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Abstract

Generative models, including normalizing flows, are gaining popularity in imaging
science for tasks such as image reconstruction, posterior sampling, and data sharing.
However, training them requires a high-quality dataset of objects, which can be
challenging to obtain in fields such as tomographic imaging. This work proposes
AmbientFlow, a framework for training flow-based generative models directly from
noisy and incomplete data using variational Bayesian methods. The effectiveness
of AmbientFlow in learning invertible generative models of objects from noisy,
incomplete stylized imaging measurements is demonstrated via numerical studies.

1 Introduction

Invertible generative models (IGMs) are a class of machine learning models that approximate
an unknown data distribution by learning an implicit bijective mapping from a simple, tractable
distribution such as the standard normal distribution, to the data distribution of interest. Due to their
bijectivity, they enable both efficient, high-quality sampling as well as tractable density estimation.
Due to these properties, invertible generative models have been investigated for diverse applications,
such as data generation and editing (Kingma & Dhariwal, 2018), variational inference (Rezende &
Mohamed, 2015) and probabilistic modeling for physical systems (Papamakarios et al., 2021).

IGMs are also promising for potential applications in imaging science. For instance, IGMs have
been investigated for their use as priors for regularizing inverse problems in tomographic imaging,
where a computational procedure is required to estimate an object from noisy or incomplete imaging
measurements (Zhao et al., 2022; Zhang & Curtis, 2021; Kelkar et al., 2021). IGMs offer exact
density estimates, tractable log-likelihoods and useful representations of individual images (Dinh
et al., 2016, 2014; Kingma & Dhariwal, 2018). This makes them more reliable for downstream
inference tasks in imaging science as compared to certain other types of generative models, such
as generative adversarial networks (GANs), that exhibit insufficient representation capacity and
misrepresentation of domain-specific statistics (Asim et al., 2020; Jalal et al., 2021; Kelkar et al.,
2023b). IGMs have shown potential for use in tasks such as image reconstruction, posterior sampling,
uncertainty quantification and anomaly detection (Kelkar et al., 2021; Jalal et al., 2021; Zhao et al.).

Despite their promise, training IGMs requires a large dataset of objects or high-quality image
estimates. This poses challenges in scenarios such as tomographic imaging, where acquiring complete
measurements of objects to build such a dataset can be impractical. In the context of GANs, the
AmbientGAN framework was proposed to address this problem, where a conventional GAN was
augmented with the measurement operator. It employs an adversarial training strategy, where the
real and fake object distributions are indirectly compared by a discriminator acting on the real
measurements, and measurements simulated from the fake objects. This approach is fundamentally
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distinct from the direct log-probability maximization used in training IGMs, which isn’t easily
adaptable when only incomplete measurements are available.

In this work, a new framework named AmbientFlow is developed for training IGMs using noisy,
incomplete measurements. The accuracy of the object distribution recovered via AmbientFlow is
theoretically analyzed under prescribed ideal conditions using compressed sensing. Finally, numerical
studies are presented to demonstrate the effectiveness of the proposed method on a two-dimensional
toy problem, as well as a stylized magnetic resonance imaging (MRI) numerical study. Additional
experiments can be found in our extended paper (Kelkar et al., 2023a).

2 Approach

Conventionally, invertible generative models (IGMs) are trained to bijectively map a latent variable z
with a simple distribution, such as the standard normal distribution, to an object f ∈ Rn that follows
the distribution of interest, using an invertible neural network (INN) Gθ : Rn → Rn. The IGM is
trained by minimizing the KL divergence DKL(qf∥pθ) between the learned distribution pθ and the
true distribution qf , or equivalently, by maximizing the log-likelihood objective over a dataset of
samples drawn from qf :

L(θ) = Ef∼qf log pθ(f) = Ef∼qf [log qz(z)− log |det∇zGθ(z)|], z = G−1
θ (f). (1)

In the present scenario, instead of samples from qf , a training dataset of noisy and potentially
incomplete imaging measurements g = Hf + n from objects f ∼ qf is available. Here, H ∈ Rm×n,
known as the forward model, is a linear operator that models the physics of the imaging process, and
n ∈ Rm,n ∼ qn models the measurement noise.

