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Abstract

In many real-world scenarios it is crucial to
be able to reliably and efficiently reason under
uncertainty while capturing complex relationships
in data. Probabilistic circuits (PCs), a prominent
family of tractable probabilistic models, offer a
remedy to this challenge by composing simple,
tractable distributions into a high-dimensional
probability distribution. However, learning PCs
on heterogeneous data is challenging and densities
of some parametric distributions are not available
in closed form, limiting their potential use. We
introduce characteristic circuits (CCs), a family of
tractable probabilistic models providing a unified
formalization of distributions over heterogeneous
data in the spectral domain. The one-to-one
relationship between characteristic functions
and probability measures enables us to learn
high-dimensional distributions on heterogeneous
data domains and facilitates efficient probabilistic
inference even when no closed-form density
function is available. We show that the structure
and parameters of CCs can be learned efficiently
from the data and find that CCs outperform state-
of-the-art density estimators for heterogeneous
data domains on common benchmark data sets.

1 INTRODUCTION

Probabilistic circuits (PCs) have gained increasing atten-
tion in the machine learning community as a promising
modelling family that renders many probabilistic inferences
tractable with little compromise in their expressivity. Their
beneficial properties have prompted many successful ap-
plications in density estimation [e.g., Peharz et al., 2020,
Di Mauro et al., 2021, Dang et al., 2022, Correia et al.,
2023] and in areas where probabilistic reasoning is key, for
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Figure 1: Characteristic circuits provide a unified, tractable
specification of joint continuous and discrete distributions
in the spectral domain.

example, neuro-symbolic reasoning [Ahmed et al., 2022],
certified fairness [Selvam et al., 2023], or causality [Zečević
et al., 2021]. Moreover, recent works have explored ways of
specifying PCs for more complex modelling scenarios, such
as time-series [e.g., Trapp et al., 2020, Yu et al., 2021b,a] or
tractable representation of graphs [Wang et al., 2022].

Density estimation is at the very core of many machine learn-
ing techniques, e.g., approximate Bayesian inference [Mur-
phy, 2012], and a fundamental tool in statistics to identify
characteristics of the data such as nth order moments or mul-
timodality [Silverman, 2018]. However, even in the case of
parametric families, densities are sometimes not available in
closed-form, e.g., only special cases of α-stable distributions
provide closed-form densities [Nolan, 2013]. Fortunately,
there exists a one-to-one correspondence between proba-
bility measures and characteristic functions (CFs) [Sasvári,
2013], which can be understood as the Fourier-Stieltjes
transform of the probability measures. Thus, enabling the
characterisation of any probability measure through its CF.
Henceforth, the CF of probability measures has found wide
applicability in statistics, ranging from its use as a non-
parametric estimator through the empirical characteristic
function (ECF) [Feuerverger and Mureika, 1977] to esti-
mate heavy-tailed data e.g., through the family of α-stable
distributions [Nolan, 2013]. However, even though the CF
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has many advantageous properties and provides greater flex-
ibility, its application to high-dimensional data and efficient
computation of densities can be challenging [Nolan, 2013].

In this work, we bridge between the CF of probability mea-
sures and PCs, by examining PCs from a more general
perspective, similar in spirit to their specifications as a sum-
mation over functions on a commutative semiring [Friesen
and Domingos, 2016] or as a convex combination of prod-
uct measures on product probability spaces [Trapp et al.,
2020]. Most recently, Zhang et al. [2021] defined a cir-
cuit over probability generating polynomials to represent
discrete probability distributions, resulting in a more ex-
pressive efficient model than existing families of tractable
probabilistic models and achieving SOTA density estima-
tion performance. Instead of defining the circuit over density
functions, we propose to form the circuit over the character-
istic function of the respective probability measures, illus-
trated in Fig. 1. Motivated by the property of characteristic
function that the moments can be easily obtained by differ-
entiating, we notice learning a circuit in the spectral domain
has many interesting benefits: (i) characteristic functions as
the base enables a unified view for discrete and continuous
random variables (RVs), (ii) directly representing the char-
acteristic function allows to learn distributions that do not
have closed-form expressions for their density.

