and Qiang Liu. Firefly neural architecture descent: a general
approach for growing neural networks. Advances in neural information processing systems, 33:
22373–22383, 2020.

12

https://www.nvidia.com/en-sg/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.nvidia.com/en-sg/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.nvidia.com/en-sg/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Dong Yin, Raphael Gontijo Lopes, Jon Shlens, Ekin Dogus Cubuk, and Justin Gilmer. A fourier
perspective on model robustness in computer vision. Advances in Neural Information Processing
Systems, 32, 2019.

Xin Yuan, Pedro Savarese, and Michael Maire. Growing efficient deep networks by structured
continuous sparsification. arXiv preprint arXiv:2007.15353, 2020.

Xin Yuan, Pedro Henrique Pamplona Savarese, and Michael Maire. Accelerated training via in-
crementally growing neural networks using variance transfer and learning rate adaptation. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=H1a7bVVnPK.

Long Zhao, Ting Liu, Xi Peng, and Dimitris Metaxas. Maximum-entropy adversarial data augmen-
tation for improved generalization and robustness. Advances in Neural Information Processing
Systems, 33:14435–14447, 2020.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697–8710, 2018.

13

https://openreview.net/forum?id=H1a7bVVnPK
https://openreview.net/forum?id=H1a7bVVnPK

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX / SUPPLEMENTAL MATERIAL

A TRAINING SETUP

Hyperparameters: The setup for growth and robust augmentation follows closely with what is
described in Firefly Wu et al. (2020) and AugMix Hendrycks et al. (2019), respectively. The
parametric training is done for 160 epochs using a batch-size of 128 and an initial learning rate of
0.1. The learning rate scheduler decays by 0.1 at half and three-fourths of the total number of epochs.
We use the Swish loss function for MobileNet-V1 as used in Wu et al. (2020), while employing
ReLU for the other two networks. Instead of using three fully-connected layers at the end of VGG-19,
we use only one as done in Wu et al. (2020). Stochastic Gradient Descent (SGD) optimizer is used
with momentum 0.9 and weight decay 10−4. As for the standard growth process, we use a Root
Mean Square Propagation (RMSprop) optimizer with momentum 0.9, alpha 0.1 and initial learning
rate of 9× 10−5. The number of workers is chosen as 4. For ERA, (W,D, J) = (1, 3, 4) is picked.
The augmentation transforms T are same as that of AugMix Hendrycks et al. (2019) for all the
results except Table 5, where we pick the transforms from PRIME Modas et al. (2022). As specified
in AugMix, we also do not use any augmentations which are directly present in the corrupted test
dataset.

In case of OSG, the initial backbone f0 is chosen as a network with wl = 45 for all l = {1, ..., L}
and is thus extremely small. The number of randomly initialized neurons at each growth stage
is 70. We ensure that E2 of GEARnn-1 and Er of GEARnn-2 are same for a fair compari-
son. Eg is chosen as 1 based on Firefly Wu et al. (2020). The transforms used in AugMix are
autocontrast, equalize, posterize, rotate, solarize, shear_x,
shear_y, translate_x, translate_y.

Jetson Training: The two changes to the GEARnn algorithm when implementing on NVIDIA Jetson
Xavier are - one we use j = 3 instead of j = 4, and two, we allow only 40 randomly initialized new
neurons per layer in the growth step (as compared to 70 in Wu et al. (2020)). These measures are
taken to stay within the memory constraints of the Edge device. We also reduce the batch size (and
learning rate) appropriately in case the above measures are insufficient.

B ABLATION STUDIES

B.1 DIAGNOSTICS OF ROBUST AUGMENTATION METHODS

In this section, we investigate which aspects of the ro-
bust augmentation framework described in Section 4.2
contribute most to the robustness while being training
efficient. Table 8 shows different modifications of
the stochastic chains obtained by varying (W,D, J)
values. It can be observed that the basic version with
(W,D, J) = (1, 1, 0) (uses only standard cross en-
tropy loss with the label and augmented data as input)
has the least training time, but suffers a significant
drop in Arob compared to standard AugMix. Cru-
cially, we note that increase in D and J has more
impact on robustness at a lesser training cost com-
pared to W . For ERA, we pick the modification with
(W,D, J) = (1, 3, 4) as it provides the highest ro-
bustness while simultaneously reducing training time
over AugMix.

