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Abstract
For numerical design, the development of efficient
and accurate surrogate models is paramount. They
allow us to approximate complex physical phe-
nomena, thereby reducing the computational bur-
den of direct numerical simulations. We propose
INFINITY, a deep learning model that utilizes
implicit neural representations (INRs) to address
this challenge. Our framework encodes geometric
information and physical fields into compact rep-
resentations and learns a mapping between them
to infer the physical fields. We use an airfoil
design optimization problem as an example task
and we evaluate our approach on the challeng-
ing AirfRANS dataset, which closely resembles
real-world industrial use-cases. The experimental
results demonstrate that our framework achieves
state-of-the-art performance by accurately infer-
ring physical fields throughout the volume and
surface. Additionally we demonstrate its applica-
bility in contexts such as design exploration and
shape optimization: our model can correctly pre-
dict drag and lift coefficients while adhering to
the equations.

1. Introduction and motivation
Numerical simulations are essential for analyzing systems
governed by partial differential equations (PDEs) in fields
like fluid dynamics and climate science. These simulations
involve discretizing the domain and solving the equations
using methods such as finite differences, finite elements,
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or finite volumes (Reddy, 2019; Grossmann et al., 2007;
Eymard et al., 2000). Since direct numerical simulation
(DNS) can be computationally expensive or intractable, it
is crucial to develop computationally efficient yet accurate
surrogate models to accelerate the design process. Surrogate
modeling for industrial applications, however, poses several
challenges. The meshes used in these applications are exten-
sive, consisting of hundreds of thousands of cells, and they
also exhibit unstructured data and involve multi-scale phe-
nomena. A typical example is the design of airfoils which
will be our application focus, although the ideas can be eas-
ily implemented for other design tasks. In this domain, a
new costly simulation must be run for each mesh during the
optimization process, leading to time-consuming processes.
Additionally, the design process focuses on finding the opti-
mal shape for an airfoil that minimizes the force required for
flight. Experts typically maximize the lift-over-drag ratio by
solving equations across the entire mesh, with particular em-
phasis on the surface where various multi-scale phenomena
occur.

Recently, deep learning methods have emerged as promising
approaches for constructing surrogate models. However, the
progress in this field was initially hindered by the lack of
evaluation datasets representative of real-world data. The
machine learning community has begun to address this issue
by developing benchmarks. In this work, we utilize the a
recent AirfRANS dataset (Bonnet et al., 2022), which aims
to replicate real-world industrial scenarios. This compre-
hensive benchmark provides an evaluation framework to
assess the capabilities of deep learning (DL) in modeling
the two-dimensional incompressible steady-state Reynolds-
Averaged Navier-Stokes (RANS) equations for airfoils. Ad-
ditionally, this 2D dataset encompasses a wide range of air-
foil shapes derived from NASA’s early works (Cummings
et al., 2015), various turbulence effects characterized by
Reynolds numbers and different angles of attack.

The Navier-Stokes equations are widely used in fluid dy-
namics, and as a result, numerous neural network surrogates
have been proposed for their modeling in different contexts.
Initial attempts all relied on grid-based approaches such as
convolutional Neural Networks (CNNs) (Um et al., 2020;
Thuerey et al., 2020; Mohan et al., 2020; Wandel et al., 2020;



INFINITY: Neural Field Modeling for Reynolds-Averaged Navier-Stokes Equations

Obiols-Sales et al., 2020; Gupta et al., 2021; Wang et al.,
2020). CNNs face challenges when dealing with the irreg-
ular meshes used in computational fluid dynamics (CFD).
Graph Neural Networks (GNNs) have shown promise (Pfaff
et al., 2020) but they have limitations in terms of receptive
field size and information propagation across distant nodes,
especially for large meshes. Additionally, GNNs struggle
when the mesh is too dense and cannot fit into the memory
of GPUs, necessitating sub-sampling. This limitation re-
stricts their application in contexts where large meshes with
multi-scale phenomena are prevalent. Furthermore, the eval-
uation of the models has primarily focused on traditional
machine learning scores, such as global error over the entire
domain (a.k.a. volume), rather than more design-oriented
scores, including local error in the surface area surrounding
the airfoil (a.k.a. surface) and errors in the aerodynamic
forces of interest, such as drag and lift.

Leveraging recent advances in implicit neural representa-
tions (INRs) (Sitzmann et al., 2020; Mildenhall et al., 2021),
which have shown successful applications in physics prob-
lems (Yin et al., 2022), we introduce INFINITY, a model
that utilizes coordinate-based networks to encode geometric
information and physical fields into concise representations.
INFINITY establishes a mapping between variables rep-
resenting the problem’s geometry and the corresponding
physical fields, within this representation space. It pos-
sesses several unique features: (i) it is robust to varying
mesh sampling, allowing for adaptability to different ge-
ometries, (ii) it effectively captures multi-scale phenomena,
resulting in state-of-the-art scores for both volume and sur-
face evaluations, (iii) as a continuous surrogate model, it
can be used to accelerate the evaluation of different meshes
during the design process, leading to significant speed-up.
Importantly, we verified that INFINITY’s field predictions
accurately produce the correct lift and drag forces clearly
outperforming all the baselines.

