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Abstract

Document-level models for information extrac-001
tion tasks like slot-filling are flexible: they can002
be applied to settings where information is not003
necessarily localized in a single sentence. For004
example, key features of a diagnosis in a radi-005
ology report may not be explicitly stated in one006
place, but nevertheless can be inferred from007
parts of the report’s text. However, these mod-008
els can easily learn spurious correlations be-009
tween labels and irrelevant information. This010
work studies how to ensure that these models011
make correct inferences from complex text and012
make those inferences in an auditable way: be-013
yond just being right, are these models “right014
for the right reasons?” We experiment with015
post-hoc evidence extraction in a predict-select-016
verify framework using feature attribution tech-017
niques. We show that regularization with small018
amounts of evidence supervision during train-019
ing can substantially improve the quality of020
extracted evidence. We evaluate on two do-021
mains: a small-scale labeled dataset of brain022
MRI reports and a large-scale modified version023
of DocRED (Yao et al., 2019) and show that024
models’ plausibility can be improved with no025
loss in accuracy.1026

1 Introduction027

Document-level information extraction (Yao et al.,028

2019; Christopoulou et al., 2019; Xiao et al., 2020;029

Guoshun et al., 2020) has seen great strides due to030

the rise of pre-trained models (Devlin et al., 2019).031

But in high-stakes domains like medical informa-032

tion extraction (Irvin et al., 2019; McDermott et al.,033

2020; Smit et al., 2020), machine learning models034

are still too error-prone to use broadly. Since they035

are not perfect, they typically play the role of as-036

sisting users in tasks like building cohorts (Pons037

et al., 2016) or in providing clinical decision sup-038

port (Demner-Fushman et al., 2009).039

1Code available upon publication.

Transformer

[0] Severe encephalomalacia in the temporal lobes and
frontal lobes bilaterally with reactive gliosis in the left
frontal lobe. [1] Moderate enlargement of the ventricular
system. [2] No abnormal enhancement. [3] Near complete
opacification of the left maxillary sinus. …

evidence	sents:	0,	1

Interpret

label	(mass	effect):	
negative

Accurate?

Plausible? (model
evidence agrees w/human-
labeled evidence)

Faithful? (model prediction
on evidence agrees w/full doc)

Figure 1: Our basic model setup. A Transformer-based
model makes document-level predictions on an example
of our brain MRI reports. An interpretation method
extracts the evidence sentences used by the model. Our
system is evaluated according to the criteria of accuracy,
faithfulness, and plausibility.

To be most usable in conjunction with users, 040

these systems should not just produce a decision, 041

but a justification for their answer. The ideal system 042

therefore obtains high predictive accuracy, but also 043

returns a rationale that allows a human to verify the 044

predicted label (Rudie et al., 2019). 045

Our goal is to study document-level informa- 046

tion extraction systems that are both accurate and 047

which make predictions based on the correct infor- 048

mation (Doshi-Velez and Kim, 2017). This process 049

involves identifying what evidence the model actu- 050

ally used, verifying the model’s prediction based on 051

that evidence, and checking whether that evidence 052

aligns with what humans would use, which would 053

allow a user to quickly see if the system is correct. 054

For example, in Figure 1, localizing the prediction 055

of mass effect (a feature expressing whether there 056

is evidence of brain displacement by a mass like a 057
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tumor) to the first two sentences allows a trained058

user in a clinical decision support setting to easily059

verify what was extracted here. Our evidence ex-060

traction hews to principles of both faithfulness and061

plausibility (Jain et al., 2020; Jacovi and Goldberg,062

2020; Miller, 2019).063

Rather than use complex approaches with inter-064

mediate latent variables for extraction (Lei et al.,065

2016), we focus on what can be done with off-066

the-shelf pre-trained models (Liu et al., 2019) us-067

ing post-hoc interpretation. We explore various068

interpretation methods to find key parts of each069

document that were used by the model. We ask070

two questions: first, can we identify the document071

sentences that truly contributed to the prediction072

(faithfulness)? Using the ranking of sentences pro-073

vided by an interpretation method, we extract a074

set of sentences where the model returns nearly075

the same prediction as before, thus verifying that076

these sentences are a sufficient explanation for the077

model. Second, do these document sentences align078

with what users annotated (plausibility)? Unsur-079

prisingly, we find that this alignment is low in a080

basic Transformer model.081

To further improve the alignment with human082

annotation, we consider injecting small amounts083

of sentence-level supervision. Critically, in the084

brain MRI extraction setting we consider (see Ta-085

ble 1), large-scale sentence-level annotation is086

not available; most instances in the dataset only087

have document-level labels from existing clini-088

cal decision support systems, making it a weakly-089

supervised setting (Pruthi et al., 2020; Patel et al.,090

2020). We explore two methods for using this small091

amount of annotation, chiefly based around super-092

vising or regularizing the model’s behavior. One093

notion is entropy maximization: the model should094

be uncertain when it isn’t exposed to sufficient evi-095

dence (Feng et al., 2019). Another is attention regu-096

larization where the model is encouraged to attend097

to key pieces of evidence. While attention is not098

entirely connected with what the model uses (Jain099

and Wallace, 2019), we can investigate whether100

this leads to a model whose explanations leverage101

this information more heavily.102

We validate our methods first on a small dataset103

of radiologists’ observations from brain MRIs.104

These reports are annotated with document-level105

key features related to different aspects of the re-106

port, which we want to extract in a faithful way. We107

see positive results here even in a small-data con-108

Report Finding
[0] Severe encephalomalacia in the temporal lobes and
frontal lobes bilaterally with reactive gliosis in the left
frontal lobe. [1] Moderate enlargement of the ventric-
ular system. [2] No abnormal enhancement. [3] Near
complete opacification of the left maxillary sinus. ...

mass_effect: negative evid: [0, 1] implicit
side: bilateral evid: [0] explicit
t2: increased evid: [0] implicit
contrast_enhancement: No evid: [2] explicit

