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Abstract

Large Language Models (LLMs) have demon-001
strated remarkable capabilities in various tasks,002
yet they often struggle with context-faithfulness003
generations that properly reflect contextual004
knowledge. While existing approaches focus005
on enhancing the decoding strategies, they ig-006
nore the fundamental mechanism of how con-007
textual information is processed within LLMs’008
internal states. As a result, LLMs remain lim-009
ited in their ability to fully leverage contextual010
knowledge. In this paper, we propose Context-011
aware Layer Enhancement (CaLE), a novel in-012
tervention method that enhances the utilization013
of contextual knowledge within LLMs’ internal014
representations. By employing V-usable infor-015
mation analysis, CaLE strategically amplifies016
the growth of contextual information at an op-017
timal layer, thereby enriching representations018
in the final layer. Our experiments demonstrate019
that CaLE effectively improves context-faithful020
generation in Question-Answering tasks, partic-021
ularly in scenarios involving unknown or con-022
flicting contextual knowledge.023

1 Introduction024

Large Language Models (LLMs) have demon-025

strated remarkable capabilities in various tasks, yet026

they face significant challenges, including hallu-027

cination and outdated knowledge (Ji et al., 2023;028

Zhao et al., 2024). Retrieval-Augmented Genera-029

tion (RAG) has emerged as a promising approach030

to address these limitations by incorporating ex-031

ternal knowledge sources into the generation pro-032

cess (Ram et al., 2023; Gao et al., 2024). The033

concept of context-faithfulness—the ability to gen-034

erate responses that accurately reflect provided con-035

textual information—has thus become crucial for036

LLM applications (Zhou et al., 2023; Shi et al.,037

2024b). Nevertheless, these models often struggle038

to properly utilize external contextual information,039

particularly when it conflicts with their pre-existing040
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Figure 1: An illustration of CaLE Method.

parametric knowledge (Xie et al., 2024). As illus- 041

trated in the upper part of Figure 1, despite the 042

presence of context indicating "Google", the model 043

still generates a unfaithful output "Apple". 044

Existing efforts (Shi et al., 2024b; Jin et al., 045

2024) to enhance the context-faithfulness of LLMs 046

primarily focus on modifying decoding strategies 047

or reweighting knowledge-aware neurons. The op- 048

timized decoding strategies (Shi et al., 2024b; Qiu 049

et al., 2024; Yuan et al., 2024) focus on the con- 050

trastive mechanism (Li et al., 2023) to ensure a 051

greater reliance on external information. Another 052

line of research is to explore the internal neurons 053

within models (Shi et al., 2024a). They aim to iden- 054

tify and reweight the neurons that are crucial in 055

processing contextual cues. However, these meth- 056

ods are only applicable to predefined data formats, 057

such as triplet facts or multiple-choice questions, 058

thereby limiting their effectiveness in complex sce- 059

narios (Jin et al., 2024). 060

Recent studies (Azaria and Mitchell, 2023; Chen 061

et al., 2024) have demonstrated that LLMs preserve 062

the highly-concentrated information within their in- 063

ternal states. Skean et al. (2024) further reveals that 064

intermediate layers often yield more informative 065
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representations for downstream tasks than the final066

