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1. Introduction

In machine learning, the ability to obtain data representations that capture underlying
geometrical and topological structures of data spaces is crucial. A common approach in
Topological Data Analysis to extract multi-scale intrinsic geometric properties of data is
persistent homology (PH) (Carlsson, 2009). As a rich descriptor of geometry, PH has been
used in machine learning pipelines in areas such as bioinformatics, neuroscience and material
science (Dindin et al., 2020; Colombo et al., 2022; Lee et al., 2017). The key difference of
PH compared to other methods in Geometric Deep Learning is perhaps the emphasis of
theoretical stability results: PH is a Lipschitz function, with known Lipschitz constants,
with respect to appropriate metrics on data and representation space (Cohen-Steiner et al.,
2005; Skraba and Turner, 2020).

However, composing the PH pipeline with a neural network presents challenges with
respect to the stability of the representations thus learned: they may lose stability or the
stability may become insignificant in practice in case PH representations are composed with
neural networks that have large Lipschitz constants. Moreover, the constant of the neural
network may be difficult to compute or to control. While robustness to noise of PH-machine
learning pipelines has been studied empirically (Turkeš et al., 2021), we formulate the prob-
lem in the framework of adversarial learning and propose a neural network that can learn
stable and discriminative geometric representations from persistence. Our contributions
may be summarized as follows:

• We propose the Stable Rank Network (SRN), a neural network architecture taking PH
as input, where the learned representations enjoy a Lipschitz property w.r.t. Wasser-
stein and Bottleneck metrics.

• We link the stability of the PH pipeline with robustness at test time for classifiers
in adversarial learning. In particular we provide certified robustness for the SRN
architecture.

• On the ORBIT5K benchmark dataset, we demonstrate that the method can learn use-
ful representations with certified robustness, when on the other hand integrating the
PH pipeline with neural networks in a standard fashion can result in poor robustness
properties.
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2. Background

2.1. Persistent homology and learnable vectorizations

In persistent homology, a filtration of a finite metric space is created by considering proxim-
ity of data points at different scales. Simplicial homology is applied to this filtration and the
evolution of homology representatives to the growth of the parameter scale is tracked. These
geometric patterns can be encoded in a persistence diagram (PD), a multi-set of points in
the plane, on which Wasserstein metrics Wp (p ∈ [1,∞] with W∞ being called Bottleneck)
can be considered (see also Appendix A.2). Persistent homology enjoys a stability property
expressed as a Lipschitz condition w.r.t. W∞ between PDs and Gromov-Hausdorff distance
between metric spaces (Chazal et al., 2009).

A PD being a multi-set, Perslay (Carrière et al., 2020) proposes to use a neural network
based on the Deep Set architecture (Zaheer et al., 2017) to learn representations. Alterna-
tively, various vectorizations (Chazal et al., 2014; Bubenik, 2015; Ali et al., 2023) have been
proposed, which are deterministic representations of persistence diagrams with values in a
Euclidean (L2) space, enabling them to be included in standard neural network pipelines.

Stable ranks (Scolamiero et al., 2017; Chachólski and Riihimaki, 2020) are learnable
vectorizations with strong stability properties: while linear vectorizations of PDs to L2

spaces (e.g. Adams et al. (2017)) can only be stable w.r.t. W1 (Skraba and Turner, 2020),
stable ranks can be designed to be 1-Lipschitz w.r.t Wp for any p ∈ [1,∞].

2.2. Lipschitz neural networks and robustness at test time

The global Lipschitz constant of a deep neural network is typically very large and may
be difficult to compute and control during training. Alternative networks may however
be designed to enforce a Lipschitz property, while remaining trainable and expressive. In
Zhang et al. (2021), the authors propose to replace the classical neuron in an MLP with a
unit of the form:

u(x,w, b) = ∥x− w∥∞ + b,

where w, b ∈ Rd are trainable parameters and x ∈ Rd is the input. The unit is by design
1-Lipschitz w.r.t. the L∞ metric on Rd. Such neurons are stacked to form a layer and layers
are composed to form a neural network enjoying the same stability property.

