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Abstract

The recent advancements in large language001
models (LLMs) have been extraordinary, yet002
the escalating inference costs associated with003
them present challenges in real-world applica-004
tions. To address these challenges, we propose005
a novel approach called Early-exiting Specu-006
lative Decoding (EESD) with lossless acceler-007
ation. Specifically, EESD utilizes a segment008
of the LLM to generate draft tokens, incorpo-009
rating Early-exiting structures after the first N010
layers. To enhance the quality of draft tokens,011
a self-distillation method is integrated. This012
early-exiting design not only reduces deploy-013
ment and training costs but also significantly ac-014
celerates the token generation speed. Moreover,015
we introduce a novel sampling mechanism that016
leverages Thompson Sampling to regulate the017
generation processes, automatically determin-018
ing the quantity of draft tokens in each round.019
The original LLM is then employed to validate020
these draft tokens through a single forward pass,021
and thus guarantees that the final output text022
maintains a distribution consistent with vanilla023
auto-regressive decoding. The experimental re-024
sults on both 13B and 70B models demonstrate025
that our approach decodes tokens at a markedly026
accelerated rate compared to prior methods,027
showing the effectiveness of our approach.028

1 Introduction029

Large Language Models (LLMs) excel in vari-030

ous NLP tasks due to their immense parameters031

and complex network (OpenAI, 2023; Chowdh-032

ery et al., 2023; Touvron et al., 2023a,b). How-033

ever, these models generate tokens one-by-one in034

an auto-regressive manner during inference, mak-035

ing the generation exceedingly resource-intensive036

and time-consuming. To overcome this bottleneck,037

researchers have introduced an effective decoding038

technique - Speculative Decoding (SD) (Leviathan039

et al., 2023; Chen et al., 2023; Miao et al., 2023).040

SD essentially introduces two models, a small041
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Figure 1: Experimental results using LLaMA-2-70B on
the Gsm8k. (a) Speedup comparison with Medusa (Cai
et al., 2023) and Self-SD (Zhang et al., 2023b). EESD
achieves the highest speedup with the best tradeoff be-
tween token generation speed and acceptance rate. (b)
Generation costs (seconds) with different drafting steps
(K) in randomly select five samples from Gsm8k. The
optimal value of K varies across different samples, indi-
cating that a fixed K value for all samples is not ideal.

model (the draft model) which is used to concur- 042

rently generate multiple draft tokens, and the orig- 043

inal LLM (the target model) which is employed 044

for draft token verification. In this way, SD main- 045

tains the same performance as the auto-regressive 046

decoding while boosting the inference speed. 047

Compared to vanilla Speculative Decod- 048

ing (Leviathan et al., 2023; Chen et al., 2023), 049

several advanced models such as Medusa (Cai 050

et al., 2023) and Self-SD (Zhang et al., 2023b) have 051

been introduced, which only require deploying 052

one LLM instead of two models, resulting in 053

fewer resources required for both training and 054

deployment. While these approaches achieve 055

promising results, there are two main limitations. 056

First, they fail to optimize the trade-off between 057

the quality and speed of the draft token generation. 058

For example, as shown in Figure 1a, while Medusa 059

can generate draft tokens rapidly, the quality1 of 060

1We use the acceptance rate to represent the quality of the
draft tokens, which is percent of draft tokens are accepted by
the target model during the verification.
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these tokens tends to be subpar. On the other061

hand, Self-SD manages to produce high quality062

draft tokens but does so at a much slower speed,063

resulting in lower overall speedup. Second, most064

SD approaches commence verification after065

generating a pre-defined length of draft tokens066

(referred to as drafting steps K). The choice of067

K significantly influences the acceleration of the068

inference process. Typically, larger drafting steps069

result in faster end-to-end generation, but there is070

a potential trade-off as the acceptance rate may071

decrease if the quality of the longer draft sequence072

is not high. As illustrated in Figure 1b, the optimal073

value of K varies across different examples. This074

variation suggests that utilizing a fixed K may075

not yield the most effective strategy. Instead, an076

adaptive method is preferable to determine when077

to terminate the drafting process.078

To address these challenges, in this paper, we079

propose a novel Early-Exiting Speculative Decod-080

ing method, named EESD, to facilitate efficient and081

qualitative generation of draft tokens. Specifically,082

EESD introduce an Early-exiting layer that is su-083

perimposed on the first-N layers of the LLM, which084

has shown powerful predictive potential in previous085

research (Bae et al., 2023; Schuster et al., 2022).086

A self-distillation method is further employed to087

enhance the learning of the Early-exiting layer. To088

identify the optimal drafting steps, we reformulate089

the task of determining the length of draft token090

generation as a multi-armed bandit (MAB) prob-091

lem, and propose a novel Control Mechanism based092

on Thompson Sampling (TS) that is well-studied093

for estimating unknown parameters and facilitating094

optimal decision making. Comprehensive evalua-095

tions on both 13B and 70B models demonstrate the096

superior performances of our approach over several097

baselines. The main contributions of this paper are098

summarized as follows:099

• We introduce a novel Early-exiting framework100

for generating draft tokens, which allows a101

single LLM to fulfill the drafting and verifica-102

tion stages. We train it using self-distillation.103

Our investigations indicate that this frame-104

work strikes an excellent balance between the105

quality and speed of draft token generation.106

• We conceptualize the generation length of107

draft tokens as a MAB problem and propose108

a novel control mechanism based on Thomp-109

son Sampling, which leverages sampling to110

devises an optimal strategy.111

• We conducted extensive experiments on three 112

benchmarks. The results affirm that EESD can 113

significantly improve the model’s inference 114

speed, outperforming existing SD methods. 115

2 Related Work 116

LLM Compression The central objective of 117

model compression is to alleviate computational 118

demands and enhance inference speed. The re- 119

search on LLM compression mainly includes three 120

directions, including knowledge distillation (Zhang 121

et al., 2023a; Li et al., 2023; Gu et al., 2023), net- 122

work pruning (Ma et al., 2023; Xia et al., 2023; 123

Frantar and Alistarh, 2023) and quantization (Xiao 124

et al., 2023; Liu et al., 2023; Frantar et al., 2022; 125

Lin et al., 2023). The methods mentioned above 126

work by reducing the model’s footprint, thereby de- 127

creasing memory demand and enhancing the speed 128

of inference. However, these methods sacrifices a 129

degree of LLM’s capability. 130

Efficient Decoding Leviathan et al. (2023); Chen 131

et al. (2023) propose a method that uses a small 132

model to generate draft tokens and then uses LLM 133

for verification, which accelerates the decoding pro- 134

cess while guaranteeing lossless outputs, named as 135

Speculative Decoding. However, some researchers 136

suggest that the extra small model is not essential 137

for SD. For instance, Medusa (Cai et al., 2023) gen- 138

erates draft tokens by leveraging additional param- 139

eters instead of small model, while Self-SD (Zhang 140

et al., 2023b) uses the substructure of LLM to gen- 141

erate draft tokens. In addition, He et al. (2023) 142

unveil a method that replaces the generation of 143

draft tokens with a large text database. In the other 144

hand, some researchers introduce an Early-exiting 145

method. This method dynamically modifies the 146

depth of the decoder for each token generation, 147

making predictions at an intermediate layer (Teer- 148

apittayanon et al., 2016; Elbayad et al., 2020). Fur- 149

thermore, Bae et al. (2023) propose a new Early- 150

exiting method that incorporates a shallow-deep 151

module and synchronized parallel decoding. 152

3 Methodology 153

The overall model architecture of EESD is illus- 154

trated in Figure 2. Essentially, our model is com- 155

posed of three key components. 1) the Early- 156

exiting layer that built on top of the first few layers 157

of the LLM as a draft model; 2) the self-distillation 158

method to enhance the learning of the draft model 159
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Figure 2: The framework of EESD which consists of three components: (1) Early-exiting layer which generate draft
tokens efficiently and effectively; (2) Self-distillation which distills knowledge from the LLM (the target model); (3)
TS control mechanism which can predict the optimal timing of terminating the draft token generation in each round.
We divide the LLM (the target model) into two parts: the first-N layers and the last-M layers.