layer. These findings imply that, in RAG tasks, the067

contextual information within internal states may068

not always increase monotonically towards the out-069

put layer. As illustrated in Figure 1, the correct070

answer ("Google") attains the top probability at the071

26th layer but not the final layer. Therefore, we pro-072

pose to explore the contextual information retained073

of LLMs’ internal states for faithful generations.074

We conduct a investigation on contextual infor-075

mation flow across model layers utilizing V-usable076

information (Xu et al., 2020; Ethayarajh et al.,077

2022). It measures the contribution that the inner078

states of model can help generate the contextual an-079

swer. Our findings reveal significant fluctuations in080

contextual information, which could lead to under-081

utilization of the given context. This fluctuation082

may disclose the inherent deficiency in process-083

ing the contextual information of current LLMs084

based on Transformer, and thus present a critical085

intervention point for preserving and enhancing086

contextual information flow, potentially improving087

the context-faithfulness of LLMs.088

To remedy the above issues, this paper pro-089

poses a Context-aware Layer Enhancement (CaLE)090

method, which exploits contextual knowledge091

within model’s internal representations from a092

layer-specific perspective. Based on V-usable infor-093

mation, CaLE identifies the context-aware layer in094

either a supervised or unsupervised manner, which095

exhibits the highest contextual information. Then096

it enhances the layer representations through am-097

plification or residual connections. As a result,098

the contextual information relevant to the target an-099

swers is effectively enriched. As shown in Figure 1,100

CaLE identifies the 26-th layer that encodes rich in-101

formation about the correct answer ("Google") and102

enhances its representations, facilitating accurate103

response generation at the final layer.104

Experiments on CounterFact (Meng et al.,105

2022a), Natural Questions (NQ) (Kwiatkowski106

et al., 2019), SQuAD (Rajpurkar et al., 2016) and107

StrategyQA (Geva et al., 2021a) datasets demon-108

strate that CaLE significantly improves context-109

faithful generation in downstream tasks. Further-110

more, CaLE’s enhancements to context utilization111

are independent of and complementary to various112

decoding strategies, enabling cumulative improve-113

ments in the faithfulnes of LLMs. This orthogonal-114

ity to existing decoding methods underscores the115

versatility of our approach.116

The contributions of this paper are as follows:117

• Through experimental analysis, we find that 118

LLMs often exhibit a characteristic informa- 119

tion fluctuation across the intermediate layers, 120

with certain layers maintaining a high increas- 121

ing context-faithful information, followed by 122

a plateau or decrease in the deeper layers. 123

• To mitigate the negative effective of the con- 124

textual information degradation, CaLE pro- 125

poses a context-aware layer identification 126

method to determine an optimal intervening 127

position. Through amplification or residual 128

connect, the further enhancement will lead to 129

richer representations in the final layer. 130

2 Information Flow Analysis based on 131

V-usable information 132

First, we introduce a method for measuring the 133

contribution of the inner states of the model to 134

the faithfulness of its responses, specifically focus- 135

ing on how to quantitatively analyze the contex- 136

tual information contained within each layer’s state. 137

Building on this, we analyze the flow of contex- 138

tual information across different layers in various 139

models, using the CounterFact (Meng et al., 2022a) 140

dataset to examine the variations in the flow. 141

2.1 V-usable Information 142

Unlike Shannon’s MI and in violation of the data 143

processing inequality, V-usable information can 144

be created through computation (Xu et al., 2020; 145

Ethayarajh et al., 2022). It reflects the ease with 146

which a model family V can predict the correct 147

answer Y given specific input hidden states hl at 148

layer l (Ju et al., 2024). 149

IV(hl → Y ) = HV(Y )−HV(Y |hl) (1) 150

where HV(Y ) and HV(Y |hl) denote the predic- 151

tive V-entropy and the conditional V-entropy. The 152

latter can be estimated through the following equa- 153

tions: 154

HV(Y ) = inf
f∈V

E[− ln f [∅](Y )] (2) 155

HV(Y |hl) = inf
f∈V

E[− ln f [hl](Y )] (3) 156

where the function f [·] produces a probability dis- 157

tribution over the vocabulary. Put simply, we use 158

the logit lens (nostalgebraist, 2020) with softmax 159

function here. 160

f [hl](Y ) =
evk∑

j∈|V ocab| e
vj

(4) 161
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Figure 2: Visualization of Information Flow. The ver-
tical axis represents the variation in V-information, as
reflected by the −HV metric. The horizontal axis de-
notes the information content across different layers,
while the shaded region indicates one standard devia-
tion from the mean.

where v = LogitLens(hl)
1 represents the logit vec-162

tor at layer l. The subscript k represents the token163

index corresponding to Y .164

To evaluate the variations across layers, we adopt165

−HV for observation based on:166

∆IV = IV(hl → Y )−IV(hl−1 → Y ) = ∆−HV167

2.2 Information Flow Analysis168

We analyze the flow of contextual information us-169

ing models of similar sizes (Figure 2a), as well170

as the Llama series models of varying sizes (Fig-171

ure 2b). The details of the experimental settings172

are provided in Appendix A.1.173

As shown in the Figure 2, the Llama models gen-174

erally exhibit relatively higher values of V-usable175

information in their intermediate layers than the176

final layer. A comparison between Figure 2a and177

2b reveals that the models exhibit a characteristic178

information fluctuation across the intermediate lay-179

ers. Specifically, a subset of layers maintains a180

high, monotonically increasing V-usable informa-181

tion, followed by either a plateau or a decrease in182

the deeper layers.183

The analysis reveal that the V-usable informa-184

tion does not follow a monotonically increasing185

trend toward the output layer. Therefore, we pro-186

pose leveraging the contextual information within187

the internal states of LLMs to maintain a continu-188

ous growth trend, which may potentially counteract189

subsequent degradation (or stagnation) effects.190

3 CaLE: Context-Aware Layer191

Enhancement192

During the inference process, information fluctu-193

ations can occur with degradation (or stagnation).194

1Detailed formula can be found in Appendix B.

This leads to a reduction in the amount of con- 195

textual information at the final layer (Skean et al., 196

2024), resulting in a loss of contextual faithfulness 197

during the final decoding. 198

To mitigate this issue, we propose CaLE, which 199

first identifies the context-aware layers before 200

degradation and then enhances the contextual rep- 201

resentations within these layers. This improvement 202

helps to elevate the IV(hf ;Y ) in the final layer, 203

thereby enhancing the model’s faithfulnes. Further- 204

more, we provide theoretical proofs to guarantee 205

the effectiveness of CaLE. 206

3.1 Layer Enhancement Methods 207

According to Formula 1, IV(hf ;Y ) can be maxi- 208

mized by minimizing the HV(Y |hf ) of the final 209

layer. To minimize the V-entropy, we propose two 210

intervene methods for enhancing the layer with rich 211

contextual knowledge: 212

Amplification of Representations at Layer l 213

(CaLE-A). For layer l, the representation hl is 214

directly amplified by a factor α1. The enhanced 215

representation h
′
l is given by: 216

h
′
l = α1 · hl (5) 217

where α1 is a hyperparameter that amplifies the 218

representation of layer l. 219

Residual Connection from Layer l to Subse- 220

quent Layers (CaLE-R). A residual connec- 221

tion is added from layer l to the representations 222

of α2 subsequent layers. For any layer k where 223

l + 1 ≤ k ≤ l + α2, the enhanced representation 224

h
′
l is computed as: 225

h
′
k = hk + hl (6) 226

where hl is the representation of layer l, and hk is 227

the original representation of layer k. 228

Both methods ensure that contextual informa- 229

tion at layer l is enhanced and accumulated across 230

subsequent layers. 231

3.1.1 Theoretical Support for Enhancement 232

In this section, we present theoretical support for 233

the enhancement on a context-aware layer to mini- 234

mize the conditional entropy HV(Y |hf ). 235

First, we expand the function f [·] at the final 236

layer through the lens of residual stream (Elhage 237

et al., 2021; Olsson et al., 2022): 238

f [hf ](Y ) =
evk+uk(vk)∑

j∈|V ocab| e
vj+uj(vj)

(7) 239
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where v denotes the logits at layer l, and u(v) in-240

cludes logit contributions from layer l + 1 to the241

final layer f . The deduction is detailed in Ap-242

pendix C.243

At final layer, the minimization objective244

HV(Y |hf ) (defined as HVf
) can be simplified into245

the following form:246

HVf
= E[ln

∑
j

evj+uj(vj) − (vk + uk(vk))] (8)247

As derived in detail in Appendix D.1, the HVf
248

with layer l amplification is given by:249

HVf
(α)

def
= E[ln

∑
j

eαvj+uj(αvj)−(αvk + uk(αvk))]