Let qg be the true distribution of the measurements, and ψθ be the distribution of fake measurements,
i.e. for f ∼ pθ, Hf + n ∼ ψθ. Since samples from qf are not available, an additional INN, known
as the posterior network hϕ(· ;g) : Rn → Rn is introduced that takes two inputs – a latent vector
ζ ∼ qζ = N (0, In), and a conditioning input g ∼ qg from the training dataset, to produce samples
from the model posterior pϕ(f |g). We propose to minimize DKL(qg∥ψθ) in lieu of DKL(qf∥pθ)
and establish conditions under which matching ψθ to qg upper-bounds a distance between pθ and qf .
As formalized in Theorem A.1 in the appendix, for sufficiently expressive parametrizations of pθ and
pϕ, minimizing DKL(qg∥ψθ) is equivalent to maximizing the following objective:

LM (θ, ϕ) = Eg,ζi
logavgexp

0<i≤M

[
log pθ

(
hϕ(ζi;g)

)
+ log qn

(
g −Hhϕ(ζi;g)

)
− log pϕ

(
hϕ(ζi;g) |g

)]
,

where ζi ∼ qζ, 0 < i ≤M, and logavgexp
0<i≤M

(xi) := log

[
1

M

M∑
i=1

exp(xi)

]
. (2)

The objective LM (θ, ϕ) uses the posterior network to circumvent the need for direct access to ψθ(g),
or samples of true objects from qf .

It can be shown that for a system with an injective forward operator H and measurement noise n
having a non-zero characteristic function, ψθ = qg ⇒ pθ = qf (Bora et al., 2018). However, when
the forward operator H has a null space, it is not possible to uniquely relate pθ to the measurement
distribution without additional information about qf . Nevertheless, if the objects of interest are known
to be close to vectors that are sparse with respect to a full-rank transform Φ, pθ can be constrained to
the set of distributions concentrated on these compressible objects. In order to recover a distribution
pθ concentrated on objects that are compressible with respect to Φ, the following optimization
problem is proposed:

θ̂, ϕ̂ = argmin
θ,ϕ

−LM (θ, ϕ) subject to Eg∼qgEf∼pϕ(· | g)∥Φf − ΦprojSk
(f)∥1 < ϵ, (3)

where projSk
(f) denotes the orthogonal projection of f ∈ Rn onto the set Sk of objects for which Φf

is k−sparse. It can be shown that if H and f ∼ qf satisfy specific conditions of compressed sensing
(Candes et al., 2006) and the AmbientFlow is trained sufficiently well using Eq. (3), then the error
between the true and recovered object distributions can be bounded. This is formally established via
Theorem A.2 in the appendix.
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In practice, Eq. (3) is reformulated in its Lagrangian form, and a regularization parameter µ is used to
control the strength of the sparsity-promoting constraint. Also, inspired by the β-VAE framework
(Higgins et al., 2017), an additional regularization parameter λ was used to control the strength of
the likelihood term log qn(g −Hhϕ(ζi;g)). This modifies the problem to maximizing the following
objective function, which was optimized using gradient-based methods.

L̃M (θ, ϕ) = Eg∼qgEζi∼qζ

[
logavgexp

0<i≤M

{
log pθ

(
hϕ(ζi;g)

)
+ λ log qn

(
g −Hhϕ(ζi;g)

)
− log pϕ

(
hϕ(ζi;g) |g

)}
− µ

∥∥Φhϕ(ζi;g)− projSk
(Φhϕ(ζi;g))

∥∥
1

]
(4)

Empirically, we observe that the proposed ℓ1 penalty also promotes sparse deviation of the output of
hϕ from Sk, which improves the quality of the images generated by AmbientFlow.

3 Numerical Studies

This section describes the numerical studies used to demonstrate the utility of AmbientFlow for
learning object distributions from noisy and incomplete imaging measurements. The studies include
toy problems in two dimensions, as well as the problem of recovering the object distribution from
stylized magnetic resonance imaging measurements.

1) Toy problem: First, a two-dimensional
object distribution was considered, which
was created as a sum of eight Gaussian
distributions with centers forming a regu-
lar octagon, as shown in Fig. 1a. The for-
ward operator was the identity operator, and
the noise n was distributed as a zero-mean
Gaussian. The distribution of the measure-
ments g = f + n is shown in Fig. 1b.