In summary, our contributions are: (1) We propose character-
istic circuits, a novel deep probabilistic model representing
the joint of discrete and continuous RVs through a unify-
ing view in the spectral domain. (2) Moreover, we show
that characteristic circuits retain tractability of PCs despite
the change of domain and enable efficient computation of
densities, marginals, and conditionals. (3) Lastly, we derive
parameter and structure learning for characteristic circuits
and find that characteristic circuits outperform SOTA den-
sity estimators in the majority of tested benchmarks.

2 PRELIMINARIES ON PROBABILISTIC
CIRCUITS AND CHARACTERISTIC
FUNCTIONS

Before introducing characteristic circuit, let us recap proba-
bilistic circuits and characteristic functions.

Probabilistic Circuits. PCs are tractable probabilistic mod-
els, structured as rooted directed acyclic graphs, where each
leaf node L represents a probability distribution over a uni-
variate RV, each sum node S models a mixture of its children,
and each product node P models a product distribution (as-
suming independence) of their children. A PC over a set of
RVs X can be viewed as a computational graph G represent-
ing a tractable probability distribution over X , and the value
obtained at the root node is the probability computed by the
circuit. We refer to Choi et al. [2020] for more details.

Each node in G is associated with a subset of X called
the scope of a node N and is denoted as ψ(N). The scope
of an inner node is the union of the scope of its chil-
dren. Sum nodes compute a weighted sum of their children
S =

∑
N∈ch(S) wS,NN, and product nodes compute the prod-

uct of their children P =
∏

N∈ch(P) N, where ch(·) denotes
the children of a node. The weights wS,N are generally as-
sumed to be non-negative and normalized (sum up to one) at
each sum node. We also assume the PC to be smooth (com-
plete) and decomposable [Darwiche, 2003], where smooth
requires all children of a sum node having the same scope,
and decomposable means all children of a product node
having pairwise disjoint scopes.

Characteristic Functions. CFs provide a unified view for
discrete and continuous RVs through the Fourier–Stieltjes
transform of their probability measures. Let X be a random
vector, the CF of X for t ∈ Rd is given as:

φX(t) = E[exp(i t⊤X)] =

∫
x∈Rd

exp(i t⊤ x)µX(dx),

where µX is the distribution/probability measure of X . CFs
have certain useful properties. We will briefly review those
that are relevant for the remaining discussion: (i) φX(0) = 1
and |φX(t)| ≤ 1; (ii) for any two RVs X1, X2, both have
the same distribution iff φX1 = φX2 ; (iii) if X has k mo-
ments, then φX is k-times differentiable; and (iv) two RVs
X1, X2 are independent iff φX1,X2

(s, t) = φX1
(s)φX2

(t).
We refer to Sasvári [2013] for more details of CFs.

Theorem 2.1 (Lévy’s inversion theorem). Let X be a real-
valued random variable, µX its probability measure, and
φX : R → C its characteristic function. Then for any a, b ∈
R, a < b, we have that

lim
T→∞

1

2π

∫ T

−T

exp(−ita)− exp(−itb)

it
φX(t)dt

= µX [(a, b)] +
1

2
(µX(a) + µX(b)) (1)

and, hence, φX uniquely determines µX .

Corollary. If
∫
R |φX(t)|dt <∞, then X has a continuous

probability density function fx given by

fX(x) =
1

2π

∫
R
exp(−itx)φX(t)dt. (2)

Note that not every probability measure admits an analyti-
cal solution to Eq. (2), e.g., only special cases of α-stable
distributions have a closed-form density function [Nolan,
2013], and numerical integration might be needed.

3 CHARACTERISTIC CIRCUIT

Now we have everything at hand to derive characteristic
circuit. We first give a recursive definition of CC, followed
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by devising each type of node in a CC. We then show CCs
feature efficient computation of densities, and in the end
introduce how to learn a CC.