Lipschitz neural networks will be used to prove robustness at test time, in the present
context referring to the property of a method of maintaining the prediction under small
metric perturbations of the input. We consider robustness of trained classifiers defined on
a metric space. Let (X , dX ) be a metric space and g : X → {1, . . . , C} a trained classifier
on X . For a sample x ∈ X with ground truth label c, we say that g is ϵ-robust at x if:

g(x′) = c,∀x′ ∈ X s.t. dX (x, x′) ≤ ϵ.

We are interested in estimating the robustness radius of x, that is the maximum ϵ for
which g is ϵ-robust at x sampled from the data distribution. The problem of computing
the robustness radius for a data sample is NP-complete even for standard MLP classifiers
(Katz et al., 2017). Adversarial attacks are methods designed to find small perturbations of
a sample that lead to a wrong classification, thus yielding an upper bound for the robustness
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radius at the sample. The field of certified robustness (Li et al., 2023) provides instead lower
bounds for the robustness radius at a data sample, that is for a sample x from the data
distribution, an ϵ may be computed such that g is ϵ-robust at x.

3. Methods

3.1. The Stable Rank Network and its robustness properties

To learn a function from the space PD of PDs to RC with a controlled Lipschitz constant
we propose Stable Ranks Network (SRN), an architecture in two steps (see Figure 2). The
first step is a vectorization using stable ranks (Section 2.1), which depends on a learn-
able reparametrization of the filtration scale. The second step allows to learn interactions
between points in the PD through a Lipschitz neural network (Section 2.2).

The stable rank can be seen as a vectorization method for PDs which depends on
parameters (p, F ), where p ∈ [1,∞] and F : R≥0 → R≥0 is an increasing bijection that
can be interpreted as a reparameterization of the filtration scale used to apply persistent
homology. For any choice of parameters (p, F ), with F a K-Lipschitz function, the stable
rank determines a function rp,F : PD → R∞ which enjoys the following Lipschitz condition:

∥rp,F (X) − rp,F (Y )∥∞ ≤ KWp(X,Y ),

where Wp denotes the p-Wasserstein distance between PDs (see Appendix A.2). If F = id
is the identity on R≥0, the corresponding Lipschitz constant is K = 1, for any p ∈ [1,∞].

In practice, one chooses an appropriate subset S of PD and a sufficiently large integer N
such that rp,F can be viewed as a function S → RN . In our proposed SRN architecture, F is
parametrized with trainable weights and rp,F is followed by a Lipschitz neural network with
inputs in RN and outputs in RC . Since rp,F is K-Lipschitz and all layers of the Lipschitz
neural network are 1-Lipschitz functions, their composition f is a K-Lipschitz function from
S equipped with Wp to RC equipped with the L∞ metric.

If we now consider a classifier based on our neural network, g = argmax ◦f , we can
(following Tsuzuku et al. (2018)) conclude that g is ϵ-robust at x for all ϵ ≥ Mx

2K , where
K is the Lipschitz constant of f and Mx is the prediction margin of f at x, defined as
the difference between the largest logit (corresponding to the correct class) and the second
largest logit: Mx = f(x)c − maxi ̸=c f(x)i. Thus since the Lipschitz constant K is known,
computing a lower bound for the robustness radius at a sample x only requires a forward
pass of x in the neural network to get Mx.

3.2. Adversarial examples in spaces of persistence diagrams

Consider a trained classifier g : PD → {1, . . . , C} defined on the space of persistence
diagrams, equipped with Wp metrics (p ∈ [1,∞]). If the Lipschitz constant of g is not known,
we estimate robustness of the classifier by searching for adversarial examples. The proposed
method (Appendix C.3), is derived from Carlini and Wagner (2017), by formulating the
objective:

min
x′

Wp(x, x
′) − λL(g(x′)),

and iterating in the direction opposite to the gradient, i.e. increasing the loss L (e.g. Cross-
Entropy) but keeping Wp small (λ being a hyperparameter).
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4. Results

We train SRN (see Appendix C.4 for details) on the ORBIT5K dataset, using only PDs
corresponding to degree-1 homology H1, and we choose stability w.r.t. W∞ by setting
p = ∞. In Table 2 the accuracy of the method is compared to various accuracies reported
for other methods on the same problem, showing that despite the constraint of learning a
Lipschitz function, competitive performance may be achieved.