Table 1: Example from annotated brain MRI reports.
Labels and supporting evidence for 4 key features are
annotated for this example report presented. “Explicit”
means the label of given key feature can be directly
inferred by the highlighted terms; “implicit” instead in-
dicates that it requires domain knowledge and potential
reasoning skills to label. We want the model to identify
implicit features while not leveraging dataset biases or
reasoning incorrectly about explicit ones.

dition, but to understand how this method would 109

scale with larger amounts of data, we adapt the Do- 110

cRED relation extraction task (Yao et al., 2019) to 111

be a document-level classification task. The ques- 112

tion of which sentence in the document describes 113

the relation between the two entities, if there even 114

is one, is still quite challenging, and we show our 115

techniques can lead to improvements in a weakly- 116

labeled setting here as well. 117

Our contributions are (1) We apply evidence 118

extraction methods to document-level classifica- 119

tion and slot-filling tasks, emphasizing a new brain 120

MRI dataset that we annotate. (2) We explore us- 121

ing weak sentence-level supervision in two tech- 122

niques adapted from prior work; (3) We evaluate 123

pre-trained models and evidence extraction through 124

various interpretation methods for plausibility com- 125

pared to human annotation, while ensuring faithful- 126

ness of the evidence. 127

2 Background 128

2.1 Motivation 129

We start with an example from a brain MRI report 130

in Table 1. Medical information extraction involves 131

tasks such as identifying important medical terms 132

from text (Irvin et al., 2019; Smit et al., 2020) and 133

normalizing names into standard concepts using 134

domain-specific ontologies (Cho et al., 2017). One 135

application in clinical decision support, shown here, 136

requires extracting the values of certain key fea- 137

tures (clinical findings) from these reports or medi- 138

cal images (Rudie et al., 2021; Duong et al., 2019). 139
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This extraction should be accurate, but it should140

also make predictions that are correctly sourced, to141

facilitate review by a radiologist or someone else142

using the system (Rauschecker et al., 2020; Cook143

et al., 2018).144

The finding section of a brain MRI report often145

describes these key features in both explicit and146

implicit ways. For instance, contrast enhancement,147

one of our key features, is mentioned explicitly148

much of the time; see no abnormal enhancement in149

the third sentence. A rule-based system can detect150

this type of evidence easily. But some key features151

are harder to identify and require reasoning over152

context and draw on implicit cues. For example,153

severe encephalomalacia in the first sentence and154

enlargement of the ventricular system in the fol-155

lowing sentence are both implicit signs of positive156

mass effect and either is sufficient to infer the label.157

It is significantly harder to built a rule-based extrac-158

tor for this case. Learning-based systems have the159

potential to do much better here, but lack of under-160

standing about their behavior can lead to hard-to-161

predict failure modes, such as acausal prediction162

of key features (e.g., inferring evidence about mass163

effect from a hypothesized diagnosis somewhere164

in the report, where the causality is backwards).165

Our work aims to leverage the ability of learning-166

based systems to capture implicit features while167

improving their ability to make predictions that are168

sourced from the correct evidence and can be easily169

verified.170

2.2 Problem Setting171

The problem we tackle in this work can be172

viewed as document-level classification. Let D =173

{x1, . . . , xn} be a document consisting of n sen-174

tences. The document is annotated with a set of175

labels (ti, yi) where ti is an auxiliary input spec-176

ifying a particular task for this document (e.g.,177

mass effect) and yi is the label associated with178

that task from a discrete label space {1, . . . , d}. In179

our adaptation of the DocRED task, we consider180

t = (e1, e2) to classify the relationship (if any)181

between a pair of entities (e1, e2) in a document,182

defined in Section 4.1.2.183

Our method takes a pair (D, t) and then com-184

putes the label ŷt from a predictor ŷt = f(D, t).185

We can then extract evidence, a set of sentences,186

post-hoc using a separate procedure g such as a187

feature attribution method: Êt = g(f,D, t)188

Supervision In addition to the labels yt, we as- 189

sume access to a small number of examples with 190

additional supervision in each domain. That is, for 191

a (D, t, yt) triple, we also assume we are given a 192

set E = {xi1 , . . . , xim} of ground-truth evidence 193

with sentence indices {i1, . . . , im}. This evidence 194

should be sufficient to compute the label, but not al- 195

ways necessary; for example, if multiple sentences 196

can contribute to the prediction, they might all be 197

listed as supporting evidence here. See Section 3.3 198

for more details. 199

2.3 Related Work 200

Our work fits into a broader thread of work on in- 201

formation extraction with partial annotation (Han 202

et al., 2020). Due to the cost of collecting large- 203

scale data with good quality, distant supervision 204

(DS) (Mintz et al., 2009) and ways to denoise auto- 205

labeled data from DS (Surdeanu et al., 2012; Wang 206

et al., 2018) have been widely explored. However, 207

the sentence-level setting typically features much 208

less ambiguity about evidence needed to predict 209

a relation compared to the document-level setting 210

we explore. Several document-level RE datasets 211

(Li et al., 2016a; Peng et al., 2017) have been 212

proposed as well as efforts to tackle these tasks 213

(Christopoulou et al., 2019; Xiao et al., 2020; Gu- 214

oshun et al., 2020), which we explicitly build from. 215

Explanation techniques To identify the sen- 216

tences that the model considers as evidence, we 217

draw on a recent body of work in explainable 218

NLP focused on identifying salient features of 219

the input. These primarily consist of input attri- 220

bution techniques, such as LIME (Ribeiro et al., 221

2016), input reductions (Li et al., 2016b; Feng 222

et al., 2018), attention-based explanations (Bah- 223

danau et al., 2015) and gradient-based methods 224

(Simonyan et al., 2014; Selvaraju et al., 2017; Sun- 225

dararajan et al., 2017; Shrikumar et al., 2017). In 226

present work, we extract rationales using com- 227

monly used model interpretation methods (de- 228

scribed in Section 3.2) and focus on doing a thor- 229

ough evaluation of the capabilities of DeepLIFT 230

(Shrikumar et al., 2017) given its competitive per- 231

formance in our interpretation methods comparison 232

(Appendix B). 233

Frameworks for interpretable pipelines Our 234

goal of building a system grounded in evidence 235

draws heavily on recent work on attribution tech- 236

niques and model explanations, particularly notions 237

of faithfulness and plausibility. Faithfulness refers 238
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to how accurately the explanation provided by the239