Definition 3.1 (Characteristic Circuit). Let X =
{X1, . . . , Xd} be a set of random variables. A character-
istic circuit denoted as C is a tuple consisting of a rooted
directed acyclic graph G, a scope function ψ : V(G) →
P(X), parameterized by a set of graph parameters θG .
Nodes in G are either sum (S), product (P), or leaf (L).

We define the characteristic circuit in the following recursive
way: (1) a CF for a scalar random variable is a charac-
teristic circuit, (2) a product of characteristic circuits is a
characteristic circuit, (3) a convex combination of charac-
teristic circuits is a characteristic circuit.

Denote φC(t) the output of C computed at the root of C
which represents the estimation of CF given argument of
the CF t ∈ Rd. Further, we denote the number of RVs in
the scope of N as pN := |ψ(N)| and use φN(t) for the CF
of a node. Throughout the paper we assume the CC to be
smooth and decomposable.

Product Nodes. A product node in CC encodes the inde-
pendence of its children. Let X and Y be two RVs. Fol-
lowing property (iv) of CFs, the CF of X,Y is given as
φX,Y (t, s) = φX(t)φY (s), if and only ifX and Y are inde-
pendent. Therefore, by definition, with t =

⋃
N∈ch(P) tψ(N),

the characteristic function of product nodes is given as:

φP(t) =
∏

N∈ch(P)
φN(tψ(N)). (3)

Sum Nodes. A sum node in CC encodes the mixture
of its children. Let the parameters of S be given as∑

N∈ch(S) wS,N = 1 and wS,N ≥ 0,∀S,N. Then the sum
node in a CC is given as: φS(t) =∫

x∈Rd
exp(it⊤x)

[∑
N∈ch(S)

wS,N µN(dx)

]
=

∑
N∈ch(S)

wS,N

∫
x∈RpS

exp(it⊤x)µN(dx)︸ ︷︷ ︸
=φN(t)

. (4)

Leaf Nodes. The leaf node of a CC models the characteristic
function of a univariate RV. For discrete RVs, we utilize
categorical distributions and for continuous RVs, we use
either normal distribution or α-stable distributions. Besides,
ECF leaf φLECF(t) =

1
n

∑n
j=1 exp(i t xj) is also employed

as a non-parametric leaf. A more detailed discussion on leaf
types can be found in Appendix A.

3.1 THEORETIC PROPERTIES

With everything at hand, we can derive the marginal density.

Efficient Computation of Densities. Through their recur-
sive nature, CCs enable efficient computation of densities in

Algorithm 1 CC Structure Learning
Input: training dataD, RVs X , thresholdmin_k, number of splits kS and kP
Output: C
Function buildCF(D,X)

return L← univariate CF φX(t)

Function buildSumNode(D, X)
if |X| = 1 then

S← buildCF(D,X) ;
else if |D| ≤ min_k then

PartitionD into |X| independent subsetsDj ;
S←

∏|X|
j=1 buildCF(Dj ,Xj) ;

else
PartitionD into kS clustersDi ;

S←
∑kS
i=1

|Di|
|D| buildProdNode(Di, X) ;

return S

Function buildProdNode(D,X)
PartitionD into kP independent subsetsDj ;

return P←
∏kP
j=1 buildSumNode(Dj , Xj)

C ← buildSumNode(D, X)

high-dimensional settings even if the density function is not
available in closed form. For this, we present an extension
of Theorem 2.1 for CCs, formulated using the notion of
induced trees T [Zhao et al., 2016].

Lemma 3.2 (Inversion). Let C = ⟨G, ψ, θG⟩ be a CC
on RVs X = {Xj}dj=1 with univariate leave nodes. If∫
R |φL(t)|dt < ∞ for every L ∈ V (G), then X has a con-

tinuous probability density function fx given by fX(x) =

1

(2π)d

τ∑
i=1

∏
(S,N)∈E(Ti)

wS,N

∏
L∈V(Ti)

∫
R
exp(−itxψ(L))φL(t) dt,

and can be computed efficiently through analytic or numeri-
cal integration at the leaves. Proof is in Appendix B.