(9)250

Additionally, Appendix D.2 demonstrates that the251

residual method is equivalent to a specific value252

of α2, thereby the theoretical framework is also253

applicable to the residual method.254

Proposition 3.1. [Proof in Appendix E] Let α de-255

note the amplification factor applied to the hidden256

states at this layer. If k = argmaxj vj , then257

lim
α→∞

HVf
(α) ≈ 0 (10)258

Since we cannot guarantee that vk will achieve259

the maximum probability proportion at a specific260

layer, we propose setting α > 1 as a fixed hyper-261

parameter for the enhancement method. This ad-262

justment amplifies the probabilities of top-ranking263

tokens while proportionally attenuating the noise264

from less relevant tokens. In our experiments, we265

discuss the impact of different values of α.266

3.2 Identifying the Context-Aware Layer267

CaLE amplifies the flow of contextual information268

at an appropriate layer, which can produce signif-269

icant performance benefits. In this section, we270

describe the identification method for the layer.271

3.2.1 Supervised Layer Identification272

The supervised method involves selecting an opti-273

mal lay within the Transformer model, by evaluat-274

ing model performance on a validation set.275

Given a set of candidate layers L =276

{l1, l2, . . . , ln−1}, the method computes the perfor-277

mance A(li, Dval) for each layer li on the validation278

set Dval. The optimal layer l∗ is identified as the279

2Refer to Formula 22 and 23 in Appendix D

one that maximizes validation accuracy, formally 280

expressed as: 281

l∗ = argmax
li∈L

A(li, Dval) (11) 282

Subsequently, the selected layer l∗ is used to 283

evaluate the model’s performance on the test set 284

Dtest, yielding the final test performance Atest = 285

A(l∗, Dtest). 286

3.2.2 Unsupervised Layer Identification 287

In real-world scenarios, label Y may not be avail- 288

able for evaluating layer enhancement performance. 289

We aim to approximate V-usable information 290

through an alternative metric. 291

Since the answer Y is uniquely determined by 292

the context-query pair (c, q), the information con- 293

tent encoded in (c, q) necessarily exceeds that of 294

Y . Then we can establish the following: 295

IV(hl;Y ) ≤ IV(hl; c, q) (12) 296

where 297

IV(hl; c, q) = IV(hl; q) + IV(hl; c | q) (13) 298

Based on the relationship between Kullback- 299

Leibler (KL) divergence (Kullback and Leibler, 300

1951) and MI, we have: 301

IV(hl;Y ) ≤ IV(hl; q) + IV(hl; c | q) 302

= EP (q)

[
KL[P (hl | q) ∥P (hl)]

]
+ 303

EP (q,c)

[
KL[P (hl | q, c) ∥P (hl | q)]

]
(14) 304

It suggests that we can estimate the upper bound of 305

V-usable information through the KL divergences 306

of the distribution of hidden states. 307

Layer Identification based on KL Divergence. 308

Given that this approximation imposes only a unidi- 309

rectional constraint, it does not provide a definitive 310

guarantee for the V-usable information. Therefore, 311

we conduct empirical statistics to assess the re- 312

liability of the KL divergence as a measurement 313

criterion. 314

We denote the KL divergences in Formula 14 as 315

follows: 316

KLq(l)
def
= KL[P (hl | q) ∥P (hl)] (15) 317

KLc(l)
def
= KL[P (hl | q, c) ∥P (hl | q)] (16) 318

We estimate the KL divergences on the Counter- 319

Fact (Meng et al., 2022a) dataset with different 320

models. The settings are detailed in Appendix A.2. 321
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Figure 3: Variation of the KL divergences across lay-
ers in different models. The KLq quantifies the impact
of question conditioning on layer representations by
measuring their distributional divergence, while KLc

captures the incremental influence of context condition-
ing given the question on these representations. The
shaded region represents the confidence interval.

Figure 3a demonstrates a strong correlation be-322

tween KLc(l) and IV(hl;Y ) across the models.323

This consistency suggests that the divergence can324

effectively approximate the V-usable information,325

capturing the incremental influence of context con-326

ditioning given the question. Furthermore, for the327

same question, the information of the correct an-328

swer is inherently contained within the context,329

making KLq relatively irrelevant. Supporting ev-330

idence from Figure 3b indicates a low correlation331

between IV(hl;Y ) and KLq. Therefore, we pro-332

pose the following approximation:333

IV(hl;Y ) ∝ EP (q,c)KL [P (hl | q, c) ∥P (hl | q)]
(17)334

We identify the optimal layer by selecting one335

that exhibits maximal information in IV(hl;Y ),336

which is measured by KLc(l) according to For-337

mula 17. Therefore, the layer is selected as follows:338

l∗ = argmax
l

EP (q,c)[KLc(l)] (18)339

Due to the term EP (q,c), we measure the average340

KLc across all data points for layer selection.341

4 Experiments342

4.1 Settings343

Data. We evaluate the performance of CaLE344

across diverse QA datasets, including Counter-345

Fact (Meng et al., 2022a) NQ (Kwiatkowski et al.,346

2019), SQuAD (Rajpurkar et al., 2016), and Strate-347

gyQA (Geva et al., 2021a). 3 More details of the348

data are in Appendix F.349

3For the CounterFact, α1 = 5 for CaLE-A, and α2 = 3
for CaLE-R. For the other datasets, α1 = 3 and α2 = 1.

Models. We conduct experiments on state-of- 350

the-art language models, including several vari- 351

ants from the Llama model family—specifically, 352

Llama2-7B, Llama3.1-8B, and Llama3.2-3B—as 353

well as the Mistral-7B and Gemma2-9B models. 354

Baselines. To demonstrate the effectiveness of 355

CaLE, we compare it with the following baselines: 356

Original, which refers to the LLMs without any 357

modification; Early Exit (Xin et al., 2021; Men 358

et al., 2024; Fan et al., 2024), where the model 359

exits early at the layer with the best performance; 360

and IRCAN (Shi et al., 2024a), which reweights 361

the neurons critical for processing contextual cues. 362

Both intervention methods are supervised. 363

For the supervised CaLE method, we construct 364

the validation set using 0.5k samples, randomly 365

selected from the training data to ensure no overlap 366

with the test set. 367

We also combine several decoding methods, 368

since the above methods work in completely dif- 369

ferent ways with decoding strategies: Context- 370

Aware Decoding (CAD) (Shi et al., 2024b), Con- 371

trastive Decoding (CD) (Li et al., 2023), and Con- 372

textual Information-Entropy Constraint Decoding 373

(COIECD) (Yuan et al., 2024). Detailed descrip- 374

tion are provided in Appendix G. 375

Metrics. We use the Exact Match (EM) and F1 376

scores for evaluating the QA performance of LLMs. 377

For the binary classification in StrategyQA, the 378

accuracy is used as the metric. 379

4.2 A Thorough Analysis on the CounterFact 380

Dataset 381

We first conduct a comprehensive analysis by apply- 382

ing supervised CaLE intervention on the Counter- 383

Fact dataset. Specifically, we partition the Counter- 384

Fact dataset into "known" and "unknown" subsets 385

(with "total" representing the complete set). The 386

classification is based on whether the external con- 387

textual knowledge is consistent with the model’s 388

parametric knowledge (Ren et al., 2025)4. 389

4.2.1 Overall Performance 390

Superior Performance. As shown in Table 1, the 391

experimental results demonstrate that both super- 392

vised CaLE variants (CaLE-A and CaLE-R) con- 393

sistently outperform baseline methods across all 394

models. This suggests that enhancing the context- 395

aware layer within the model significantly im- 396

4The details of the posteriori judgement for the dataset are
in Appendix F.1.
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Total Unknown Known

Models Methods Original Early Exit IRCAN CaLE-R CaLE-A Original Early Exit IRCAN CaLE-R CaLE-A Original Early Exit IRCAN CaLE-R CaLE-A