model truly reflects the information it used in the240

reasoning process (Jain et al., 2020). On the other241

hand, plausibility indicates to what extent the inter-242

pretation provided by the model makes sense to a243

person.2244

“Select-then-predict” approaches are one way to245

enforce faithfulness in pipelines (Jain et al., 2020):246

important snippets from inputs are extracted and247

passed through a classifier to make predictions.248

Past work has used hard (Lei et al., 2016) or soft249

(Zhang et al., 2016) rationales, and other work has250

explicitly looked at tradeoffs in the amount of text251

extracted (Paranjape et al., 2020).252

Jacovi and Goldberg (2020) note several prob-253

lems with this setup. Our work aims to align model254

behavior with what cues we expect a model to255

use (plausibility), but uses the predict-select-verify256

paradigm (Jacovi and Goldberg, 2020) to ensure257

that these are actually sufficient cues for the model.258

Like our work, Pruthi et al. (2020) simultaneously259

trained a BERT-based model (Devlin et al., 2019)260

for the prediction task and a linear-CRF (Lafferty261

et al., 2001) module on top of it for the evidence ex-262

traction task with shared parameters. Compared to263

their work, we focus explicitly on what can be done264

with pre-trained models alone, not augmenting the265

model for evidence extraction.266

3 Methods267

The systems we devise take (D, t) pairs as input268

and return (a) predicted labels ŷt for each t; (b)269

sets of extracted evidence sentences Êt from an270

interpretation method. Figure 1 shows the basic271

setting.272

3.1 Transformer Classification Model273

We use RoBERTa (Liu et al., 2019) as our docu-274

ment classifier. RoBERTa is a strong method that275

holds up even against more recent baselines with276

architectures designed for DocRED (Zhou et al.,277

2021). For each of our two domains, we use differ-278

ent pre-trained weights, as described in the train-279

ing details in Appendix A. The task inputs are de-280

scribed in Section 4.1.281

2The ERASER benchmark (DeYoung et al., 2020) is a
notable recent effort to evaluate explanation plausibility. How-
ever, we do not consider it here; we focus on the document-
level classification setting, and many of the ERASER tasks are
not suitable or relevant for the approaches we consider, either
being not natural (FEVER) or not having the same challenges
as document-level classification.

3.2 Interpretation for Evidence Extraction 282

Given any interpretation method as well as our 283

model ŷt = f(D, t), we compute attribution scores 284

with respect to the predicted class yt for each token 285

in the RoBERTa input representation. We then 286

average over the absolute value of attribution score 287

for each token in that sentence to give sentence- 288

level scores {s1, . . . , sn}. These give us a ranking 289

of the sentences. Given a fixed number of evidence 290

sentences k to extract, we can extract the top k 291

sentences by these scores. 292

We experiment with the following four widely 293

used interpretation techniques in the present work. 294

LIME (Ribeiro et al., 2016) offers explanations 295

of an input by approximating the model’s predic- 296

tions locally with an interpretable model. Input 297

Gradient (Hechtlinger, 2016) and Integrated Gra- 298

dients (Sundararajan et al., 2017) use gradients of 299

the label with respect to the input to assess input 300

importance; Integrated Gradients approximates the 301

integral of this gradient with respect to the input 302

along a straight path from a reference baseline.3 303

DeepLIFT (Shrikumar et al., 2017) attributes the 304

change in the output from a reference output in 305

terms of the difference in input from the reference 306

input. Unless stated otherwise, we use DeepLIFT 307

as our interpretation method, since it achieves the 308

best results (comparable to Input Gradient) among 309

the four interpretation options. Full comparison of 310

interpretation methods is in Appendix B. 311

To verify the extracted evidence (Jacovi 312

and Goldberg, 2020), our main technique 313

(SUFFICIENT) feeds the model increasingly larger 314

subsets of the document ranked by attribution 315

scores (e.g., first {smax}, then {smax, s2nd-max}, 316

etc.) until it (a) makes the same prediction as when 317

taking the whole document as input and (b) as- 318

signs that prediction at least λ times the probabil- 319

ity4 when the whole document is taken as input. 320

We consider this attribution faithful: it is a subset 321

of the input supporting the model’s decision judged 322

as important by the attribution method. 323

3.3 Improving Evidence Extraction 324

While many document-level extraction settings do 325

not have sentence-level attributions labeled for ev- 326

3We use the most typical baseline that consists of replacing
the inputs in D with [MASK] tokens from RoBERTa.