Computation of Marginals. Similar to PCs over distri-
bution functions, CCs allow efficient computation of ar-
bitrary marginals. Given a CC on RVs Z = X ∪ Y ,
we can obtain the marginal CC over X as follows. Let
n = |X|, m = |Y |, t = tX ∪ tY ∈ Rn+m and
let the characteristic function of the circuit be given by
φC(tX , tY ) =

∫
x∈Rn+m exp(it⊤x)µS(dx), where µS de-

notes the distribution of the root. Then following property (i)
of CFs, the marginal CC over X is given by setting tY = 0.

3.2 LEARNING CHARACTERISTIC CIRCUIT

Inspired by Gens and Pedro [2013], we propose a structure
learning algorithm to learn the structure of the CC, depicted
in Algorithm 1. Structure learning recursively splits the
data slice and creates sum and product nodes of the CC.
Univariate CF leaves are created to model the local data.

On the other hand, given a random circuit structure, param-
eter learning can be employed to learn a CC. Instead of
maximising the likelihood, which is not guaranteed to be
tractable, we minimise the approximated squared character-
istic function distance (CFD, c.f. Appendix C) between the
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Figure 2: CC approximates the true distribution better than
the ECF by providing a smaller CFD. We visualize the CFD
for CC with CC-P ( ), CC-E ( ), CC-N ( ) and a
single ECF ( ) learned from MM (Left) and BN (Right).

CC and ECF: 1
k

∑k
j=1 |

1
n

∑n
i=1 exp(it

⊤
j xi)− φC(tj)|2,

where tj ∼ ω(t; η), in this paper N (0, diag(η2)). Further-
more, we provide an analytical solution to the CFD between
two CCs in Appendix D.

4 EXPERIMENTAL EVALUATION

Here, we evaluate the performance of characteristic circuit
on synthetic data sets and the UCI data sets, which are
composed of heterogeneous data.

Better Approximation of Characteristic Functions. We
begin by describing and evaluating the performance of
CC on two synthetic data sets: a mixture of multivariate
distributions (denoted as MM): p(x) =

∑K
i=1 wip(x1 |

µi, σ
2
i )p(x2 | pi), where p(x | µ, σ2) is the univariate

normal distribution and p(x | p) is the univariate categor-
ical distribution, and a Bayesian network with 5 nodes (1
continuous and 4 discrete nodes, denoted as BN).

We first learn CCs applying structure learning with various
leaf types: CC with ECF as leaves (CC-E), CC with normal
distribution for continuous RVs and categorical distributions
for discrete RVs, i.e., parametric leaves (CC-P), and CC with
normal distribution for all leaf nodes (CC-N). The trained
CCs are evaluated with the CFD between the CC and the
ground truth CF. Following Chwialkowski et al. [2015]
and Ansari et al. [2020], we illustrate both the CFD with
varying scale η in ω(t; η) and also optimising η for the
largest CFD, shown in Fig. 2. The CFDs are averaged for 5
runs and the standard deviations are visualized. Fig. 2 shows
that both CC-E and CC-P have almost equally lower CFD
values and also lower maximum CFD values compared to
the ECF, which indicates the CC structure better encodes
the data distribution than the ECF. Therefore, CC estimates
the data distribution better than ECF, which can be justified
by the smaller CFD from CC-E compared with ECF.

Better Density Estimator on Heterogeneous Data. Real-
world tabular data usually contain both discrete and real-
valued elements, and thus are in most cases heterogeneous
data. Therefore, we also conduct experiments on the UCI
heterogeneous data sets [Molina et al., 2018] and compare

Table 1: Average test log-likelihoods from CC and SOTA
algorithms on heterogeneous data. CC with α-stable distri-
bution leaves (CC-A) wins 7 out of 12 data sets.