and boost the text generation quality; and 3) the160

Thompson Sampling control mechanism that adap-161

tively determines the length of the draft tokens162

conditioned on its quality. We present the details163

of these components in the following sections.164

3.1 Early-exiting Layer165

Most previous methods (Bae et al., 2023; Kave-166

hzadeh et al., 2023) use non-continuous sub-167

network of original LLM (target model) as their168

draft model. In this work, we utilize the continuous169

first-N layers approach, which yields one signifi-170

cant advantage: the kv-cache of the draft model171

and the target model can share the first-N layers,172

thereby trimming redundant computation. Concre-173

ately, we formulated an Early-exiting Layer with174

the computation process as elucidated below,175

p(yt) = softmax(WTTransformere(HN
t )), (1)176

where HN
t represents the hidden state of the N-th177

layer, which is calculated from the first-N layers178

of the origin LLM. And t represents t-th token.179

p(yt) is obtained from HN
t through one layer of180

transformer. For LLaMA model, we also add RM-181

SNorm layer before the output prediction head,182

which is RMSNorm(Transformere(HN
t )).183

As mentioned above, we incorporate an learn-184

able Transformer layer subsequent to the first-N185

layers, and train this layer and W in Eq.(1) (RM-186

SNorm parameters are trained as well for LLaMA187

model). In order to speed up the model conver-188

gence, we initialize the Transformere and W189

with the last layer and predict head of the original190

LLM respectively. Since the training is confined to191

only a single Transformer layer and W , with the 192

first-N layers being frozen, this approach dramati- 193

cally reduce the computational resources. 194

3.2 Self-Distillation 195

To further enhance the effectiveness of the draft 196

model, we employ self-distillation to learn the 197

knowledge from the LLM. The key idea is that 198

there is a large amount of valuable data used dur- 199

ing the training of the LLM. However, it is usually 200

impossible to obtain these original data as most of 201

them are not directly accessible. Therefore, we pro- 202

pose to bridge the gap with self-distillation, which 203

guides the learning of the early-exiting layer by 204

transfering the knowledge from the generated text 205

of the LLM. Specifically, Liu et al. (2023) suggest 206

that a hybrid generation strategy of greedy and sam- 207

pling is effective, and we adopt this approach for 208

text generation from LLM. It is worth noting that 209

the text generated by the LLM may contain certain 210

lower-quality samples. We thus retain a subset of 211

the open-source data for training purposes. The 212

parameters of the Early-exiting Layer are trained 213

utilizing an amalgamation of data generated by 214

the LLM and open-source datasets, with the cross- 215

entropy loss between the prediction of it and the 216

ground truth of mixed datasets. 217

3.3 Thompson Sampling Control Mechanism 218

The above methods can effectively improve the 219

quality and speed of draft token generation. How- 220

ever, as we mentioned in the introduction, a pre- 221

determined drafting step is not a good strategy. 222

Consequently, we view the controlling draft model 223
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generation as a MAB problem. Specifically, we224

view it as a Bernoulli process, where the model in-225

dependently determines whether to continue draft226

token generating, denoted as PB(θ). And the prob-227

ability θ is uncertain, related to the input sample.228

The Thompson Sampling (TS) method can better229

estimate unknown variables through balancing ex-230

ploration and exploitation (Slivkins, 2019). As231

illustrated in Algorithm 1, we utilize TS algorithm232

to adaptively estimate θ. The crux of the TS al-233

gorithm involves modeling uncertain parameters234

θ as a posterior distribution using Bayesian the-235

ory, i.e. P (θ|D), with D representing observed236

environmental samples. The core of this algorithm237

lies in designing a reasonable posterior distribution,238

which we will detail in the following chapters.239

TS with Beta Distribution Considering that the240

sample adheres to the Bernoulli distribution, we241

adopt the conjugate distribution approach and se-242

lect the Beta distribution as posterior distribution.243

This setup means the prior and posterior distribu-244

tions share the same distribution function but with245

different parameters, which greatly simplifies the246

computational process. The probability density247

function of the Beta distribution is as follows:248

Beta(θ;α, β) =
1

B(α, β)
θα−1(1− θ)β−1, (2)249

where B(α, β) is a standardization function. The250

Beta distribution has two parameters, α and β, so251

Φ = {α, β} and Φ0 = {α0, β0} in Algorithm 1.252

According to Bayesian inference, we can update253

parameters α and β according to the following254

formula, which is the 18-th step in Algorithm 1,255

αt = α{t−|Qv|} + r, (3)256

257
βt = β{t−|Qv|} + (n− r), (4)258

where r represents the number of successful exper-259

iments in the observed samples, and n represents260

the total number of experiments. And in Algorithm261

1, the value of r is set to |Qv| − 1, indicating that262

the draft model should continue to generate on this263

set of tokens (i.e., χ = 1). And the value of n is264

set to min(|Qv|+ 1, |Qd|), indicating the number265

of tokens that have been validated by the target266

model. Because we stop verifying when we en-267

counter an inconsistent token, subsequent tokens268

are not considered.269

TS with Calibration In the prior segment, we270

introduce a TS algorithm with Beta distribution to271

Algorithm 1 TS Control Algorithm
Require: Target Model Mt; Draft Model Md; Max Gen-

eration Length L; Hyperparameters Φ0; Input Prompt
{x0, ..., xn}.

1: Initialize prior probability P (θ|Φ0) according to user-set
hyperparameters Φ0.

2: Initialize the result set Qg ← {x0, ..., xn} and t← 0.
3: while t < L do
4: Initialize the draft model result set and i,

Qd ← Null, i← 0.
5: while t + i < L do
6: Get now token xi ←Md(Qg

⋃
Qd).

7: Add token xi to set Qd.
8: Sample θt+i from P (θ|Φt;D).
9: Sample χ ∈ {0, 1} from Bernoulli distribution

PB(θt+i).
10: i← i+ 1.
11: if χ = 0 then
12: Break
13: end if
14: end while
15: Verify the results Qd by Target Model Mt and get Qv

received by Mt, Qv ⊆ Qd.
16: Add the set Qv to Qg ,

Qg ← Qg

⋃
Qv .