Experiment W D J Arob(%) ttr(min)

Basic 1 1 0 77.74 10
+ width 3 1 0 78.51 16
+ depth 1 3 0 80.31 12
+ JSD-3 1 1 3 82.43 20

+ width + depth 3 3 0 80.47 21
+ width + JSD-3 3 1 3 82.27 32
+ depth + JSD-3 1 3 3 83.67 22
+ depth + JSD-2 1 3 2 82.41 13
+ depth + JSD-4 1 3 4 84.10 29

AugMix Hendrycks et al. (2019) 3 3 3 84.05 41

Table 8: Impact of training AugMix-
variants on the robust accuracy and training
time. Network f2 from OSG is used as the
starting network and Er = 40. All the meth-
ods are implemented for CIFAR-10 and 5%
VGG-19 network on Quadro. W,D, J rep-
resent the width, depth and consistency sam-
ples used in the stochastic chains.

B.2 OSG VERSUS MULTI-SHOT GROWTH COMPARISONS

In this section, we first look at clean data growth comparisons on Jetson in Table 9. Then we look at
robust data growth comparisons on Quadro in Table 14. When comparing various growth methods
on clean data in Table 9, we also include the Small (Din) results to highlight the efficiency benefits
of growth. We can see that OSG has comparable or better training efficiency than all the methods
including Small (Din). In case of clean accuracy, we observe that OSG has the highest among growth

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

methods while being slightly lower than Small (Din). Looking at Table 14, we see that for both
datasets OSG again provides comparable or best solution among all the growth methods across all
metrics. Thus our choice of OSG over other Multi-Shot Growth methods is justified.

Table 9: Comparison of training complexities
and clean accuracy for different growth meth-
ods implemented using VGG-19 and clean
CIFAR-10 data on Jetson.

Growth Steps Acln(%) ttr (min) E (kJ)

Small (Din) 91.96 267 73

1 90.80 210 51
2 90.49 209 53
3 90.31 231 59
4 90.08 275 65

Table 10: OSG versus Multi-Shot Growth using ERA
data, i.e. GEARnn-1 with Multi-Shot Growth. Re-
sults are shown for VGG-19 on Quadro.

Growth CIFAR-10 CIFAR-100

Steps Arob (%) ttr (min) E (kJ) Arob (%) ttr (min) E (kJ)

1 82.86 75 449 52.68 84 426
2 82.31 81 329 51.34 100 554
3 81.94 82 506 50.52 103 517
4 81.81 86 389 50.45 102 590

B.3 BENEFITS OF ERA ON JETSON

Table 11: Comparison of ERA versus Aug-
Mix on Jetson for VGG-19 and CIFAR-10
when trained for 160 epochs

Method Acln(%) ttr (min) E (kJ)

Small (AugMix) 93.36 85.73 1543 522
Small (ERA) 93.42 85.74 1542 486

In this section we will look at the benefits of using
ERA over AugMix. Previously, we had looked at
this comparison on Quadro using CIFAR-100 and
VGG-19 in Table 7. Here, we will look at these
results for CIFAR-10 and VGG-19 on Jetson when
training a fixed-size Small (Daug) network for 160
epochs. Table 11 indicates that ERA is better than
AugMix on all the metrics. Thus our choice of ERA
over AugMix is justified.

B.4 GAUSSIAN AUGMENTATION

Table 12: Gaussian Augmentation comparison between the baselines and GEARnn on VGG-19 for
CIFAR-10, CIFAR-100 on Quadro.

Architecture CIFAR-10 CIFAR-100

(full model Method Size Accuracy Training Size Accuracy Training
size) (%) Acln(%) Arob(%) ttr(min) E(kJ) (%) Acln(%) Arob(%) ttr(min) E(kJ)

Small (Din) 5 92.69 70.57↓ 31 241 9 68.07 41.24↓ 38 335

VGG-19 Small (Daug) 5 86.93 75.90 50 269 9 57.82 45.13 46 298
(20M) GEARnn-1 5 84.07 73.81 28 93 9 51.16 40.30 30 114

GEARnn-2 5 86.65 76.21 27 114 9 56.93 45.55 31 203

B.5 RESULTS ON NVIDIA JETSON ORIN NANO

Table 13: Comparison of between the baselines and GEARnn for CIFAR-10 and CIFAR-100 using
VGG-19 on Jetson Orin Nano.

CIFAR-10 CIFAR-100

Network Method Accuracy Inference Training Accuracy Inference Training
Acln(%) Arob(%) Size% tinf(ms) ttr(min) E(kJ) Acln(%) Arob(%) Size% tinf(ms) ttr(min) E(kJ)

VGG-19

Small (Din) 92.84 70.03↓ 5 0.3 149 49 67.07 40.29↓ 9 0.3 175 59

Small (Daug) 93.00 85.19 5 0.3 411 173 69.23 55.72 9 0.3 492 206
GEARnn-1 90.72 82.13 5 0.3 196 72 63.02 50.16 9 0.4 291 104
GEARnn-2 92.23 83.29 5 0.3 174 57 67.14 53.56 9 0.3 231 82

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C ACCURACY-ROBUSTNESS-EFFICIENCY TRADE-OFFS

C.1 TRAINING TIME VERSUS ACCURACIES

In Section 6 and Fig. 5 we observed that GEARnn-2 can achieve high robustness even when the
robust training epochs are low. This is due to better initialization provided by OSG. We show the
same results ablated for both VGG-19 and MobileNet-V1 for CIFAR-10 and CIFAR-100 in Fig. 9.