Llama2-7B

Regular* 54.32 70.76 71.15 74.86 74.98 42.53 66.47 63.56 69.22 69.62 90.90 86.86 89.35 92.25 91.30
CD 59.22 71.36 74.41 76.56 76.26 51.12 67.07 69.57 71.41 71.66 83.51 86.21 90.35 92.15 90.75
CAD 63.67 69.92 69.35 76.81 75.66 57.92 66.32 66.17 72.21 71.44 79.51 84.23 77.66 89.41 88.66
COIECD 63.72 70.26 69.62 76.76 75.81 57.47 66.62 66.87 71.91 71.51 81.06 84.96 77.91 90.35 89.26

Llama3.1-8B

Regular 57.72 67.52 65.57 71.06 73.91 45.98 59.97 56.32 63.57 67.22 90.05 86.41 90.50 92.50 92.00
CD 62.42 67.76 67.77 73.66 75.46 54.07 61.22 61.37 67.42 70.21 83.96 84.56 86.46 89.86 92.03
CAD 66.92 68.37 70.06 77.16 77.71 60.87 62.57 65.22 72.66 73.36 81.61 81.18 82.66 86.31 86.21
COIECD 66.62 68.45 70.46 76.91 77.31 60.02 62.42 65.02 71.96 72.71 82.81 82.06 84.11 87.16 87.06

Llama3.2-3B

Regular 57.67 71.91 76.61 76.81 79.21 48.28 66.07 71.71 71.16 74.31 91.95 91.25 93.75 95.80 95.90
CD 63.02 72.71 78.46 79.16 80.31 56.77 67.37 74.56 74.26 75.86 85.96 89.36 93.50 94.65 94.35
CAD 69.77 73.52 77.71 81.11 82.06 64.87 68.85 74.16 77.01 78.26 84.36 85.81 90.02 91.50 92.05
COIECD 69.12 73.69 78.52 80.81 81.81 64.02 68.73 74.65 76.66 78.01 85.51 86.96 91.30 92.15 92.60

* Regular refers to the greedy decoding strategy.

Table 1: EM results on the CounterFact dataset with supervised intervene methods. The CaLE-A/R method denote
the amplification or residual methods for enhancement. The highest scores with different decoding strategies are
highlighted in bold.
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Figure 4: Validation set size impact on supervised layer
selection and comparative layer selection with unsuper-
vised CaLE. The selected layers are detailed in Table 4.

EM Llama2-7B Llama3.1-8B Llama3.2-3B

∆=(sup.- unsup.) CaLE-R(∆) CaLE-A(∆) CaLE-R(∆) CaLE-A(∆) CaLE-R(∆) CaLE-A(∆)

Total 74.86 (−0.00) 74.98 (−0.00) 71.06 (−0.56) 73.91 (−2.75) 76.81 (−2.20) 79.21 (−2.45)
Unknown 69.22 (−0.00) 69.62 (−0.00) 63.57 (−1.05) 67.22 (−3.40) 71.16 (−2.89) 74.31 (−3.25)
Known 92.25 (−0.00) 91.30 (−0.00) 92.50 (−0.50) 92.00 (−0.55) 95.80 (−0.60) 95.90 (−0.45)

Table 2: Performance comparison between supervised
and unsupervised CaLE. The black numbers represent
the scores of the supervised CaLE method, with the
values in "()" indicating the difference between the su-
pervised and unsupervised methods.

proves context-faithfulness generation. Further-397

more, the advantage of our method is particu-398

larly pronounced when handling new ("unknown")399

knowledge, whereas ICRAN underperforms even400

compared to Early Exit method on Llama2-7b and401

Llama3.1-8b with Regular decoding strategy.402

Difference Between CaLE-R and CaLE-A403

While both CaLE-R and CaLE-A enhance ac-404

curacy, their mechanisms lead to differences in405

performance. CaLE-R, which incorporates resid-406

ual connections, provides a stable but modest im-407

provement in the "Unknown" subset. In contrast,408

CaLE-A, which amplifies knowledge representa-409

tions, achieves nearly the highest scores across all410

models. This indicates that CaLE-A’s amplification411

mechanism is more effective at handling new fac-412

tual knowledge. On the other hand, CaLE-R excels 413

in the generation of consistent internal and external 414

knowledge, as evidenced by its performance in the 415

"Known" subset. 416

Versatility with Decoding Methods. One of the 417

key strengths of CaLE lies in its versatility across 418

different decoding methods. Regardless of the strat- 419

egy used—CD, CAD, or COIECD—CaLE-based 420

models consistently achieve higher EM scores com- 421

pared to other baselines. In contrast, Early Exit and 422

IRCAN do not show the same level of reliability, 423

with fluctuating gains and occasional declines, par- 424

ticularly in the Llama2-7B model. 425

4.2.2 Comparison between unsupervised and 426

supervised methods of CaLE 427

In the case of supervised CaLE, we use a validation 428

set size of 0.5k. As shown in Figure 4a, the vertical 429

axis represents the proportion of the mode of the 430

best layer selected based on validation accuracy 431

across 20 trials. The figure indicates that a valida- 432

tion set size of 0.5k is sufficient for robust layer 433

selection. Next, we analyze the KL-based unsuper- 434

vised CaLE method on CounterFact dataset. 435

Layer Selection Comparison. As illustrated in 436

Figure 4b, the solid line represents the performance 437

of different amplified layer in a validation set trial. 438

The red dots indicate the layers selected using the 439

KL-based metric in an unsupervised manner. No- 440

tably, these layers correspond closely to the peaks 441

in supervised performance, particularly around lay- 442

ers 22, 24, and 25. This strong correlation suggests 443

that the KL-based selection method effectively 444

identifies context-aware layers that contribute sig- 445

nificantly to contextual information. 446

Performance Comparison. The experimental re- 447

sults in Table 2 further validate this observation. 448
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Across various Llama models, although the unsu-449

pervised method generally performs worse than the450

supervised method, it consistently outperforms all451

other baselines in Table 1. Notably, for Llama2-452

7B, the unsupervised CaLE method achieves scores453

identical to its supervised counterpart, as both meth-454

ods identify the same layer for enhancement. These455

findings underscore the effectiveness of the KL-456

based CaLE, demonstrating its ability to approxi-457

mate optimal layer selections without the need for458

labeled supervision.459

4.2.3 Further Analysis460

Increased Information. Figure 5a provides theo-461

retical validation for the effectiveness of our CaLE-462

A method. The approach aims to enhance con-463

textual information representation in the model’s464

final layer, quantitatively assessed through nega-465

tive V-entropy measurements. The results demon-466

strate that the amplification mechanism success-467

fully transforms the previously observed informa-468

tion degradation, represented by solid lines, into an469

upward trend, as shown by the dashed lines.470

Unknown Contexts with Higher KL Divergence.471

In Figure 5b, the KL divergence of contexts in "Un-472

known" subset consistently exhibits a greater mag-473

nitude compared to known contexts across deeper474

layers. The peak observed at layer 25 aligns with475

the layer selected by the CaLE method, offering476

robust validation for both approaches. The KL477

metric provides an interpretable rationale for layer478

selection decisions, as it quantifies the distribu-479

tional impact of the contextual input c on each layer.480

This metric effectively captures the extent to which481

different layers encode and propagate contextual482

knowledge, particularly for new knowledge.483

4.3 Application on Diverse QA Datasets484

Conflicting Contexts. To further explore CaLE’s485

effectiveness in handling novel information, we486

NQ NQ-Swap SQuAD StrategyQA

EM F1 EM F1 EM F1 Acc

Llama2-7B 75.84 77.48 53.73 54.92 61.37 73.02 80.41
unsup. —— —— —— —— —— —— ————

