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Abstract

We study a practical matching problem that involves assigning children to daycare1

centers. The collective preferences of siblings from the same family introduce2

complementarities, which can lead to the non-existence of stable matchings, as3

observed in the well-studied hospital-doctor matching problems involving couples.4

Intriguingly, stable matchings have been observed in real-world daycare markets,5

even with a substantial number of sibling applicants.6

Our research systematically explores the presence of stable matchings in these7

markets. We conduct a probabilistic analysis of large random matching markets that8

incorporate sibling preferences. Specifically, we examine scenarios where daycares9

have similar priorities over children, a common characteristic in practical markets.10

Our analysis reveals that as the market size approaches infinity, the likelihood of11

stable matchings existing converges to 1.12

To facilitate our investigation, we introduce significant modifications to the Sorted13

Deferred Acceptance algorithm proposed by Ashlagi et al. [2014]. These adapta-14

tions are essential to accommodate a more stringent stability concept, as the original15

algorithm may yield matchings that fail to meet this criterion. By leveraging our16

revised algorithm, we successfully identify stable matchings in all real-life datasets17

examined. Additionally, we conduct comprehensive empirical investigations using18

synthetic datasets to validate the efficacy of our algorithm in identifying stable19

matchings.20

1 Introduction21

Stability is a foundational concept in preference-based matching theory [Roth and Sotomayor, 1990],22

with significant implications for both theoretical frameworks and practical applications [Roth, 2008].23

Its importance was underscored by the awarding of the 2012 Nobel Prize in Economics. This24

fundamental concept is crucial for the success of various markets, including the National Resident25

Matching Program [Roth, 1984] and public school choice programs [Abdulkadiroğlu and Sönmez,26

2003, Abdulkadiroğlu et al., 2005].27

Despite its significance, the challenge posed by complementarities in preferences often leads to the28

absence of a stable matching. A persistent issue in this context is the incorporation of couples into29

centralized clearing algorithms for professionals like doctors and psychologists [Roth and Peranson,30

1999]. Couples typically view pairs of jobs as complements, which can result in the non-existence of31

a stable matching [Roth, 1984, Klaus and Klijn, 2005]. Moreover, verifying the existence of a stable32

matching is known to be NP-hard, even in restrictive settings [Ronn, 1990, McDermid and Manlove,33

2010, Biró et al., 2014].34

Nevertheless, real-life markets of substantial scale do exhibit stable matchings even in the presence35

of couples. For example, in the psychologists’ markets, couples constituted only about 1% of all36
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participants from 1999 to 2007. Kojima et al. [2013] and Ashlagi et al. [2014] demonstrate that if the37

proportion of couples grows sufficiently slowly compared to the number of single doctors, then a38

stable matching is very likely to exist in a large market.39

In this paper, we shift our attention to daycare matching markets in Japan, where the issue of waiting40

children has become one of the most urgent social challenges due to the scarcity of daycare facilities41

[Kamada and Kojima, 2023]. The daycare matching problem is a natural extension of matching with42

couples, analogous to hospitals and doctors, with the notable distinction that the number of siblings43

in each family can exceed two. We are actively collaborating with multiple municipalities, providing44

advice to design and implement new centralized algorithms tailored to their specific needs.45

The objective of this research is to gain a more nuanced understanding of why stable matchings exist46

in practical daycare markets. Recently, stable matchings have been reported in these markets where47

optimization approaches are utilized, but the underlying reasons have not been thoroughly examined48

[Sun et al., 2023, 2024]. Furthermore, theoretical guarantees established in prior research on matching49

with couples may not readily extend to the daycare market, primarily due to two key factors. Firstly,50

a distinctive characteristic of Japanese daycare markets is the substantial proportion, approximately51

20%, of children with siblings. This stands in contrast to the assumption of near-linear growth of52

couples in previous research [Ashlagi et al., 2014]. Secondly, we consider a stronger stability concept53

tailored for daycare markets. Our proposal has been presented to government officials and esteemed54

economists, who concur that this modification better suits the daycare markets1.55

Our contributions can be summarized as follows:56

Firstly, we formalize a large random market that mirrors the characteristics of realistic daycare57

markets, incorporating family preferences and daycare priorities generated through probability58

distributions. A significant trait observed in practical markets is the tendency for daycares to exhibit59

similar priorities over children. Our central result demonstrates that, in such random markets, the60

probability of a stable matching existing approaches 1 as the market size tends to infinity (Theorem 1).61

To the best of our knowledge, this is the first work to explain the existence of stable matchings in62

these practical daycare markets.63

Secondly, we modify the Sorted Deferred Acceptance algorithm [Ashlagi et al., 2014] to address our64

stronger stability concept, as the original algorithm may not produce a matching that satisfies this65

criterion (Theorem 2). We carefully rectify and extend the algorithm to meet the stronger stability66

requirement (Theorem 3). Notably, we employ our modified algorithm to successfully identify stable67

matchings in all encountered real-life datasets. Additionally, we generate a large number of synthetic68

datasets that closely resemble real-life markets to assess the algorithm’s effectiveness across diverse69

scenarios.70

2 Related Work71

We next provide a brief summary of some papers that are closely related to our work. A more detailed72

literature review is presented in Appendix A. A classical work on matching with couples, conducted73

by Kojima et al. [2013], illustrates that as the market size approaches infinity, the probability of a74

stable matching existing converges to 1, given the growth rate of couples is suitably slow in relation75

to the market size, e.g., when the number of couples is
√
n where n represents the number of singles.76

Ashlagi et al. [2014] propose an improved matching algorithm, building on the foundation laid by77

Kojima et al. [2013]. This refined algorithm demonstrates that, even if the number of couples grows78

at a near-linear rate of nϵ with 0 < ϵ < 1, a stable matching can still be found with high probability.79

In contrast, Ashlagi et al. [2014] highlight that as the number of couples increases at a linear rate,80

the probability of a stable matching existing diminishes significantly. In practical applications, the81

National Resident Matching Program employed a heuristic based on the incremental algorithm82

proposed by Roth and Vate [1990]. Biró et al. [2016] proposed a different approach involves the83

utilization of the Scarf algorithm [Scarf, 1967] to identify a fractional matching. If the outcome84

proves to be integral, it is then considered a stable matching. Moreover, researchers have explored85

the application of both integer programming and constraint programming to address the complexities86

of matching with couples [Manlove et al., 2007, Biró et al., 2014, Manlove et al., 2017]. Notably,87
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these methodologies have recently been adapted in the daycare matching market as well [Sun et al.,88

2023, 2024].89

3 Preliminaries90

In this section, we present the framework of a daycare market, expanding upon the classical problem91

of hospital-doctor matching with couples. We also generalize three fundamental properties that have92

been extensively examined in the literature of two-sided matching markets.93

3.1 Model94

The daycare matching problem is represented by the tuple I = (C,F,D,Q,≻F ,≻D), where C, F95

and D denote sets of children, families, and daycare centers, respectively.96

Each child c ∈ C belongs to a family denoted as f(c) ∈ F . Each family f ∈ F is associated with a97

subset of children, denoted as C(f) ⊆ C. In cases where a family contains more than one child, e.g.,98

C(f) = {c1, · · · , ck} with k > 1, these siblings are arranged in a predefined order, such as by age.99

Let D represent a set of daycare centers, referred to as “daycares” for brevity. A dummy daycare100

denoted as d0 is included in D, signifying the possibility of a child being unmatched. Each individual101

daycare d establishes a quota, denoted as Q(d), where the symbol Q represents all quotas.102

Each family f reports a strict preference ordering≻f , defined over tuples of daycare centers, reflecting103

the collective preferences of the children within C(f). The notation ≻f,j is used to represent the j-th104

tuple of daycares in ≻f , and the overall preference profile of all families is denoted as ≻F .105

Example 1. Consider family f with C(f) = {c1, c2, . . . , ck} where the children are arranged in a106

predetermined order. A tuple of daycares in ≻f , denoted as (d∗1, d
∗
2, . . . , d

∗
k), indicates that for each107

i ∈ {1, 2, . . . , k}, child ci is matched to some daycare d∗i ∈ D. It’s possible that d∗i = d∗j , indicating108

that both child ci and child cj are matched to daycare d∗i .109

Each daycare d ∈ D maintains a strict priority ordering ≻d over C ∪ ∅, encompassing both the set of110

children C and an empty option. A child c ∈ C is considered acceptable to daycare d if c ≻d ∅, and111

deemed unacceptable if ∅ ≻d c. The priority profile of all daycares is denoted as ≻D.112

A matching µ is defined as a function µ : C ∪ D → C ∪ D satisfying the following conditions:113

i) ∀c ∈ C, µ(c) ∈ D, ii) ∀d ∈ D, µ(d) ⊆ C, and iii) ∀c ∈ C, ∀d ∈ D, µ(c) = d if and only114

if c ∈ µ(d). Given a matching µ, we designate µ(c) as the assignment of child c and µ(d) as the115

assignment of daycare d. For a family f with children C(f) = {c1, ..., ck}, we denote the assignment116

for family f as µ(f) =
(
µ(c1), ..., µ(ck)

)
.117

3.2 Fundamental Properties118

The first property, individual rationality, stipulates that each family is matched to some tuple of119

daycares that are weakly better than being unmatched, and no daycare is matched with an unacceptable120

child. It is noteworthy that each family is considered an agent, rather than individual children.121

Definition 1 (Individual Rationality). A matching µ satisfies individual rationality if i) ∀f ∈122

F, µ(f) ≻ (d0, · · · , d0) or µ(f) = (d0, · · · , d0), and ii) ∀d ∈ D,∀c ∈ µ(d), c ≻d ∅.123

Feasibility in Definition 2 necessitates that i) each child is assigned to one daycare including the124

dummy daycare d0, and ii) the number of children matched to each daycare d does not exceed its125

specific quota Q(d).126

Definition 2 (Feasibility). A matching µ is feasible if it satisfies the following conditions: i) ∀c ∈ C,127

|µ(c)| = 1, and ii) ∀d ∈ D, |µ(d)| ≤ Q(d).128

Stability is a well-explored solution concept within the domain of two-sided matching theory. Before129

delving into its definition, we introduce the concept of a choice function as outlined in Definition 3. It130

captures the intricate process by which daycares select children, capable of incorporating various131

considerations such as priority, diversity goals, and distributional constraints (see, e.g., [Hatfield and132