17: Update t according to length of Qv ,
t← t+ |Qv|.

18: Update the parameters Φt of the posterior distribution.
19: end while
20: return Qg

improve the estimation of θ. However, according 272

to MAB theory, initial phases are more exploration- 273

focused, which may result in less accurate θ esti- 274

mations (Ou et al., 2019; Peng et al., 2019). To alle- 275

viate this issue, we propose a novel hybrid method 276

that combines Model Prediction and Sampling Pre- 277

diction. We rely more on model prediction to miti- 278

gate inaccuracies from initial exploration. As the 279

sampling prediction begins to converge later, we 280

calibrate the model prediction with sampling pre- 281

diction to achieve a more precise θ. 282

We train a single-layer to predict the value of θ. 283

The computation formula for this is as follows, 284

θt+i
M = Sigmoid(Wp(W

iH
(T )
t , H

(D)
t+i )), (5) 285

where t is the number of tokens that have already 286

been generated, and i is the number of new tokens 287

generated by the draft model in the current loop. 288

H
(T )
t represents the hidden state of the LLM (tar- 289

get model) at position t in the last layer, while the 290

corresponding H
(D)
t+i represents the hidden state of 291

the draft model at position t + i in the last layer. 292

W i is the transformation matrix at the i-th posi- 293

tion for target model, and considering that i might 294

be very large, we have restricted the number of 295

W i ∈ Rd×d, i.e. i = min(i, 10). We sample a 296

portion of training dataset to train the parameters 297
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{W 1,W 2, ...,W 10} and Wp ∈ R2×2d. The labels298

for this data are acquired by comparing the tokens299

produced by both the target and draft models, signi-300

fying the true value of χ. Following this, we update301

the parameters using cross-entropy loss.302

According to the central limit theorem, when the303

sample size is sufficiently large, the sample mean304

adheres to a Gaussian distribution. Therefore, we305

make an assumption that sample mean χ̃ of χ in306

one drafting round follows a Gaussian distribution,307

i.e. χ̃ ∼ N (µ, σ2
S). As supported by Bayesian the-308

ory, when the random variable follows a Gaussian309

distribution with a known variance but an unknown310

mean and the prior distribution is also a Gaussian311

distribution, it satisfies the conjugate distribution.312

Consequently, we define µ to follow a Gaussian313

distribution with the model’s predict score as mean314

and predict error as variance, µ ∼ N (θM , σ2
M ). In315

Algorithm 1, we set Φ0 = {σM , σS , θ̂0}, where316

σM , σS and θ̂0 are hyperparameters set by the user.317

In Step 8 of Algorithm 1, we sample θ value from318

Gaussian distribution, θt+i ∼ N (µt+i, σ
2
t+i), and319

compute the values of µ and σ using the formula320

provided,321

µt+i =
σ2
S

nσ2
M + σ2

S

θt+i
M +

nσ2
M

nσ2
M + σ2

S

θ̂t, (6)322

323
1

σ2
t+1

=
1

σ2
M

+
n

σ2
S

, (7)324

Where n is verification times. We update parameter325

Φ based on the following formula in step 18,326

θ̂t =
θ̂{t−|Qv|} ∗ (t− |Qv|+ 1) + |Qv|

t+ 1
, (8)327

For a more detail, please refer to Appendix B.328

4 Experiment329

4.1 Setup330

Training stage We randomly extract 100,000331

samples from the SlimPajama (Soboleva et al.,332

2023) to train LLaMA-2-70B, LLaMA-2-13B333

and CodeLLaMA-2-13B. And use the ShareGPT2334

dataset to train LLaMA-2-70B-chat and Vicuna-335

13B (Zheng et al., 2023). We choose the first-5336

layers as the draft model for 70B models and first-337

3 for 13B models. For fair comparison, we train338

our model and Medusa (Cai et al., 2023) using the339

same data and set Medusa head at 4. More training340

details can be found in Appendix C341

2https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna
_unfiltered

Evaluation stage We conduct experiments 342

on three benchmarks under 1-shot setting: 343

Gsm8k (Cobbe et al., 2021), XSum (Narayan et al., 344

2018) and Humaneval (Chen et al., 2021). We ran- 345

domly select 500 instances from the test set for 346

evaluation. And we set final output length at 512 347

and batch size at 1. We set the drafting step K 348

at 10 for Vanilla SD (Chen et al., 2023) and Self 349

SD (Zhang et al., 2023b). The reported results are 350

the average of 10 different runs. We have only con- 351

ducted on greedy generation3, as the findings from 352

the top-p sampling exhibit similar trends. 353

Metrics We propose a Harmonic Mean (HM) to 354

assess the quality of the draft tokens and strategy 355

for generating them, while the specific calculation 356

formula is as S = 2∗vd∗rd
vd+rd

∗ 100%, where vd indi- 357

cates the percent of draft tokens that are accepted by 358

the target model, and rd represents the proportion 359

of tokens that come from the draft model. More 360

detailed explanation in Appendix D. Due to the ver- 361

ification process, all baseline and EESD methods 362

can assure that the generation results are identi- 363

cal to the original LLM, hence we only need to 364

compare their speedup. 365

All experiments are conducted on NVIDIA 366

A100-80GB GPUs. 367

4.2 Main Results 368

We report evaluation results for Gsm8k and XSum 369

in Table 1, and for Humaneval in Table 2. As shown 370

in Table 1 and 2, it is clear that EESD significantly 371

outperforms the previous methods on both 13B and 372

70B models, especially on LLaMA-2-70B, which 373

demonstrates the effectiveness of our approach. 374

There are several key observations from these re- 375

sults. First, we observe that EESD can yield 2.45× 376

times speedup on CodeLLaMA-2-13B for coding 377

task, suggesting our method exhibits particular ef- 378

fectiveness within this domain. Second, compared 379

to Vanilla SD and Medusa, EESD shows superior 380

results with fewer training and deployment parame- 381

ters. For instance, EESD achieves up to 2.13× and 382

1.80× times faster speeds on llama-2-70b model 383

with just 1.12B parameters being trained. While 384

we introduce an additional training process as com- 385

pared to Self-SD, we manage to significantly im- 386

prove speed effectiveness, utilizing minimal train- 387

ing resources. Third, we discover that a stronger 388

3For all experiments, we only generate one top-1 draft
token candidate in Step 6 of Algorithm 1, and retain the result
consistent with the target model’s top-1 token on verifying at
Step 15 of Algorithm 1.
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Model Method Trainable Deployment Gsm8k XSum
Params Params HM Speedup HM Speedup

LLaMA-2-70B

Vanilla SD 7B† 77B 80.35 1.88× 67.30 1.46×
Self SD - 70B 78.64 1.37× 68.60 1.23×
Medusa 1.32B 71.3B 33.75 1.73× 25.69 1.42×
EESD (+Beta-TS) 1.12B 71.1B 58.79 2.13× 51.91 1.80×
EESD (+Cali-TS) 1.12B+0.67B‡ 71.8B 62.25 2.29× 53.41 1.86×