+ CaLE-R 76.24 78.02 54.78 56.11 62.22 73.67 80.91
+ CaLE-A 77.19 79.16 55.58 57.04 62.32 73.72 81.11

sup. —— —— —— —— —— —— ————
+ IRCAN 76.41 79.13 57.82 55.03 62.22 73.97 81.62
+ CaLE-R 77.69 79.41 57.63 58.81 63.47 74.74 81.26
+ CaLE-A 78.19 80.06 58.83 60.06 63.77 75.20 83.16

Llama3.1-8B 76.94 78.81 49.52 50.50 64.93 78.01 85.86
unsup. —— —— —— —— —— —— ————

+ CaLE-R 78.19 80.03 53.58 54.61 65.63 78.61 85.90
+ CaLE-A 79.39 81.44 53.63 54.80 66.78 78.72 88.56

sup. —— —— —— —— —— —— ————
+ IRCAN 77.06 78.89 51.63 52.75 65.07 78.28 86.03
+ CaLE-R 78.29 80.11 53.58 54.61 65.68 78.33 86.21
+ CaLE-A 80.44 81.99 53.63 54.80 67.38 79.07 88.11

Mistral-7B 77.32 78.87 49.13 50.07 63.97 76.09 87.26
unsup. —— —— —— —— —— —— ————

+ CaLE-R 79.09 79.95 55.68 56.43 64.42 76.52 87.66
+ CaLE-A 80.24 81.22 56.83 57.62 64.07 76.51 88.71

sup. —— —— —— —— —— —— ————
+ IRCAN 78.51 80.03 53.98 54.82 64.82 77.02 87.43
+ CaLE-R 79.94 80.91 56.38 57.30 64.12 76.36 88.01
+ CaLE-A 80.69 81.76 58.53 59.28 66.42 78.01 89.16

Gemma2-9B 78.49 81.46 47.27 49.07 61.42 75.78 82.53
unsup. —— —— —— —— —— —— ————

+ CaLE-R 78.90 81.23 51.76 53.84 64.22 77.06 82.71
+ CaLE-A 79.39 81.72 52.33 54.25 64.92 76.93 83.47

sup. —— —— —— —— —— —— ————
+ IRCAN 79.02 81.39 50.01 52.33 64.10 76.34 83.42
+ CaLE-R 79.54 81.93 52.54 54.81 66.87 78.72 83.20
+ CaLE-A 79.94 82.58 53.03 55.38 67.92 79.88 84.31

Table 3: EM and F1 scores for the diverse QA datasets.
The unsup. and sup. denote the unsupervised and
supervised intervene methods. The best scores are high-
lighted in bold.

conduct comprehensive contrastive analyses using 487

the NQ dataset (Kwiatkowski et al., 2019) and its 488

variant, NQ-Swap (Longpre et al., 2021). The NQ- 489

Swap dataset, derived from the original NQ, exclu- 490

sively consists of conflicting contextual knowledge 491

that contradicts the model’s parametric knowledge. 492

As illustrated in Table 3, the improvement of 493

CaLE is particularly evident when evaluated on 494

the NQ-Swap dataset, which is entirely composed 495

of conflicting knowledge. These findings indicate 496

that CaLE intervention effectively facilitates the 497

utilization of new knowledge in the model. 498

Generalization on ComplexQA. We extend our 499

evaluation to other complex QA datasets, includ- 500

ing SQuAD (Rajpurkar et al., 2016) and Strate- 501

gyQA (Geva et al., 2021a), across various models. 502

As demonstrated in Table 3, we compare our ap- 503

proach with the strongest baseline method, IRCAN. 504

Our CaLE approach consistently achieves superior 505

performance on the QA datasets compared to the 506

baseline across all models. 507

For diverse QA datasets, the CaLE method con- 508

sistently outperforms the IRCAN method. Specifi- 509

cally, we observe that the IRCAN method does not 510

perform well on the complex QA datasets with long 511

contexts, often exhibiting minimal effects. Fur- 512

thermore, the supervised CaLE method yields bet- 513
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Figure 6: The effect of amplification across different
components of Llama2-7b on the CounterFact dataset.
The yellow horizontal line is the original EM score eval-
uated by α = 1 (without intervention). In the Attention
and MLP components, it is clear that the amplification
would damage the parameters space as there is very little
performance increase. However, for the hidden states,
CaLE goes from uniformly harming to improving the
performance in the deep layers.