We then reimplement Perslay using only H1 PDs as input (achieving accuracy of 84.4±
0.6). In Table 1, we report for various values of ϵ, the percentage of samples in the test
set such that the method described in Section 3.2 fails to produce an adversarial example
within a radius of ϵ w.r.t. W∞. This constitutes an upper bound of the robust accuracy.
While the method achieves high accuracy for the test samples, it degrades significantly even
for very small ϵ-neighborhoods around the samples. To get an idea of the scale we show
the average intra-class and inter-class distances in Table 3. While adversarial examples are
common for various types of data and neural networks, the geometry of Wasserstein metrics
(e.g. the presence, arbitrarily close to any PD, of PDs where points are added close to the
diagonal) may result in particularly poor robustness at test time.

In the case of SRN, for a sample in the test set, instead of trying to find adversarial
examples, we can directly compute its certified ϵ-robustness following Section 3.1. For
various threshold values of ϵ we can then compute a lower bound of the robust accuracy
by computing the percentage of samples in the test set for which the ϵ-robustness is above
this threshold (Table 1). Because of this, the robust accuracies of SRN are underestimates
whereas for Perslay they are overestimates. Despite this, the robust accuracies are higher
for SRN and the ϵ-radii appear to be meaningful compared to the average distances in Table
3.

Table 1: Robust accuracy in growing ϵ-radius around samples of the test set. For Perslay
we report accuracy based on robustness to the adversarial attacks described in
Section 3.2. For SRN we report accuracy based on certified robustness.

Acc. Acc. ϵ = 10−5 Acc. ϵ = 10−2 Acc. ϵ = 10−1 Acc. ϵ = 100

Perslay (H1 only) 84.4 27.4 27.4 24.8 24.8
SRN (H1 only) 79.6 79.6 78.8 74.6 51.3

5. Conclusion

By preserving Lipschitz properties of learned representations with respect to the Wasserstein
and Bottleneck metrics between PDs, SRN allows to certify the robustness of samples
in a dataset. Leveraging existing stability results of PH, a ML pipeline with interesting
robustness properties w.r.t. appropriate distances in the input space (e.g. point clouds,
function spaces) can thus be designed.
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Appendix A. Persistent homology and distances

A.1. Persistence diagrams

Consider the subset U := {(a, b) ∈ R≥0 × [0,∞] | a ≤ b} of the extended plane. A
persistence diagram D is a multiset of elements of U , which in this work we assume to be
finite. By definition of multiset, D is a pair (X,µ), where X is a finite subset of U and
µ : X → N>0 is a function, interpreted as a multiplicity function. The cardinality of D,
denoted by rank(D), is

∑
x∈X µ(x). A persistence diagram D can be viewed as the set

{(x, ix) ∈ X×N>0 | 1 ≤ ix ≤ µ(x)}. In what follows, for simplicity we disregard the second
components of the elements (x, ix) of D, using the notation D = {xi}i=1,...,rank(D), with
xi = (ai, bi) ∈ U , where it may happen that xj = xk for some j ̸= k. We use the notation
PD for the collection of all persistence diagrams.

In topological data analysis (Carlsson, 2009), persistence diagrams are usually obtained
by applying q-th simplicial homology Hq (for some q ∈ N) to a nested sequence K0 ⊆
K1 ⊆ · · · of simplicial complexes, called a filtration, associated with the data. Details
on the pipeline of persistent homology and on various constructions to transform the data
into a filtration of simplicial complexes are included for example in Otter et al. (2017);
Oudot (2017). In this work, the data is in the form of point clouds, which are transformed
into filtrations of simplicial complexes using the alpha-complex construction (Edelsbrunner,
1995).