4The value of λ is a tolerance hyper-parameter for selecting
sentences and it set to 0.8 throughout the experiments. Our
method is robust to the choice of λ in a reasonable range, as
shown in Appendix B.
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ery decision, one can in practice annotate a small327

fraction of a dataset with such ground-truth ratio-328

nales. This is indeed the case for our brain MRI329

case study. Past work has shown significant bene-330

fits from integrating this supervision into learning331

(Strout et al., 2019; Dua et al., 2020; Pruthi et al.,332

2021).333

Assume that a subset of our labeled data consists334

of (D, t, yt, Et) tuples with ground truth evidence335

sentence indices Et = {i1, ..., im}. We consider336

two modifications to our model training, namely at-337

tention regularization (Pruthi et al., 2021), entropy338

maximization (Feng et al., 2018), and their combi-339

nation. An illustration of both methods is shown in340

Figure 2.341

Attention regularization Attention regulariza-342

tion encourages our model f(D, t) to leverage343

more information from Et. Specifically, let344

A = {α1, ..., αn} be the attention vector from345

the [CLS] token in the final layer to all tokens346

in D. During learning, we add the following loss347

to the training objective: ℓattn = − log
∑

i∈Et
αi,348

encouraging the model to attend to any token i in349

the labeled sentence-level evidence set.350

Entropy maximization When there is no suffi-351

cient information contained in the text to infer any352

predictions, entropy maximization encourages a353

model to be uncertain, represented by a uniform354

probability distribution across all classes (DeYoung355

et al., 2020; Feng et al., 2019). Doing so should356

encourage the model to not make predictions based357

on irrelevant sentences. We can achieve this by358

taking a reduced document D′ = D \ Et as in-359

put by removing evidence Et from original doc-360

ument D. We treat (D′, t) pairs as extra training361

examples where we aim to maximize the entropy362

−
∑

y P (y|D′) logP (y|D′) over all possible y.5363

4 Experiments364

4.1 Datasets and Evaluation Metrics365

We investigate our methods on (a) a small collec-366

tion of brain MRI reports from radiologists’ obser-367

vations; and (b) a modified version of the DocRED368

datatset. The statistics for both datatsets are in-369

cluded in Appendix D. For both datasets, we evalu-370

ate on task accuracy (captured by either accuracy or371

prediction macro-F1) as well as evidence selection372

5We found this to work better than enforcing a uniform
distribution over attention, which is much harder for the model
to achieve.

Transformer

[CLS] [0] Severe encephalomalacia 
… [1] Moderate enlargement … [2] 
No abnormal … [3] Near complete …

Final attention layer

Label Distribution 
P(y|D)

Entropy maximization: (ENTROPY) 

Attention regularization  (ATTN)

Transformer

deletes relevant sentence; 
maximizes prediction entropy

Transformer

encourages attentions on 
supporting evidence

[CLS] [0] Severe… [1] Moderate … 
[2] No … [3] Near…

[CLS] [0] Severe… [1] Moderate … 
[2] No … [3] Near…

Standard Supervised  
Training:  

max log P(y|D)

Figure 2: An illustration of attention regularization and
entropy maximization using the example in Table 1. The
model is predicting the label for key feature t2.

accuracy (macro-F1) or precision, measuring how 373

well the model’s evidence selection aligns with 374

human annotations. We will use the SUFFICIENT 375

method defined in Section 3.2 to select evidence 376

sentences which guarantee that our predictions on 377

the given evidence subsets will match the model’s 378

predictions on the full document. For the brain 379

MRI report dataset, we evaluate evidence extrac- 380

tion by precision since human annotators typically 381

only need to refer to one sentence to reach the con- 382

clusion but our model and baselines may extract 383

more than one sentence. 384

4.1.1 Brain MRI Reports 385

We present a new dataset of de-identified radiol- 386

ogy reports from brain MRIs. It consists of the 387

“findings” sections of reports, which present ob- 388

servations about the image, with labels for pre- 389

selected key features by attending physicians and 390

fellows. Crucially, these features are labeled based 391

on the original radiology image, not the report. 392

The document-level labels are therefore noisy be- 393

cause the radiologists’ labels may disagree with the 394

findings written in the report. 395

A key feature is an observable variable t, which 396

can take on dt possible values. We focus on the 397

evaluation of two key features, namely contrast 398

enhancement and mass effect, since they appear 399

in most of manually annotated reports. For our 400

RoBERTa classification model, we only feed the 401

document and train separate classifiers for each key 402

feature, with no shared parameters between these. 403

Annotation We have a moderate number (327) 404

of reports that have noisy labels from the process 405
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above. We treat these as our training set. However,406

all of these labels are document-level.407

To evaluate models’ performance on more fine-408

grained evidence labels, we randomly select 86409

unlabeled reports (not overlapping with the 327410

for training) and asked four radiology residents to411

(1) assign key feature labels and reach consensus,412

while (2) highlighting sentences that support their413

decision making. We use Prodigy6 as our annota-414

tion interface. See Appendix E for more details415

about our annotation instructions.416

Pseudo sentence-level supervision Since we417

have limited number of annotated reports for eval-418

uation, we need a way to prepare weak sentence-419

level supervision (Et) while training. To achieve420

this, we use sentences selected by our rule-based421

system as pseudo evidence to supervise models’422

behavior. We use 10% of this as supervision while423

training for consistency with the DocRED setting.424

Rule-based system Our rule-based system uses425

keyword matching to identify instances of mass426

effect and contrast enhancement in the reports, and427

negspaCy to detect negations of these key features.428

Data split For the results in Section 5, we evalu-429

ate on reports that contain ground truth fine-grained430

annotations for either contrast enhancement or431

mass effect, respectively. There are 64 and 68 out432

of 86 documents total in each of these categories.433

We call this the BRAINMRI set. When we restrict434

to this set for evaluation, all of the documents we435

study where the annotators labeled something re-436

lated to contrast enhancement end up having an437

explicit mention of it. However, for mass effect,438

this is not always the case; Table 9 in Appendix439

shows an example where mass effect is discussed440

implicitly in the first sentence.441

4.1.2 Adapted DocRED442

DocRED (Yao et al., 2019) is a document-level rela-443

tion extraction (RE) dataset with large scale human444

annotation of relevant evidence sentences. Unlike445

sentence-level RE tasks (Qin et al., 2018; Alt et al.,446

2020), it requires reading multiple sentences and447

reasoning about complex interactions between en-448

tities. We adapt this to a document-level relation449

classification task: a document D and two entity450

mentions e1, e2 within the document are provided451

and the task is to predict the relation r between e1452

and e2. We synthesize these examples from the453

6https://prodi.gy

Model Names Input Text

DIRECT None
FULLDOC Full document
ENT Sentences containing at least one of

the two query entities
FIRST2 First two sentences from a doc.
FIRST3 First three sentences from a doc.
BESTPAIR Two sentences yielding highest pre-

diction prob. (incl. variants using reg-
ularization)