ter results than its unsupervised counterpart, with514

CaLE-A outperforming CaLE-R. This suggests that515

CaLE-A possesses stronger generalization capabil-516

ities relative to CaLE-R.517

Effectiveness on Different Model Architectures.518

Across different model architectures, our method519

maintains robust performance on the Mistral and520

Gemma2 models, achieving improvements com-521

parable to those observed with the Llama family522

models. This finding highlights the effectiveness523

of our approach.524

4.4 Ablation Study525

In this section, we analyze the effectiveness of am-526

plifying different components of the Llama2-7B527

model: Hidden states, Attention, and MLP with528

different values of α, as illustrated in Figure 6.529

Value of α . Amplifying hidden states results in530

a clear performance boost, with the effectiveness531

varying across different layers and amplification532

factors α. The optimal amplification factor appears533

to be between 4 and 6, as evidenced by the higher534

EM scores in the upper curves of the left plot.535

Intervention Layer. Notably, the intervention is536

most effective when applied in later layers (20-25),537

where all α values lead to convergence around 70%538

EM score. This suggests that the model’s represen-539

tational capacity is most malleable and responsive540

to amplification in these deeper layers, possibly541

due to their role in high-level feature integration.542

Attention and MLP. The Attention and MLP543

amplification show more erratic results, with fluc-544

tuating performance across layers. For these com-545

ponents, amplifying either leads to diminishing re-546

turns or even decreases in performance, suggesting 547

that these layers do not benefit from amplification 548

in the same way as hidden states. 549

The poor performance of Attention and MLP am- 550

plification can be attributed to several factors. For 551

the attention mechanism, which is finely controlled 552

for inference tasks (Jin et al., 2024; Zhou et al., 553

2024), further amplification may disrupt the deli- 554

cate balance, leading to noise amplification. Fur- 555

thermore, the MLP is generally responsible for 556

storing knowledge (Meng et al., 2022b; Geva et al., 557

2021b). The amplifying the entire MLP can re- 558

sult in a proportional increase in all stored knowl- 559

edge, which may effectively render the amplifica- 560

tion meaningless. 561

5 Related Work 562

Existing approaches to enhancing context- 563

faithfulness in LLMs can be broadly classified 564

into three categories: fine-tuning methods (Bi 565

et al., 2024), external interventions (Zhou et al., 566

2023) and internal interventions. The internal 567

interventions predominantly focus on modifying 568

decoding strategies or reweighting knowledge- 569

aware neurons. Methods such as CAD (Shi 570

et al., 2024b) and COIECD (Yuan et al., 2024) 571

optimize decoding strategies through a contrastive 572

mechanism (Li et al., 2023) to promote greater 573

reliance on external information. However, these 574

decoding-based approaches operate at the output 575

level, resulting in only limited improvements. 576

Another stream of research explores the internal 577

states of models. For instance, Jin et al. (2024) 578

and Shi et al. (2024a) aim to identify and reweight 579

neurons crucial for processing contextual cues, 580

thereby alleviating conflicts through targeted 581

interventions at critical points. 582

6 Conclusion 583

In this paper, we propose a novel intervention 584

method called CaLE, which exploits contextual 585

knowledge within LLMs’ internal representations. 586

It strategically amplifies the contextual information 587

growth at an appropriate layer, which facilitates 588

richer representations in the final layer. Our experi- 589

ments demonstrate that CaLE effectively improves 590

context-faithful generation in QA tasks, particu- 591

larly in scenarios involving unknown or conflicting 592

contextual knowledge. 593
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Limitations594

The CaLE approach is to simply conduct one-time595

intervention during the inference process. While596

there are several other potential methods to exe-597

cute interventions continuously, we leave the ex-598

ploration of these alternatives for future work.599

The intervention analysis on the MLP and Atten-600

tion components adopts the amplification method601

proposed in the paper. While numerous stud-602

ies (Meng et al., 2022b; Geva et al., 2021b) have603

discussed the role of these components in manipu-604

lating knowledge, this study does not specifically605

explore whether alternative intervention methods606

beyond amplification, or selective interventions607

within layers, should be employed. Instead, a608

uniform approach of amplifying entire layers is609

adopted, which may introduce limitations.610
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A Experimental Settings for CounterFact856

A.1 Data Format in Section 2857

We use question q with context c from COUNTER-858

FACT (Meng et al., 2022a). For a given model,859

we input the sample data for which the model pre-860

dicts the correct answer (e.g., "Danielle Darrieux,861

a native French. The mother tongue of Danielle862

Darrieux is _"). In this section, we refer to the863

token predicted by the model for a given input as864

the answer.865

c: {{paraphrased prompt} {target
true}.}
q: {{prompt}}

866

A.2 Data Format in Section 3867

Similarly, we construct the data for computing868

these two KL divergences based on the CounterFact869

dataset:870

KLq(l) = KL [P (hl | q) ∥P (hl)]871

KLc(l) = KL [P (hl | q, c) ∥P (hl | q)]872

The term without c (i.e., P (hl | q)) is generated873

by excluding c from the input.874

q: {{prompt}}
875

The term without both q and c (i.e., P (hl)) is876

derived by providing an empty input.877

{∅}
878

B Logit Lens879

The LogitLens is a technique that decodes hidden880

states hl directly into the vocabulary distribution881

using the LayerNorm and the unembedding ma-882

trix of the LLM for interpretability (nostalgebraist,883

2020):884

LogitLens
(
hl
)
= LayerNorm(hl)W U (19)885

The final layer’s residual stream state is then pro-886

jected into the vocabulary space using the Unem-887

bedding Matrix W U ∈ Rd×|V| and normalized via888

the softmax function to produce a probability dis-889

tribution over the vocabulary, from which a new890

token is sampled.891

This approach has been validated in various stud- 892

ies as an effective method for interpreting LLMs’ 893

weight matrices or hidden states (Yu et al., 2023; 894

Hanna et al., 2023; Zhou et al., 2024). 895

C Residual Stream 896

We interpret transformer decoder-only architecture 897

(also known as GPT-like) through the perspective 898

of the residual stream (Elhage et al., 2021; Ols- 899

son et al., 2022). Due to the residual connections 900

in Transformers, each layer l takes a hidden state 901

hl−1 as input and adds information obtained from 902

its Attention Heads and Feed-Forward Networks 903

(FFNs) to the hidden state via the residual connec- 904

tion. In this context, the hidden state acts as a resid- 905

ual stream passed through the layers, with each 906

attention and FFN contributing to the final predic- 907

tion by adding information to the residual stream, 908

resulting in the Residual Stream States. Formally, 909

the hidden state hl at layer l is calculated as: 910

hl = hl−1 + MHA(hl−1) + FFN(al) 911

= hl−1 + al +ml 912

where al and ml are the outputs from the MHA 913

and FFN block in the l-th layer. Both quantities are 914

dependent on hl−1 and can thus be formulated as 915

functions of it (See Eq. 20). 916

Then, the hidden state hl+1 at layer l + 1 is 917

calculated as: 918

hl+1 = hl + al+1 +ml+1 919

= hl−1 + al +ml + al+1 +ml+1 920

= hl−1 +
l+1∑
k=l

ak +
l+1∑
k=l

mk 921

Consequently, the hidden state hN
i at the final 922

layer N(N ≥ l) can be calculated as: 923

hN = hN−1 + aN +mN 924

= hN−2 + aN−1 +mN−1 + aN +mN 925

= ... 926

= hl +
N∑

k=l+1

ak +
N∑

k=l+1

mk 927

where si represents the sum of the contributions 928

from the subsequent layers to the final layer. 929

The final layer’s residual stream state is then 930

projected into the vocabulary space using the Un- 931

embedding Matrix W U ∈ Rd×|V|. The final output 932
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logits of the LLM can be expressed as:933

logitsN = hlW U +

(
N∑

k=l+1

ak +
N∑

k=l+1

mk

)
W U934

= v + u(v) (20)935

For analytical simplicity, we ignore the final Layer-936

Norm function following Elhage et al. (2021) and937

Sun et al. (2024). It adds a fair amount of com-938

plexity to consider explicitly, and up to a variable939

scaling, layer norm can be merged into adjacent940

weights. Conceptually, v and u(v) capture the in-941

formation encoded in layer l and later layer > l942

respectively.943

Finally, the logit would be normalized via the944

softmax function to produce a probability distribu-945

tion over the vocabulary, from which a new token946

is sampled.947

P =
evk+uk(vk)∑

j∈|V ocab| e
vj+uj(vj)