An element x = (a, b) of a persistence diagram is called a point at infinity if b = ∞.
In this work, all persistence diagrams we consider do not have points at infinity. Starting
from point cloud data and using the Alpha complex construction and simplicial homology
Hq, one always obtains persistence diagrams without points at infinity for every q > 0.

A.2. Wasserstein distance between persistence diagrams

Let U be the subset of the extended plane defined in Section A.1, and consider its subset
∆ := {(a, a) | a ∈ R≥0}. For all p ∈ [1,∞], let dp(x, y) := ∥x− y∥p for all x, y ∈ U , and let
dp(x,∆) := infz∈∆ dp(x, z), for all x ∈ U .

For p ∈ [1,∞], the p-Wasserstein distance between two persistence diagrams D =
{xi}i=1,...,m and D′ = {x′j}j=1,...,n is defined by

Wp(D,D′) :=

inf
α

∥∥∥∥(∥∥∥(dp(xi, x
′
α(i)))i∈I

∥∥∥
p
,
∥∥(dp(xi,∆))i∈{1,...,m}\I

∥∥
p
,
∥∥(dp(∆, x′j))j∈{1,...,n}\α(I)

∥∥
p

)∥∥∥∥
p

,

where the infimum is over all injective functions α : I → {1, . . . , n}, with I ⊆ {1, . . . ,m}.

The Bottleneck distance, which is of special importance in the literature on persistent
homology, is the distance W∞ corresponding to the case p = ∞. We remark that the
definition of p-Wasserstein distance we use here differs from that of some other authors,
which use the metric d∞ on U , for all p ∈ [1,∞] (see e.g. Cohen-Steiner et al. (2010)).

Persistence diagrams enjoy crucial stability properties. For example, consider a filtra-
tion of simplicial complexes constructed as a sublevel-set filtration of a simplicial complex
equipped with a function on its set of simplices. Under mild assumptions on this function,
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the Bottleneck distance on persistence diagrams is stable w.r.t. perturbations of the function
in L∞ norm (Cohen-Steiner et al., 2005). Stability results also exist for other types of data
from which a filtration of simplicial complexes may be constructed, e.g. Gromov-Hausdorff
distance between point clouds. An account of stability results involving the p-Wasserstein
distance is given in (Skraba and Turner, 2020).

Appendix B. Stable ranks

Definition of stable ranks In this section, all persistence diagrams are assumed to have
no points at infinity. Let V := {(a, b) ∈ R2

≥0 | a ≤ b} be the subset of U (see Section
A.1) obtained by removing all points at infinity. Let F : R≥0 → R≥0 be an increasing
bijection, which we call a reparameterization of R≥0. Parametrized families of increasing
bijections can be produced from regular contours introduced in Chachólski and Riihimaki
(2020). Given a persistence diagram D ∈ PD, let F (D) denote the persistence diagram
obtained by transforming each point x = (a, b) of D into the point F (x) := (F (a), F (b)).
The stable rank of a persistence diagram D with parameters (p, F ), where p ∈ [1,∞] and

F is a reparameterization of R≥0, is the function r̂ankp,F (D) : R≥0 → N defined by

r̂ankp,F (D)(t) := min{rank(D′) | D′ ∈ PD and Wp(F (D), F (D′)) ≤ t},

where Wp denotes the p-Wasserstein distance between persistence diagrams and rank(D′)
denotes the cardinality of the persistence diagram D′ (or, equivalently, of F (D′)). The

function r̂ankp,F (D) is nonincreasing and piecewise constant. One way to compare such
functions is via the interleaving distance d▷◁, see (Scolamiero et al., 2017, Def. 9.1). Sta-
ble ranks were originally defined for persistence modules (see Scolamiero et al. (2017);
Chachólski and Riihimaki (2020)), algebraic objects which are completely described (up to
isomorphism) by the associated persistence diagrams. The stable ranks we introduce here
for persistence diagrams can be regarded as an instance of the original definition thanks
to the equivalence of Wasserstein distances between persistence modules and persistence
diagrams detailed in (Agerberg et al., 2023, Sect. 4.4).