(a) (b) (c) (d)

Figure 1: (a) True distribution qf , (b) distribution qg
of measurements, (c) distribution learned by a flow
model trained on true objects, and (d) distribution
learned by AmbientFlow trained on measurements.

2) Stylized MRI study: In this study, the problem of recovering the distribution of objects from simu-
lated, stylized MRI measurements was considered. T2-weighted brain images of size n = 128×128
from the FastMRI initiative database were considered (Zbontar et al., 2018) as samples from the
object distribution. Two separate AmbientFlow models were trained using simulated, stylized MRI
measurements with undersampling ratio n/m = 1 and n/m = 4 containing complex valued iid
Gaussian measurement noise. A discrete gradient operator was used as the sparsifying transform
Φ. The images generated by AmbientFlow were compared alongside the images individually re-
constructed from the measurements using penalized least-squares with TV regularization (PLS-TV)
(Beck & Teboulle, 2009), as well as the inverse fast Fourier transform (IFFT) based estimates. The
Frechet Inception distance (FID) score was used for comparisons. Additionally, radiomic features
commonly computed in medical imaging applications were employed (Van Griethuysen et al., 2017).
Details of AmbientFlow training and evaluation are provided in the appendix.

4 Results

Figure 1 shows the true object distribution, the distribution learned by a flow model trained on objects,
the measurement distribution, and the object distribution recovered by AmbientFlow trained using the
measurements. It can be seen that AmbientFlow is successful in generating nearly noiseless samples
that belong to one of the eight Gaussian blobs, although a small number of generated samples lie in
the connecting region between the blobs.
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True objects Flow trained on true objects (FID = 45.6)

IFFT recons from fully sampled meas. (FID = 94.2) IFFT recons from 4x undersampled meas (FID=162.0)

PLS-TV recons from fully sampled meas. (FID=94.4) PLS-TV recons from 4x undersamp. meas (FID=181.7)

AmbientFlow trained on fully sampled meas (FID=72.4) AmbientFlow trained on 4x undersamp. meas (FID=88.2)

Figure 3: True objects, IFFT-based image estimates, PLS-TV based image estimates and images
synthesized by the flow model trained on the true objects, as well as the AmbientFlows trained on the
measurements for the stylized MRI study.

The results of the stylized MRI study are shown
in Fig. 3. The visual and FID-based quality of
images synthesized by the AmbientFlow mod-
els was inferior only to the images synthesized
by the flow trained directly on objects, and was
superior to the images reconstructed individu-
ally from the measurements using the PLS-TV
method. Since the underlying Inception network
used to compute the FID score is not directly
related to medical images, additional evaluation
was performed in terms of radiomic features rel-
evant to medical image assessments.
Figure 2 plots the empirical PDF over the first
two principal components of the radiomic fea-
tures extracted from each of the MR image sets
shown in Fig. 3, except the IFFT image estimates.
It can be seen that there is a significant disparity
between the principal radiomic feature PDFs of
the true objects and the images reconstructed in-
dividually using PLS-TV. On the other hand, the
AmbientFlow-generated images have a radiomic
feature distribution closer to the true objects

(a) True objects

(b) Flow trained
on true objects

PLS-TV recons from noisy measurements 
(c) n/m = 1 (e) n/m = 4

AmbientFlow trained on noisy measurements 
(d) n/m = 1 (f) n/m = 4

Figure 2: Empirical PDF over the first two princi-
pal components of the radiomic features extracted
from MRI images. For each plot, the bold contour
encloses the region containing 80% of the proba-
bility mass. For (b-f), the dotted contour encloses
the region containing 80% of the probability mass
of the true objects.

for both the fully sampled and 4-fold undersampled cases. This implies that, training an AmbientFlow
on the noisy/incomplete measurements yielded an estimate of the object distribution that was more
accurate in terms of the computed radiomic features, than the one defined by images individually
reconstructed from the measurements using the PLS-TV method.

5 Discussion and conclusion

In imaging science, obtaining an estimate of the object distribution that is useful for downstream tasks
is challenging when only noisy and incomplete measurements of the objects are available. In this work,
a framework for learning flow-based generative models of objects directly from noisy/incomplete
measurements was developed. The presented numerical studies show that AmbientFlow mitigated
the effects of data incompleteness and measurement noise, and accurately approximated the object
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distribution in terms of perceptual measures such as the FID score, as well as domain specific radiomic
features.