LLaMA-2-70B-chat

Vanilla SD 7B† 77B 63.90 1.44× 62.75 1.39×
Self SD - 70B 67.99 1.13× 68.38 1.16×
Medusa 1.32B 71.3B 22.86 1.42× 17.02 1.20×
EESD (+Beta-TS) 1.12B 71.1B 47.76 1.79× 40.73 1.51×
EESD (+Cali-TS) 1.12B+0.67B‡ 71.8B 48.23 1.82× 41.85 1.55×

LLaMA-2-13B

Vanilla SD 7B† 20B 84.59 0.96× 75.63 0.77×
Self SD - 13B 80.53 1.37× 77.61 1.35×
Medusa 760M 13.8B 31.71 1.77× 25.03 1.53×
EESD (+Beta-TS) 481M 13.5B 57.22 1.91× 55.46 1.84×
EESD (+Cali-TS) 481M+262M‡ 13.7B 58.97 2.04× 56.45 1.92×

Vicuna-13B

Vanilla SD 7B† 20B 64.22 0.69× 53.77 0.55×
Self SD - 13B 68.07 1.24× 60.38 1.12×
Medusa 760B 13.8B 26.08 1.53× 15.55 1.21×
EESD (+Beta-TS) 481M 13.5B 43.01 1.57× 32.23 1.25×
EESD (+Cali-TS) 481M+262M‡ 13.7B 43.53 1.59× 32.50 1.27×

Table 1: Evaluation on Gsm8k and XSum with different methods. Speedup signifies the acceleration effect in
comparison with the auto-regression method. † For all Vanilla SD, we use the Homologous 7B model as the draft
model, and we think that this 7B model needs to be trained. ‡ Model prediction requires the training of additional
parameters. Results are statistically significant with respect to all baselines (all p-value < 0.005).

Model Method Trainable Humaneval
Params HM Speedup

LLaMA-2-13B

Vanilla SD 7B 87.32 0.97×
Self SD - 79.93 1.36×
Medusa 760M 26.67 1.61×
EESD (+Beta-TS) 481M 61.43 2.08×
EESD (+Cali-TS) 481M+262M 62.87 2.15×

CodeLLaMA-2-13B

Vanilla SD 7B 91.12 1.09×
Self SD - 83.51 1.38×
Medusa 761M 49.14 1.97×
EESD (+Beta-TS) 481M 68.94 2.21×
EESD (+Cali-TS) 481M+262M 70.15 2.45×

Table 2: Evaluation on Humaneval with different specu-
lative decoding methods. Results are statistically signif-
icant with respect to all baselines (all p-value < 0.005).

capability of the draft model, indicated by a higher389

HM value, does not necessarily result in higher390

speedup. It is essential to consider the generation391

speed of draft tokens, and our approach can strike392

an optimal balance between the two to achieve393

higher speedup (detailed in Appendix D).394

5 Analysis and Discussion395

5.1 Ablation Study396

To elucidate the impact of different components397

within our approach, we conduct a series of abla-398

tion studies. In Table 3, we exhibit experimental399

results, and several significant insights can be in-400

ferred. First, we notice a substantial decrement in401

the model’s performance when we replace the TS402

Method Gsm8k (HM) XSum (HM)

Vanilla SD 0.96× 0.77×

EESD (Beta-TS) 1.91× (57.22) 1.84× (55.46)
w/o Early-exiting Layer 1.18× (23.69) 1.15× (23.10)
w/o Self-Distillation 1.82× (54.12) 1.73× (51.84)

EESD (Cali-TS) 2.04× (58.97) 1.92× (56.45)
w/o Sampling-Prediction 1.82× (54.03) 1.78× (53.49)
w/o Model-Prediction 1.88× (57.10) 1.82× (55.38)

EESD w/o TS† 1.66× (44.76) 1.58× (41.77)

Table 3: Ablation studies of different components based
on LLaMA-2-13B. We exhibit the Speedup on Gsm8k
and XSum, and also release the HM value in parentheses.
† We set the drafting step K at 10. Other models yield
similar patterns to LLaMA-2-13B.

control with a fixed K value, which signifies the 403

effectiveness of our proposed method for manag- 404

ing the generation of draft tokens. Second, similar 405

to the prior approach, we introduce a trainable lm 406

head just after the first-N layers, dispensing with 407

the Early-exiting Layer. However, such a modifi- 408

cation result in a significant decline in the model’s 409

performance, strongly indicating the fundamental 410

role of the Early-exiting Layer in maintaining the 411

quality of draft tokens. Third, a noteworthy obser- 412

vation is that our approach attains commendable 413

results solely with only open-source data, espe- 414

cially on XSum. Furthermore, the performance can 415

6



1.00x

1.20x

1.40x

1.60x

1.80x

2.00x

Gsm8k XSum
K=3 K=5 K=10
K=15 K=20 Beta-TS

(a) LLaMA-2-13B

1.00x

1.20x

1.40x

1.60x

1.80x

2.00x

2.20x

2.40x

Gsm8k XSum
K=3 K=5 K=10
K=15 K=20 Beta-TS

(b) LLaMA-2-70B

Figure 3: We evaluate the speedup in generating 512
tokens using the EESD method at varying K values.

Model Method Gsm8k XSum

LLaMA-2-70B

Vanilla SD 1.88× 1.46×
+ Beta-TS 2.02× (+0.14) 1.67× (+0.21)
Self SD 1.37× 1.23×

+ Beta-TS 1.44× (+0.07) 1.25× (+0.04)

LLaMA-2-13B

Vanilla SD 0.96× 0.77×
+ Beta-TS 0.99× (+0.03) 0.85× (+0.08)
Self SD 1.37× 1.35×

+ Beta-TS 1.41× (+0.04) 1.40× (0.05)

Table 4: Speedup of other SD methods with TS control
mechanism.

be improved with the addition of self-distillation,416

demonstrating the utility of data generated by origi-417

nal LLM. Fourth, within the Cali-TS approach, the418

role of sample prediction surpasses that of model419

prediction, and an integration of both can yield420

more optimal results.421

5.2 Can the TS control mechanism predict the422

optimal drafting steps?423

To investigate the ability of the TS control mech-424

anism to automatically determine the quantity of425

draft tokens in each round, we conducted experi-426

ments on the effects of varying drafting steps K. As427

illustrated in Figure 3, the optimal K value differs428

across models and datasets, but the TS with Beta429

distribution consistently slightly exceeds the effect430

of the optimal K value. Moreover, with the boost431

from the model prediction, the TS with calibration432

can achieve a better acceleration effect. The experi-433

ment confirmed that the TS control mechanism can434

adaptively predict the optimal length for generating435

draft tokens in each round.436

5.3 The generality of TS control mechanism437

To verify the generality and effectiveness of the pro-438

posed TS control mechanism, we further apply it439

to other SD models instead of a pre-defined K. The440
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Figure 4: Effect of the different first-N layers. We
valuate EESD (+Beta-TS) across varying N values of
the first-N layers.

results are reported in Table 4. According to the 441

results, we can observe that TS control mechanism 442

could be easily integrated into other SD methods 443

to lift their performances. Note that the results in 444

Table 4 are different from the results of w/o TS in 445

ablation study. In ablation study, we set K at 10, 446

which is not a superior setting, and as shown in 447

Figure 3, K=5 is a better setting for the EESD of 448

LLaMA-2-13B. However, for vanilla SD and self 449

SD, K=10 is a suitable setting. 450

5.4 Effect of the first-N layers 451

Our experiments explore the impact of varying the 452

number of first-N layers. As shown in Figure 4, 453

using more layers improves the quality of the draft 454

tokens, as measured by a higher HM value. How- 455

ever, end-to-end speedup does not correspondingly 456

increase along with draft quality. This suggests that 457

the extra time required to generate draft tokens with 458

more layers offsets some of the end-to-end speedup. 459

The results indicate that layer augmentation only 460

leads to slight improvements in the quality of draft 461

tokens. Therefore, utilizing fewer layers for gener- 462

ating draft tokens proves to be an effective strategy. 463

In addition, for larger models, such as 70B, the 464

value of N needs to be slightly larger. And it is 465

empirically suggested that N should be 5%-10% of 466

the total number of LLM layers. 467
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Figure 5: Effect of varying the number of Early-exiting
layers.

