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Abstract

This study examines how the quality of ground truth labels affects brain MRI segmentation
models. We investigate the potential of synthetic learning to mitigate systematic biases
present in training labels. Through a validation on high-quality datasets, in the Puta-
men region, known for systematic segmentation errors like the inclusion of parts of the
Claustrum, we demonstrate the effectiveness of the synthetic data approach in correcting
these errors and enhancing segmentation accuracy. Our findings highlight the limitations
of pseudo-ground truth labels derived from automated techniques and underscores the im-
portance of precise, expert-validated labels for accurate, unbiased validation.
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1. Introduction

In this study, we investigate the impact of the definition of the ground truth labels used
for training and evaluating a segmentation model for brain MRI. Access to large samples
of anatomically accurate segmentation maps is key for designing machine learning models.
Manually annotating high-quality labels for 3D MRI poses significant challenges, prompting
researchers to resort to the use of pseudo-GT labels derived from popular automated tools
like Freesurfer (Billot et al., 2023; Svanera et al., 2024; Bontempi et al., 2020; Henschel
et al., 2020, 2022). Pseudo-GT labels allow to bypass the bottleneck of manual annotation,
but can be affected by errors. Deep learning (DL) models are capable of generalizing and
correcting errors to a certain degree, if their distribution across the training set is random.
If the training set is contaminated with systematic errors, such as the consistent over-
or underestimation of specific brain structures, DL models will learn and replicate such a
bias. In this work, we investigate the potential of training a model using synthetic data for
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which the alignment between the image intensity profile and labels boundaries are perfect by
construction, to minimize learning biases from flawed labels. Our focus is on the Putamen,
a brain region characterized by distinct contrast and a clear spatial configuration, which
facilitates an effective visual assessment of the model’s quantitative performance metrics.

2. Data and Methods

We consider two datasets: MICCAI-2012 Multi-Atlas Labeling Challenge (Landman
and Warfield, 2019): We used the data from the 20 subjects of the test set defined for the
challenge. The manual segmentation labels (GTManu) were provided by Neuromorpho-
metrics. For this dataset, we also considered the results of the winner of the challenge #1
(PICSL), which is a method based on template deformation and a patch based refinement
(Wang and Yushkevich, 2013)] HCP (Van Essen et al., 2013; Glasser et al., 2013): We
used the label maps from 40 subjects for generating the simulated data used for training
the synthetic models, and another set of 80 subjects for testing. We resliced the MRIs to
1mm for better comparison with the first dataset. For both datasets, we performed whole
brain segmentation with two widely used software: FSL (Patenaude et al., 2011), Freesurfer
(FreeS) (Fischl, 2012). We then used our own implementation of SynthSeg (Valabregue
et al., 2023) to train two synthetic models (on the 40 subjects from HCP): SynthFSL,
trained on labels obtained with FSL, and SynthFree, trained with FreeS labels. We also
included SynthSeg (Billot et al., 2023) in our benchmark. This model was trained on
labels obtained with FreeS from more than a thousand subjects (in 3 different dataset).
These synthetic models were compared to classical models trained on real data: FastSurfer
(FastS) which was trained on FreeS labels (Henschel et al., 2022) and Assembly Net (AssN)
trained on manually defined labels from 53 subjects (including the MICCAI dataset) (Coup
et al., 2020).

SynthFSL FSL SynthFree SynthSeg FreeS FastS AssN
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Figure 1: Dice score of Putamen for different models. A) 20 subjects from the MICCAI
testset B) 80 subjects of the HCP testset. We change the segmentation chosen as
Ground Truth respectively in column : manual segmentation or FSL, Freesurfer
and AssemblyNet. C) Results for an axial slice of HCP Subject.
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3. Results

The two widely used methods, FreeS and FSL, produce significantly divergent outcomes on
both datasets. As illustrated in Fig.1, the SynthFSL model shows high performance on the
MICCAI dataset when compared to manual segmentation. It has a similar DICE score as
AssN despite the latter having been trained on real data with manual segmentation. On the
other hand, using FreeS as ground truth will strongly degrade the performance across all
models. The performance and ranking of the methods are highly consistent when evaluated
on the HCP dataset. Despite a better image contrast in the Putamen, we observed large
systematic errors for FreeS. As a consequence, the models trained with the labels from
FreeS reproduce this bias. In particular, the predictions made by FastS closely align with
those from FreeS, thereby replicating the same bias. Although SynthFSL was trained with
synthetic data generated from FSL labels, its predictions are closer to AssN than to FSL,
which supports the potential of synthetic models to mitigate inductive bias from the input
labels. Nevertheless, synthetic models are clearly affected by variations in the definition
of the label maps used for generating the training data: the predictions from SynthFree
and SynthSeg are closer to FreeS than to SynthFSL. Note that this effect may be specific
to putamen, given the large changes in its global shape induced by FreeSurfer systematic
errors.

4. Discussion and Conclusion

The inductive bias in supervised learning is well documented, but is difficult to quantify and
characterize. The empirical solution of designing unbiased manual annotation datasets is
both challenging and resource demanding. Our results support the relevance of the synthetic
learning approach for mitigating this problem. Previous publications (Billot et al., 2023;
Valabregue et al., 2023) reported that the synthetic learning models do not perform as
well as models trained on real data when evaluated using DICE scores. We argue that the
difference is partly due to systematic bias present in the GT. Indeed when the manual GT
is taken as reference, we observe very similar performance between the synthetic approach
trained on the predictions from the best classical method on this dataset (SynthFSL) and a
method trained on real data (AssN). On the other hand, the 5 dice point difference between
SynthFree and FastFS when considering freesurfer as GT is an indirect measure of the
systematic bias. Although we believe that the synthetic approach will help to reduce bias
in the prediction, we show that the definition of the labels influences the results. It is then
important to improve the anatomical accuracy of the labels used for generating synthetic
images. The results from this study are specific to the Putamen structure, and further work
is required to assess the generalization to other structures. Our observations should be also
valid for any other kind of systematic bias. For instance, automated methods are known to
be affected by variations in the image quality related to the acquisition settings (Hu et al.,
2023). The current trend to improve robustness and generalization of segmentation models
is to train on large multicentric datasets, using automated segmentation as GT (Svanera
et al., 2024). Our study highlights the serious risk of obtaining models that reproduce the
bias from the initial segmentation technique.
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