Computation of stable ranks Let ℓF : V → R≥0 denote the function defined by
ℓF (a, b) := F (b)−F (a), which we call the lifetime function induced by the reparameteriza-
tion F . Let D = {xi}i=1,...,m be a persistence diagram such that xi = (ai, bi) ∈ V , for all
i ∈ {1, . . . ,m}, and suppose that its points are ordered non-decreasingly by their lifetime ℓF ,
meaning that ℓF (a1, b1) ≤ ℓF (a2, b2) ≤ · · · ≤ ℓF (am, bm). Then, by (Agerberg et al., 2023,
Prop. 5.1), for any fixed p ∈ [1,∞) there exist real numbers 0 = t0 < t1 < t2 < · · · < tm
such that the function r̂ankp,F (D) : R≥0 → N is constant on the intervals [t0, t1), [t1, t2),. . . ,

[tm−1, tm), [tm,∞), with values r̂ankp,F (D)(tj) = rank(D) − j, for every j ∈ {0, 1, . . . ,m}.
Furthermore,

tj = 2
1−p
p ∥(ℓF (a1, b1), . . . , ℓF (aj , bj))∥p (1)

for every j ∈ {1, . . . ,m}.

For p = ∞, the sequence of real numbers (tj)j defined in Equation (1) (setting 2
1−p
p =

2−1) only satisfies 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tm instead of strict inequalities. Letting sk
denote the kth smallest value in {tj}j one obtains a sequence 0 = s0 < s1 < s2 < · · · < sm′
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such that the stable rank with parameters (p = ∞, F ) is constant on the intervals [s0, s1),. . . ,
[sm′ ,∞), with values

r̂ank∞,F (D)(sk) = rank(D) − max{j | tj = sk}.

For any fixed p ∈ [1,∞], the function r̂ankp,F (D) can be represented as a vector
rp,F (D) = (r0, r1, . . . , rm) ∈ Rm+1, where

ri := tm−i = 2
1−p
p ∥(ℓF (a1, b1), . . . , ℓF (am−i, bm−i))∥p,

for all i ∈ {0, . . . ,m − 1}, and rm := 0. We remark that, thanks to the assumption that
the persistence diagram D has no points at infinity, all tj and all ri are real numbers. By
construction (see (Agerberg et al., 2023, Sect. 5)), the entries of rp,F (D) satisfy ri = min{t ∈
R≥0 | r̂ankp,F (D) ≤ i}, for all i ∈ {0, . . . ,m}.

Computing distances between stable ranks Since m = rank(D) depends on the
persistence diagram D, to compare the vectors rp,F (D) ∈ Rm+1 associated with different
persistence diagrams we regard them as elements of the vector space R∞ of finite sequences
over R, defined by

R∞ := {(r0, r1, . . .) ∈ RN | finitely many entries ri are nonzero},

with the natural vector space structure given by entry-wise addition and scalar multi-
plication. Any vector rp,F (D) = (r0, r1, . . . , rm) ∈ Rm+1 is regarded as the element
(r0, r1, . . . , rm, 0, . . .) of R∞, which we will also denote by rp,F with a small abuse of notation.

Importantly, as a consequence of the results in (Agerberg et al., 2023, Sect. 5), the
interleaving distance between stable ranks can be computed via the L∞ metric in R∞:

d▷◁(r̂ankp,F (D), r̂ankp,F (D′)) = ∥rp,F (D) − rp,F (D′)∥∞, (2)

for any D,D′ ∈ PD.
In practice, when using stable ranks in data analysis we work on a subset S ⊂ PD of

persistence diagrams which allows us to compare the vectors {rp,F (D)}D∈S via Equation
(2) in a finite dimensional space Rd (for a sufficiently large d) instead of R∞. For example,
in many practical situations one can consider S = {D ∈ PD | rank(D) ≤ d− 1}, for a fixed
and sufficiently large d.