Milgrom, 2005, Aziz and Sun, 2021, Suzuki et al., 2023, Kamada and Kojima, 2023]). Following the133

work by Ashlagi et al. [2014], our choice function operates through a greedy selection of children134

based on priority only, simplifying the representation of stability.135

3



Definition 3 (Choice Function of a Daycare). For a given set of children C ′ ⊆ C, the choice function136

of daycare d, denoted as Chd(C
′) ⊆ C ′, selects children one by one in descending order of ≻d137

without exceeding quota Q(d).138

In this paper, we explore a slightly stronger stability concept than the original one studied in Ashlagi139

et al. [2014]. It extends the idea of eliminating blocking pairs [Gale and Shapley, 1962] to address140

the removal of blocking coalitions between families and a selected subset of daycares.141

Definition 4 (Stability). Given a feasible and individually rational matching µ, family f with142

children C(f) = {c1, ..., ck} and the j-th tuple of daycares ≻f,j = (d∗1, ..., d
∗
k) in ≻f , form a143

blocking coalition if the following two conditions hold,144

(1) family f prefers ≻f,j to its current assignment µ(f), i.e., (d∗1, ..., d
∗
k) ≻f µ(f), and145

(2) for each distinct daycare d in (d∗1, ..., d
∗
k), C(f, j, d) ⊆ Chd((µ(d) \ C(f)) ∪ C(f, j, d)) holds,146

where C(f, j, d) ⊆ C(f) denotes a subset of children who apply to daycare d with respect to ≻f,j .147

A feasible and individually rational matching satisfies stability if no blocking coalition exists.148

Consider the input to Chd(·) in Condition 2. First, we calculate µ(d)\C(f), representing the children149

matched to d in matching µ but not from family f . Then, we consider C(f, j, d), which denotes the150

subset of children from family f who apply to d according to the tuple of daycares ≻f,j .151

This process accounts for situations where a child c is paired with d in µ but is not included in152

C(f, j, d), indicating that c is applying to a different daycare d′ ̸= d according to≻f,j . Consequently,153

child c has the flexibility to pass his assigned seat from d to his siblings in need. Otherwise, child c154

would compete with his siblings for seats at d despite he intends to apply elsewhere.155

In contrast, the original concept by Ashlagi et al. [2014] does not take siblings’ assignments into156

account. We illustrate the differences between the two concepts in Example 2. More detailed157

motivation for our definition and further discussions are provided in Appendices B.1 and B.2.158

Example 2 (Example of Stability). Consider one family f with two children C(f) = {c1, c2}. There159

are three daycares: D = {d0, d1, d2}, each with one slot. The preference profile of family f is160

(d1, d2) ≻f (d2, d0). Each daycare prefers c1 over c2.161

The matching (d2, d0) is deemed stable by Ashlagi et al. [2014], but it is not considered stable by162

Definition 4. This is because it is blocked by family f and the pair (d1, d2). Here, child c1 passes his163

seat at d2 to c2, allowing both children to potentially be matched to a more preferred assignment.164

It is well-known that a stable matching is not guaranteed when couples exist [Roth, 1984]. We provide165

an example to illustrate that even when each family has at most two children, and all daycares have the166

same priority ordering over children, a stable matching may not exist. Please refer to Appendix B.3167

for details.168

4 Random Daycare Market169

To analyze the likelihood of a stable matching in practice, we proceed to introduce a random market170

where preferences and priorities are generated from probability distributions. Formally, we represent171

a random daycare market as Ĩ = (C,F,D,Q, α, β, L,P, ρ, σ,D≻0,ϕ, ε).172

Let |C| = n and |D| = m denote the number of children and daycares, respectively. Throughout173

this paper, we assume that m = Ω(n). To facilitate analysis, we partition the set F into two distinct174

groups labeled FS and FO, signifying the sets of families with and without siblings, respectively.175

Correspondingly, CS and CO represent the sets of children with and without siblings, respectively.176

The parameter α signifies the percentage of children with siblings. Then we have |CO| = (1− α)n177

and |CS | = αn. For each family f , the size of C(f) is constrained by a constant β, expressed as178

maxf∈F |C(f)| ≤ β.179

4.1 Preferences of Families180

We adopt the approach outlined in Kojima et al. [2013] to generate family preferences through a181

two-step process. In the first step, we independently generate preference orderings for each child182

from a probability distribution P on daycares D. Subsequently, we employ a function ρ to aggregate183

the individual preferences of children within each family into a collective preference ordering.184
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The procedure for generating preference orderings for each child operates as follows. Let P =185

(pd)d∈D be a probability distribution, where pd represents the probability of selecting daycare d. For186

each child c, start with an empty list, independently choose a daycare d from P , and add it to the187

list if it is not already included. Repeat this process until the length of the list reaches the maximum188

length L, a relatively small constant in practice.189

We adhere to the assumption that the distribution P satisfies a uniformly bounded condition, as190

assumed in the random market by Kojima et al. [2013] and Ashlagi et al. [2014].191

Definition 5 (Uniformly Bounded). For all d, d′ ∈ D, the ratio of probabilities pd/pd′ falls within192

the interval [1/σ, σ] with a constant σ ≥ 1.193

Lemma 1. Under the uniformly bounded condition, the probability pd of selecting any daycare d is194

limited by σ/m where m denotes the total number of daycares.195

For families with multiple siblings, we do not impose additional constraints on the function ρ that196

aggregates individual preferences into collective preferences.197

4.2 Priorities of Daycares198

A notable departure from previous work [Kojima et al., 2013] and [Ashlagi et al., 2014], is our199

adoption of the Mallows model [Mallows, 1957] to generate daycare priority orderings over children.200

In the Mallows model, represented as D≻0,ϕ, a reference ordering ≻0 is first determined. New201

orderings are then probabilistically generated based on this reference, controlled by a dispersion202

parameter ϕ. This model is widely used for preference generation in diverse contexts [Lu and203

Boutilier, 2011, Brilliantova and Hosseini, 2022]. Let S denote the set of all orderings over C.204

Definition 6 (Kendall-tau Distance). For a pair of orderings ≻ and ≻′ in S, the Kendall-tau distance,205

denoted by inv(≻,≻′), is a metric that counts the number of pairwise inversions between these two206

orderings. Formally, inv(≻,≻′) = |{c, c′ ∈ C | c ≻′ c′ and c′ ≻ c}|.207

Definition 7 (Mallows Model). Let ϕ ∈ (0, 1] be a dispersion parameter and Z =
∑

≻∈S ϕinv(≻,≻0).208

The Mallows distribution is a probability distribution over S. The probability that an ordering ≻ in209

S is drawn from the Mallows distribution is given by210

Pr[≻] = 1

Z
ϕinv(≻,≻0).

The dispersion parameter ϕ characterizes the correlation between the sampled ordering and the211

reference ordering ≻0. Specifically, when ϕ is close to 0, the ordering drawn from D≻0,ϕ is almost212

the same as the reference ordering ≻0. On the other hand, when ϕ = 1, D≻0,ϕ corresponds to the213

uniform distribution over all permutations of C.214

In the practical daycare matching market, every municipality assigns a unique priority score to each215

child, establishing a strict priority order utilized and slightly adjusted by all daycares. Siblings within216

the same family usually share identical priority scores, with ties being resolved arbitrarily.217

Motivated by this observation, we construct a reference ordering ≻0 as follows: Begin with an empty218

list and include all children CO in the list. For each family f ∈ FS , add children C(f) to the list219

with a probability of 1/n1+ε, and include f in the list with a probability of 1− 1/n1+ε for a constant220

ε > 0. Subsequently, shuffle all permutations of the elements in the list. Finally, ≻0 is drawn from a221

uniform distribution over all permutations of the shuffled elements in the list. In other words, with a222

probability of 1/n1+ε, we treat siblings from the same family separately, and with a probability of223

1− 1/n1+ε, we treat them as a whole, or more precisely, as a continuous block in ≻0.224

Definition 8 (Diameter). Given a reference ordering ≻0 over children C, we define the di-225

ameter of family f , denoted by diamf , as the greatest difference in ≻0 among C(f). For-226

mally, diamf =
∣∣{c ∈ C

∣∣maxc′∈C(f) c
′ ≻0 c ≻0 minc′′∈C(f) c

′′}∣∣+ 2 where maxc∈C(f) c (resp.227

minc∈C(f) c) refers to the child in C(f) with the highest (resp. lowest) priority in ≻0.228

The methodology employed to generate the reference ordering ≻0 above adheres to the following229

condition. For each family f with siblings, we have Pr
[
diamf ≥ |C(f)|

]
≤ 1

n1+ε from the230

construction.231

We concentrate on a random market Ĩ where all parameters are set as mentioned above. Our main232

result is encapsulated in the following theorem.233
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Theorem 1. Given a random market Ĩ with ϕ = O(log n/n), the probability of the existence of a234

stable matching converges to 1 as n approaches infinity.235

We will prove Theorem 1 by demonstrating that an algorithm, namely the Extended Sorted Deferred236

Acceptance algorithm (to be defined in the next section), produces a stable matching with a probability237

that converges to 1 in the random market.238

5 Extended Sorted Deferred Acceptance239

In this section, we propose the Extended Sorted Deferred Acceptance (ESDA) algorithm, a heuristic240

approach that has proven effective in computing stable matchings across a variety of real-life daycare241

datasets. Importantly, the ESDA algorithm serves as a foundational component in our probability242

analysis for large random markets.243

The ESDA algorithm is an extension of the Sorted Deferred Acceptance (SDA) algorithm [Ashlagi244

et al., 2014], originally designed for matching with couples. More details of the SDA algorithm are245

presented in Appendix C.3. In the following theorem, we demonstrate that the SDA algorithm may246

not produce a stable matching with respect to Definition 4 when it terminates without failure. The247

proof of Theorem 2 is presented in Appendix C.4.248

Theorem 2. The matching returned by the original SDA algorithm may not be stable.249

We next give an informal description of ESDA. The algorithm begins by computing a stable matching250

without considering families with siblings, denoted as FS , using the Deferred Acceptance algorithm251

(see Appendix C.1). Subsequently, it sequentially processes each family, denoted as f , based on a252

predefined order denoted as π. Children without siblings who are displaced by family f are processed253

individually, enabling them to apply to daycare centers from their top choices in their preference254

orderings. If any child from family f ′ ∈ FS with siblings is rejected during this process, a new order255

π′ is attempted, with f being inserted before f ′. If the outcome before inserting family f becomes256

different after processing family f , then we check whether family f can be matched to a better tuple257

of daycares from their top choices. The algorithm terminates and returns a failure if any child from258

family f is rejected or if the same permutation has been attempted twice.259

We offer a brief elucidation on the differences between our ESDA algorithm and the original SDA.260

Firstly, the input to the choice function of daycares differs. In our algorithm, children have the option261

to transfer their allocated seats to other siblings, a feature not present in the original SDA. Secondly,262

we meticulously examine whether any family could establish a blocking coalition with a tuple of263

daycares that previously rejected it whenever the assignment of any child without siblings is changed.264

In contrast, SDA goes through each tuple of daycares once without performing this check.265