Model Method Seq. Loaded Trainable Num. Batch Time
Params Params of GPU Size per batch

70B
Vanilla SD 4k 7B 7B 8 64 4.1s

Medusa 4k 70.0B 1.32B 8 64 30.0s
EESD 4k 5.6B 1.12B 8 64 2.3s

13B
Vanilla SD 2k 7B 7B 2 64 15.5s

Medusa 2k 13.6B 760M 2 64 9.5s
EESD 2k 1.6B 481M 2 64 1.6s

Table 5: Training efficiency of three methods on A100-
80GB for LLaMA-2-13B and LLaMA-2-70B.

5.5 One Transformer layer is best for468

Early-exiting layer?469

As demonstrated in Table 3, it has been proven470

that adding one Transformer layer after the First-N471

layers significantly improves the draft model’s per-472

formance. To further investigate, we evaluate the473

effect of increasing the number of Transformer lay-474

ers. Figure 5 illustrates that augmenting the number475

of Transformer layers following the First-N layers476

does yield an improvement in draft token quality.477

However, because degree of this improvement is478

relatively small, it results in a reduction in the over-479

all end-to-end speedup. Therefore, the experiment480

indicates that a single Transformer layer is enough481

to ensure the quality of draft tokens, and perfectly482

balance the quality and generation speed of draft483

tokens to achieve the optimal end-to-end speedup.484

5.6 Training Efficiency485

We compare training efficiency of three methods,486

which are tested on NVIDIA A100-80G GPUs.487

We set batch size to 64 and used SlimPajama488

datasets to train these models. As shown in Ta-489

ble 5, EESD only requires loading the parameters490

of First-N layers and Early-exiting layer, while491

Medusa requires loading all parameters of LLM492

and Medusa heads. Notably, during training, al-493

though both Medusa and EESD only update a por-494

tion of parameters, Medusa requires each sample495

to be computed across the whole LLM network.496

In contrast, EESD only needs to compute across497

Model Method Gsm8k XSum

LLaMA-2-70B

EESD (Beta-TS) 2.13× 1.80×
+ Tree Attention 2.31× (+0.18) 1.91× (+0.11)
EESD (Cali-TS) 2.29× 1.86×
+ Tree Attention 2.48× (+0.19) 1.96× (+0.10)

LLaMA-2-13B

EESD (Beta-TS) 1.91× 1.84×
+ Tree Attention 2.04× (+0.13) 1.89× (+0.05)
EESD (Cali-TS) 2.04× 1.92×
+ Tree Attention 2.18× (+0.14) 2.12× (+0.20)

Table 6: Speedup of EESD with implementing tree at-
tention. We generate multiple draft token candidates and
only retain the result consistent with the target model’s
top-1 token on verifying process.

First-N layers. Consequently, compared to Medusa 498

and Vanilla SD, EESD significantly reduces in both 499

training time and memory consumption. 500

5.7 Implement Tree Attention 501

Tree attention has been a prevalent technique in 502

inference acceleration (Miao et al., 2023; Spector 503

and Ré, 2023). This technique functions by struc- 504

turing numerous draft token candidates within a 505

tree framework, allowing the LLM to concurrently 506

verify several potential draft sequences through par- 507

allel decoding. It significantly increases the accep- 508

tance rate, thereby augmenting the overall speed 509

of end-to-end generation. As shown in Table 6, 510

we can easily implement the tree attention mecha- 511

nism to EESD, resulting in significant increases in 512

speed. It can achieve up to 2.48× and 1.96× times 513

speedup on LLaMA-2-70B, as well as up to 2.18× 514

and 2.12× times speedup on LLaMA-2-13B. 515

6 Conclusion 516

In this work, we propose EESD, a novel method 517

designed to lossless accelerate LLM by leverag- 518

ing its first-N layers for generating draft tokens 519

and employing Thompson Sampling to regulate 520

this process. Specifically, we introduce an Early- 521

exiting layer after first-N layers and train it using 522

self-distillation, which strike an optimal balance 523

between efficiency and performance of draft token 524

generation. Furthermore, we devise a novel hybrid 525

method that effectively combines model prediction 526

and sampling prediction, resulting in remarkable 527

generation speed enhancement. After conducting 528

exhaustive experiments, the results demonstrate 529

that EESD not only achieves a significant speedup 530

but also substantially reduces both training time 531

and memory consumption, compared to previous 532

speculative decoding methods. 533
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Limitations534

In this section, we discuss the limitations of our535

work as follows. First, while we have given an em-536

pirical suggestion for the setting of N value in the537

First-N layers, we have not thoroughly studied the538

function of these first layers and how they affect the539

final outputs. We believe that a more detailed inves-540

tigation of this is helpful for choosing the optimal541

N value. As such, we will conduct this research in542

future work. Second, we propose a model for pre-543

dicting whether the draft token is consistent with544

the LLM’s token in Section 3.3. However, this545

model has a large number of parameters, which546

is not very friendly for training and deployment.547

Therefore, we plan to refine the model’s structure548

to improve its efficiency in future work.549
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A Thompson Sampling with Beta788

Distribution789

Given that the samples follow a Bernoulli distribu-790

tion, we can infer using Bayes’ theorem that when791

the prior distribution is Beta, the posterior distribu-792

tion is also Beta. This phenomenon, known as a793

conjugate distribution, means that the prior and pos-794

terior share the same distribution function but with795

different parameters. Using a conjugate distribu-796

tion greatly simplifies the computational derivation,797

leading us to select the Beta distribution as the prior.798

As shown in Algorithm 2, we implement Thomp-799

son Sampling algorithm with Beta distribution to800

iteratively estimate the value of θ. The prior dis-801

tribution of θ is Beta, and as previously described,802

the posterior distribution of θ is also Beta.

Algorithm 2 Thompson Sampling with Beta Dis-
tribution Algorithm
Require: Target Model Mt; Draft Model Md; Max Gener-

ation Length L; Hyperparameters α0,β0; Input Prompt
{x0, ..., xn}.

1: Initialize prior probability Beta(θ;α0, β0).
2: Initialize the result set Qg ← {x0, ..., xn} and t← 0.
3: while t < L do
4: Initialize the draft model result set and i,

Qd ← Null, i← 0.
5: while t + i < L do
6: Get now token xi ←Md(Qg

⋃
Qd).