2. Method
2.1. Problem setting

We aim at proposing a surrogate model for airfoil design
optimization in scenarios where the amount of available
training data is limited (ntr ≤ 1000). Each airfoil is as-
sociated with a domain Ωi, which is linked to a specific
geometry. Consequently, different meshes Xi are generated
within each domain. The characterization of an airfoil in-
volves defining boundary conditions on ∂Ωi corresponding
to the airfoil surface, which are discretized into a surface
mesh Si.

The geometric inputs for our model include the following
information: • Node positions x represent the coordinates of
each node within the airfoil’s domain. • Distance function

d(x) provides the distance from each node to the surface
of the airfoil. • Normal vectors of the mesh nodes on the
airfoil surface n(x) = (nx(x), ny(x)) specify the direc-
tion perpendicular to the airfoil surface at each node. In
addition to the geometric inputs, we also have access to the
inlet velocity values Vx and Vy , denoting the horizontal and
vertical components of the velocity, respectively. It is worth
noting that, on average, a mesh consists of approximately
200,000 nodes, providing a detailed representation of the
airfoil’s geometry.

The primary objective of the design optimization process is
to maximize the lift-over-drag coefficient ratio, which serves
as the key performance metric. To achieve this, we place sig-
nificant emphasis on evaluating the relative errors in both the
drag and lift coefficients, as well as assessing the Spearman
correlation between predicted and actual values. Rather than
directly predicting the drag and lift values, our approach
focuses on inferring various fluid fields associated with the
airfoil’s geometry. This includes calculating the velocities
(vx, vy), pressure p, and turbulent kinematic viscosity νt
on the mesh nodes, following the experimental protocol
proposed in (Bonnet et al., 2022). Therefore the inputs of
our surrogate model are (Vx, Vy, d|Xi , nx|Si , ny|Si)

ntr
i=1, and

the outputs are (vx|Xi , vy|Xi , p|Xi , νt|Xi)
ntr
i=1. The output

physical fields provide valuable insights into the underlying
behavior of the fluid and its interaction with the airfoil’s
geometry. The drag and lift coefficients are calculated based
on the predictions of the trained model while respecting the
form of the RANS equations. This approach enables us to
obtain a comprehensive understanding of the underlying
fluid behavior and its relationship with the airfoil’s geome-
try, thereby ultimately enhancing the accuracy of drag and
lift estimation.

2.2. Model

We present INFINITY: Implicit Neural Fields for INterpret-
Ing geomeTry and inferring phYsics.

Modulated INR In our model, we will treat each geo-
metric input (d or n) or physical output function (v, p, or
ν) separately and each will be modeled by an INR. Let us
then consider a generic function u, which will represent
either an input geometric field or an output physical field
defined over a domain Ω or at its boundary ∂Ω. Let us
denote ui the function corresponding to a specific airfoil
example. ui will be represented by an INR fθu,ϕui

with
two sets of parameters: parameters θu shared by all the ui,
and modulation parameters ϕui

specific to each individual
function ui. In our airfoil example, ϕui

enables the INR to
handle different geometries. Overall, this decomposition
allows the modulated INR to capture both shared charac-
teristics among the example’s functions ui and the unique
properties of each one. INFINITY leverages latent repre-
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Figure 1. The inference of INFINITY proceeds in three steps. 1. We encode the distance function d and the normal components nx, ny

into the latent representations zd and zn. 2. We process these codes along with the inlet velocities Vx, Vy to obtain the predicted output
codes ẑvx , ẑvy , ẑp, ẑνt corresponding respectively to velocity, pressure and viscosity. 3. The processed codes are decoded with the
modulated INRs, which can be queried directly at any mesh position x ∈ X .

sentations inferred from the modulation spaces of the INRs.
These latent representations, denoted as zui

, are compact
codes that encode information from the INRs’ parameters.
They serve as inputs to a hypernetwork hu, with weightswu,
which computes the modulation parameters ϕui

= hu(zui
).

In this work we use Fourier Features (Tancik et al., 2020) as
an INR backbone and apply shift modulation (Perez et al.,
2018): fθ,ϕui

(x) = WL

(
χL−1 ◦χL−2 ◦ · · · ◦χ0(x)

)
+bL,

with χj(ηj) = σ
(
Wjηj + bj + (ϕui)j

)
. We note η0 = x

and (ηj)j≥1 the hidden activations throughout the network.
Hence, the parameters θ = (Wj , bj)

L
j=0 are shared be-

tween all examples and the modulation ϕui
= ((ϕui)j)

L−1
j=0

is specific to a single example. We compute the modula-
tion parameters ϕui

= ((ϕui)j)
L−1
j=0 from z with a linear

hypernetwork.