40 60 80 100 120 140 160
Epochs

82

83

84

85

86

Ro
bu

st
 A

cc
ur

ac
y

(%
)

Small (aug)
GEARnn-1
GEARnn-2

(a)

50 100 150 200
Training Time (min)

82

83

84

85

86

Ro
bu

st
 A

cc
ur

ac
y

(%
)

Small (aug)
GEARnn-1
GEARnn-2

(b)

50 100 150 200
Training Time (min)

90

91

92

93

Cl
ea

n
Ac

cu
ra

cy
 (%

)

Small (aug)
GEARnn-1
GEARnn-2

(c)

40 60 80 100 120 140 160
Epochs

81.0

81.5

82.0

82.5

83.0

83.5

84.0

Ro
bu

st
 A

cc
ur

ac
y

(%
)

Small (aug)
GEARnn-1
GEARnn-2

(d)

50 75 100 125 150 175 200
Training Time (min)

81.0

81.5

82.0

82.5

83.0

83.5

84.0

Ro
bu

st
 A

cc
ur

ac
y

(%
)

Small (aug)
GEARnn-1
GEARnn-2

(e)

50 75 100 125 150 175 200
Training Time (min)

90.0

90.5

91.0

91.5

92.0

92.5

93.0

93.5

Cl
ea

n
Ac

cu
ra

cy
 (%

)

Small (aug)
GEARnn-1
GEARnn-2

(f)

40 60 80 100 120 140 160
Epochs

45.0

47.5

50.0

52.5

55.0

57.5

60.0

Ro
bu

st
 A

cc
ur

ac
y

(%
)

Small (aug)
GEARnn-1
GEARnn-2

(g)

50 100 150 200
Training Time (min)

45.0

47.5

50.0

52.5

55.0

57.5

60.0

Ro
bu

st
 A

cc
ur

ac
y

(%
)

Small (aug)
GEARnn-1
GEARnn-2

(h)

50 100 150 200
Training Time (min)

57.5

60.0

62.5

65.0

67.5

70.0

72.5

Cl
ea

n
Ac

cu
ra

cy
 (%

)

Small (aug)
GEARnn-1
GEARnn-2

(i)

40 60 80 100 120 140 160
Epochs

49

50

51

52

53

54

55

56

Ro
bu

st
 A

cc
ur

ac
y

(%
)

Small (aug)
GEARnn-1
GEARnn-2

(j)

50 100 150 200
Training Time (min)

49

50

51

52

53

54

55

56

Ro
bu

st
 A

cc
ur

ac
y

(%
)

Small (aug)
GEARnn-1
GEARnn-2

(k)

50 100 150 200
Training Time (min)

62

64

66

68

70

Cl
ea

n
Ac

cu
ra

cy
 (%

)

Small (aug)
GEARnn-1
GEARnn-2

(l)

Figure 9: Plots (a)-(c) are implemented for VGG-19/CIFAR-10, (d)-(f) are for MobileNet-V1/CIFAR-
10, (g)-(i) are for VGG-19/CIFAR-100, and (j)-(l) are for MobileNet-V1/CIFAR-100 on Quadro.
First two plots of each row indicates the robust accuracy as a function of epochs and training time
respectively. The last plot in each row shows the clean accuracy as a function of training time.
GEARnn-2 clearly achieves the best clean and robust accuracy at the same training cost.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C.2 MODEL SIZE VERSUS ACCURACIES

Fig. 10a and Fig. 10b show the results of L1-Unstructured pruning performed on GEARnn-2 final
network. The global sparsity is varied from 10% to 90% in steps of 20%. Fig. 10c shows the impact
of varying the growth ratio γ in GEARnn-2’s OSG.

10 20 30 40 50 60 70 80 90
sparsity (%)

20

40

60

80

ac
cu

ra
cy

 (%
)

clean accuracy
robust accuracy
GEARnn-2 clean accuracy
GEARnn-2 robust accuracy

(a)

0.2 0.4 0.6 0.8
no. of non-zero params (in millions)

20

40

60

80

ac
cu

ra
cy

 (%
)

clean accuracy
robust accuracy
GEARnn-2 (1M) clean accuracy
GEARnn-2 (1M) robust accuracy

(b)

0.6 0.8 1.0 1.2 1.4
no. of params (in millions)

82.5

83.0

83.5

84.0

84.5

ro
bu

st
 a

cc
ur

ac
y

(%
)

(c)

Figure 10: Plots (a) & (b) show the impact of L1-unstructured pruning done on the final network
f∗
2p obtained from GEARnn-2 (1 million params). Plot (a) represents the sparsity-controlled pruning

and Plot (b) shows the corresponding points plotted in parameter-space. Plot (c) indicates the impact
of parameters on robust accuracy of GEARnn-2 when the growth ratio γ of OSG is varied. All
experiments are conducted on CIFAR-10 data using VGG-19 network.