The AmbientFlow framework bears some similarity with variational autoencoders (VAEs), with the
latent distribution in VAEs being analogous to the object distribution in AmbientFlow. However,
the latent distribution in VAEs is typically simple and non-unique, whereas the object distribution
in AmbientFlow is a complex high dimensional distribution that is of primary interest and needs to
be recovered as accurately as possible. Hence, the two frameworks have distinct goals that guide
their design. The presented framework can be adopted to other generative models that utilize a
log-likelihood-based training objective, such as denoising diffusion probabilistic models (DDPMs)
which enable high-quality Bayesian inference in imaging (Song et al., 2021; Daras et al., 2023).

A limitation of the proposed framework is that its performance is limited by the capacity of the
posterior network hϕ to accurately model the posterior. Also, although this work involves preliminary
assessments of AmbientFlow using the FID score and radiomic features, a thorough evaluation of
generative models for imaging applications would involve assessing whether they can reproduce
image statistics that are relevant to a wide variety of downstream tasks (Kelkar et al., 2023b,c).
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A Theoretical analysis

First, the notation used in the manuscript is defined again for convenience.

Notation. Let qf , qg and qn denote the unknown true object distribution to-be-recovered, the
true measurement distribution and the known measurement noise distribution, respectively. Let
D = {g(i)}Di=1 be a dataset of independent and identically distributed (iid) measurements drawn
from qg. Let Gθ : Rn → Rn be an INN. Let pθ be the distribution represented by Gθ, i.e. given
a latent distribution qz = N (0, In), Gθ(z) ∼ pθ for z ∼ qz. Also, let ψθ be the distribution of
fake measurements, i.e. for f ∼ pθ, Hf + n ∼ ψθ. Let pθ(f |g) ∝ qn(g − Hf) pθ(f) denote
the posterior induced by the learned object distribution represented by Gθ. Let Φ ∈ Rl×n, l ≥ n
be a full-rank linear transformation (henceforth referred to as a sparsifying transform). Also, let
Sk = {v ∈ Rn s.t. ∥Φv∥0 ≤ k} be the set of vectors k-sparse with respect to Φ. Since Φ is full-rank,
throughout this chapter we assume without the loss of generality, that ∥Φ+∥2 ≤ 1, where Φ+ is the
Moore-Penrose pseudoinverse of Φ. Throughout the manuscript, we also assume that qf is absolutely
continuous with respect to pθ, and qg is absolutely continuous with respect to ψθ.

Next, we define the restricted isometry property which characterizes matrices that are well-conditioned
when operating on sparse vectors.

Definition A.1 (Restricted isometry property). For s ∈ N, define the restricted isometry constant
(RIC) δs as the smallest constant that satisfies

(1− δs)∥v∥22 ≤ ∥Hv∥22 ≤ (1 + δs)∥v∥22, (5)

for all v such that ∥Φv∥0 ≤ s. H is said to satisfy the restricted isometry property for all v such that
∥Φv∥0 ≤ k, if δk + δ2k + δ3k < 1 (Candes et al., 2006).

Compressed sensing stipulates that if an object f is k-sparse after a full-rank linear transformation
Φ ∈ Rl×n, l ≥ n, then the object can be stably estimated from noisy, incomplete measurements
Hf+n if for all vectors v ∈ Rn that are k-sparse in the transform domain Φ,H satisfies the restricted
isometry property (RIP) defined above (Candes et al., 2006).

The following theorem formulates an objective that is equivalent to minimizing DKL(qg∥ψθ).

Theorem A.1. Let hϕ be such that pϕ(f |g) > 0 over Rn. Also, assume that hϕ and Gθ have
sufficient capacity, i.e. ∃ θ∗, ϕ∗ such that ψθ∗ = qg, and pϕ∗(·|g) = pθ∗(·|g). Then, minimizing
DKL(qg∥ψθ) is equivalent to maximizing the following objective function over θ, ϕ:

LM (θ, ϕ) = Eg,ζi
logavgexp

0<i≤M

[
log pθ

(
hϕ(ζi;g)

)
+ log qn

(
g −Hhϕ(ζi;g)

)
− log pϕ

(
hϕ(ζi;g) | g

)]
, (6)

where ζi ∼ qζ, 0 < i ≤M,M ∈ N, and logavgexp0<i≤M (xi) := log
[

1
M

∑M
i=1 exp(xi)

]
.