SUFFICIENT Sufficient sentences selected by DL
(incl. variants using regularization)

Table 2: Model names used in the experiments and their
associated evidence given as inputs.

original dataset and sample random entity pairs 454

from documents to which we assign an NA class to 455

construct negative pairs exhibiting no relation. 456

The model input is represented as: 457

[CLS]<ent-1>[SEP]<ent-2>[SEP]<doc>[SEP]. 458

We use the encoding of [CLS] in the last layer to 459

make predictions. 460

To make the setting more realistic, we do not 461

use the large-scale evidence annotation and assume 462

there is limited sentence-level supervision avail- 463

able. To be specific, we include 10% fine-grained 464

annotations in our adapted DocRED dataset. 465

4.2 Models 466

Due to richer and higher-quality supervisions in the 467

DocRED setting, we conduct a larger set of abla- 468

tions and comparisons there. We compare against 469

a subset of these models in the radiology setting. 470

Baselines We consider a number of baselines for 471

adapted DocRED which return both predicted la- 472

bels and evidence. (1) DIRECT predicts the relation 473

directly from the entity pairs without any sentences 474

as input, using a model trained with just these in- 475

puts. (2) FULLDOC takes the full document as se- 476

lected evidence and uses the base RoBERTa model 477

(3) ENT takes all sentences with entity mentions e1 478

and e2 as input; (4) FIRST2, FIRST3 retrieve the 479

first 2 and 3 sentences from a document, respec- 480

tively; and (5) BESTPAIR chooses the best sentence 481

pair by first taking each individual sentence as in- 482

put to the model and then picking top two sentences 483

having highest probabilities on their predictions. 484

SUFFICIENT is our main method for both 485

datasets, which we then augment with additional 486

supervision as described in Section 3.3. We use 487

subscripts attn, entropy, both and none 488

to represent attention regularization, entropy max- 489
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imization, the combination of two, and neither.490

Both BESTPAIR and SUFFICIENT methods lever-491

age backbone RoBERTa models trained with loss492

functions mentioned above, differing only in their493

evidence selection.494

Table 2 summarizes the abbreviated names of495

models and their inputs. Training details are de-496

scribed in Appendix A.497

Metrics We report both the accuracy and F1 for498

the model (Full Doc) as well as evaluation of Ev-499

idence selection compared to human judgments,500

either precision or F1. We also report results in501

the Reduced Doc setting, where only the selected502

evidence sentences are fed to the RoBERTa model503

(trained over whole documents) as input. For our504

SUFFICIENT method, this accuracy is the same as505

the full method by construction, but note that it506

can differ for other methods. This reduced setting507

serves as a sanity check for the faithfulness of our508

explanation techniques.509

Note once again that accuracy in the Full Doc510

case can differ for our methods that are trained with511

different regularization schemes, as these yield dif-512

ferent models that return different predicted labels513

in addition to different evidence.514

5 Results515

5.1 Results on Brain MRI516

Table 3 shows the performance of our models and517

baselines in terms of label prediction and evidence518

extraction. For each result, we perform a paired519

bootstrap test comparing to SUFFICIENTnone. We520

underline results that are better at a significance521

level of p = 0.05 on the corresponding metrics. In522

the mass effect setting, our SUFFICIENTboth model523

achieves the highest evidence extraction precision524

of the learning-based models, exceeds FULLDOC,525

FIRST2/3, and BESTPAIR on the metric by a large526

margin, and nearly matches that of the rule-based527

system. It is difficult to be more reliable than a528

rule-based system, which will nearly always make529

correctly-sourced predictions. But this model is530

able to combine that reliability with the higher531

F1 of a learned model. Note that due to the high532

base rates of certain findings, we focus on F1 in-533

stead of accuracy. We see a similar pattern on con-534

trast enhancement as well, although the evidence535

precision is lower in that case.536

These results show that learning-based systems537

make accurate predictions in this domain, and that538

Model
Label Evidence

Full Doc Reduced Doc
Acc F1 Acc F1 Pre Len

Mass Effect

FULLDOC 66.6 42.1 66.6 42.1 16.5 10.1
FIRST2 − − 82.4 45.2 21.3 2.00
FIRST3 − − 82.4 45.2 24.0 3.00
RULE 77.9 11.8 77.9 11.8 84.8 1.46

BESTPAIRnone 66.6 42.1 82.4 52.2 24.3 2.00
BESTPAIRboth 76.7 60.0 79.4 44.3 50.7 2.00

SUFFICIENTnone 66.6 42.1
Identical to
Full Doc

16.5 2.84
SUFFICIENTattn 69.2 47.6 65.6 2.31
SUFFICIENTentropy 45.3 0.0 15.8 2.50
SUFFICIENTboth 76.7 60.0 77.8 1.51

Contrast Enhancement

FULLDOC 69.5 60.9 69.5 60.9 13.5 10.1
FIRST2 − − 67.2 55.3 14.1 2.00
FIRST3 − − 70.3 62.4 14.6 3.00
RULE 68.8 56.5 68.8 56.5 87.1 1.67

BESTPAIRnone 69.5 60.9 73.4 67.7 10.9 2.00
BESTPAIRboth 90.8 87.2 89.1 88.4 54.7 2.00

SUFFICIENTnone 69.5 60.9
Identical to
Full Doc

33.5 2.84
SUFFICIENTattn 85.8 81.0 60.7 2.48
SUFFICIENTentropy 71.5 59.5 25.2 2.55
SUFFICIENTboth 90.8 87.2 71.7 1.50

Table 3: Model performance on BRAINMRI. Models
are evaluated under two settings by taking (a) full docu-
ment (Full Doc); (b) selected evidence (Reduced Doc)
as inputs. RULE is the baseline mentioned in Section
4.1.1. Pre stands for the precision of evidence selection,
and Len is the average number of sentences extracted.
Underlined results are better than SUFFICIENTnone on
the corresponding metric according to a paired bootstrap
test with p = 0.05.