(21)948

D Theoretical Support for Enhancement949

D.1 Analysis on the Amplification950

Suppose we amplify the hidden states at layer l by
the factor α:

hl
modified = αhl

We will analyze how this scaling affects the subse-951

quent computations. Here Let’s take LayerNorm952

as an example.953

At Layer l + 1. Since LayerNorm is scale-954

invariant:955

h̃
l
modified = LayerNorm(αhl)956

= LayerNorm(hl) = h̃
l

957

The scaling by α has no effect on the output of the
first LayerNorm. Therefore, the input to the MHA
sublayer remains unchanged:

al+1 = MHA(h̃
l
)

After the MHA sublayer, the residual connection
adds al back to the scaled hl:

hl+1
modified = hl

modified + al+1 = αhl + al+1

Then the scaled hidden state αhl is now part of958

hl+1, which will be normalized for FFN input.959

h̃
l+1
modified = LayerNorm(hl+1

modified)960

= γ ⊙
αhl + al − µl+1

modified

σl+1
modified

+ δ961

where 962

µl+1
modified =

1

D

D∑
i=1

(
αhl + al

)
= αµl + µa 963

σl+1
modified =

√√√√ 1

D

D∑
i=1

(
αhl + al − µl+1

modified

)2
964

The normalization does not cancel out α com-
pletely because al is not scaled. Therefore, the
information in a is relatively compressed. Then,

ml+1
modified = MLP(h̃

l+1
modified)

The output at layer l + 1 is: 965

hl+1
modified = hl

modified + al+1 +ml+1
modified 966

= αhl + al+1 +ml+1
modified 967

At Layer k > l + 1. The altered hidden state 968

hl+1
modified affects all subsequent layers in a similar 969

fashion. And the amplification effect of α persists 970

due to the residual connections. 971

The hidden state can be represented recursively: 972

hk
modified = αhl + al+1 +mk+1

modified 973

+
k∑

i=l+2

(
ai

modified +mi
modified

)
974

Therefore, the amplification effect of α accumu- 975

lates through the residual connections and affects 976

all subsequent layers. 977

At Final Layer N . The logits are computed us-
ing the final hidden state hN

modified:

logitsmodified = hN
modifiedW U

Breaking Down hN
modified, the logits can be calcu- 978

lated as: 979

logitsmodified = αhlW U + (al+1 +ml+1
modified 980

+

N∑
i=l+2

(ai
modified +mi

modified))W U 981

Finally, the softmax probabilities become: 982

Pmodified =
eαvk+u

(A)
k (αv)∑

j∈|V ocab| e
αvj+u

(A)
j (αv)

(22) 983

where: v = hLW U , and u(A)(·) includes contri- 984

butions from the subsequent layers by amplifica- 985

tion. 986
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This leads to a proportional change in the log-987

its and alters the softmax probability distribution,988

potentially affecting the model’s predictions.989

In correspondence with Formula 21, the V-990

entropy is derived as follows:991

HVf
(α)

def
= E[ln

∑
j

eαvj+uj(αvj)−(αvk + uk(αvk))]992

D.2 Analysis on the Additional Residual993

Connection994

Suppose we introduce an additional residual con-995

nection at layer l, which directly propagates hl to996

α subsequent layers:997

At Layer l + 1. With the inclusion of the new998

residual connection, the hidden state is modified as999

follows:1000

hl+1
modified = (hl + al+1 +ml+1) + hl1001

= 2hl + al+1 +ml+11002

At Layer k where l+1 < k ≤ l+α. Due to the1003

cumulative effect of the residual connections, the1004

hidden state at layer k can be expressed as:1005

hk
modified = (k − l + 1)hl + al+1 +ml+11006

+

k∑
i=l+2

(ai
modified +mi

modified)1007

where (k − l + 1) represents the number of times1008

the residual connection has been accumulated.1009

At the Final Layer N . The final logits are com-1010

puted as:1011

logitsmodified = hN
modifiedW U1012

= (α+ 1)hlW U + (al+1 +ml+11013

+
N∑

i=l+2

(ai
modified +mi

modified))W U1014

Similar to the previous deduction (Appendix D.1),1015

the final softmax probability distribution is given1016

by:1017

Pmodified =
e(α+1)vk+u

(R)
k ((α+1)v)∑

j∈|V ocab| e
(α+1)vj+u

(R)
j ((α+1)v)

(23)1018

where v = h(l)W U . While u(R)(·) encapsulates1019

the contributions from the subsequent layers, it dif-1020

fers fundamentally from the u(A)(·) function in1021

the Amplification method, as the underlying mod-1022

ifications to the information flow in these two ap-1023

proaches are inherently distinct.1024

Compared with Amplification. This analysis 1025

reveals that adding cumulative residual connec- 1026

tions provides a structured approach to amplifying 1027

the influence of intermediate layer representations. 1028

While there are subtle differences in how these 1029

methods affect subsequent layers, we empirically 1030

compare their performances through experiments 1031

in Section 4. 1032

E Proof for Proposition 3.1 1033

Proposition. Let α denote the scaling factor ap- 1034

plied to the hidden states at this layer. If k = 1035

argmaxj vj , then 1036

lim
α→∞

HVf
(α) ≈ 0 1037

Proof. First, consider the following decomposi- 1038

tion: 1039∑
j

eαvj+uj(αv) = eαvk+uk(αv)· 10401 +
∑
j ̸=k

eα(vj−vk)+uj(αvj)−uk(αvk)

 1041

When j ̸= k, vj − vk < 0. All terms with j ̸= k 1042

exponentially diminish as α increases5. Therefore: 1043

lim
α→∞

∑
j

eαvj+uj(αvj) ≈ eαvk+uk(αvk) (1 + ϵ(α)) 1044

where ϵ(α) → 0 as α → ∞. 1045

Applied to the Formula 9, we have 1046

lim
α→∞

HVf
(α) ≈ E

[
αvk + uk(αv) + ln (1 + ϵ(α)) 1047

− (αvk + uk(αv))
]