Proof. From the definition of KL divergence, we have

DKL(qg∥ψθ) = Eg∼qg

[
log

qg(g)

ψθ(g)

]
(7)

= Eg∼qg log qg(g)− Eg∼qg logψθ(g). (8)

Now, ψθ(g) can be written as

ψθ(g) =

∫
qg|f (g|f)pθ(f)df (9)

=

∫
pϕ(f |g)

qn(g −Hf) pθ(f)

pϕ(f |g)
df (10)

= Ef∼pϕ(·|g)

[
qn(g −Hf) pθ(f)

pϕ(f |g)

]
. (11)
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Therefore,

Eg∼qg logψθ(g) = Eg∼qg

[
logEf∼pϕ(·|g)

{
pθ(f) qn(g −Hf)

pϕ(f | g)

}]
(12)

= Eg∼qg

[
logEζ∼qζ

{
pθ
(
hϕ(ζ;g)

)
qn
(
g −Hhϕ(ζ;g)

)
pϕ

(
hϕ(ζ;g) | g

) }]
. (13)

≥ Eg∼qg,ζi∼qζ

[
log

1

M

M∑
i=1

{
pθ
(
hϕ(ζi;g)

)
qn
(
g −Hhϕ(ζi;g)

)
pϕ

(
hϕ(ζi;g) | g

) }]
(14)

= LM (θ, ϕ). (by Jensen’s inequality)

Furthermore, following the discussion provided in Burda, et al. (Burda et al., 2015),

LM (θ, ϕ) ≥ Eg∼qg logψθ(g)−DKL(pϕ(·|g)∥pθ(·|g)), (15)

= LELBO(θ, ϕ), (16)

where LELBO(θ, ϕ) denotes the evidence lower bound (Kingma et al., 2019).

Therefore,

LELBO(θ, ϕ) ≤ LM (θ, ϕ) ≤ Eg∼qg logψθ(g) ≤ Eg∼qg log qg(g). (17)

Now, since hϕ and Gθ have sufficient capacity, i.e. ∃ θ∗, ϕ∗ such that ψθ∗ = qg, and pϕ∗(·|g) =
pθ∗(·|g),

max
θ,ϕ

LELBO(θ, ϕ) = max
θ

Eg∼qg logψθ(g) = Eg∼qg log qg(g). (18)

Therefore,

max
θ,ϕ

LM (θ, ϕ) = Eg∼qg log qg(g). (19)

Now, DKL(qg∥ψθ) = Eg∼qg log qg(g) − Eg∼qg logψθ(g). Therefore, since Eg∼qg log qg(g) is a
constant,

min
θ
DKL(qg∥ψθ) = Eg∼qg log qg(g)−max

θ
Eg∼qg logψθ(g) (20)

= Eg∼qg log qg(g)−max
θ,ϕ

LM (θ, ϕ) (21)

Also, LM (θ, ϕ) attains its maximum at θ∗, ϕ∗ defined in the statement of Theorem A.1, whereas
DKL(qg∥ψθ) attains its minimum at θ∗. Therefore, minimizing DKL(qg∥ψθ) with respect to θ is
equivalent to maximizing LM (θ, ϕ) with respect to θ and ϕ under the assumptions of Theorem A.1.

The following lemma, adapted from (Bora et al., 2018), establishes a condition for unique recovery
of the object distribution for certain types of forward operators.
Lemma A.1. If H is a square matrix (n = m) with full-rank, if the noise n is independent of the
object, and if the characteristic function of the noise χn(ν) = En∼qn exp(ιν

⊤n) has full support
over Rm (ι is the square-root of −1), then ψθ = qg ⇒ pθ = qf .

Proof. This proof as been adapted from the AmbientGAN work (Bora et al., 2018). Let y = Hf
represent the noiseless measurements. Therefore,

g = y + n, (22)
⇒ qg = qy ∗ qn, (23)

where ∗ represents a convolution (in the sense of linear systems theory) (Lathi & Green, 2005).
Therefore,

χg(ν) = χy(ν)χn(ν), ν ∈ Rm. (24)

Since χn has full support over Rm, χg uniquely determines χy. Therefore, qg uniquely determines
qy.