Data Set MSPN ABDA BSPN CC-P CC-A

Abalone 9.73 2.22 3.92 4.27 3.24
Adult -44.07 -5.91 -4.62 -31.37 -8.65
Australian -36.14 -16.44 -21.51 -30.29 -3.25
Autism -39.20 -27.93 -0.47 -34.70 -13.56
Breast -28.01 -25.48 -25.02 -54.75 -13.22
Chess -13.01 -12.30 -11.54 -13.03 -13.03
Crx -36.26 -12.82 -19.38 -32.62 -3.80
Dermatology -27.71 -24.98 -23.95 -30.33 -24.72
Diabetes -31.22 -17.48 -21.21 -23.00 -0.73
German -26.05 -25.83 -26.76 -27.29 -14.96
Student -30.18 -28.73 -29.51 -31.59 -27.79
Wine -0.13 -10.12 -8.62 -6.91 3.49

# best 1 0 4 0 7

against SOTA PC methods, including MSPN [Molina et al.,
2018], ABDA [Vergari et al., 2019] and BSPN [Trapp et al.,
2019], for density estimation. We employ structure learning
and all the continuous RVs are modelled with either normal
distribution (CC-P) or α-stable distribution (CC-A).

The test log-likelihoods are presented in Table 1. CC-P does
not win on all the data sets but performs as runner-up on
Abalone, and is also competitive with MSPN and ABDA on
most of the data sets. CC-A outperforms the other methods
on 7 out of 12 data sets, marked as bold. This implies that
CC is a competitive density estimator compared with SOTA
PCs. Furthermore, α-stable distribution leaf, which is not
available in current PCs, is a more suitable choice for CC
on heterogeneous tabular data.

5 CONCLUSION

We introduced characteristic circuit, the first circuit based
characteristic function estimator that leverages an arithmetic
circuit with univariate characteristic function leaves for mod-
elling the joint of heterogeneous data distributions. Com-
pared to PCs, CC models the CF of data distribution in the
continuous spectral domain, providing a unified view for
discrete and continuous RVs, and can further model distri-
butions that do not have closed-form probability density
functions. We show that both joint and marginal probabil-
ity densities can be calculated exactly and efficiently via
CC. Finally, we empirically show that CC approximates
data distribution better than ECF, and can also perform as a
competitive density estimator on heterogeneous data sets.

The circuit structure of CC generated by structure learning
has a high impact on the performance of the CC, thus an
inappropriate structure can limit the modelling power of CC.
Therefore, one interesting direction of future work is to ap-
ply parameter learning of CC on more advanced circuit struc-
tures [Peharz et al., 2020] or in combinations with flows.
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Supplementary Material:
Characteristic Circuit

A LEAF TYPES OF CHARACTERISTIC CIRCUIT

Here we describe the leaf types that are used in the characteristic circuit.

ECF leaf. In many cases, a parametric form of the data distribution is not available and one needs to use a non-parametric
estimator. The ECF [Feuerverger and Mureika, 1977, Cramér, 1999] is an unbiased and consistent non-parametric estimator
of the population characteristic function. Given data {xj}nj=1 the ECF is given by φ̂P(t) =

1
n

∑n
j=1 exp(i t

⊤ xj). Thus,
the most straightforward way for modelling the leaf node is to directly employ the empirical characteristic function for the
local data at each leaf, defined as φLECF(t) =

1
n

∑n
j=1 exp(i t xj), where n is the number of instances at leaf L, and xj is the

jth instance. The ECF leaf is non-parametric and is determined by the n instances xj at L.

Parametric leaf for continuous RVs. Motivated by existing SPN literature, we can assume that the RV at a leaf node follows
a parametric continuous distribution e.g. normal distribution. With this, the leaf node is equipped with the CF of normal
distribution φLNormal(t) = exp(i t µ− 1

2σ
2t2), where parameters µ and σ2 are the mean and variance.

Parametric leaf for discrete RVs. For discrete RVs, if it is assumed to follow categorical distribution (P (X = j) = pj), then
the CF at the leaf node can be defined as φLCategorical(t) = E[exp(i t x)] =

∑k
j=1 pj exp(i t j). Other discrete distributions

which are widely used in probabilistic circuits can also be employed as leaf nodes in CCs, e.g. Bernoulli, Poisson and
geometric distributions.