7: Add token xi to set Qd.
8: Sample θt+i from Beta(θ;αt, βt).
9: Sample χ ∈ {0, 1} from Bernoulli distribution

PB(θt+i).
10: i← i+ 1.
11: if χ = 0 then
12: Break
13: end if
14: end while
15: Verify the results Qd by Target Model Mt and get Qv

received by Mt, Qv ⊆ Qd.
16: Add the set Qv to Qg ,

Qg ← Qg

⋃
Qv .

17: Update t according to length of Qv ,
t← t+ |Qv|.

18: Calculate r ← |Qv| − 1.
19: Calculate n← min(|Qv|+ 1, |Qd|)
20: Update αt, αt ← α{t−|Qv|} + r.
21: Update βt, βt ← β{t−|Qv|} + (n− r).
22: end while
23: return Qg

803

B Thompson Sampling with Calibration804

In the previous section, we unveiled a Thompson805

Sampling algorithm with Beta distribution (Beta-806

TS). This method progressively update the param-807

eters of Beta distribution to enhance the precision808

of the estimated θ. However, based on the Multi-809

Arm Bandit (MAB) theory, the early phase is more810

exploration-oriented, this predisposition can lead 811

to a less accurate initial estimation of the θ. To 812

escalate the efficiency of the Thompson Sampling 813

method, we further propose a hybrid approach of 814

model prediction and sampling prediction. In early 815

stage, we rely more on model prediction to curtail 816

the inaccuracies introduced by exploration. In later 817

stages, as the sampling prediction converges, we 818

calibrate the model prediction with the result of 819

sampling to obtain an accurate estimate of θ. The 820

details are illustrated in Algorithm 3.

Algorithm 3 Thompson Sampling with Calibration
Algorithm
Require: Target Model Mt; Draft Model Md; Max Gener-

ation Length L; Hyperparameters σM ,σS ,µ0,σ0; Input
Prompt {x0, ..., xn}.

1: Initialize prior probabilityN (µ0, σ
2
0).

2: Initialize the result set Qg ← {x0, ..., xn} , n← 0 and
t← 0.

3: while t < L do
4: Initialize the draft model result set and i,

Qd ← Null, i← 0.
5: while t + i < L do
6: Get now token xi ←Md(Qg

⋃
Qd).

7: Add token xi to set Qd.
8: Get model predict score, θt+i

M ←
Sigmoid(MLP (W iH

(T )
t , H

(D)
t+i )).

9: Calculate µt+i ← σ2
S

nσ2
M

+σ2
S
θt+i
M +

nσ2
M

nσ2
M

+σ2
S
θ̂t.

10: Calculate σ2
t+i ←

σ2
Mσ2

S

σ2
S
+nσ2

M
.

11: Sample θt+i from Gaussian distribution
N (µt+i, σ

2
t+i).

12: Sample χ ∈ {0, 1} from Bernoulli distribution
PB(θt+i).

13: i← i+ 1.
14: if χ = 0 then
15: Break
16: end if
17: end while
18: Verify the results Qd by Target Model Mt and get Qv

received by Mt, Qv ⊆ Qd.
19: Add the set Qv to Qg ,

Qg ← Qg

⋃
Qv .

20: Update t according to length of Qv ,
t← t+ |Qv|.

21: Update n← n+ 1.

22: Update θ̂t, θ̂t ←
θ̂{t−|Qv|}∗(t−|Qv|+1)+|Qv|

t+1
.

23: end while
24: return Qg

821
According to the central limit theorem, when 822

the sample size is sufficiently large, the sample 823

mean adheres to a Gaussian distribution. There- 824

fore, we make an assumption that sample mean χ̃ 825

of χ in one drafting iteration follows a Gaussian dis- 826

tribution, i.e χ̃ = χ1+χ2+χ3+...+χk
k ∼ N (µ, σ2

S). 827

And According to the central limit theorem, σS 828

equals σχ/sqrt(k), where σχ is the standard devi- 829

ation of the random variable χ and we assume σχ 830
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is known. In this case, we make the assumption831

that k is a fixed value and pre-determined by the832

user, which guarantees that χ̃ is independently and833

identically distributed. Furthermore, we employ a834

model to estimate the value of µ. It can be posited835

that µ follows a Gaussian distribution, character-836

ized by the model’s predicted value as the mean837

and the model’s predicted error as the variance,838

i.e. µ ∼ N (θM , σ2
M ), where θM is model’s pre-839

dicted value. Here, we presume that the model’s840

predicted error is a known entity. As supported by841

Bayesian theory, when the random variable follows842

a Gaussian distribution with a known variance but843

an unknown mean and the prior distribution is also844

a Gaussian distribution, it satisfies the conjugate845

distribution. Therefore, the posterior distribution is846

following,847

P (µ|D)

∝ P (D|µ, σ2
S)P (µ|θM , σ2

M )

∝ N (
σ2
S

nσ2
M + σ2

S

θt+i
M +

nσ2
M

nσ2
M + σ2

S

θ̂t,
σ2
Mσ2

S

σ2
S + nσ2

M

)