Also, since H is bijective, qy uniquely determines qf . Therefore, ψθ = qg ⇒ pθ = qf .
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Now, if H is rank-deficient, it is in general not possible to uniquely relate pθ to the measurement
distribution. However, for object distributions that are concentrated on transform-sparse vectors, if H
satisfies the conditions of compressed sensing, we show that it is possible to accurately recover the
object distribution by solving the following optimization problem:

θ̂, ϕ̂ = argmin
θ,ϕ

−LM (θ, ϕ) subject to Eg∼qgEf∼pϕ(·|g)∥Φf − ΦprojSk
(f)∥1 < ϵ. (3)

This is formalized as follows.
Theorem A.2. For a PDF q : Rn → R, let qSk denote the distribution of projSk

(x), for x ∼ q. Also,
for distributions q1, q2, let W1(q1∥q2) := infq∈Γ E(x1,x2)∼q∥x1 − x2∥2, denote the Wasserstein
1-distance, with Γ being the set of all joint distributions q : Rn×n → R with marginals q1, q2, i.e.∫
q(x1,x2)dx2 = q1(x1),

∫
q(x1,x2)dx1 = q2(x2).

If the following hold:
1. W1(qf ∥ qSk

f ) ≤ ϵ′ (the true object distribution is concentrated on k-sparse objects under Φ),
2. H satisfies the RIP for objects k-sparse w.r.t. Φ, with isometry constant δk,
3. the characteristic function of noise χn(ν) has full support over Cm, and
4. (θ, ϕ) satisfying pθ = qf and pϕ(· |g) = pθ(· |g) is a feasible solution to Eq. (3) (Gθ and hϕ

have sufficient capacity),
then the distribution pθ̂ recovered via Eq. (3) is close to the true object distribution, in terms of the
Wasserstein distance i.e.

W1(pθ̂ ∥ qf ) ≤
(
1 +

1√
1− δk

∥H∥2
)
(ϵ+ ϵ′). (25)

In order to prove Theorem A.2, we first establish essential notation and intermediate results needed.
Specifically, in Lemma A.2, we derive an expression for the wasserstein distance between a distribu-
tion of a random variable, and the distribution of its projection onto a set. We then proceed to prove
Theorem A.2.

Notation. For a closed set S ⊂ Rn, let projS(f) denote the orthogonal projection of f onto S,
defined as

projS(f) = min
f ′∈S

∥f ′ − f∥2 (26)

For a PDF q : Rn → R, let qS denote the distribution of projS(x), for x ∼ q. Also, for distributions
q1, q2, let

W1(q1∥q2) := inf
γ∈Γ (q1,q2)

E(x1,x2)∼γ∥x1 − x2∥2 (27)

denote the Wasserstein 1-distance, with Γ (q1, q2) being the set of all joint distributions γ : Rn×n → R
with marginals q1, q2, i.e.∫

γ(x1,x2)dx2 = q1(x1),

∫
γ(x1,x2)dx1 = q2(x2). (28)

Lemma A.2. Let x ∈ Rn be a random vector with distribution q. Then, with the above notation,

W1(q∥qS) = Ex∼q ∥x− projS(x)∥2 . (29)

Proof. Let γ0 : Rn×n → R be a degenerate joint distribution given by

γ0(x,w) = q(x)δ
(
w − projS(x)

)
, x,w ∈ Rn, (30)

where, δ(w) denotes the Dirac delta. Therefore, by definition of the Wasserstein distance,

W1(q∥qS) ≤ E(x,w)∼γ0
∥x−w∥2 , (31)

=

∫
q(x)δ

(
w − projS(x)

)
∥x−w∥2 dxdw, (32)

=

∫
q(x) ∥x− projS(x)∥2 dx, (33)

= Ex∼q ∥x− projS(x)∥2 . (34)
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On the other hand, by definition of orthogonal projection,

∥x− projS(x)∥2 ≤ ∥x−w∥2 , ∀ w ∈ supp(qS). (35)

Therefore,

Ex∼q ∥x− projS(x)∥2 ≤ E(x,w)∼γ ∥x−w∥2 , γ ∈ Γ (q, qS). (36)

⇒ Ex∼q ∥x− projS(x)∥2 ≤ inf
γ∈Γ (q,qS)

E(x,w)∼γ ∥x−w∥2 , (37)

=W1(q∥qS). (38)

Equations (34) and (38) imply

W1(q∥qS) = Ex∼q ∥x− projS(x)∥2 . (39)

With all the tools in place, we now proceed to prove Theorem A.2.