We illustrate how ESDA works through Example 3. A formal description of ESDA is presented in266

Algorithm 1 in Appendix D, along with all technical details.267

Example 3. Consider three families f1 with C(f1) = {c1, c2}, f2 with C(f2) = {c3, c4} and f3268

with C(f3) = {c5, c6}. There are five daycares denoted as D = {d1, d2, d3, d4, d5}, each with one269

available slot. The order π is initialized as {1, 2, 3}. The preference profile of the families and the270

priority profile of the daycares are outlined as follows:271

≻f1 : (d1, d2), (d1, d4) ≻d1 : c1, c5 ≻d2 : c6, c2
≻f2 : (d3, d4), (d5, d4) ≻d3

: c3, c5 ≻d4
: c6, c4, c2

≻f3 : (d1, d4), (d3, d4), (d5, d2) ≻d5
: c3, c5

Iteration 1: With order π1 = {1, 2, 3}, family f1 secured a match by applying to daycares (d1, d2),272

followed by family f2 obtaining a match with applications to (d3, d4). However, family f3 faced273

rejections at (d1, d4) and (d3, d4) before successfully securing acceptance at (d5, d2), leading to the274

displacement of family f1. Thus we generate a new order π2 = {3, 1, 2} by inserting 3 before 1.275

Iteration 2: With order π2 = {3, 1, 2}, family f3 secures a match at (d1, d4). Then family f1 applies276

to (d1, d2) and also secures a match, resulting in the eviction of family f3. This leads to the generation277

of a modified order π3 = {1, 3, 2} with 1 preceding 3.278

Iteration 3: With order π3 = {1, 3, 2}, family f1 secures a match at (d1, d2). Subsequent applications279

by f3 result in a match at (d3, d4), but f2 remains unmatched due to rejections at (d3, d4) and (d5, d4).280
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The algorithm terminates, returning a stable matching µ with f1 matched to (d1, d2) and f3 matched281

to (d3, d4), while f2 remains unmatched.282

5.1 Termination without Failure283

We demonstrate that ESDA always generates a stable matching if it does not terminate with failures.284

Our proof relies on the following two facts, which are formally presented in Appendix D.1. First,285

we establish that the number of matched children at each daycare does not decrease as long as no286

family in FS is rejected and no child passes their seat to other siblings during the execution of ESDA.287

Second, we prove that for a given order π over FS , if the rank of the matched child at any daycare288

increases, then ESDA cannot produce a matching with respect to π. The detailed proof for Theorem 3289

is presented in Appendixes D.1 and D.2.290

Theorem 3. Given an instance of I , if ESDA returns a matching without failure, then the yielded291

matching is stable. In addition, ESDA always terminates in a finite time, either returning a matching292

or a failure.293

5.2 Two Types of Failure of ESDA294

Theorem 3 states that if the algorithm successfully concludes, it results in a stable matching. Con-295

versely, the algorithm returns failures in two scenarios, suggesting that a stable matching may not296

exist, even if one indeed exists.297

Formally, a Type-1 Failure happens when, during the insertion of a family f ∈ FS , a child c ∈ C(f)298

initiates a rejection chain that ends with another child c′ ∈ C(f) from the same family, where all299

other children in the chain do not have siblings. This failure is further divided into two cases based300

on whether c = c′ holds: Type-1-a Failure when c = c′ and Type-1-b Failure when c ̸= c′.301

A Type-2 Failure occurs if there exist two families f1, f2 ∈ FS satisfying the following conditions: i)302

f1 appears before f2 in the current order π, ii) There exists a rejection chain starting from f2 and303

ending with f1 where all other families in the chain have an only child, and iii) A new order π′,304

obtained by placing f2 in front of f1, has been attempted and stored in the set of Π, which keeps305

track of permutations tried during the ESDA process.306

These two types of failures are crucial when analyzing the probability of the existence of stable307

matchings in a large random market. Detailed examples illustrating these two types of failures can be308

found in Appendix D.3.309

6 Skecthed Proof of Theorem 1310

Our main approach to proving Theorem 1 is to set an upper limit on the likelihood of encountering311

the two types of failure in the ESDA algorithm.312

The following two lemmas establish that as n approaches infinity, Type-1-a and Type-1-b Failures are313

highly unlikely to occur when the dispersion parameter ϕ is on the order of O(log n/n). We defer314

the proofs for these results to Appendices E.2 and E.3, respectively.315

Lemma 2. Given a random market Ĩ with ϕ = O(log n/n), the probability of Type-1-a Failure in316

the SDA algorithm is bounded by O
(
(log n)2/n

)
.317

Lemma 3. Given a random market Ĩ with ϕ = O(log n/n), the probability of Type-1-b Failure in318

the SDA algorithm is bounded by O
(
(log n)2/n

)
+O(n−ε).319

We introduce concepts of domination and nesting to analyze the case of Type-2 Failure.320

Definition 9 (Domination). Given a priority ordering ≻, we say that family f dominates f ′ w.r.t.321

≻ if maxc∈C(f) c ≻ minc′∈C(f ′) c
′ where maxc∈C(f) c (resp. minc∈C(f) c) represents the child in322

C(f) with the highest (resp. lowest) priority under the priority ordering ≻.323

In simple terms, if f dominates f ′, then there is a possibility that f ′ will be rejected by daycares with324

a certain order ≻ due to an application of f .325

Intuitively, a Type-2 Failure can arise from a cycle in which two families with siblings reject each326

other. We introduce the concept of nesting as follows.327
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Definition 10 (Nesting). Given a priority ordering ≻, two families f and f ′ are said to be nesting if328

they mutually dominate each other under ≻.329

Example 4. Consider three families F = {f1, f2, f3}, each with two children: C(f1) = {c1, c2},330

C(f2) = {c3, c4}, and C(f3) = {c5, c6}. Suppose there is a priority ordering ≻: c1, c3, c5, c2, c4,331

c6. In this case, all pairs in F nest with each other with respect to ≻.332

We next show that if any two families do not nest with each other with respect to ≻0, then Type-2333

Failure is unlikely to occur as n tends to infinity in Lemma 4. We defer the proof to Appendix E.4.334

Lemma 4. Given a random market Ĩ with ϕ = O(log n/n), and for any two families f, f ′ ∈ FS335

that are not nesting with each other with respect to ≻0, then Type-2 Failure occurs with a probability336

of at most O(log n/n).337

Following an analysis of the probability that any two pairs of families from FS nest with each other338

with respect to the reference ordering ≻0, we establish the probability of Type-2 Failure in Lemma 5.339

Lemma 5. Given a random market Ĩ with ϕ = O(log n/n), the probability of Type-2 Failure340

occurring is bounded by O(log n/n) +O
(
n−2ε

)
.341

Lemma 2, Lemma 3, and Lemma 5 imply the existence of a stable matching with high probability for342

the large random market, thus concluding the proof of Theorem 1. Further elaboration and details343

can be found in Appendix E.344

7 Experiments345

Figure 1: Results of experiments
on real-world data perturbed by the
Mallows distributions.

In this section, we conduct comprehensive experiments to eval-346

uate the effectiveness of our proposed ESDA algorithm. The347

experimental results demonstrate our hypothesis that a stable348

matching exists with high probability when daycare centers349

have similar priority orderings over children.350

We analyze two types of datasets. Firstly, we evaluate our351

algorithm using six real-life datasets provided by three munic-352

ipalities. In Appendix F.2, we provide a detailed description of353

the practical daycare matching markets based on datasets. In354

addition, we introduce slight modifications to daycare priorities355

while keeping other factors constant. Secondly, we generate356

synthetic datasets that mirror the characteristics of real-life mar-357

kets but on a much larger scale. By adjusting the dispersion358

parameter in the Mallows model, we create daycare priorities359

with varying degrees of similarity.360

Given the limitations of the ESDA algorithm in computing361

stable matchings in certain scenarios, we employ a constraint362

programming (CP) approach as an alternative. This method363

consistently generates a stable matching whenever one exists364

[Sun et al., 2024]. We implement them in Python and execute365

them on a standard laptop without additional computational resources. To generate priorities from366

the Mallows distributions, we utilize the PrefLib library [Mattei and Walsh, 2013]367

7.1 Experiments on Real-life Datasets368

We present the experimental results on the six real-life datasets. It is noteworthy that the ESDA369

algorithm not only successfully identifies a stable matching but also consistently produces the370

same outcome as the constraint programming (CP) solution for all datasets. Moreover, the ESDA371

algorithm achieves a computation time that is more than 10 times faster than the CP (see Table 5 in372

Appendix F.2).373

To investigate the importance of similarity in daycare priorities on the performance of ESDA, we374

generate new datasets by perturbing the original real-world data using Mallows distributions. For375

each daycare, we independently sample priority orders from the Mallows distribution with varying376
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dispersion parameters and replace the original priority order. We consider dispersion parameters377

ranging from 0.0 to 1.0 in increments of 0.1 and conduct 100 experiments for each case. Figure 1378

illustrates the results, demonstrating that ESDA successfully computes a stable matching in more than379

80% of cases when the dispersion parameter ϕ is at most 0.8. It is worth noting that when ϕ = 0.0,380

daycare priorities are identical to the original priorities. However, when the dispersion parameter is381

large, the ESDA may only find a stable matching in less than 50% of cases, even if one may exist.382

7.2 Experiments on Synthetic Datasets383

We illustrate the steps to generate synthetic datasets. Initially, we define the number of families,384

denoted by |F |, drawn from the set {500, 1000, 2000, 3000, 5000, 10000}. We next fix the parameter385

α, representing the percentage of children with siblings CS , as α = 0.2. For families with siblings,386

denoted as FS , 80% of them consist of two children each, while the remaining 20% have three387

children each. The number of daycares, denoted by |D|, is set to 0.1 ∗ |F |. For each child c without388

siblings in CO, we randomly select 5 daycares from D. For each family f in FS with siblings, we389

generate an individual preference ordering of length 10 uniformly from D for each child c ∈ C(f)390

and create all possible combinations. Finally, we uniformly choose a joint preference ordering of391

length 10. The dispersion parameter ϕ varies within the range {0.0, 0.3, 0.5}, while the parameter ε392

used to generate common priorities ≻0 remains fixed at 1. For each specified setting, we generate 10393

instances. The figures in the first row show the number of successful runs out of the 10 experiments.394

In the second row, we report the mean computational complexity along with its 95% confidence395

intervals, calculated only for the instances where the algorithm successfully found a stable matching.396

Regarding the experimental findings, the ESDA algorithm consistently identified a stable matching397

in all experiments. In addition to stability analysis, we conducted a comparison of the running time398

between the ESDA algorithm and the CP algorithm. Despite the potential requirement for the ESDA399

algorithm to check all permutations of FS in the worst case scenario, it consistently demonstrated400

notably faster performance than the CP algorithm across all cases.