Stability of stable ranks Combining the equality in (2) with a stability result for stable
ranks (Scolamiero et al., 2017, Prop. 9.3), we obtain the inequality

∥rp,F (D) − rp,F (D′)∥∞ ≤ Wp(F (D), F (D′)), (3)

valid for any D,D′ ∈ PD and for any fixed p ∈ [1,∞] and reparameterization F . In
particular, if F = id is the identity reparameterization of R≥0, we see that rp,id is a 1-
Lipschitz function from PD equipped with the p-Wasserstein distance Wp to R∞ equipped
with the L∞ metric:

∥rp,id(D) − rp,id(D′)∥∞ ≤ Wp(D,D′), (4)

for all D,D′ ∈ PD.
In the following results we study the Lipschitzianity of the function rp,F with respect to

the p-Wasserstein distance on PD.
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Proposition 1 Let p ∈ [1,∞] and let F : R≥0 → R≥0 be a reparameterization which is
K-Lipschitz for some K > 0, that is, |F (b) − F (a)| ≤ K|b− a| for all a, b ∈ R≥0. Then

Wp(F (D), F (D′)) ≤ KWp(D,D′),

for all D,D′ ∈ PD.

Proof Let D = {xi}i=1,...,m and D′ = {x′j}j=1,...,n be two persistence diagrams, with
xi = (ai, bi) ∈ V for all i ∈ {1, . . . ,m} and x′j = (a′j , b

′
j) ∈ V for all j ∈ {1, . . . , n}. For any

injective function α : I → {1, . . . , n} defined on a subset I ⊆ {1, . . . ,m}, we consider the
real numbers:

up,F,α :=
∥∥∥(dp(F (xi), F (x′α(i))))i∈I

∥∥∥
p
,

vp,F,α :=
∥∥(dp(F (xi),∆))i∈{1,...,m}\I

∥∥
p
,

wp,F,α :=
∥∥(dp(∆, F (x′j)))j∈{1,...,n}\α(I)

∥∥
p
.

By definition (see Section A.2) we have Wp(F (D), F (D′)) = infα ∥(up,F,α, vp,F,α, wp,F,α)∥p
and Wp(D,D′) = infα ∥(up,id,α, vp,id,α, wp,id,α)∥p. Recall the following property of the p-
norm: if 0 ≤ uk ≤ u′k for k ∈ {1, . . . , ℓ}, then ∥(u1, . . . , uℓ)∥p ≤ ∥(u′1, . . . , u

′
ℓ)∥p. To prove

the claim, it is therefore sufficient to show that, for any fixed α, the following inequalities
hold:

up,F,α ≤ Kup,id,α, vp,F,α ≤ Kvp,id,α, wp,F,α ≤ Kwp,id,α,

where K is the Lipschitz constant of F .

To prove the inequality up,F,α ≤ Kup,id,α it is sufficient to show that, for any fixed i ∈ I,
we have

dp(F (xi), F (x′α(i))) ≤ Kdp(xi, x
′
α(i)).

This follows from the calculation:

dp(F (xi), F (x′α(i))) =
∥∥∥(F (ai) − F (a′α(i)), F (bi) − F (b′α(i))

)∥∥∥
p

=
∥∥∥(|F (ai) − F (a′α(i))|, |F (bi) − F (b′α(i))|

)∥∥∥
p

≤
∥∥∥(K|ai − a′α(i)|,K|bi − b′α(i)|

)∥∥∥
p

= K
∥∥∥(ai − a′α(i), bi − b′α(i)

)∥∥∥
p

= Kdp(xi, x
′
α(i)).

To prove the inequality vp,F,α ≤ Kvp,id,α it is sufficient to show that, for any fixed
i ∈ {1, . . . ,m} \ I, we have

dp(F (xi),∆) ≤ Kdp(xi,∆).
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For any x = (a, b) ∈ V , it is easy to show that dp(x,∆) = dp(x, z) with z := (a+b

2 , a+b
2 ).