With the learned shared parameters (θu, wu), the modulated
INR enables two processes: decoding and encoding (see
Figure 1). Decoding refers to mapping a given code zui

to the corresponding INR function fθu,ϕui
, where ϕui =

hu(zui
), while encoding involves generating a code zui

given a function ui, providing a compact representation of
the function within the modulation space of the INR.

To obtain the compact code zui
for reconstructing the orig-

inal field ui using the INR, an inverse problem is solved
through a procedure called auto-decoding. The objective is
to compress the necessary information into zui

such that the
reconstructed value ũi(x) = fθu,ϕui

(x) approximates the
original value ui(x) for all x ∈ Xi. The approximate solu-
tion to this inverse problem is computed iteratively through

a gradient descent optimization process:

z(0)ui
= 0,

z(k+1)
ui

= z(k)ui
− α∇

z
(k)
ui

Lµi
(f
θu,ϕ

(k)
ui

, ui),

with ϕ(k)ui
= hu(z

(k)
ui

) for 0 ≤ k ≤ K − 1.

(1)

where α is the inner loop learning rate, K the number of
inner steps, and Lµi

(ui, ũi) = Ex∼µi
[(ui(x) − ũi(x))2]

where µi is a measure defined through the observation grid
Xi µi(·) =

∑
x∈Xi

δx(·), with δx(·) the Dirac measure.

As indicated before, we treat each input and output function
independently: there are two input functions denoted as
(d, n) and four output functions denoted as (vx, vy, p, νt).
Each ui ∈ {d, n, vx, vy, p, νt} is represented by a modu-
lated INR fθu,ϕui

, where ui stands for a field specific to an
airfoil example. INFINITY then learns a mapping between
the latent representations of the geometric input fields and
the latent representations of the physics output fields.

Inference As illustrated in Figure 1, INFINITY follows a
three-step procedure: encode, process, and decode.

• Encode: Given the geometric input functions di, ni
and the corresponding INR learned parameters, respec-
tively θd, wd and θn, wn, functions di, ni are encoded
into the latent codes zdi , zni according to Equation (1).
Since we can query the INRs anywhere within the do-
main, we can hence freely encode functions without
mesh constraints. This lets us freely encode inputs with
different geometries.

• Process: Once we obtain zdi and zni , we can in-
fer the latent output codes

(
ẑvxi

, ẑvyi
, ẑpi , ẑνti

)
=

gψ

((
zdi , zni

, Vxi, Vyi
))

. We consider here that gψ
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is implemented through an MLP with parameters ψ.

• Decode: We decode each processed output code(
ẑvxi

, ẑvyi
, ẑpi , ẑνti

)
with their associated hypernet-

work and modulated INR. We make use of the INRs
to freely query a physical field at any point within its
spatial domain. These components generate the final
output functions by mapping the latent codes back to
the output space.

2.3. Training

We implement a two-step training procedure that first learns
the modulated INR parameters θu and ϕui

for all input and
output functions, before training the map gψ. During the
training of the INRs we force the auto-decoding process to
take only a few gradient steps to encode the geometric func-
tions or physical fields. This enhances the INR capability to
encode new geometrical inputs in a few steps at test time,
and also reduces the space size of the target output codes.
This regularization prevents the different INRs to memo-
rize the training sets into the individual codes. In order to
obtain a network that is capable of quickly encoding new
geometrical and physical inputs, we employ a second-order
meta-learning training algorithm based on CAVIA (Zintgraf
et al., 2019). Compared to a first-order scheme such as
Reptile (Nichol et al., 2018), the outer loop back-propagates
the gradient through the K inner steps, consuming more
memory. Indeed, we need to compute gradients of gradients
but this yields higher reconstruction results with the modu-
lated INR. We experimentally found that using 3 inner-steps
for training, or testing, was sufficient to obtain very low
reconstruction errors for the geometric or physical fields.
Using more inner-steps would result in a higher computation
cost with only a marginal gain in reconstruction capacity.
We outline the training pipeline of a modulated INR in Al-
gorithm 1. Once the different INRs have been fitted, we
encode the functions into the input codes zdi , zni

and target
codes zvxi

, zvyi
, zpi , zνti . The training of gψ is performed

in the small dimensional z-code space, and is supervised
through the MSE loss with the target codes.