Figure 2: Results of experiments on synthetic data.

401

8 Conclusion402

In this study, we investigate the factors contributing to the existence of stable matching in practical403

daycare markets. We identify the shared priority ordering among all daycares as one of the primary404

reasons. Our contribution includes a probability analysis for such large random markets and the405

introduction of the ESDA algorithm to identify stable matchings in practical datasets. Experimental406

results demonstrate the utility of ESDA under various conditions, suggesting its potential scalability to407

larger markets where optimization solutions, such as integer programming or constraint programming,408

may exhibit much longer processing times.409
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A Related Work501

Ronn [1990] initially established that verifying the existence of stable matchings in the presence502

of couples is an NP-hard problem, even if each hospital offers only one position. Follow-up work503

by McDermid and Manlove [2010] showed this computational intractability result still holds even504

when couples’ preferences are limited to pairs of positions within the same hospital. Furthermore,505

Biró et al. [2011] demonstrated that it remains NP-hard when all doctors are ranked according to a506

common order adopted by all hospitals.507

A classical work on matching with couples, conducted by Kojima et al. [2013], illustrates that as the508

market size approaches infinity, the probability of a stable matching existing converges to 1, given509

the growth rate of couples is suitably slow in relation to the market size, e.g., when the number of510

couples is
√
n where n represents the number of singles. Ashlagi et al. [2014] propose an improved511

matching algorithm, building on the foundation laid by Kojima et al. [2013]. This refined algorithm512

demonstrates that, even if the number of couples grows at a near-linear rate of nϵ with 0 < ϵ < 1, a513

stable matching can still be found with high probability. In contrast, Ashlagi et al. [2014] highlight514

that as the number of couples increases at a linear rate, the probability of a stable matching existing515

diminishes significantly.516

Kojima et al. [2013] devised the Sequential Couples Algorithm to address matching problems517

involving couples, which follows a three-step procedure. First, it computes a stable matching without518

considering couples, using the DA algorithm. Next, it handles each couple according to a predefined519

order denoted as π. Single doctors displaced by couples are accommodated one by one, allowing520

them to apply to hospitals based on their preferences. However, if an application is made to a hospital521

where any member of a couple has previously submitted an application, the algorithm declares a522

failure and terminates, even though a stable matching may indeed exist.523

The Sorted Deferred Acceptance (SDA) algorithm, as introduced by Ashlagi et al. [2014], follows a524

similar trajectory to the Sequential Couples Algorithm. We extend its application to the context of525

daycare matching with siblings. The algorithm begins by computing a stable matching without con-526

sidering families with siblings, denoted as FS , using the DA algorithm. Subsequently, it sequentially527

processes each family, denoted as f , based on a predefined order denoted as π. Children without528

siblings who are displaced by family f are processed individually, enabling them to apply to daycare529

centers according to their preferences. If any child from family f ′ ∈ FS with siblings is affected530

during this process, a new order π′ is attempted, with f being inserted before f ′. The algorithm531

terminates and returns a failure if any child from family f is affected or if the same permutation has532

been attempted twice.533

One potential solution to overcome the non-existence of stable matchings is to explore restricted534

preference domains. In this regard, Klaus and Klijn [2005] investigated a restricted preference domain535

known as weak responsiveness, ensuring the presence of stable matchings in the presence of couples.536

Hatfield and Kojima [2010] introduced the concept of “bilateral substitute” within the framework of537

matching with contracts [Hatfield and Milgrom, 2005], encompassing matching with couples as a538

specific case, and they demonstrated that weak responsiveness implies bilateral substitutes.539

In practical applications, the National Resident Matching Program employed a heuristic based on540

the incremental algorithm proposed by Roth and Vate [1990]. Biró et al. [2016] proposed a different541

approach involves the utilization of the Scarf algorithm [Scarf, 1967] to identify a fractional matching.542

If the outcome proves to be integral, it is then considered a stable matching. Moreover, researchers543

have explored the application of both integer programming and constraint programming to address544

the complexities of matching with couples [Manlove et al., 2007, Biró et al., 2014, Manlove et al.,545

2017]. Notably, these methodologies have recently been adapted in the daycare matching market as546

well [Sun et al., 2023, 2024].547

Another trend in the literature explores the combination of bandit algorithms with matching market548

design. In these studies, preferences are initially unknown and are learned through the interactions549

between the two sides of agents (see [Das and Kamenica, 2005, Liu et al., 2020, Basu et al., 2021,550

Liu et al., 2021, Jagadeesan et al., 2021, Kong et al., 2022]). This contrasts with our setting, where551

preferences and priorities are submitted to the system in advance.552
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B Discussion on Stability553

B.1 Motivation554

The primary reason for modifying the stability concept lies in the differing selection criteria between555

hospital-doctor matching and daycare allocation. In the hospital-doctor matching problem, hospitals556

have preferences over doctors. In contrast, daycare centers use priority orderings based on priority557

scores to determine which child should be given higher precedence. The priority scoring system is558

designed to eliminate justified envy and achieve a fair outcome, treating daycare slots as resources to559

be allocated equitably.560

Additionally, it is crucial that siblings do not envy each other, especially when they are not enrolled561

in the same daycare. Allowing children to transfer their seats to other siblings can potentially reduce562

waste and increase overall welfare.563

We presented this new stability concept to multiple government officials from different municipalities564

and several renowned economists. They all agreed that the modification is more appropriate for the565

daycare matching setting.566

B.2 ABH-Stability567

The stability concept studied in [Ashlagi et al., 2014] was originally designed for matching with568

couples and defined by enumerating all possible scenarios. To distinguish it from our concept, we569

refer to their stability as ABH-stability, named after the authors’ initials.570

In Definition 11, we consolidate these scenarios into a concise format, which highlights the differences571

from our definition. The primary distinction from Definition 4 lies in the input to Chd(·) in condition572

2: it uses Chd(µ(d) ∪ C(f, j, d)), instead of Chd(µ(d) \ C(f) ∪ C(f, j, d)).573

Definition 11 (ABH-Stability). Given a feasible and individually rational matching µ, family f574

with children C(f) = {c1, ..., ck} and the j-th tuple of daycares ≻f,j = (d∗1, ..., d
∗
k) in ≻f , form a575

blocking coalition if the following two conditions hold,576

(1) (d∗1, ..., d
∗
k) ≻f µ(f), and577

(2) for each distinct daycare d included in (d∗1, ..., d
∗
k), C(f, j, d) ⊆ Chd(µ(d) ∪ C(f, j, d)), where578

C(f, j, d) denotes a subset of f ’s children who apply to daycare d with respect to ≻f,j .579

A feasible and individually rational matching satisfies ABH-stability if no blocking coalition exists.580

ABH-Stability maintains alignment with the stability notion presented by Kojima et al. [2013]. In581

the latter study, the authors explore a responsive preference domain in which daycare priorities are582

defined over sets of children. Despite differences in the choice function employed, the foundational583

idea of defining stability exhibits conceptual coherence between these two works.584

B.3 Non-existence of Stable Matchings585

Example 5 (Non-existence of Stable Matchings). Consider three families: f1 with children C(f1) =586

{c1, c2}, f2 with children C(f2) = {c3, c4}, and f3 with children C(f3) = {c5, c6}. There are three587

daycares: D = {d1, d2, d3}, each with a single slot. The preference profile of the families and the588

priority profile of the daycares are as follows:589

≻f1 : (d1, d2) ≻f2 : (d2, d3) ≻f3 : (d3, d1)

≻d: c1, c6, c3, c2, c5, c4 ∀d ∈ D

We denote the option of being unmatched as ∅ for brevity. There are three feasible matchings except590

for the empty matching which can not be stable, namely:591

• Matching µ1 where µ1(f1) = (d1, d2), µ1(f2) = (∅, ∅), and µ1(f3) = (∅, ∅).592

• Matching µ2 where µ2(f1) = (∅, ∅), µ2(f2) = (d2, d3), and µ2(f3) = (∅, ∅).593

• Matching µ3 where µ3(f1) = (∅, ∅), µ3(f2) = (∅, ∅), and µ3(f3) = (d3, d1).594

Matching µ1 cannot be stable, because family f2 could form a blocking coalition with a pair of595

daycares (d2, d3), where Chd2
({c2, c3}) = {c3} and Chd3

({c4}) = {c4}. Similarly, matching µ2 is596
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blocked by family f3 and daycares (d3, d1), and matching µ3 is blocked by family f1 and daycares597

(d1, d2). Consequencely, none of the matchings µ1, µ2, and µ3 is stable.598

C Previous Algorithms599

C.1 Deferred Acceptance (DA)600

The Deferred Acceptance (DA) algorithm is a classical algorithm in matching theory under pref-601

erences [Gale and Shapley, 1962, Roth, 1985]. The (children-proposing) DA algorithm proceeds602

iteratively through the following two phases. In the application phase, children first apply to their603

most preferred daycares that have not rejected them so far. In the selection phase, each daycare604

selects children based on its priorities from the pool of new applicants in the current round and605

the temporarily matched children from the previous round without exceeding specific quotas. The606

algorithm terminates when no child submits any further applications. An essential property of the DA607

algorithm is that it always converges to a stable matching within polynomial time when siblings are608

not involved.609

Definition 12 (Rejection Chain). When a child c∗1 applies to a daycare d∗1 that is already at full610

capacity, daycare d∗1 must reject some child c∗2 (which could be c∗1). The rejected child c∗2 then applies611

to the next available daycare d∗2. If daycare d∗2 is also full, another child c∗3 must be rejected by d∗2612

and apply to the subsequent daycare d∗3. This sequence continues, forming a rejection chain denoted613

as c∗1 → c∗2 · · · → c∗t , where t represents the length of the chain.614

Similarly, rejection chains of families can be defined in the same manner by substituting c∗i with f∗
i ,615

where c∗i ∈ C(f∗
i ).616

Definition 13 (Rejection Cycle). A rejection chain, represented as c∗1 → c∗2 · · · → c∗t , is termed a617

rejection cycle if it satisfies two additional conditions: i) at least one child in the chain is different618

from c∗1, i.e., there exists c′ ∈ {c∗1, c∗2, · · · , c∗t } such that c′ ̸= c∗1, and ii) the rejection chain forms a619

cycle, commencing and concluding with c∗1, i.e., c∗1 = c∗t .620

In the case of a rejection cycle involving families, we mandate that i) at least two distinct families621

are present in the rejection chain, and ii) the rejection chain initiates and concludes with the same622

family. It is possible that the starting child c∗1 and the ending child c∗t are different, but they are from623

the same family.624

In cases where no child has siblings, rejection cycles may occur, but they are guaranteed to eventually625

terminate. This termination is ensured by the following reasons: i) When a daycare reaches its quota,626

the number of matched children remains constant, even though the set of matched children may627

vary. ii) Children cannot be matched to a daycare that previously rejected them, as a daycare never628

regrets rejecting a child with lower priority than its currently matched children when it meets its629

quota. Consequently, a child does not need to reapply to any daycare that has rejected them.630