α-stable leaf. In the case of financial data or data distributed with heavy tails, the α-stable distribution is frequently employed.
α-stable distributions are more flexible in modelling e.g. data with skewed centered distributions. The characteristic function
of an α-stable distribution is φLα-stable(t) = exp(i t µ − |ct|α (1 − iβsgn(t)Φ)), where sgn(t) takes the sign of t and

Φ =
{ tan(πα/2) α ̸= 1
−2/π log |t| α = 1

. The parameters in α-stable distribution are the stability parameter α, the skewness parameter

β, the scale parameter c and the location parameter µ. Despite its modelling power, α-stable distribution is never employed
in PCs, as it is represented analytically by its CF and in most cases does not have a closed-form probability density function.

B THEORETIC PROPERTIES

In this section, we provide a detailed proof of Lemma 3.2

Proof. Let C = ⟨G, ψ, θG⟩ be a characteristic circuit on RVs X = {Xj}dj=1 with univariate leave nodes and pN the number
of RVs in the scope of N. In order to calculate the density function of C, we need to integrate over the d-dimensional real
space Rd, i.e.,

fX(x) =
1

(2π)d

∫
t∈Rd

exp(−i t⊤ x)φC(t)λd(dt)︸ ︷︷ ︸
=f̂C(x)

, (5)

where φC(t) denotes the CF defined by the root of the characteristic circuit and λd is the Lebesque measure on (Rd,B(Rd)).
We can examine the computation of Eq. (5) recursively for every node.

Leaf Nodes. If N is a leaf node L, we obtain f̂N(·) by calculating:

f̂L(x) = 2πfL(x) =

∫
R
exp(−itx)φX(t)λ(dt), (6)

which follows from Theorem 2.1.
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Sum Nodes. If N is a sum node S, then:

f̂S(x) =

∫
t∈Rp
exp(−i t⊤ x)φS(t)λp(dt) =

∑
N∈ch(S)

wS,N

∫
t∈RpS
exp(−i t⊤ x)φN(t)λpS(dt)︸ ︷︷ ︸

=f̂N(x)

. (7)

Therefore, computing the inverse for S reduces to inversion at its children.

Product Nodes. If N is a product node P, then:

f̂P(x) =

∫
t∈RpP
exp(−i t⊤ x)φP(t)λpP(dt) =

∏
N∈ch(P)

∫
s∈RpN
exp(−i s⊤ x[ψ(N)])φN(s)λpN(ds)︸ ︷︷ ︸

=f̂N(x[ψ(N)])

, (8)

where we used that λpP = ⊗N∈ch(P) λpN is a product measure on a product space, applied Fubini’s theorem, and used the
additivity property of exponential functions. Consequently, computing the inverse for P reduces to inversion at its children.

Through the recursive application of Eq. (7) and Eq. (8), we obtain that Eq. (5) reduces to integration at the leaves and,
therefore, can be solved either analytically or efficiently through one-dimensional numerical integration.

C CHARACTERISTIC FUNCTION DISTANCE

To measure the distance between two distributions represented by their characteristic functions, the squared characteristic
function distance (CFD) can be employed. The CFD between two distributions P and Q is defined as:

CFD2
ω(P,Q) =

∫
Rd

|φP(t)− φQ(t)|2 ω(t; η)dt, (9)

where ω(t; η) is a weighting function parameterized by η and guarantees the integral in Eq. (9) converge. When ω(t; η) is a
probability density function, Eq. (9) can be rewritten as:

CFD2
ω(P,Q) = Et∼ω(t;η)

[
|φP(t)− φQ(t)|2

]
. (10)

Sriperumbudur et al. [2010] showed that using the uniqueness theorem of CFs, CFDω(P,Q) = 0 iff P = Q. Comput-
ing Eq. (10) is generally intractable, therefore, we use Monte-Carlo integration to approximate the expectation, resulting in
CFD2

ω(P,Q) ≈ 1
k

∑k
j=1 |φP(tj)− φQ(tj)|2, where {t1, · · · , tk}

i.i.d.∼ ω(t; η). We refer to Ansari et al. [2020] for a detailed
discussion.