Model
Label Evidence

Full Doc Reduced Doc
Acc F1 Acc F1 F1 Len

DIRECT − − 66.4 45.3 − −
FULLDOC 83.0 66.0 83.0 66.0 34.9 8.03
FIRST2 − − 75.3 58.1 47.9 2.00
FIRST3 − − 77.5 60.7 44.6 3.00
ENT − − 82.4 65.4 61.5 3.93

BESTPAIRnone 83.0 66.0 73.9 55.3 39.2 2.00
BESTPAIRattn 83.2 65.0 73.4 53.5 43.9 2.00
BESTPAIRentropy 81.8 64.2 78.5 58.2 52.3 2.00
BESTPAIRboth 82.7 66.5 81.6 65.3 66.2 2.00

SUFFICIENTnone 83.0 66.0
Identical to
Full Doc

67.2 1.42
SUFFICIENTattn 83.2 65.0 70.3 1.45
SUFFICIENTentropy 81.8 64.2 69.9 1.65
SUFFICIENTboth 82.7 66.5 73.1 1.65

human − − − − − 1.59

Table 4: Model performance on adapted DocRED. Mod-
els are evaluated under two settings as in BRAINMRI.
Underlined results are better than SUFFICIENTnone on
the corresponding metric according to a paired bootstrap
test with p = 0.05.
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Model Mass Effect Ctr. Enhance.
Mean Max Mean Max

SUFFICIENTnone 7.3 7.4 28.6 29.8
SUFFICIENTboth 18.9 19.2 37.9 42.0

Table 5: Distributions of attribution mass over explicit
cues (“enhancement” for contrast enhancement and
“effect” for mass effect) for our best model and the
baseline. Mean/Max is the mean of instance-wise aver-
age/maximum of the normalized attribution mass falling
on the given token.

their evidence extraction can be improved with bet-539

ter training, even in spite of the small size of the540

training set. In section 5.2, we focus on the adapted541

DocRED setting, which allows us to examine our542

model’s performance in a higher-data regime.543

Attribution scores are more peaked at the oc-544

currence of key terms. We conduct analysis on545

how the attribution scores from SUFFICIENTboth546

are peaked around the correct evidence compare to547

that from SUFFICIENTnone using our manually an-548

notated set BRAINMRI. We compute the mean of549

the instance-wise average and maximum of the nor-550

malized attribution mass falling into a few explicit551

tokens: enhancement for contrast enhancement and552

effect for mass effect, which are common explicit553

indicators in the context of specified key features.554

The results in Table 5 show attribution scores being555

peaked around the correct terms, highlighting that556

these models can be guided to not only make cor-557

rect predictions but attend to the right information.558

Table 9 in the Appendix shows visualizations of559

attribution scores for an example in BRAINMRI us-560

ing DeepLIFT. Even though baseline models make561

correct predictions, their attribution mass is dif-562

fused over the document. With the help of regular-563

ization, our model is capable of capturing implicit564

cues such as downward displacement of the brain565

stem, although it is trained on an extremely small566

training set with only explicit cues like mass effect567

in a weak sentence-level supervision framework.568

5.2 Results on Adapted DocRED569

Comparison to baselines Table 4 shows that the570

ENT baseline is quite strong at DocRED evidence571

extraction. However, our best method still exceeds572

this method on both label accuracy as well as ev-573

idence extraction while extracting more succinct574

explanations. We see that the ability to extract a575

variable-length explanation is key, with FIRST2,576

FIRST3 and BESTPAIR performing poorly. No-577

tably, these methods exhibit a drop in accuracy in578

the reduced doc setting for each method compared 579

to the full doc setting, showing that the explana- 580

tions extracted are not faithful. 581

Learning-based models with appropriate reg- 582

ularization perform relatively better in this 583

larger-data setting From Table 3 and Table 4, 584

we can observe that various regularization tech- 585

niques applied to SUFFICIENT models maintain or 586

improve overall model performance on both key 587

feature and relation classification. We see that our 588

SUFFICIENT methods do not compromise on ac- 589

curacy but make predictions based on plausible 590

evidence sets, which is more evident when we have 591

richer training data. We perform further error anal- 592

ysis in Appendix F. 593

Faithfulness of techniques One may be con- 594

cerned that, like attention values (Jain and Wallace, 595

2019), our feature attribution methods may not 596

faithfully reflect the computation of the model. We 597

emphasize again that the SUFFICIENT paradigm on 598

top of the DeepLIFT method is faithful by our defi- 599

nition. For a model f , we measure the faithfulness 600

by checking the agreement between ŷ = f(D, t) 601

and y′ = f(Êt, t), where Êt is the extracted evi- 602

dence we feed into the same model under the re- 603

duced document setting. This is shown for all meth- 604

ods in the “Reduced doc” columns in Tables 3 and 605

4. We see a drop in performance from techniques 606

such as BESTPAIR: the full model does not make 607

the same judgment on these evidence subsets, but 608

by definition it does in the SUFFICIENT setting. 609

As further evidence of faithfulness, we note that 610

only a relatively small number of evidence sen- 611

tences, in line with human annotations, are ex- 612

tracted in the SUFFICIENT method. These small 613

subsets are indicated by feature attribution meth- 614

ods and sufficient to reproduce the original model 615

predictions with high confidence, suggesting that 616

these explanations are faithful. 617

6 Conclusion 618

In this work, we develop techniques to employ 619

small amount of data to improve reliability of 620

document-level IE systems in two domains. We 621

systematically evaluate our model from perspec- 622

tives of faithfulness and plausibility and show that 623

we can substantially improve models’ capability in 624

focusing on supporting evidence while maintain- 625

ing their predictive performance, leading to models 626

that are “right for the right reasons.” 627
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A Implementation Details945