However, these arguments do no longer hold in the presence of siblings. This is because when one631

child is rejected by a daycare, their sibling may be compelled to leave the matched daycare, due to632

their joint preferences over tuples of daycares, rather than a rejection. Consequently, vacancies arise633

at a daycare that was previously full, enabling a previously rejected child to reapply. This suggests634

that a rejection cycle may persist indefinitely.635

C.2 Sequential Couples636

The Sequential Couples algorithm, devised by Kojima et al. [2013] to address matching problems637

involving couples, follows a three-step procedure. First, it computes a stable matching without638

considering couples, using the DA algorithm. Next, it handles each couple according to a predefined639

order denoted as π. Single doctors displaced by couples are accommodated one by one, allowing640

them to apply to hospitals based on their preferences. However, if an application is made to a hospital641

where any member of a couple has previously submitted an application, the algorithm declares a642

failure and terminates, even if a stable matching indeed exists.643
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C.3 Sorted Deferred Acceptance644

The Sorted Deferred Acceptance (SDA) algorithm, as introduced by Ashlagi et al. [2014], follows a645

similar trajectory to the Sequential Couples algorithm. We extend its application to the context of646

daycare matching with siblings. The algorithm begins by computing a stable matching without con-647

sidering families with siblings, denoted as FS , using the DA algorithm. Subsequently, it sequentially648

processes each family, denoted as f , based on a predefined order denoted as π. Children without649

siblings who are displaced by family f are processed individually, enabling them to apply to daycare650

centers according to their preferences. If any child from family f ′ ∈ FS with siblings is affected651

during this process, a new order π′ is attempted, with f being inserted before f ′. The algorithm652

terminates and returns a failure if any child from family f is affected or if the same permutation has653

been attempted twice.654

C.4 Proof of Theorem 2655

Theorem 2. The matching returned by the original SDA algorithm may not be stable.656

Proof. We present a counterexample in Example 6 to prove Theorem 2.657

Example 6. Consider two families: f1 with children C(f1) = {c1, c2}, f2 with children C(f2) =658

{c3}. There are three daycares: D = {d1, d2, d3}, each with a single slot. The preference profile of659

the families and the priority profile of the daycares are as follows:660

≻f1 : (d1, d2), (d2, d3), ≻f2 : d2
≻d: c1, c3, c2 ∀d ∈ D.

Then, SDA produces a matching µ(f1) = {(d2, d3)} while leaving child c3 unmatched. However, by661

Definition 4, this matching is not stable. This is because family f1 could form a blocking coalition662

with (d1, d2) by allowing c1 to transfer his seat at d2 to sibling c2.663

This completes the proof of Theorem 2. Note that no matching for this example satisfies stability in664

Definition 4.665

D Formal Description of ESDA666

The ESDA algorithm commences with the application of the Deferred Acceptance (DA) algorithm667

to families without siblings FO. The resulting matching is denoted as µO. The ESDA algorithm668

operates with an order π defined over the set {1, · · · , |FS |}. To keep track of attempted permutations,669

we introduce the collection Π, initialized with {π}.670

The pivotal step in the ESDA algorithm involves the sequential insertion of families FS based on the671

order π. Let π(i) denote the i-th element in π, starting with i = 1, and let FS
π(i) denote the π(i)-th672

family in FS . We define µ as the current matching during the ESDA process, and µi denotes the673

matching before processing the π(i)-th family in FS . Both µ and µi are initialized with µO.674

Consider the π(i)-th family f ∈ FS , denoted as f = FS
π(i). Family f makes proposals to the j-th675

tuple of daycares, denoted as ≻f,j , with the initialization of j at 1. Define D(f, j) as the set of676

distinct daycares in ≻f,j . For each daycare d ∈ D(f, j), we calculate C(f, j, d), representing the set677

of children from family f applying to daycare d w.r.t. ≻f,j .678

According to the choice function outlined in Definition 3, the input is µ(d) \ C(f) ∪ C(f, j, d),679

excluding siblings from C(f) who do not apply to daycare d w.r.t. ≻f,j . If C(f, j, d) cannot be680

chosen by all d ∈ D(f, j), the algorithm advances to the next tuple of daycares by updating j ← j+1.681

Otherwise, family f can be matched to ≻f,j in µ.682

Let A denote a set of children who i) do not belong to family f and ii) are involved in the rejection683

chains when matching f to ≻f,j . Two possibilities can arise.684

Case 1) If any child from family f ′ ∈ FS \ {f} is involved in A, i.e., A∩C(f ′) ̸= ∅, a new order π′685

is generated by inserting f before f ′. If π′ has been attempted previously, the algorithm terminates,686

returning failure (Type 2), a concept that will be detailed shortly. Otherwise, the algorithm restarts687

with the new order π′ and add π′ to Π.688
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Case 2) If only children without siblings are involved in A, then match f with ≻f,j and leave each689

child in A unmatched. Let B denote the set of children in CO who are matched differently under690

µi (the matching before processing family f ) and µ (the current matching). Create a temporary691

matching µT ← µ, which is used to verify whether µ will be modified later. Then the algorithm692

proceeds to stabilize children in B. Select one child, denoted as b ∈ B, and let him apply to a daycare693

denoted as x←≻f(b),h starting with h = 1. If any child from C(f) is rejected during this process,694

the algorithm terminates, returning failure (Type 1). If any child from family f ′ ∈ FS \ f is rejected,695

a new order is generated following the process described in Case 1). If child b is rejected by daycare696

x, the algorithm explores his next preferred daycare with h← h+1, if available. If child b is chosen,697

then match b to x in µ and remove b from B. Subsequently, if there is a rejected child, it is added to698

B, and the algorithm proceeds to the next child in B.699

Once B becomes empty, we verify whether µT equals µ. If they are not identical, we revisit family f700

by setting i← i; otherwise, we update µi+1 ← µ and proceed to the next family in FS by setting701

i← i+ 1.702

D.1 Two Lemmas for Proving Theorem 3703

Our proof that ESDA always generates a stable matching if it does not terminate with failures, relies704

on the following two lemmas. First, we establish that the number of matched children at each daycare705

does not decrease as long as no family in FS is rejected and no child passes their seat to other siblings706

during the execution of ESDA. Then, we prove that for a given order π over FS , if the rank of the707

matched child at any daycare increases, then ESDA cannot produce a matching with respect to π.708

Lemma 6. For a given order π over families FS , let µi(π) denote the matching obtained during709

the ESDA procedure before processing family FS
π(i) ∈ FS . The number of matched children at any710

daycare d does not decrease under matching µi+1(π) if the following three conditions hold: i) The711

algorithm does not encounter any type of failure. ii) The order π remains unchanged. iii) No child712

from family FS
π(i+1) transfers their seat to other siblings during the ESDA process.713

Proof. If the first two conditions hold, then no child from any family f ∈ FS is rejected when714

inserting family FS
π(i+1). Consequently, only children without siblings are involved in rejection715

chains, and each time one child is replaced by another one with a higher daycare priority when the716

capacity is reached.717

Let f = FS
π(i+1). If the third condition holds, when family f applies to any tuple of daycares ≻f,j ,718

the input to the choice function Chd(·) can be simplified as Chd
(
µ(d) ∪ C(f, j, d)

)
, as no child719

c ∈ C(f) passes their seat to other siblings. After the stabilization step, if f reapplies to any tuple720

≻f,k that is better than µ(f), then f is still rejected as each matched child at d ∈ D(f, j) has a721

weakly higher priority. Thus, f cannot create new vacancies by moving to a better tuple of daycares.722

Consequently, the number of matched children at each daycare does not decrease.723

For a given matching µ and a daycare d, let L(µ, d) represent the rank of the matched child with724

the lowest priority at daycare d, where 1 denotes the highest priority. Imagine that all vacant slots725

at each daycare are initially occupied by dummy children assigned the rank |C|+ 1. As the ESDA726

algorithm progresses, these dummy children are gradually rejected and replaced by children with727

higher priorities, resulting in a decrease in L(·).728

We will now demonstrate the following lemma.729

Lemma 7. Given an order π over families FS , if, during the ESDA process, the rank L(µ, d)730

increases for any daycare d, then ESDA fails to generate a matching under the current order π over731

families FS .732

Proof. We next prove Lemma 7 by examining the changes in L(µ, d) at each daycare d throughout733

the execution of the ESDA algorithm under a given order π.734

[Line 1] The ESDA algorithm begins by employing the DA algorithm on families FO. At each step of735

the DA algorithm, a rejected child is substituted by another child with a higher priority. Consequently,736

for each daycare d, the value of L(µ, d) either decreases or remains unchanged.737
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Algorithm 1 Extended Sorted Deferred Acceptance (ESDA)
Input: an instance I = (C,F,D,Q,≻F ,≻D) and a default order π = 1, 2, ..., |FS |
Output: a stable matching or a failure

1: Apply DA to FO and denote the obtained matching as µO

2: Initialize Π← {π}, storing the permutations of π that have been attempted
3: Initialize i← 1 with π(i) being the i-th element in π
4: Initialize µ← µO (current matching) and µi ← µO (the matching before processing the π(i)-th

family in FS)
5: while i ≤ |FS | do {Iterate through FS according to π}
6: Let f = FS

π(i) be the π(i)-th family in FS

7: Initialize j ← 1
8: while j ≤ |≻f | do {f proposes to ≻f,j}
9: Compute D(f, j), the set of distinct daycares w.r.t. ≻f,j

10: For each d ∈ D(f, j), compute C(f, j, d), the set of children from family f who apply to d
w.r.t. ≻f,j

11: if ∃d ∈ D(f, j) s.t. C(f, j, d) ̸⊆ Chd
(
µ(d) \ C(f) ∪ C(f, j, d)

)
then {f cannot be

matched to ≻f,j}
12: j ← j + 1 {Consider the next tuple of daycares in ≻f}
13: else {f can be matched to ≻f,j}
14: A←

⋃
d∈D(f,j)

(
µ(d) \Chd(µ(d) \C(f)∪C(f, j, d))