D ANALYTICAL SOLUTION OF THE CFD

The squared characteristic function distance (CFD)

CFD2
ω(P,Q) =

∫
Rd

|φP(t)− φQ(t)|2 ω(t; η)dt (11)

can not only be estimated with MC methods by sampling from ω(t; η), but also be calculated through the characteristic
circuit with an analytical solution, if φP(t) and φQ(t) are compatible characteristic circuits.

Eq. (11) can be rewritten as

CFD2
ω(P,Q) =

∫
Rd
(φP(t)− φQ(t))

(
φP(t)− φQ(t)

)
ω(t; η)dt

=

∫
Rd
(φP(t)φP(t)− φP(t)φQ(t)− φQ(t)φP(t) + φQ(t)φQ(t))ω(t; η)dt, (12)
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where z denotes the conjugate of the complex number z. Without loss of generality, let us derive the analytical solution of∫
Rd φP(t)φQ(t)ω(t; η)dt, since the derivation can be directly applied to the other terms in Eq. (12). In the following, we

omit the term ω(t; η) at sum and product nodes for simplicity. At sum nodes S and S′,

∫
S(t)S′(t)dt =

∫  ∑
N∈ch(S)

wS,NN(t)

 ∑
N′∈ch(S′)

wS′,N′N′(t)

dt

=

∫ ∑
N∈ch(S)

∑
N′∈ch(S′)

wS,NwS′,N′N(t)N′(t)dt

=
∑

N∈ch(S)

∑
N′∈ch(S′)

wS,NwS′,N′

∫
N(t)N′(t)dt. (13)

At product nodes P and P′,

∫
P(t)P′(t)dt =

∫  ∏
N∈ch(P)

N(t[ψ(N)])

 ∏
N′∈ch(P′)

N′(t[ψ(N′)])

 dt

compatibility

=

∫ ∏
(N,N′)∈∆P×P′

N(t[ψ(N)]︸ ︷︷ ︸
=t̂

)N′(t[ψ(N′)]) dt (14)

where ∆P×P′ denotes the diagonal of the Cartesian product of the children of P and P′, i.e., diag(ch(P) × ch(P′)),
compatibility ensures that both product nodes apply the same partition of the scope ψ(P) = ψ(P′) with parts in the same
order, and t[ψ(N)] is the projection of t to the scope of N. Therefore,

=
∏

(N,N′)∈∆P×P′

∫
RpN

N(t̂)N′(t̂) dt̂. (compatibility) (15)

At univariate leaf nodes L and L′, assuming both leaf nodes model univariate normal distribution with parameters (µ, σ) and
(µ′, σ′), and ω(t; η) = 1

η
√
2π

exp(−t
2

2η2 ), then

∫
R
L(t)L′(t)ω(t; η)dt =

∫
R
exp(i t µ− 1

2
σ2t2)exp(i t µ′ − 1

2
σ′2t2)

1

η
√
2π

exp(
−t2

2η2
)dt

ez=ez

=
1

η
√
2π

∫
R
exp(i t (µ− µ′)− 1

2
(σ2 + σ′2 +

1

η2
)t2)dt

=
1

ησ̂
exp(

−µ̂2

2σ̂2
), (integral of a Gaussian function) (16)

where µ̂ = µ− µ′ and σ̂ =
√
σ2 + σ′2 + 1/η2 . Therefore, at univariate leaf nodes, it can be solved either analytically or

with Monte-Carlo integration:

∫
R
L(t)L′(t)ω(t; η)dt =

1

k

k∑
j=1

φL(tj)φL′(tj), (17)

where {t1, · · · , tk}
i.i.d.∼ ω(t; η). With the above properties, the CFD between two compatible CCs can be calculated from

bottom-up analytically and efficiently.
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