(9)848

where n is the number of verification by LLM,849

{σM , σS , θ̂0} is pre-determined by the user and θ̂t850

is the observed sample mean of the random variable851

χ̃. Due to k is a constant, we set θ̂t to observed852

sample mean of the random variable χ, i.e.853

θ̂t =
θ̂{t−|Qv|} ∗ (t− |Qv|+ 1) + |Qv|

t+ 1
, (10)854

Carefully thinking Eq.(6) and Eq.(9), we can855

observe that when n is small, the mean µ tends856

to θt+i
M , and when n is large, µ tends to θ̂t. This857

achieves the reduction of uncertainty in sampling858

prediction through model prediction in the early859

exploration stage. In the later stage, as the number860

of observed samples increases, the accuracy of θ̂t861

markedly enhances. Concurrently, µ draws closer862

to θ̂t, thereby yielding more accurate prediction.863

Therefore, our proposed method of mixing model864

prediction and sampling prediction can outperform865

the Beta-TS algorithm.866

C Training Details867

We implement all experiments with the deep learn-868

ing framework PyTorch on NVIDIA A100-80G869

GPUs. We set the learning rate to 1e-3 and the870

batch size to 64, for training EESD and Medusa.871

The hyperparameter settings we adopt are shown872

in Table 7873

D Harmonic Mean Metrics 874

We believe that two indicators, the acceptance rate 875

and the proportion of draft tokens, will affect the 876

end-to-end acceleration effect. The acceptance rate, 877

denoted as vd, indicates the percentage of draft 878

tokens that are accepted by the target model. It is 879

calculated as follows, 880

vd =
Nright

Nall_draft
, (11) 881

where Nright is the number of draft tokens that 882

are accepted by the target model, and Nall_draft 883

denotes the total count of tokens generated by the 884

draft model. The proportion of draft tokens, de- 885

noted as rd, represents the proportion of tokens that 886

come from the draft model, which is calculated as 887

follows, 888

rd =
Nright

L
, (12) 889

where L is the total number of tokens in the final 890

output sequence. 891

Once we have computed the aforementioned two 892

metrics, we can infer the speedup. The inference 893

time of end-to-end generation can be calculated 894

according to the following formula, 895

T =
rd ∗ L
vd

Td + (1− rd) ∗ L ∗ Tt, (13) 896

Where Td represents the time taken by the draft 897

model to generate one token, and Tt represents 898

the time taken by the target model to generate one 899

token. We can compute speed of the method by 900

sp = L
T and speedup by speedup = sp

Tt
. Therefore, 901

by integrating Eq.(13), we obtain the following 902

formula, 903

speedup =
vd

(α− vd) ∗ rd + vd
, (14) 904

where α equals Td
Tt

. To achieve speedup greater 905

than 1.00×, the term α− vd must be less than zero, 906

given that both vd and rd are positive values. The 907

speedup of the method is influenced by the factors 908

α, vd and rd. Under the premise that α < vd, 909

ideally, α should be as low as possible, while vd 910

and rd should be as high as possible. Both vd 911

and rd are influenced by the quality of the draft 912

tokens and the strategy for generating the draft 913

tokens. A well-devised strategy for draft token 914

generation can increase the values of vd and rd, 915

but the upper bound is restricted by the inherent 916

quality of the draft tokens themselves. Therefore, 917

we use the harmonic mean of vd and rd to assess 918
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Model Method Train Dataset Seq. # Epoch Learning Rate Batch Size # GPUs

LLaMA-2-70B Medusa SlimPajama 4k 6 1e-3 64 8
EESD SlimPajama 4k 6 1e-3 64 8

LLaMA-2-70B-chat Medusa ShareGPT 4k 6 1e-3 64 8
EESD ShareGPT 4k 6 1e-3 64 8

LLaMA-2-13B Medusa SlimPajama 2k 4 1e-3 64 2
EESD SlimPajama 2k 4 1e-3 64 2

Vicuna-13B Medusa ShareGPT 2k 4 1e-3 64 2
EESD ShareGPT 2k 4 1e-3 64 2

CodeLLaMA-2-13B Medusa SlimPajama 16k 4 1e-3 64 8
EESD SlimPajama 16k 4 1e-3 64 8

Table 7: The hyperparameter values for EESD and Medusa training.

both the quality of the draft tokens and the strategy919

for generating them.920

As shown in Table 8, 9, and 10, we present the921

vd and rd scores of each baseline method as well922

as our method across three benchmark evaluations,923

as detailed explanations of Table 1 and 2.924

E Inference Time and Speed up925

We present the comprehensive results of end-to-end926

inference time and tokens generated per second for927

the auto-regressive method, three speculative de-928

coding methods and EESD. These results provide929

detailed explanations of the data shown in Table 1930

and 2. These results, gathered from evaluations931

using the Gsm8k benchmark, are detailed in Ta-932

ble 8. Furthermore, we provide the additional re-933

sults from the XSum dataset in Table 9, and from934

the Humaneval dataset in Table 10.935

F Breakdown of Computation936

Table 11 presents an analysis of the computational937

time required for EESD generating on 200 in-938

stances randomly selected from XSum. The re-939

sults indicate that Cali-TS exhibits higher time con-940

sumption compared to Beta-TS during the sam-941

pling phase. However, Cali-TS significantly dimin-942

ishes the time usage in the drafting and verification943

stages, due to its superior control over the draft944

token generation process. Consequently, Cali-TS945

can yield a lower total time consumption.946

G Case Study947

As shown in Figure 6, we demonstrated two Xsum948

samples. As described in Section 4.1, we adopt a949

1-shot setting and use a greedy generation strategy.950

We observe that during the generation process of951

EESD, those draft tokens that are inconsistent with952

the original LLM’s output will be discarded. This953

ensures that the final result generated by EESD is 954

the same as auto-regression. Furthermore, we find 955

that for samples with a high draft token acceptance 956

rate, the EESD tends to generate longer draft se- 957

quence in one drafting round, as shown in example 958

1. Conversely, for samples with a lower acceptance 959

rate, the EESD displays a tendency to generate 960

shorter draft sequence, minimizing the quantity of 961

discarded draft tokens, as shown in example 2. The 962

examples in Figure 6 shows that our method is ef- 963

fective in adaptively determining the length of draft 964

token generation, leading to significant improve- 965

ment in the final end-to-end generation speed. 966
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[INPUT]
Article: Masers were invented before the laser, but have languished in obscurity because they required high magnetic fields and difficult cooling 
schemes.
…...
this type of maser could be used to detect some extraterrestrial intelligence that hasn't been detected."
Summary: Researchers have shown off a microwave-emitting version of the laser, called a maser, that works at room temperature.
Article: The 26-year-old England tight-head prop, who was sent off, pleaded guilty at a disciplinary hearing on Tuesday.
……
Brookes was dismissed in the 38th minute of Saints' 22-16 defeat when he charged into the ruck and struck the head of Newcastle hooker Scott 
Lawson with his shoulder.
Summary: 

[Auto-regression OUTPUT]
The 26-year-old England tight-head prop, who was sent off, pleaded guilty at a disciplinary hearing on Tuesday.  </s>

[EESD Generation Process]
Ø ROUND 1: The 26-year-old England
Ø ROUND 2: -head prop, who was dismissed
Ø ROUND 3: off for a year in the 201 
Ø ROUND 4: pleaded guilty to a misdemean
Ø ROUND 5: the London
Ø ROUND 6: disciplinary hearing on Tuesday. </s>

[EESD Final OUTPUT]
The 26-year-old England tight-head prop, who was sent off, pleaded guilty at a disciplinary hearing on Tuesday. </s>

(a) EXAMPLE 1

[INPUT]
Article: Masers were invented before the laser, but have languished in obscurity because they required high magnetic fields and difficult cooling 
schemes.
……
this type of maser could be used to detect some extraterrestrial intelligence that hasn't been detected."
Summary: Researchers have shown off a microwave-emitting version of the laser, called a maser, that works at room temperature.
Article: Liberal Democrat AM Eluned Parrott said the Welsh government had "wasted" more than £52,000 on them at railway stations in south 
Wales.
She accused ministers of spending public money to "promote themselves before an election".
……
Formal consultation for the £600m programme to develop an integrated network of rail, bus and light rail services begins in 2016.
Summary: 

[Auto-regression OUTPUT]
The Welsh government has been accused of wasting more than £52,000 on posters promoting the south Wales Metro. </s>

[EESD Generation Process]
Ø ROUND 1: The UK's largest broadband service provider
Ø ROUND 2: government has been working on
Ø ROUND 3: of spending £100m 
Ø ROUND 4: taxpay
Ø ROUND 5: than £52,000 of
Ø ROUND 6: the rail system
Ø ROUND 7: reforms. </s>
Ø ROUND 8: the idea of a
Ø ROUND 9: Wales Government's plans
Ø ROUND 10: . </s>

[EESD Final OUTPUT]
The Welsh government has been accused of wasting more than £52,000 on posters promoting the south Wales Metro. </s>