)
\C(f) {Rejected children from

families F \ {f}}
15: if ∃f ′ ∈ FS \{f} s.t. C(f ′)∩A ̸= ∅ then {some child from f ′ ∈ FS \{f} is rejected}
16: Create a new order π′ by inserting f prior to f ′.
17: if π′ ∈ Π then
18: return Failure (Type-2).
19: else
20: Π← Π ∪ {π′} and go to line 3 with π ← π′ {Start over with π′}
21: end if
22: end if
23: µ(f) ←≻f,j and ∀c ∈ A, µ(c) ← d0 {f is matched to ≻f,j and children A are

unmatched}
24: B ← {c ∈ CO | µi(c) ̸= µ(c)} {Children in CO matched differently under µi and µ}
25: µT ← µ {Check whether µ is changed later}
26: while |B| > 0 do {Stabilize children B}
27: Choose one child b ∈ B and initialize h← 1
28: while h ≤ |≻f(b)| do
29: x←≻f(b),h, the h-th most preferred daycare in ≻f(b)

30: R← µ(x) \ Chx(µ(x) ∪ {b})
31: if C(f) ∩R ̸= ∅ then
32: return Failure (Type-1)
33: else if ∃f ′ ∈ FS \ {f} s.t. C(f ′) ∩R ̸= ∅ then
34: Go to line 16
35: end if
36: if R = {b} then
37: h← h+ 1
38: else
39: ∀c′ ∈ R,µ(c′)← d0 and B ← B ∪ {c′}
40: µ(b)← x, B ← B \ {b} and go to line 26
41: end if
42: end while
43: B ← B \ {b}
44: end while
45: if µT ̸= µ then
46: Go to line 6 with i← i {Check f one more time}
47: else
48: Update µi+1 ← µ and go to line 6 with i← i+ 1 {Check the next family in FS}
49: end if
50: end if
51: end while
52: end while
53: return A matching µ. 17



[Line 2-6] Subsequently, the algorithm advances through FS based on the given order π. Consider738

the insertion of family f = FS
π(i) into the market, commencing with i← 1. The following argument739

applies for any i under the condition that no child from family FS
π(i) transfers seats to other siblings.740

[Line 7-12] Family f first applies to the tuple of daycares ≻f,j , initialized with j ← 1 (line 7-8). If741

family f cannot be accepted by all d ∈ D(f, j), then the set of matched children at each daycare d742

remains unchanged, i.e., L(µ, d) remains the same, and the algorithm proceeds to j + 1 (line 9-12).743

[Line 13] If D(f, j) still have vacant seats to accommodate family f , then we can imagine that dummy744

children are substituted by C(f), resulting in a decrease in L(µ, d) at each daycare d ∈ D(f, j).745

Subsequently, the algorithm proceeds to the next family FS
π(i+1).746

[Line 14] Now, assume that some child is involved in the rejection chain A during the insertion of747

family f . In this scenario, two possibilities arise.748

[Line 15-22] Case i) If a child from another family f ′ ∈ FS \ {f} is rejected, it can lead to either a749

restart with a new permutation or result in a Type-2 Failure. In either case, it is equivalent to filling750

all seats at each daycare with dummy children assigned the rank |C|+ 1, resulting in an increase in751

L(·). This indicates that the current order π is unable to generate a matching.752

[Line 23-25] Case ii) If only children in CO are affected during the insertion of f , we match f to753

≻f,j and assign any child in A to the dummy daycare. In this scenario, L(·) decreases at each daycare754

d ∈ D(f, j).755

Let B denote the set of children in CO matched differently under µi and µ. We define µT as the756

matching before stabilizing the children in set B.757

[Line 26-35] While stabilizing B, if a child from family f ′′ ∈ FS is rejected, the algorithm may758

either restart with a new permutation or terminate with failure. In either case, the current π is759

inadequate for producing a matching, as discussed in Case i).760

[Line 36-44] Next, let’s consider the scenario where only children from CO are involved in B during761

the stabilization process. In this case, if a child is rejected, it is replaced by another child with a762

higher priority, resulting in a decrease in L(·) at the corresponding daycare.763

[Line 45-49] We need to verify whether µ differs from µT after stabilization. If they remain the same,764

L(·) does not change, and we proceed to the next family.765

[Back to Line 6-22] Conversely, if µ differs from µT , a supplementary check is conducted for family766

f by allowing it to propose to ≻f,j , staring with j ← 1. If family f cannot be matched to a better767

tuple than µT (f), then µ as well as L(·) remain unchanged, and we move on to the next tuple.768

Suppose family f is matched to ≻f,j in matching µT , and now family f is matched to a better tuple769

denoted as ≻f,k in µ. It’s important to note that this scenario is possible because family f is already770

matched under µT , and some child can pass their seat to other siblings when reapplying to a better771

tuple than µT (f).772

Formally, when family f was rejected by≻f,k in µT , there must exist a daycare d ∈ D(f, k), children773

c, c′ ∈ C(f), and a child c1 ∈ CO such that: i) Child c1, with the lowest priority, is matched to d in774

µi (before processing family f ). ii) The priority ordering at daycare d satisfies: c′ ≻d c1 ≻d c. iii)775

Child c′ is matched to ≻f,j in µT by replacing c1. When family f reapplies to ≻f,k in matching µ,776

child c passes their seat to c′, resulting in an increase in L(µ, d).777

[Line 23-44] Since child c1 is matched differently under µi and µ, we have c1 ∈ B. When stabilizing778

B again, child c1 applies from their most preferred daycare. If c1 reapplies to d, then it causes the779

rejection of c and leads to a Type-1 Failure.780

Let’s assume that c1 is matched to some daycare, say d1, in µ which is more preferred than d, leading781

to an increase in L(µ, d1). It’s important to recall that d1 was full under µi (before processing family782

f ), and d1 can accommodate c1 in µ only if family f causes some child c2, who was matched to d1 in783

µi, to be affected in the rejection chain. Following the same argument, suppose c2 could be matched784

to some daycare, say d2, which is better than d1, and d2 was full under µi and some child c3 was785

rejected when inserting f under µ.786
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Following the same argument, we can continue this chain until we reach a child, say ct, who cannot787

be matched to a better daycare dt than µi(ct) in µ. If daycare dt has a vacant seat under µ, it implies788

that dt must have had a vacant seat under µi before processing family f . However, this contradicts789

the fact that ct was rejected by dt under µi. Therefore, all the children ct, ct−1, ct−2, . . . , c1 could790

form a rejection chain ending with child c, leading to a Type-1 Failure.791

Continuing this reasoning, we must arrive at some child, say ct, who cannot be matched to a better792

daycare dt than µi(ct) in this way. This is because family f cannot create more vacancies than793

the number of children rejected by it when changing from ≻f,k to ≻f,j , unless other families from794

f ′ ∈ FS \ {f} is rejected. However, in that case we will go to lines 15-22 instead. Therefore, we can795

conclude that the children ct, ct−1, ct−2, · · · , c1, c could form a rejection chain ending with child c,796

resulting in a Type-1 Failure.797

Having meticulously examined all conceivable scenarios during the ESDA procedure, it is evident798

that π is incapable of leading to a matching if L(µ, d) experiences an increase for any daycare d.799

This completes the proof of Lemma 7.800

D.2 Proof of Theorem 3801

Theorem 3. Given an instance of I , if ESDA returns a matching without failure, then the yielded802

matching is stable. In addition, ESDA always terminates in a finite time, either returning a matching803

or a failure.804

Proof. Suppose the ESDA in Algorithm 1 returns a matching µ without encountering any failures.805

Let π̃ denote the finial order over families FS when ESDA terminates.806

Let w = |FS | denote the number of families in FS , and consider the last family fw = FS
π̃(w) in the807

order π̃. Case i) If family fw is matched to µ(f) =≻f,j without causing any child to be rejected, i.e.,808

the stabilization step is not invoked, then for any k ≤ j, family f cannot be matched to a better tuple809

of daycares ≻f,k, as the set of matched children remains unchanged at any d ∈ D(f, k). Case ii)810

Suppose some children A are rejected when inserting family fw. We know A \ FS = ∅, otherwise811

ESDA would terminate with a failure or restart with a new permuation. Thus A ⊆ FO. After812

stabilizing all children B (containing A) who are matched differently under µw and µ, family f813

reapplies to a better tuple of daycares by allowing for children C(f) to pass their seats to other siblings.814

If this happens, then the rank of matched children L(·) at some daycare decreases, contradicting815

Lemma 7, which implies that π̃ can produce a matching. Thus, we know f cannot be matched to a816

better tuple even if passing seats are allowed. For both cases, we conclude that family fw cannot817

pariticipate in a blocking coalition w.r.t. matching µ.818

Moving on to the second last family fw−1, we apply a similar reasoning.When inserting family819

fw−1 into the market, if it can be matched to a better tuple after the stabilization step, it contradicts820

Lemma 7. After family fw is introduced into the market, two key observations hold: i) the number821

of matched children does not decrease at any daycare, as per Lemma 6, and ii) for each daycare d,822

L(µ, d) does not increase, meaning no daycare accepts a child with a lower priority, per Lemma 7.823

Consequently, family fw−1 still cannot be matched to a better tuple of daycares after the insertion of824

the last family f .825

Continuing this logic through induction, we conclude that no family f i ∈ FS
π(i) can be matched to a826

better tuple of daycares under the order π̃. In other words, none of the families in FS can participate827

in a blocking coalition. For the same reasons, it follows that any family f ∈ FO cannot be matched828

to a better daycare either.829

For each permutation of π, the algorithm may iterate multiple times of checking f for lines 45-830

46, if the current matching µ changes after the stabilization step. Since the choices in each only831

child’s preference ordering are finite, the check terminates in a finite time or returns with a failure.832

Furthermore, the total number of permutations of π is also finite, thus ensuring the algorithm’s833

termination. This concludes the proof of Theorem 3.834
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D.3 Two Types of Failure of ESDA835

Example 7 (Type-1-a Failure). Consider three families f1 with children C(f1) = {c1, c2}, f2 with836

children C(f2) = {c3} and f3 with children C(f3) = {c4}. There are three daycares denoted as837

D = {d1, d2, d3}, each with one available slot. The preferences of the families and the priorities of838

the daycares are outlined as follows:839

≻f1 : (d1, d3) ≻f2 : d1, d2 ≻f3 : d2, d1
≻d1

: c4, c1, c3 ≻d2
: c3, c4 ≻d3

: c2

The initial matching µO is obtained through the Deferred Acceptance (DA) algorithm, where840

µO(c3) = d1 and µO(c4) = d2. Upon inserting family f1, child c1 is matched to daycare d1,841

and child c2 is matched to daycare d2, resulting in the rejection of child c3 from daycare d1. Subse-842

quently, when child c3 applies to daycare d2, it leads to the rejection of child c4. Finally, when child843

c4 applies to daycare d1, it results in the rejection of child c1.844

Thus, a rejection chain is formed: c1 → c3 → c4 → c1, and the ESDA algorithm terminates with845

failure. However, it’s important to note that a stable matching µ′ does exist, where µ′(c3) = d2 and846