The intuitive idea behind the proof of this theorem is as follows. Compressed sensing stipulates that
under precribed conditions, the forward operator is injective on a set of sparse vectors. Thus, if an
object distribution is sparse, then the distribution of its measurements should be uniquely linked to
it. If the object distribution qf is compressible, and if it is ensured that a compressible distribution
pθ̂ is recovered via Eq. (3), then both qf and pθ̂ will be concentrated on the sparse vectors, and
will associated with the same measurement distribution qg. Since the sparse vectors are uniquely
determined by the measurements, pθ̂ and qf must themselves be close.

Proof. Since (θ, ϕ) satisfying pθ = qf , and pϕ(·|g) = pθ(·|g) is a feasible solution to Eq. (3), the
maximum value of LM under Eq. (3) is Eg∼qg log qg(g). Therefore, according to Eq. (17), for the
estimated θ̂ and ϕ̂, L(θ̂, ϕ̂) = Eg∼qg log qg(g),

ψθ̂ = qg and pϕ̂(·|g) = pθ̂(·|g). (40)

Let f1, f2 ∈ Rn. Therefore, by triangle inequality,

∥f1 − f2∥2 =
∥∥f1 − fS1 + fS2 − f2 + fS1 − fS2

∥∥
2
, (41)

≤
∥∥f1 − fS1

∥∥
2
+

∥∥fS2 − f2
∥∥
2
+
∥∥fS1 − fS2

∥∥
2
, (42)

where fS is a shorthand for projSk
(f) for f ∈ Rn.

f1, f2 can be represented in terms of the spasifying transform Φ. Let ci = Φfi and cSi = ΦfSi , for
i = 1, 2. Therefore,

∥f1 − f2∥2 ≤
∥∥f1 − fS1

∥∥
2
+

∥∥Φ+
∥∥
2

∥∥c2 − cS2
∥∥
2
+

∥∥fS1 − fS2
∥∥
2
, (43)

where Φ+ is the Moore-Penrose pseudoinverse of Φ. Also, by definition, recall that cS1 and cS2 have
at most k non-zero values.

Now, let yi = Hfi for i = 1, 2. Therefore,∥∥yS
1 − yS

2

∥∥
2
=

∥∥yS
1 − y1 + y2 − yS

2 + y1 − y2

∥∥
2

(44)

≤
∥∥y1 − yS

1

∥∥
2
+

∥∥y2 − yS
2

∥∥
2
+ ∥y1 − y2∥2 , (45)

≤ ∥H∥2
∥∥f1 − fS1

∥∥
2
+
∥∥HΦ+

∥∥
2

∥∥c2 − cS2
∥∥
2
+ ∥y1 − y2∥2 . (46)

Now, the restricted isometry property (RIP) on H defined in Definition A.1 implies∥∥fS1 − fS2
∥∥
2
≤ 1√

1− δk

∥∥yS
1 − yS

2

∥∥ . (47)
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Therefore, Equations (43), (46) and (47) give

∥f1 − f2∥ ≤
∥∥f1 − fS1

∥∥
2
+

∥∥Φ+
∥∥
2

∥∥c2 − cS2
∥∥
2

+
1√

1− δk

[
∥H∥2

∥∥f1 − fS1
∥∥
2

+
∥∥HΦ+

∥∥
2

∥∥c2 − cS2
∥∥
2
+ ∥y1 − y2∥2

]
. (48)

≤ α
(∥∥f1 − fS1

∥∥
2
+
∥∥Φ+

∥∥
2

∥∥c2 − cS2
∥∥
2

)
+

1√
1− δk

∥y1 − y2∥2 , (49)

where α = 1 +
1√

1− δk
∥H∥2 . (50)