1048

= E [ln (1 + ϵ(α))] 1049

= 0 1050

Therefore, the result is proven. 1051

F Dataset Details 1052

CounterFact. The CounterFact (Meng et al., 1053

2022a) dataset is derived from the PARAREL 1054

dataset (Elazar et al., 2021) and contains knowl- 1055

edge tuples of the kind tc = (s, r, oc), where s is 1056

the subject, r is the relation and o is the object. 1057

These tuples are constructed using entities listed 1058

5Since α approaches zero, uj(αv) − uk(αv) represents
the difference between two extremely small quantities. It can
be negligible compared to the α(vj − vk).
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in Wikidata. The data are accompanied by hand-1059

written paraphrased prompts for each sample. The1060

CounterFact dataset also contains suggested edits1061

to the true facts represented in the dataset. For this1062

study, the set of counterfactual edits are not used.1063

NaturalQuestions. NQ (Kwiatkowski et al.,1064

2019) consists of real-world information-seeking1065

queries issued to the Google search engine and1066

their corresponding long answers (gold evidence1067

passage) and short answers (one or more entities).1068

In our study, we employ the long answers as the1069

input context and short answers as the ground truth,1070

and conduct evaluations on the dev set.1071

NQ-Swap NQ-Swap is based on the NQ dataset,1072

where the objective is to answer questions based on1073

a reliable gold document. To generate NQ-Swap,1074

Longpre et al. (2021) first identify questions in1075

NQ with named entity answers, find the supportive1076

document for each question and then replace the1077

gold answer entity in the document with a random1078

entity. A faithful LM should generate the replaced1079

entity as the answer when given the question and1080

modified document.1081

SQuAD. The SQuAD (Rajpurkar et al., 2016) 1.11082

is a common QA benchmark. It includes questions1083

posed by human annotators on a given Wikipedia1084

paragraph, where the answer to each question is a1085

segment of text (or span) from the paragraph. In1086

our experiments, we conduct experiments on the1087

dev for evaluation.1088

StrategyQA. StrategyQA (Geva et al., 2021a) is1089

a fact reasoning benchmark that necessitates the im-1090

plicit question decomposition into reasoning steps.1091

Built around Wikipedia terms, these questions are1092

accompanied by multiple evidence paragraphs. The1093

model is expected to provide a True or False an-1094

swer. We concatenate question-relevant evidences1095

to form the input context. We adopt the training set1096

for evaluation, considering the volume of data.1097

F.1 Posteriori judgement for CounterFact1098

We delineates the process of identifying knowl-1099

edge boundary of "unknown" and "known" con-1100

texts. The evaluation is based on the accuracy of1101

the model’s responses when context is not provided.1102

The scenarios are divided into two categories:1103

• Unkown: This category refers to instances1104

where the model is unable to provide the cor-1105

rect answer without relying on the provided1106

context. Such cases indicate that the exter- 1107

nal contextual knowledge represents informa- 1108

tion not contained within the model’s inherent 1109

parametric knowledge. 1110

• Known: This category describes scenarios 1111

in which the model can accurately answer 1112

a question without requiring its correspond- 1113

ing context. These instances demonstrate that 1114

the model has internalized the relevant knowl- 1115

edge, reflecting an alignment between its para- 1116

metric knowledge and the external contextual 1117

information. 1118

G Decoding Strategies 1119

Contrastive Decoding (CD) In our experiments, 1120

we employ the distribution g(yt) with a certain 1121

threshold as a baseline decoding method, referred 1122

to as the CD (Li et al., 2023) method. We modify 1123

the original object of CD (computes the distribution 1124

discrepancy between an small amateur model and 1125

an expert larger model) to simulate the form of 1126

g(yt). 1127

CD = log p(yt|x, y < t)− p(yt|y < t) 1128

= log g(yt) 1129

The threshold is same as in the original CD method: 1130

Vhead(y<t) = 1131{
yt ∈ V : p(yt|y<t) ≥ 0.1 ·max

y
p(y|y<t)

}
1132

Here, we represent the input context as x. CD 1133

adopts the object of difference between the output 1134

likelihood when inputs are presented with and with- 1135

out input context. It enhances the influence of the 1136

context for high-probability words within a crude 1137

threshold. 1138

Context-Aware Decoding (CAD) In CAD (Shi 1139

et al., 2024b) method, the output probability is a 1140

product-of-experts of the original output probabil- 1141

ity and PMI weighted by α = 0.5 as follow: 1142

yt ∼ softmax[(1 + α) logitθ(yt | c,x,y<t) 1143

− α logitθ(yt | x,y<t)] 1144

COntextual Information-Entropy Constraint 1145

Decoding (COIECD) First, the contextual con- 1146

trastive object g is calculated to quantify the diver- 1147

gence between p1 and p2: 1148

g(yt) = log p2(yt)− log p1(yt) 1149
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where1150

p1(yt) = p(yt|x,y<t)1151

p2(yt) = p(yt|x, c,y<t)1152

The g is to factor out the model’s inherent memory1153

and favor the contextual knowledge.1154

The contextual information-entropy constraint is1155

utilized with g on the output distribution π as:1156

log π(yt | x, c,y<t) (24)1157

=

{
log p1(yt) + α · g(yt) if yt ∈ C(y<t),

log p2(yt) + α · g(yt) otherwise.
1158

where α is a scaling weight to control the contex-1159

tual impact. The final decoding strategy can be1160

formalized as:1161

yt ∼ softmax[log π(yt | x, c,y<t)] (25)1162

In this way, COIECD strikes a balance between1163

the two sources of knowledge to achieve a more1164

effective and holistic decoding strategy.1165

H Layer Selection by CaLE1166

Here, we present some models that employ the1167

CaLE method, as shown in Tables 1 and 3, which1168

enhance various layers selected through both super-1169

vised and unsupervised identification, as indicated1170

in Table 4. Our findings reveal that nearly all of the1171

selected layers are distributed in the middle to later1172

stages, suggesting that intervening at deeper layers1173

is a more effective choice.1174

Layer selected CounterFact NQ NQ-swap
by CaLE sup. unsup. sup. unsup. sup. unsup.

Llama2-7B 25 25 26 25 26 25
Llama3.1-8B 23 24 27 24 23 23
Llama3.2-3B 23 22 - - - -
Mistral-7B - - 25 22 21 18
Gemma2-9B - - 32 35 29 31

SQuAD StrategyQA
sup. unsup. sup. unsup.

Llama2-7B 23 25 22 19
Llama3.1-8B 26 24 30 25
Mistral-7B 25 19 22 19
Gemma2-9B 36 31 34 35

Table 4: Layer selection of CaLE across different
datasets and models. The unsup. and sup. denote
the unsupervised and supervised CaLE methods.
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