µ′(c4) = d1. Despite of its existence, the ESDA algorithm fails to discover it.847

Example 8 (Type-1-b Failure). Consider two families f1 with children C(f1) = {c1, c2} and f2848

with children C(f2) = {c3}. There are two daycares D = {d1, d2}, each having one available slot.849

The preferences of the families and the priorities of the daycares are outlined as follows:850

≻f1 : (d1, d2) ≻f2 : d1, d2
≻d1 : c1, c3 ≻d2 : c3, c2

The initial matching µO is obtained through the Deferred Acceptance (DA) algorithm, with µO(c3) =851

d1. Upon the introduction of family f1, child c1 secures a place at daycare d1, and child c2 is matched852

with daycare d2, consequently leading to the rejection of child c3 from daycare d1. As child c3 applies853

to daycare d2, it results in the rejection of child c2 from daycare d2 in turn.854

This sequence forms a rejection chain: c1 → c3 → c2, prompting the ESDA algorithm to terminate855

with a failure. Notably, no stable matching is found to exist for Example 8.856

Example 9 (Type-2 Failure). Consider two families f1 with children C(f1) = {c1, c2}, and f2 with857

children C(f2) = {c3, c4}. There are three daycares, denoted as D = {d1, d2, d3}, each with one858

slot. Suppose the initial order is π = {1, 2}. The preferences of the families and the priorities of the859

daycares are outlined as follows:860

≻f1 : (d1, d2), (d1, d3) ≻f2 : (d2, d3)

≻d1
: c1 ≻d2

: c3, c2 ≻d3
: c2, c4

When family f1 is inserted, it secures a match with (d1, d2). Subsequently, when family f2 is added,861

child c2 from family f1 is rejected, prompting a change in the order to π′ = {2, 1} and a restart of862

the algorithm.863

Now, if we add family f2 first in the revised order π′, it obtains a match with (d2, d3). However, when864

family f1 is added and applies to (d1, d2), child c2 has a lower priority than child c3, resulting in the865

rejection of family f1. Consequently, family f1 applies to (d1, d3), causing family f2 to be evicted in866

turn.867

This leads us to modify the order π′ to π∗ = {1, 2}, which has been attempted previously. Thus, the868

ESDA algorithm terminates due to a Type-2 Failure.869

E Proof of Theorem 1870

In this section, we outline the proof for Theorem 1. Our main approach is to set an upper limit on the871

likelihood of encountering the two types of failure in the ESDA algorithm.872

Theorem 1. Given a random market Ĩ with ϕ = O(log n/n), the probability of the existence of a873

stable matching converges to 1 as n approaches infinity.874
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We leverage the following lemma in our proof. It asserts that if an ordering ≻ is generated from a875

given Mallows distribution D≻0,ϕ, the probability of child c′ being ranked higher than child c in ≻ is876

no greater than 4ϕdist(c,c′), given that c ≻0 c′, where dist(c, c′) represents the distance between c877

and c′ in ≻0.878

Lemma 8 ([Levy, 2017]). If ≻ is a random ordering drawn from the Mallows distribution D≻0,ϕ,879

then for all c, c′ ∈ C,880

Pr
[
c′ ≻ c | c ≻0 c′

]
≤ 4ϕdist(c,c′)

where dist(c, c′) = |{c′′ ∈ C | c ≻0 c′′ ≻0 c′}|+ 1.881

E.1 Proof of Lemma 1882

Lemma 1. Under the uniformly bounded condition, the probability pd of selecting any daycare d is883

limited by σ/m where m denotes the total number of daycares.884

Proof. For each daycare d, we have 1/σ ≤ pd/pd′ ≤ σ. Therefore, pd′/σ ≤ pd ≤ σ · pd′ . If we sum885

this inequality over each d′ ∈ D, we obtain m · pd ≤
∑

d′∈D σ · pd′ = σ. Thus, pd ≤ σ/m.886

E.2 Proof of Lemma 2887

Lemma 2. Given a random market Ĩ with ϕ = O(log n/n), the probability of Type-1-a Failure in888

the SDA algorithm is bounded by O
(
(log n)2/n

)
.889

Proof. We first consider a Type-1-a Failure, where a rejection chain c1 → c∗2 → · · · → c∗ℓ → c1890

exists. Here, child c1 belongs to a family f ∈ FS with multiple children, while the other children891

c∗2, · · · , c∗ℓ ∈ CO have no siblings.892

Let Eaℓ represent the event of such a rejection chain c1 → c∗2 → · · · → c∗ℓ → c1, with length ℓ ≥ 3.893

We next show that, for any ≻0, we have894

Pr[Eaℓ |≻0] ≤
16σϕ2

m
. (1)

Suppose that in this rejection chain, child c1 applies to daycare d1, while children c∗i apply to d∗i for895

i ∈ {2, 3, ..., ℓ− 1}. The last child in the cycle, c∗ℓ , applies to daycare d1. It is important to note that896

d∗i ̸= d∗i+1 holds for i ∈ {1, . . . , ℓ− 2}, even though there could be repetitions among the children897

c∗2, ..., c
∗
ℓ and the daycares d∗2, ..., d

∗
ℓ−1.898

Let≻1 represent the priority ordering of daycare d1. For i ∈ {2, . . . , ℓ−1}, let≻i denote the priority899

ordering of daycare d∗i . Recall that for each i = 1, . . . , ℓ− 1, the priority ordering ≻i is drawn from900

the Mallows distribution D≻0,ϕ. We consider two cases.901

Case (i): Suppose the reference ordering ≻0 satisfies the following condition902

c∗ℓ ≻0 c∗ℓ−1 ≻0 · · · ≻0 c∗2 ≻0 c1. (2)

By Lemma 8, we have903

Pr[c∗ℓ ≻1 c1 ≻1 c∗2 |≻0] ≤ Pr[c1 ≻1 c∗2 | c∗2 ≻0 c1] ≤ 4ϕ.

For all i = 2, ..., ℓ− 1, we also have904

Pr[c∗i ≻i c
∗
i+1 |≻0] ≤ 4ϕ.

From d∗1 ̸= d∗2, we know ≻1 and ≻2 are independent. Then we have905

Pr
[
Eaℓ |≻0

]
≤ Pr

[
c1 ≻1 c∗2 |≻0

]
· Pr

[
c∗2 ≻2 c∗3 |≻0

]
· Pr

[
c∗ℓ−1 applies to d1

]
≤ 16ϕ2pd1

.

Lemma 1 states that pd1
≤ σ/m. Then we have906

Pr
[
Eaℓ |≻0

]
≤ 16ϕ2pd1

≤ 16σϕ2

m
. (3)
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Case (ii): If ≻0 does not satisfy the condition in Formula (2), then Pr[c∗ℓ ≻1 c1 ≻1 c∗2 |≻0] ≤ 4ϕ2907

holds or there exists i ∈ {2, ..., ℓ− 1} such that Pr[c∗i ≻i c
∗
i+1 |≻0] ≤ 4ϕ2. From this, we obtain908

Pr
[
Eaℓ |≻0

]
≤ 4ϕ2 · Pr

[
c∗ℓ−1 applies to d1

]
≤ 4ϕ2pd1

≤ 4σϕ2

m
. (4)

From Inequalities (3) and (4) above, for both cases (i) and (ii), we have Pr[Eaℓ |≻0] ≤ 16σϕ2

m . This909

completes the proof of Inequality (1).910

Given that ≻0 is drawn from a uniform distribution over all permutations of C, we can derive911

the following inequality for the probability of encountering Type-1-a Failure, denoted as Eℓ, for a912

particular length ℓ of the rejection chain:913

Pr
[
Eaℓ

]
≤

∑
≻0∈S′

Pr
[
Eaℓ |≻0

]
· Pr[≻0]

≤ 16σϕ2

m

∑
≻0∈S′

Pr[≻0]

=
16σϕ2

m

where S′ denotes all permutations on the set of children C that is used to generate ≻0.914

To obtain the overall probability of Type-1-a Failure, we sum up the probabilities for all possible915

lengths ℓ and for all children FS . Recall that the length of each child’s preference ordering is bounded916

by L, and the length of a rejection chain is upper bounded by (1− α)n · L and lower bounded by917

3. Thus, the probability that there exists a rejection cycle leading Type-1-a Failure is bounded from918

above by919

αn ·
(1−α)nL∑

ℓ=3

Pr
[
Eaℓ

]
≤ 16α(1− α)Lσ

n2ϕ2

m
.

If ϕ = O(log n/n), the probability of there being a Type-1-a Failure is O
(

(logn)2

n

)
, which converges920

to 0 as n approaches infinity.921

E.3 Proof of Lemma 3922

Lemma 3. Given a random market Ĩ with ϕ = O(log n/n), the probability of Type-1-b Failure in923

the SDA algorithm is bounded by O
(
(log n)2/n

)
+O(n−ε).924

Proof. We next proceed to Type-1-b Failure, where a rejection chain is denoted as c1 → c∗2 → · · · →925

c∗ℓ → c′1. Here, c1 and c′1 are siblings of the same family f ∈ FS , while c∗2, . . . , c
∗
ℓ are children926

without siblings. Suppose that c∗i applies to d∗i for each i = 2, 3, ..., ℓ− 1.927

If children c1 and c′1 have nearly identical priorities in ≻0 (diamf ≤ |C(f)|), the analysis aligns928

with that of Type-1-a Failure. Consequently, in this scenario, the probability of the rejection chain929

occurring is at most 16σϕ2/m for any ≻0 and for any 2 ≤ ℓ ≤ (1− α)nL.930

If children c1 and c′1 have significantly different priorities in ≻0 (diamf > |C(f)|), then it only931

occurs with a probability at most 1/n1+ε (ε > 0). Therefore, even in the worst-case scenario where932

≻0 satisfies c∗1 ≻0 c∗2 ≻0 · · · ≻0 c∗ℓ ≻0 c′∗1 , the probability that the last child c∗ℓ causes c′1 to be933

rejected, is bounded by σ
n1+εm .934

Let Ebℓ denote the event where the rejection chain of length ℓ starting with c1 and ending with c′1935

occurs. For any ℓ and ≻0, we have936

Pr
[
Ebℓ |≻0

]
≤ 16σϕ2

m
+

σ

n1+εm
.
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We next sum up the probabilities for all possible lengths ℓ and for any two children in families with937

multiple children. The probability of Type-1-b Failure occurring is bounded by938

αn ·
(
k̄

2

)
·
(1−α)nL∑

ℓ=2

Pr
[
Ebℓ

]
≤ α(1− α)Lk̄2n2

(
16σϕ2

m
+

σ

n1+εm

)
= O

(
(log n)2

n

)
+O(n−ε).