(b) EXAMPLE 2

Figure 6: A visualization of the generation process of EESD with Cali-TS on LLaMA-2-70B. We present two
examples from the XSum dataset, and demonstrate the input text, the text generated by the original LLM using auto-
regression strategy, the generation process of EESD, and the final result generated by EESD. In EESD generation
process, the green color represents the draft token that are accept by LLM, and the red color represents the rejected
draft tokens, and gray color represents the draft tokens that will be discarded after the rejected token. And in the
EESD final output, the green color represents tokens generated by the draft model, and the red color represents the
tokens generated by the original LLM.
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Model Method Harmonic Mean Inference Time Speed Speedup
vd rd HM (/s) (token/s)

LLaMA-2-70B

Auto-regressive - - - 56.32 9.10 1.00×
Vanilla SD 0.74 0.88 80.35 29.89 17.13 1.88×
Self SD 0.90 0.70 78.64 41.09 12.46 1.37×
Medusa 0.25 0.50 33.75 32.56 15.72 1.73×
EESD (+Beta-TS) 0.52 0.68 58.79 26.44 19.36 2.13×
EESD (+Cali-TS) 0.56 0.71 62.25 24.61 20.80 2.29×

LLaMA-2-70B-chat

Auto-regressive - - - 56.53 9.06 1.00×
Vanilla SD 0.52 0.83 63.90 39.17 13.07 1.44×
Self SD 0.66 0.70 67.99 49.89 10.26 1.13×
Medusa 0.16 0.39 22.86 39.97 12.81 1.41×
EESD (+Beta-TS) 0.39 0.62 47.76 31.57 16.22 1.79×
EESD (+Cali-TS) 0.39 0.62 48.23 31.04 16.49 1.82×

LLaMA-2-13B

Auto-regressive - - - 21.93 23.35 1.00×
Vanilla SD 0.81 0.89 84.59 22.78 22.48 0.96×
Self SD 0.90 0.73 80.53 16.04 31.92 1.37×
Medusa 0.24 0.47 31.71 12.42 41.22 1.77×
EESD (+Beta-TS) 0.50 0.67 57.22 11.46 44.68 1.91×
EESD (+Cali-TS) 0.52 0.69 58.97 10.77 47.54 2.04×

Vicuna-13B

Auto-regressive - - - 22.26 23.00 1.00×
Vanilla SD 0.52 0.83 64.22 32.40 15.80 0.69×
Self SD 0.76 0.62 68.07 17.91 28.59 1.24×
Medusa 0.19 0.42 26.08 14.57 35.14 1.53×
EESD (+Beta-TS) 0.34 0.58 43.01 14.16 36.16 1.57×
EESD (+Cali-TS) 0.35 0.59 43.53 14.00 36.57 1.59×

Table 8: The detailed evaluation results on Gsm8k with different methods of Table 1. We present the result from
our assessment of Harmonic Mean, inference time, and the speed of end-to-end generation. Additionally, we also
present the speedup in comparison with the auto-regression method.

Model Method Harmonic Mean Inference Time Speed Speedup
vd rd HM (/s) (token/s)

LLaMA-2-70B

Auto-regressive - - - 62.59 8.18 1.00×
Vanilla SD 0.57 0.83 67.30 42.85 11.95 1.46×
Self SD 0.80 0.60 68.60 51.72 9.90 1.21×
Medusa 0.19 0.42 25.69 44.21 11.58 1.42×
EESD (+Beta-TS) 0.44 0.63 51.91 34.81 14.71 1.80×
EESD (+Cali-TS) 0.46 0.65 53.41 33.58 15.25 1.86×

LLaMA-2-70B-chat

Auto-regressive - - - 62.57 8.18 1.00×
Vanilla SD 0.70 0.66 62.75 44.98 11.38 1.39×
Self SD 0.66 0.70 68.38 53.93 9.49 1.16×
Medusa 0.12 0.31 17.02 52.01 9.85 1.20×
EESD (+Beta-TS) 0.32 0.55 40.73 41.32 12.39 1.51×
EESD (+Cali-TS) 0.33 0.57 41.85 40.43 12.66 1.55×

LLaMA-2-13B

Auto-regressive - - - 22.46 22.80 1.00×
Vanilla SD 0.67 0.86 75.63 29.09 17.60 0.77×
Self SD 0.87 0.70 77.61 16.63 30.79 1.35×
Medusa 0.18 0.41 25.03 14.67 34.90 1.53×
EESD (+Beta-TS) 0.48 0.66 55.46 12.18 42.04 1.84×
EESD (+Cali-TS) 0.49 0.67 56.45 11.69 43.80 1.92×

Vicuna-13B

Auto-regressive - - - 22.82 22.44 1.00×
Vanilla SD 0.41 0.79 53.77 40.71 12.58 0.55×
Self SD 0.69 0.54 60.38 20.14 25.42 1.12×
Medusa 0.11 0.29 15.55 18.28 28.01 1.21×
EESD (+Beta-TS) 0.24 0.47 32.23 17.96 28.51 1.25×
EESD (+Cali-TS) 0.25 0.48 32.50 17.75 28.85 1.27×

Table 9: The detailed evaluation results on XSum with different methods of Table 1. We present the result from
our assessment of Harmonic Mean, inference time, and the speed of end-to-end generation. Additionally, we also
present the speedup in comparison with the auto-regression method.
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Model Method Harmonic Mean Inference Time Speed Speedup
vd rd HM (/s) (token/s)

LLaMA-2-13B

Auto-regressive - - - 21.83 23.45 1.00×
Vanilla SD 0.86 0.89 87.32 22.60 22.65 0.97×
Self SD 0.89 0.72 79.93 16.09 31.82 1.36×
Medusa 0.19 0.42 26.67 13.57 37.73 1.61×
EESD (+Beta-TS) 0.54 0.72 61.43 10.52 48.67 2.08×
EESD (+Cali-TS) 0.55 0.73 62.87 10.14 50.49 2.15×

CodeLLaMA-2-13B

Auto-regressive - - - 22.82 22.44 1.00×
Vanilla SD 0.92 0.90 91.12 20.84 24.57 1.09×
Self SD 0.92 0.76 83.51 16.58 30.88 1.38×
Medusa 0.45 0.55 49.14 11.56 44.29 1.97×
EESD (+Beta-TS) 0.64 0.75 68.94 10.31 49.66 2.21×
EESD (+Cali-TS) 0.65 0.76 70.15 9.32 54.94 2.45×

Table 10: The detailed evaluation results on Humaneval with different methods of Table 2. We present the result
from our assessment of Harmonic Mean, inference time, and the speed of end-to-end generation. Additionally, we
also present the speedup in comparison with the auto-regression method.

Model Method Drafting Verification Sampling Others

LLaMA-2-70B EESD(+Beta-TS) 5.517s 25.203s 0.017s 4.076s
EESD(+Cali-TS) 5.022s 24.106s 0.426s 4.023s

LLaMA-2-13B EESD(+Beta-TS) 3.656s 7.986s 0.014s 0.526s
EESD(+Cali-TS) 3.436s 7.392s 0.355s 0.507s

Table 11: Breakdown of computational time (seconds) for EESD on 200 instances randomly sampled from XSum.
We set final output sequence length at 512.
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