3. Experiments
Baselines We use the same baselines as Bonnet et al.
(2022); GraphSAGE (Hamilton et al., 2017), a PointNet
(Qi et al., 2017), a Graph U-Net (Gao and Ji, 2019) and a
MLP. Those baselines have been initially chosen as they
process in different ways the inputs. The results are given
for the setup “full data regime” of AirfRANS, using 800
samples for training and 200 for testing.

Results In Table 1, the INFINITY model demonstrates
superior inference capabilities on the volume and surface

Algorithm 1 Modulated INR training
1: while convergence is false do
2: Sample a batch B of data (ui)i∈B
3: Set codes to zero: zui

← 0 for i in B
4: Perform input encoding inner loop:
5: for i in B and step in {1, ...,Ku} do
6: ϕui

= hu(zui
)

7: zui
← zui

− αa∇zui
LXi

(fθu,ϕui
, ui)

8: end for
9: for i in B: do

10: ϕui = hu(zui)
11: end for
12: Perform outer loop update:
13: θu ← θu − η 1

|B|
∑
i∈B∇θuLXi

(fθu,ϕui
, ui)

14: wu ← wu − η 1
|B|

∑
i∈B∇wu

LXi
(fθu,ϕui

, ui)

15: end while

compared to the baselines. Indeed, It achieves significantly
lower error values on the volume velocity and pressure
fields, while exhibiting an order-of-magnitude lower MSE
on the surface pressure. This substantial gain in prediction
power translates to order of magnitude lower relative errors
on the drag and lift forces, accompanied by high positive
Spearman correlations. These results indicate a strong align-
ment between INFINITY’s predictions and the true drag
and lift forces. Consequently, INFINITY emerges as the
only model capable of predicting accurately physical fields
on the volume and surface while maintaining coherent and
accurate drag and lift estimations. On the downside, the
INFINITY model has a longer inference time compared to
GraphSAGE and PointNet. However, this increased infer-
ence time is still within an acceptable range, considering
its superior performance and that a numerical solver needs
approximately 20 minutes to complete a simulation. Fur-
thermore, it is counterbalanced by the ability to query the
full mesh directly, in stark contrast to graph-based methods
that necessitate sub-sampling to process the inputs.

4. Conclusion
We introduce INFINITY, a model that utilizes coordinate-
based networks to encode geometric information and phys-
ical fields into compact representations. INFINITY estab-
lishes a mapping between geometry and physical fields
within a reduced representation space. We validated our
model on AirfRANS, a challenging dataset for the Reynolds-
Averaged Navier-Stokes equation, where it significantly out-
performs previous baselines across all relevant performance
metrics. At post-processing stage, the predicted fields yield
accurate lift and drag forces. This validates INFINITY’s
potential as a surrogate design model, where it could be
plugged in any design optimization or exploration loop.
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INFINITY GraphSAGE MLP Graph U-Net PointNet

Volume

vx 0.06 ± 0.01 0.83 ± 0.01 0.95 ± 0.06 1.52 ± 0.34 3.50 ± 1.04
vy 0.06 ± 0.01 0.99 ± 0.05 0.98 ± 0.17 2.03 ± 0.39 3.64 ± 1.26
p 0.25 ± 0.01 0.66 ± 0.05 0.74 ± 0.13 0.66 ± 0.08 1.15 ± 0.23
νt 1.32 ± 0.08 1.60 ± 0.21 1.90 ± 0.10 1.46 ± 0.14 2.92 ± 0.48

Surface p|S 0.07 ± 0.01 0.66 ± 0.10 1.13 ± 0.14 0.39 ± 0.07 0.93 ± 0.26

Relative error CD 0.366 ± 0.023 4.050 ± 0.704 4.289 ± 0.679 10.385 ± 1.895 14.637 ± 3.668
CL 0.081 ± 0.007 0.517 ± 0.162 0.767 ± 0.108 0.489 ± 0.105 0.742 ± 0.186

Spearman correlation ρD 0.578 ± 0.050 -0.303 ± 0.124 -0.117 ± 0.256 -0.138 ± 0.258 -0.022 ± 0.097
ρL 0.997 ± 0.001 0.965 ± 0.011 0.913 ± 0.018 0.967 ± 0.019 0.938 ± 0.023

Inference time (µs) 98 ± 70 20.9 ± 2.3 13.3 ± 0.2 357.8 ± 36.9 33.9 ± 3.5

Table 1. Test results on AirfRANS. Mean squared error (MSE) on normalized fields expressed with factor (×10−2) for the volume and
(×10−1) for the surface. Relative errors CD, CL on the drag and lift and Spearman correlations ρD, ρL on the drag and lift. The results
from the baselines are taken from Bonnet et al. (2022).

Broader impact
This work could serve multiple purposes, including:

• Enhancing surrogate solvers for Computational Fluid
Dynamics (CFD) engineers, facilitating efficient design
iterations.

• Cost and risk reduction in prototyping new plane de-
signs, mitigating real-world study expenses.
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