D PRIOR WORKS

D.1 FIREFLY

In this section, we explain how the splitting and growing new neurons in Firefly Wu et al. (2020)
(and our growth technique G) is implemented. We explain it in terms of fully-connected layers and
neurons, but this can be easily extended to CNNs. Consider a multi-layered perception with two
neurons in the hidden layer as shown in Figure 1 of Wu et al. (2020). If x is the input to the neurons,
θi and 1 are the weights, σ is the activation function, then we can write the input to the final layer as
σ(x, θi). In case of splitting growth, we add a new incoming weight by perturbing the existing weight
(σ(x, θi − εiδi)) and adding the new perturbed weight (σ(x, θi + εiδi)). When adding a random
new-grown weight, we add a randomly initialized weight δi such that the input to the final layer is
εiσ(x, δi). We can write the function as follows:

fε,δ =

m∑
i=1

1

2
(σ(x, θi − εiδi) + σ(x, θi + εiδi)) +

m+m′∑
i=m+1

εiσ(x, δi)

min
ε,δ
{L(fε,δ) s.t. ||ε||0 ≤ γC(f1), ||ε||∞ ≤ ϵ, ||δ||2,∞ ≤ 1}

where m denotes the number of split neurons and m′ denotes the number of newly grown neurons.
Solving the above minimization problem (denoted as G) provides us the grown network.

D.2 AUGMIX

The working of AugMix Hendrycks et al. (2019) is similar to that of ERA. However AugMix uses
parallel concurrent transforms which makes it more inefficient than ERA. Below equations indicate
the working of AugMix. The notation is same as ERA and W denotes the width of the block of
transforms.

Aw
j (x) = a1 ◦ a2 ◦ ... ◦ adj

(x)

Aj(x) =

W∑
w=1

αwA
w
j (x)

xaug
j = px+ (1− p)Aj(x)

R((x, y)|T) = ({xaug
1 ,...,xaug

J−1,x}, y) =⇒ Daug := R(Din|T)
where ai ∼ Unif(T), p ∼ β(1, 1), dj ∼ Unif({1, ..., D}), j ∈ {1, ..., J − 1},α ∼ Dirichlet(W)

(3)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

D.3 COMPARISON WITH PRIOR GROWTH WORKS

Table 14: Comparing GEARnn with SOTA growth methods

Growth CIFAR-10 CIFAR-100

Method Acln (%) Arob (%) Size (M) ttr (min) Acln (%) Arob (%) Size (M) ttr (min)

Splitting Wu et al. (2019) 93.43 70.91 1.11 145 70.78 42.20 1.81 194
Firefly Wu et al. (2020) 93.59 73.00 1.38 169 69.35 41.90 2.39 204

GEARnn-2 (ours) 92.18 83.77 1.06 53 68.44 54.31 1.81 65

Here we compare GEARnn-2 with the direct implementations of state-of-the-art growth methods. For
implementation purposes the Splitting method has 1 randomly initialized neuron. The networks from
Splitting and Firefly with the closest number of parameters to GEARnn-2 are picked for comparison.
We find that GEARnn-2 has better robustness, training and inference efficiency compared to the
SOTA methods.

18

	Introduction
	Background and Related Work
	Notation and Problem Setup
	Growing Efficient Accurate and Robust Neural Networks (GEARnn)
	One-Shot Growth (OSG)
	Efficient Robust Augmentation (ERA)
	GEARnn Algorithms

	Experimental Setup
	Main Results
	Results across Network Architectures and Datasets
	Results on the Edge
	One-Shot vs. Multi-Shot Growth

	Ablation Study
	Generalization across robust augmentation methods
	Efficiency and Robustness breakdown

	Discussion
	Impact of OSG on Network Topology
	Rationale for 2-Phase Approach

	Limitations and Broader Impacts
	Conclusion
	Reproducibility Statement
	Training Setup
	Ablation Studies
	Diagnostics of Robust Augmentation Methods
	OSG versus Multi-Shot Growth Comparisons
	Benefits of ERA on Jetson
	blueGaussian Augmentation
	blueResults on NVIDIA Jetson Orin Nano

	blueAccuracy-Robustness-Efficiency Trade-offs
	blueTraining Time versus Accuracies
	blueModel Size versus Accuracies

	Prior Works
	Firefly
	AugMix
	Comparison with Prior Growth Works