The inequality then follows from the calculation:

dp(F (xi),∆) =

∥∥∥∥(F (ai) −
F (ai) + F (bi)

2
, F (bi) −

F (ai) + F (bi)

2

)∥∥∥∥
p

=

∥∥∥∥(F (ai) − F (bi)

2
,
F (bi) − F (ai)

2

)∥∥∥∥
p

=

∥∥∥∥(F (bi) − F (ai)

2
,
F (bi) − F (ai)

2

)∥∥∥∥
p

≤
∥∥∥∥(K(bi − ai)

2
,
K(bi − ai)

2

)∥∥∥∥
p

= K

∥∥∥∥((bi − ai)

2
,

(bi − ai)

2

)∥∥∥∥
p

= Kdp(xi,∆).

The inequality wp,F,α ≤ Kwp,id,α can be proven similarly. This completes the proof.

Corollary 2 Let p ∈ [1,∞] and let F : R≥0 → R≥0 be a reparameterization which is
continuous and differentiable, with F ′ bounded. Then

Wp(F (D), F (D′)) ≤ supF ′Wp(D,D′),

for all D,D′ ∈ PD.

Proof Given any two persistence diagrams D = {xi}i=1,...,m and D′ = {x′j}j=1,...,n, with
xi = (ai, bi) ∈ V for all i ∈ {1, . . . ,m} and x′j = (a′j , b

′
j) ∈ V for all j ∈ {1, . . . , n}, consider

a closed interval [c, d] ⊂ R containing all ai, bi, a
′
j , b

′
j . By the Mean Value Theorem, the

restriction of F to [c, d] is K-Lipschitz for K = supF ′. Proceeding as in Proposition 1, we
obtain the inequality Wp(F (D), F (D′)) ≤ supF ′Wp(D,D′). Since the Lipschitz constant
supF ′ does not depend on the persistence diagrams D and D′, the claim follows.

Equation (3) combined with Proposition 1 shows that, whenever F is K-Lipschitz, the
function rp,F from PD equipped with the p-Wasserstein distance Wp to R∞ equipped with
the L∞ metric is K-Lipschitz:

∥rp,F (D) − rp,F (D′)∥∞ ≤ KWp(D,D′),

for all D,D′ ∈ PD. In particular, by Corollary 2, rp,F is (supF ′)-Lipschitz whenever F is
differentiable with supF ′ < ∞. In practice, one can construct a differentiable parameteriza-
tion F with bounded derivative by choosing a bounded integrable function f : R≥0 → R>0

and setting F (t) =
∫ t
0 f dλ, for all t ∈ R≥0.
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Appendix C. Experiments

C.1. ORBITS5K dataset

Starting from an initial random position (x0, y0) ∈ [0, 1]2 and a parameter r > 0, the point
cloud (xn, yn)n=1,...,1000 is generated using the following system:

xn+1 = (xn + ryn(1 − yn)) mod 1

yn+1 = (yn + rxn+1(1 − xn+1)) mod 1

The orbits’ behavior is highly sensitive to r, with some values leading to void formations,
making persistence diagrams effective for classifying these orbits by r. Following Carrière
et al. (2020), we simulate orbits using five r values: 2.5, 3.5, 4.0, 4.1, and 4.3. 1000 orbits
are generated for each r, resulting in 5,000 point clouds.

The point clouds are transformed into persistence diagrams using the Alpha complex
filtration and simplicial homology in degree 0 and 1. The Alpha complex filtration is a
method to generate a filtered simplicial complex, starting from a point cloud P in Rd. The
Alpha complex Aα at a scale parameter α is constructed by first considering the union of
balls centered at the points in P with radius α. The simplices in Aα correspond to the
simplices in the Delaunay triangulation of P that are enclosed within the union of these
balls. As α increases, the Alpha complex grows, generating the filtration {Aα}α≥0.

The coordinates of the persistence diagrams are scaled by 1000 to make the reporting
of Wasserstein distances more convenient (e.g. in Table 3). See Figure 1 for examples of
samples in the dataset.