We train all RoBERTa models for 15 epochs with946

early stopping using 1 TITAN-Xp GPU. We use947

AdamW (Loshchilov and Hutter, 2019) as our op-948

timizer and initialize the model with roberta-949

base for DocRED and biomed-roberta-950

base (Gururangan et al., 2020) for brain MRI data,951

both with 125M parameters. The batch size is set to952

16 for RoBERTa models trained with both attention953

regularization and entropy maximization and 8 for954

models with other loss functions, and the learning955

rate is 1e-5 with linear schedule warmup.956

The maximum number of tokens in each docu-957

ment is capped at 296 for modified DocRED and958

360 for radiology reports. These numbers are cho-959

sen such that the number of tokens for around 95%960

of the documents is within these limits. Remaining961

tokens are clipped from the input. The hidden state962

of the [CLS] token from the final layer is fed as963

input to a linear projection head to make predic-964

tions. The average training time for each model965

is around 4 GPU hours. We will release our code966

upon publication.967

B Interpretation Methods Comparison968

We evaluate four interpretation methods on SUF-969

FICIENTnone and SUFFICIENTboth using adapted970

DocRED. These methods are widely used in the971

literature, namely Integrated Gradients, LIME,972

DeepLIFT, and Input Gradient, as discussed in Sec-973

tion 3.2. We compare their evidence extraction974

capabilities by selecting a wide range of λ, which975

controls the number of sentences to be selected.976

Results are shown in Figure 3. The four tech-977

niques generally perform similarly, with DeepLIFT978

and Input Gradient performing slightly better. For979

each interpretation method, the result of SUFFI-980

CIENTboth is significantly better than that of SUF-981

FICIENTnone. Similar values of λ between 0.8 and982

0.9 (preferring to select more sentences) work well983

across all methods. Table 6 shows the comparison984

over the threshold (λ = 0.8) we choose for our985

experiments in Section 5. In general, our method986

is robust to model interpretation techniques and987

evidence selection threshold λ.988

Sentence ranking step mentioned in Section 3.2989

requires 0.3 GPU hour for Input Gradient and990

DeepLIFT, 2.5 GPU hours for Integrated Gradi-991

ents, and 14 GPU hours for LIME. We choose 30992

steps to approximate the integral for Integrated Gra-993

dients and 100 samples for each input to train the994

Figure 3: Evidence F1 on adapted DocRED under four
model interpretation methods for SUFFICIENTboth over
a wide range of λ.

surrogate interpretable model (a linear model in 995

our case) for LIME. 996

SUFFICIENTnone SUFFICIENTboth

LIME 54.0 70.8
Integrated Gradients 60.6 70.3
DeepLIFT 67.3 73.1
Input Gradient 68.3 73.5

Table 6: Evidence F1 on adapted DocRED under four
model interpretation methods for SUFFICIENTnone and
SUFFICIENTboth when λ = 0.8.

C Limitations and Risks 997

There are a few limitations of our work. First, 998

we currently test our methods on document-level 999

classification and slot-filling tasks, but there are 1000

other task formats like span extraction that we do 1001

not investigate here. Second, we focus on off-the- 1002

shelf pre-trained models (i.e. RoBERTa) in this 1003

paper, though we believe our methods could also 1004

be applied and adopted to other models. Finally, 1005

and most critically, the interpretation techniques 1006

we use are all fundamentally approximate; while 1007

visualizing model rationales can be useful in the 1008

context of clinical decision support systems, our 1009

evidence sets are not proof positive that a model’s 1010

predictions are reliable. Such systems need to be 1011

carefully deployed to avoid misleading practition- 1012

ers into trusting them too readily. We view this as 1013

the principal risk of our work. 1014

D Dataset statistics 1015

We provide the statistics for both adapted DocRED 1016

and brain MRI reports dataset in Table 7. Both 1017

datasets are in English and the DocRED dataset is 1018

publicly available at https://github.com/ 1019

thunlp/DocRED. 1020
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Our use of the brain MRI reports is covered un-1021