Now, let B = Γ (qf , pθ̂), i.e. the set of all joint distributions β : Rn×n → R that have marginals
qf and pθ̂. Also, let ρθ̂ be the distribution of y = Hf for f ∼ pθ̂, i.e. the noiseless version of ψθ̂.
Therefore, for β ∈ B,

E(f1,f2)∼β ∥f1 − f2∥2 ≤ α
[
Ef1∼qf

∥∥f1 − fS1
∥∥
2
+ ∥Φ+∥2Ef2∼pθ̂

∥∥Φf2 − ΦfS2
∥∥
2

]
+

1√
1− δk

E(f1,f2)∼β ∥Hf1 −Hf2∥2 . (51)

From Lemma A.2, we have
Ef1∼qf

∥∥f1 − fS1
∥∥
2
=W1(qf∥qSk

f ) ≤ ϵ′. (52)
Also, from Eq. (3),

Ef2∼pθ̂

∥∥Φf2 − ΦfS2
∥∥
2
= Eg∼qgEf2∼pθ̂(·|g)

∥∥Φf2 − ΦfS2
∥∥
2
, (53)

= Eg∼qgEf∼pϕ̂(·|g)
∥∥Φf − ΦprojSk

(f)
∥∥
2
, (54)

≤ Eg∼qgEf∼pϕ̂(·|g)
∥∥Φf − ΦprojSk

(f)
∥∥
1
, (55)

≤ ϵ. (56)
Taking the infimum of Eq. (51) over β ∈ B, we get

inf
β∈B

E(f1,f2)∼β ∥f1 − f2∥2 ≤ α(ϵ′ + ∥Φ+∥2ϵ) +
1√

1− δk
inf
β∈B

E(f1,f2)∼β ∥Hf1 −Hf2∥2 . (57)

Note that the left-hand side of the above equation is precisely W1(pθ̂∥qf ). Also, note that the
rightmost term in Eq. (57) is W1(qy∥ρθ̂):

W1(qy∥ρθ̂) = inf
β∈B

E(f1,f2)∼β ∥Hf1 −Hf2∥2 . (58)

From Eq. (40), since qg = ψθ̂, Lemma A.1 implies qy = ρθ̂
⇒W1(qy∥ρθ̂) = 0. (59)

Combining with Eq. (57), and setting ∥Φ+∥ ≤ 1 and α according to Eq. (50), we get

W1(pθ̂∥qf ) ≤
(
1 +

1√
1− δk

∥H∥2

)
(ϵ+ ϵ′) (60)

B Addional details regarding the setup of the numerical studies

Network architecture and training. The architecture of the main flow model Gθ was adapted
from the Glow architecture (Kingma & Dhariwal, 2018). The posterior network was adapted from the
conditional INN architecture proposed by Ardizzone, et. al (Ardizzone et al., 2021). AmbientFlow
was trained using PyTorch using an NVIDIA A100 GPU. All hyperparameters for the main INN
were fixed based on a PyTorch implementation of the Glow architecture (Seonghyeon), except the
number of blocks, which was set to scale logarithmically by the image dimension. The size of the
training dataset was 107 for the toy study, and 21,000 for the stylized MRI study.
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Baselines and evaluation metrics. For each dataset, an INN was trained on the ground-truth
objects. The architecture and hyperparameters used for this INN for a particular dataset were
identical to the ones used for main flow Gθ within the AmbientFlow framework trained on that
dataset. Besides, for the stylized MRI study, a dataset of individual estimates of the object was
generated using the penalized least-squares with TV regularization (PLS-TV) algorithm (Beck &
Teboulle, 2009). The regularization parameter for the image reconstruction method was tuned to give
the lowest RMS error (RMSE) for every individual reconstructed image. Although this method of
tuning the parameters is not feasible in real systems, it gives the best set of reconstructed images in
terms of the RMSE, thus providing a strong baseline.

The Frechet Inception distance (FID) score, computed using the Clean-FID package (Parmar et al.,
2022), was used to compare a dataset of 5,000 true objects with an equivalent number of images
synthesized using (1) the INN trained on the true objects and (2) the AmbientFlow trained on the
measurements, and (3) images individually reconstructed from their corresponding measurements.
Additionally, for the stylized MRI study, radiomic features meaningful to medical imaging were
computed on the true objects, generated objects, and reconstructed images (Van Griethuysen et al.,
2017).
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