Figure 1: An example sample for each class in the ORBIT5K dataset.

C.2. Implementation details for other methods

Table 2 compares the accuracy of SRN (Section 3.1) on the ORBITS5K dataset with that of
other methods, as reported in the article introducing Perslay (Carrière et al., 2020). PSS-K,
PWG-K, SW-K, PF-K stand respectively for Persistence Scale Space Kernel (Reininghaus
et al., 2015), Persistence Weighted Gaussian Kernel (Kusano et al., 2016), Sliced Wasserstein
Kernel (Carriere et al., 2017) and Persistence Fisher Kernel (Le and Yamada, 2018).

In order to test the robustness of Perslay in PyTorch we reimplement it with the following
DeepSet (Zaheer et al., 2017) architecture, similar to the architecture described in Carrière
et al. (2020): each point in the persistence diagram is upsampled from 2 dimensions to 25
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through 2 layers. The point embeddings are further aggregated with a top 5 aggregation
for each dimension, which is composed with a final linear layer.

Table 2: Accuracy of our method and of other methods on the ORBITS5K dataset as
reported in Carrière et al. (2020). See details in Appendix C.2.

SRN (H1 only) PSS-K PWG-K SW-K PF-K PersLay

Accuracy 79.6(±0.3) 72.38(±0.7) 76.63(±0.9) 83.6(±0.9) 85.9(±0.8) 87.7(±1.0)

C.3. Adversarial attacks

Carlini and Wagner (2017) describe a method to find adversarial examples for data in Lp

spaces. We adapt the method to data in the space of persistence diagrams endowed with
the p-Wasserstein distance Wp, with p ∈ [1,∞]. The optimization objective becomes:

min
D′

Wp(D,D′) − λL(g(D′)),

where λ is a hyperparameter and L is the loss of the neural network (i.e. cross-entropy). The
Wasserstein distance between two persistence diagrams is a differentiable function of the
coordinates of the points in the persistence diagrams (Carriere et al., 2021). We initialize D′

as D, to which a fixed number of persistence diagram points may be added and initialized
close to the diagonal ∆. The gradient w.r.t. D′ is computed using PyTorch and the PyTorch
Topological package and Projected Gradient Descent iterations are taken, where the data
is projected to the feasible area of the persistence diagram (i.e. the set of points (a, b) ∈ R
with 0 ≤ a ≤ b).

C.4. Implementation details for Stable Rank Network

Figure 2: A Persistent Homology Machine Learning pipeline using Stable Rank Network.

To simplify the analysis in terms of Wasserstein distance we choose to work with only
one persistence diagram per sample, i.e. choosing one homology degree. We choose H1 as
it is more distinctive.
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Following the discussion in Appendix B, F should be a learnable function (i.e. a parametriza-
tion of F with parameters that can be optimized when training SRN is needed) and supF ′

should be easily computable. In our experiments we choose f to be a Gaussian mixture
and as in Appendix B, F (t) =

∫ t
0 f dλ, for all t ∈ R≥0. f has learnable weights, means

and standard deviations of the Gaussian components. For the ORBIT5K dataset, similar
classification performance was achieved by choosing F to be the identity function, which is
what is reported in Table 1, and Table 2.

For the Lipschitz neural network (Section 2.2) we use 5 layers with sizes (1200, 700, 300, 80, 5).
After each layer, centering was applied (i.e. batch normalization but where only subtrac-
tion by mean feature-wise is applied, not division by standard deviation feature-wise). The
weights of the first layer were initialized uniformly at random but scaled proportionally to
the standard deviation of features in the dataset.

Figure 3: Distribution of certified ϵ-robustness for correctly classified samples of the test
set, for the different classes.

Table 3: Average bottleneck distances between H1 PDs for samples of different classes in
the dataset.

Class 1 2 3 4 5

1 2.383 2.719 3.533 17.334 9.011
2 0.914 4.115 19.439 11.038
3 2.536 15.492 7.750
4 4.077 9.535
5 5.043
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