der IRB [anonymized for peer review].1022

E Annotation Instructions1023

We recruited four radiology residents to make anno-1024

tations. They did not receive compensation for this1025

project specifically. The annotation instructions1026

for the BrainMRI dataset are provided in Figure 4.1027

These were developed jointly with the annotators.1028

In particular, decisions to exclude normal brain ac-1029

tivity and confounders such as SVID were made to1030

increase interannotator agreement after an initial1031

round of annotation, making it easier for the label-1032

ing to focus on a single core disease or diagnosis1033

per report.1034

F Error Analysis1035

The first example in Table 8 shows a representa-1036

tive case where our model predicts the correct re-1037

lation and extracts reasonable supporting evidence.1038

Unsurprisingly, this happens most often in simple1039

cases when reasoning over the interaction of sen-1040

tences is not required.1041

We observe a few common types of errors. First,1042

we see potential alternatives for relations or1043

evidence extraction. From around 60% of our1044

randomly selected error cases, our model either1045

predicts debatably correct relations or picks sen-1046

tences that are related but not perfectly aligned1047

with human annotations. The second row in Table1048

8 illustrates an example where the two entities ex-1049

hibit multiple relationships; the model’s prediction1050

is correct (Vienna is place where Martinelli was1051

both born and died), but differs from the annotated1052

ground truth and supporting evidence. Such rela-1053

tions are relatively frequent in this dataset; a more1054

complex multi-label prediction format is necessary1055

to fully support these.1056

Another type of error is complex logical reason-1057

ing. Even if our model can extract right evidence,1058

it still fails in around 10% of random error cases1059

requiring sophisticated reasoning. For example,1060

to correctly predict the relation between Theobald1061

Tiger and 21 December 1935 in the third exam-1062

ple in Table 8, a model needs to recognize that1063

Theobald Tiger and Kurt Tucholsky are in fact the1064

same entity by referring to pseudonym, which is a1065

challenging relation to recognize.1066

Finally, the model sometimes selects more sen-1067

tences than we truly need. Interestingly, this is1068

an error in terms of evidence plausibility but not in1069

terms of prediction. The number of extracted sen- 1070

tences is very high in around 25% of the random 1071

error cases. The last row from Table 8 is one of 1072

representative examples with this kind of error. Al- 1073

though our model possibly has already successfully 1074

extracted right evidence in the first two steps, it con- 1075

tinues selecting unnecessary sentences because the 1076

prediction confidence is not high enough, a draw- 1077

back in our way of selecting evidence mentioned 1078

in Section 4.2. Moreover, our model extracts one 1079

more sentence on average when predicting incor- 1080

rect relations, suggesting that in these cases it does 1081

not cleanly focus on the correct information. 1082
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Dataset Setting # doc. # inst. # word/inst. # sent./inst. # relation # NA%

Adapted DocRED train 3053 38180 203 8.1 96+1 33
val 1000 12323 203 8.1 96+1 33

Brain MRI train 327 327 177 11.6 − −
val 86 86 132 10.1 − −

Table 7: Statistics of the two document-level IE datasets. Each document may have multiple entity pairs of interest,
giving rise to multiple instances in the adapted DocRED setting. For adapted DocRED, we have 96 relations from
the data plus an NA relation that we introduce for 1/3 of the data.

Figure 4: Annotation instructions.
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Type Example

Predicts correctly
and extracts right
evidence

[0] Delphine “Delphi” Greenlaw is a fictional character on the New Zealand soap opera Shortland
Street, who was portrayed by Anna Hutchison between 2002 and 2004. ...

Predicted relation: country of origin Relation: country of origin
Extracted Evidence: [0] Annotated Evidence: [0]

Predicts debatably
correct answer,
extracts reasonable
evidence

[0] Anton Erhard Martinelli (1684 – September 15 , 1747) was an Austrian architect and master
- builder of Italian descent. [1] Martinelli was born in Vienna. ... [3] Anton Erhard Martinelli
supervised the construction of several important buildings in Vienna, such as ... [4] He designed ... [6]
He died in Vienna in 1747.

Predicted relation: place of birth Relation: place of death
Extracted Evidence: [1] Annotated Evidence: [0, 6]

Predict incorrect
example on
examples requiring
high amount of
reasoning

[0] Kurt Tucholsky (9 January 1890 – 21 December 1935) was a German - Jewish journalist, satirist,
and writer. [1] He also wrote under the pseudonyms Kaspar Hauser (after the historical figure), Peter
Panter, Theobald Tiger and Ignaz Wrobel. ...

Predicted relation: NA Relation: date of death
Extracted Evidence: [0] Annotated Evidence: [0]

Selecting more
sentences than are
needed

[0] Henri de Boulainvilliers ... was a French nobleman, writer and historian. ... [2] Primarily
remembered as an early modern historian of the French State, Boulainvilliers also published an early
French translation of Spinoza’s Ethics and ... [3] The Comte de Boulainvilliers traced his lineage to
... [5] Much of Boulainvilliers’ historical work ...

Predicted relation: country of citizenship Relation: country of citizenship
Extracted Evidence: [2, 0, 1, 5, 4, 3] Annotated Evidence: [0, 2]

Table 8: Four types of representative examples that show models’ behavior. In our adapted DocRED task, models
are asked to predict relations among heads and tails. Here we use model SUFFICIENTboth for illustrations, which
has the best evidence extraction performance. Sentences in extracted evidence are ranked by DL.

Model An Example of mass effect, label: positive, evidence: 0 or 6

SUFFICIENTnone [0] These images show evidence of downward displacement of the brain stem with collapse of the
interpeduncular cistern and caudal displacement of the mammary bodies typical for intracran ial
hypertension . [1] There is diffuse pachymeningeal enhancement evident . [2] B ilateral extra axial col-
lections are evident the do not conform to the imaging characteristics of CSF are seen over lying the
hemispheres. [3] These likely reflect blood t inged hyg romas and there does appear to be a blood products
in the deep tendon portion of the right sided collection on the patient ’s left see image 14 series 2 .
[4]There does appear to be a discrete linear subdural hematoma along the right tentorial leaf. [5] Sub dural
collection is noted on both sides of the falx as well . [6] There is mass effect at the level of the tentorial
inc isure due to transtentorial hern iation with deformity of the midbrain . [7] There is no evidence
an acute inf ar ct . [8] No parenchymal hemorrhage is evident . [9] Apart from the meningeal enhancement
there is no abnormal enhancement noted.

SUFFICIENTboth [0] These images show evidence of downward displacement of the brain stem with collapse of the
interpeduncular cis tern and caudal displacement of the mammary bodies typical for intracranial
hypertension . [1] There is diffuse pachymeningeal enhancement evident. [2] Bilateral extra axial collections
are evident the do not conform to the imaging characteristics of CSF are seen overlying the hemispheres.
[3] These likely reflect blood tinged hygromas and there does appear to be a blood products in the deep
tendon portion of the right sided collection on the patient’s left see image 14 series 2. [4] There does appear
to be a discrete linear subdural hematoma along the right tentorial leaf. [5] Subdural collection is noted
on both sides of the falx as well. [6] There is mass effect at the level of the tentorial inc isure due to
transtentorial hern iation with deformity of the midbrain . [7] There is no evidence an acute infarct.
[8] No parenchymal hemorrhage is evident. [9] Apart from the meningeal enhancement there is no abnormal
enhancement noted.

Table 9: An illustration of models’ attribution scores over a report from BRAINMRI using DeepLift with and w/o
regularization techniques. SUFFICIENTboth appears to leverage more information from right sentences.
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