Here, we used m = Ω(n) and ϕ = O(log n/n). This concludes that Type-1 Failure does not happen939

with high probability.940

E.4 Proof of Lemma 4941

In addition to the concept of domination, we define the notion of top-domination.942

Definition 14 (Top Domination). Given a priority ordering ≻, we say that family f top-dominates f ′943

w.r.t. ≻ if944

max
c∈C(f)

c ≻ max
c′∈C(f ′)

c′.

Lemma 4. Given a random market Ĩ with ϕ = O(log n/n), and for any two families f, f ′ ∈ FS945

that are not nesting with each other with respect to ≻0, then Type-2 Failure occurs with a probability946

of at most O(log n/n).947

Proof. Consider any two families f, f ′ ∈ FS that do not nest with each other. Without loss of948

generality, we assume that f top-dominates f ′, and f ′ does not dominate f , otherwise they would949

nest with each other. Then we have,950

∀c ∈ C(f),∀c′ ∈ C(f ′), c ≻0 c′. (5)

Suppose f ′ appears before f in the order π over families FS , and f ′ is currently matched. When f is951

inserted into the market, we observe that the probability of f causing the rejection of f ′ is bounded952

by σ/m, i.e., Pr
[
f rejects f ′] ≤ σ/m, given that preferences are uniformly bounded.953

Next, consider a new order π′ in which f is placed before f ′. We aim to analyze the probability of f ′954

causing the rejection of f in a rejection chain of length ℓ.955

We begin with ℓ = 2. Suppose a child c ∈ C(f) is currently matched to daycare d1, and another child956

c′ ∈ C(f ′) also applies to daycare d1, resulting in the rejection of child c. As shown in Formula (5),957

we have c ≻0 c′. Since c′ ≻1 c, we can deduce that Pr[c′ ≻1 c |≻0] ≤ 4ϕ from Lemma 8.958

Let E ′0 be the event where f rejects f ′, followed by f ′ rejecting f . The probability that one child in959

C(f ′) applies to d1 is upper-bounded by σ/m. Therefore, we can derive:960

Pr
[
E ′0
]
≤

( σ

m

)2

4ϕ =
4σ2ϕ

m2
.

Next, we consider the scenario where a rejection chain of length ℓ+ 2 occurs, where ℓ represents the961

number of children without siblings participating in the rejection chain. Suppose the rejection chain962

follows the pattern c → c∗1 → c∗2 → · · · → c∗ℓ → c′, where c∗1, ..., c
∗
ℓ ∈ CO. In this case, we have963

1 ≤ ℓ ≤ (1− α)nL.964

Let E ′ℓ be the event where f rejects f ′, and subsequently f ′ rejects f using a rejection chain of length965

ℓ. For any ≻0, the replacement by the Mallows distribution must happen at least twice. Thus, for966

each ℓ = 1, 2, . . . , (1− α)nL, we have967

Pr
[
E ′ℓ |≻0

]
≤

(
σ′

m

)2

16ϕ2 ≤ 16σ′ϕ2

m2
.
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We sum up the probabilities for all possible ≻0, and achieve Pr
[
E ′ℓ
]
≤ 16σ′ϕ2

m2 for each ℓ =968

1, 2, . . . , (1− α)nL. Then we obtain969

(1−α)nL∑
ℓ=1

Pr
[
E ′ℓ
]
≤ 16(1− α)Lσnϕ2

m2
.

Finally, since m = Ω(n) and ϕ = O(log n/n), we get970

Pr
[
there exists a pair of families with siblings cause rejections with each other

]
=

∑
f,f ′∈FS

Pr

(1−α)k̄n⋃
ℓ=0

E ′ℓ


≤

∑
f,f ′∈FS

(1−α)nL∑
ℓ=0

Pr
[
E ′ℓ
]

=
∑

f,f ′∈FS

Pr
[
E ′0
]
+

(1−α)nL∑
ℓ=1

Pr
[
E ′ℓ
]

≤ (αn)2
(
16σϕ

m2
+

16(1− α)k̄σnϕ2

m2

)
= O

(
log n

n

)
.

E.5 Proof of Lemma 5971

Lemma 5. Given a random market Ĩ with ϕ = O(log n/n), the probability of Type-2 Failure972

occurring is bounded by O(log n/n) +O
(
n−2ε

)
.973

Proof. We first consider the probability that any two pairs of families with multiple siblings nest with974

each other w.r.t. the reference ordering ≻0.975

For any two families f and f ′, if they nest with each other, then the diameters of both f and f ′ are large,976

i.e., diamf > |C(f)| and diamf ′ > |C(f ′)|. Thus, the inequality Pr
[
diamf ≥ |C(f)|

]
≤ 1

n1+ε977

implies that978

Pr
[
f and f ′ nest with each other

]
≤

(
1

n1+ε

)2

.

Hence, we have979

Pr
[
there exist two families who nest with each other

]
≤

∑
f,f ′∈FS

Pr
[
f and f ′ nest with each other

]
≤

(
αn

2

)
·
(

1

n1+ε

)2

≤ α2n2 ·
(

1

n1+ε

)2

= O
(
n−2ε

)
.

Since ε > 0 is a constant, the probability that any two families do not nest with each other approaches980

1 as n tends to infinity.981

We now upper-bound the probability of Type-2 Failure. In cases where two families nest with each982

other, Type-2 Failure may occur with a constant probability. However, we have demonstrated that the983

probability of two families nesting with each other is at most O(n−2ε). In instances where no two984
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families nest with each other, Type-2 Failure happens with a probability of at most O(log n/n) as985

shown in Lemma 4. Therefore, we can express the probability of Type-2 Failure as follows:986

Pr
[
Type-2 Failure happens

]
= O

(
n−2ε

)
+O(log n/n).

This completes the proof.987

Lemma 2, 3 and 5 imply the existence of a stable matching with high probability for the large random988

market, thus concluding the proof of Theorem 1.989

F More on Experiments990

F.1 Features of Real-life Markets991

We are collaborating with several municipalities in Japan, and as part of our collaboration, we provide992

a detailed description of the practical daycare matching markets based on data sets provided by three993

representative municipalities.994

Firstly, the number of children in each market varies from 500 to 1600, with the proportion of children995

having siblings consistently spanning from 15% to 20%, as shown in Table 1.996

fraction # children
Shibuya 21 16.24% 1589
Shibuya 22 15.38% 1372

Tama 21 16.45% 635
Tama 22 16% 550

Koriyama 22 20.68% 1383
Koriyama 23 19.14% 1458

Table 1: Fraction of children with siblings. This table presents the proportion of children with siblings,
along with the total number of children in each dataset.

Secondly, the preference ordering of an only child is relatively short compared to the available997

facilities, averaging between 3 and 4.5 choices. Likewise, children from families with siblings exhibit998

a similar average of 3 to 4.5 distinct daycares in their individual preferences. Furthermore, siblings999

within the same family often share a similar set of daycares in their joint preference ordering. The1000

details are presented in Table 2.1001

length only sibling distinct
Shibuya 21 4.45 14.86 4.26
Shibuya 22 3.76 6.58 3.64

Tama 21 3.29 38.29 3.43
Tama 22 3.01 8.55 3.17

Koriyama 22 3.02 21.38 3.60
Koriyama 23 3.10 9.42 3.13

Table 2: Average length of preferences. The second column pertains to families with only one child,
while the third column represents families with siblings. The last column displays the average number
of distinct daycares in the corresponding individual preference lists for children with siblings.

Thirdly, a critical aspect not mentioned in Section 3.1 is that each child is associated with an age1002

ranging from 0 to 5. Drawing inspiration from prior work [Sun et al., 2023], we make the assumption1003

that there are six copies of the same daycare, each catering to a specific age. The distribution of1004

children participating in the market is uneven, with a notable majority being aged 0 and 1. In Table 3,1005

we present the count of families with siblings and twins (i.e., pairs of siblings of the same age).1006

Fourthly, despite the total capacity of all daycares exceeding the number of applicants, there exists1007

a significant imbalance between demand and supply across different ages. Specifically, there is a1008

shortage of slots for children aged 0 and 1, while there is a surplus of slots for ages 4 and 5, as shown1009

in Table 4.1010
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# children in the family
2 ≥ 3

# families total twin total twin
Shibuya 21 120 14 6 4
Shibuya 22 101 25 3 3

Tama 21 42 3 3 3
Tama 22 44 8 0 0

Koriyama 22 123 10 13 2
Koriyama 23 130 12 6 0

Table 3: Number of families with siblings and twins. The second and third columns represent families
with 2 children, while the last two columns represent families with 3 or more children.

age 0 1 2 3 4 5

Shibuya-21 # applicants 569 656 171 136 37 20
# capacity 509 613 239 265 268 275

Shibuya-22 # applicants 540 582 134 67 33 16
# capacity 497 586 186 233 255 306

Tama-21 # applicants 181 257 98 75 17 7
# capacity 241 222 123 106 57 68

Tama-22 # applicants 181 219 91 43 8 8
# capacity 231 218 100 97 45 47

Koriyama-22 # applicants 379 538 140 231 59 36
# capacity 546 585 220 327 276 171

Koriyama-23 # applicants 366 588 167 239 64 33
# capacity 559 511 218 282 139 188
Table 4: Demand and supply by age

Fifthly, municipalities assign priority scores to children, with siblings from the same family typically1011

sharing identical scores. Subsequently, daycares make slight adjustments to these priority scores to1012

establish a strict priority ordering. As a result, all daycares tend to have similar priority orderings1013

over the children.1014

F.2 More Experiments1015

We employ both the Extended Sorted Deferred Acceptance (ESDA) algorithm and the constraint1016

programming (CP) algorithm to find a stable matching for each real-life dataset. The results demon-1017

strate that both algorithms successfully produce a stable matching. We compared the computational1018

efficiency of the ESDA and CP approaches in terms of their runtime performance in Table 5.1019

In the experiments with synthetic datasets, the ESDA algorithm consistently identifies a stable1020

matching whenever one exists, provided that the dispersion parameter ϕ does not exceed 0.5 (refer to1021

Figure 2 in Section 7.2). However, as the dispersion parameter approaches 1, the ESDA algorithm1022

may fail to find a stable matching, even when one exists. This is illustrated in Figure 3. Interestingly,1023

even when ϕ = 1, stable matchings are present in more than half of the cases. It is unclear why stable1024

matching still exist in such settings with a high probability, and we leave it as an open question.1025

Table 5: Results of computation times (seconds) for experiments on real-world data.

ESDA CP
Shibuya 21 0.87 13.08
Shibuya 22 0.50 8.17

Tama 21 0.10 7.33
Tama 22 0.07 1.41

Koriyama 22 0.50 14.10
Koriyama 23 0.65 6.57
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Figure 3: Results of experiments on synthetic data when ϕ = 1.0.
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