
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FROM PREDICTION TO PERFECTION:
INTRODUCING REFINEMENT TO AUTOREGRESSIVE
IMAGE GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Autoregressive (AR) models have emerged as a powerful framework for image
generation, yet they remain bound by a fundamental limitation: once a prediction
is made, it cannot be revised. Each step marches forward in a strict left-to-right
sequence, causing small errors to accumulate and compromise the final image. In
this work, we reimagine this process with TensorAR, a decoder-only AR model
that shifts from predicting discrete tokens to predicting overlapping tensors, which
are essentially several adjacent discrete image tokens. This simple change trans-
forms image synthesis into a process of next-tensor prediction, enabling the model
to refine earlier outputs while preserving the causal structure that defines autore-
gression. To guard against information leakage during training, we introduce a
discrete tensor noising mechanism inspired by discrete diffusion theory, which
injects categorical noise into input tensors. TensorAR is designed to be plug-and-
play: unlike masked AR methods, it requires no architectural modifications, and
unlike autoregressive diffusion, it preserves the familiar AR training paradigm.
We evaluate TensorAR across both class-to-image and text-to-image tasks, show-
ing consistent gains in generation quality and instruction-following ability, while
achieving a superior balance between quality and latency. In doing so, TensorAR
offers a new path forward for autoregressive generation—one where predictions
are not just produced, but continually refined.

1 INTRODUCTION

Building on the exceptional success of autoregressive (AR) models in natural language processing,
attributable to their scalability, flexibility, and capacity to capture complex sequential dependencies,
researchers have extended AR approaches to conditional image generation and to unified under-
standing and generation frameworks (Pang et al., 2024; Yu et al., 2024; Sun et al., 2024; Luo et al.,
2024; Yu et al., 2023; Tian et al., 2024; Li et al., 2024a; Esser et al., 2021; Lee et al., 2022). At their
core, AR models rely on a simple yet effective self-supervised objective: predicting the next token
in a sequence. Compared with other generation paradigms (e.g., flow-matching models), AR mod-
els enable structured, step-by-step synthesis and offer advantages in controllability and multimodal
integration (Wu et al., 2024; Team, 2024).

For image generation tasks, standard AR models (Pang et al., 2024; Yu et al., 2024; Sun et al., 2024)
typically serialize images by treating each image patch as a discrete token and modeling dependen-
cies in a predefined order (e.g., a raster scan). This paradigm forces prediction in a counter-intuitive
sequence order that disrupts spatial continuity; early tokens are often blurry, which can degrade
overall quality. To improve AR generation quality, a variety of approaches have been proposed,
including combining AR with continuous diffusion (Gu et al., 2024; Deng et al., 2024), model-
ing per-token probability distributions (Li et al., 2024a; Fan et al., 2024), and exploring alternative
generation paradigms (Tian et al., 2024; Ren et al., 2025). For example, MAR (Li et al., 2024a)
models per-token probability distributions via a diffusion procedure, enabling AR models to operate
in continuous space and eliminating the need for discrete tokenizers. DART (Gu et al., 2024) uni-
fies autoregression and diffusion within a non-Markovian framework, iteratively denoising image
patches across spatial and spectral dimensions using an AR model with a standard language-model
architecture. VAR (Tian et al., 2024) adopts a next-scale prediction framework that emulates hu-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

man sketching through coarse-to-fine, 2D-parallel generation. Despite strong results, these methods
typically require additional VQ-VAE training or a modification in training objective (from classifi-
cation to regression), which increases computational and memory costs and may hinder multimodal
integration. Parallel to these existing works, motivated by the coarse-to-fine principle that underpins
diffusion and flow-matching models, we ask: Can existing standard AR models be enabled to refine
their own predictions without modifying their architecture or training recipe?

Vanilla AR

···

Masked AR

···

Vanilla AR

···

Masked AR

···
continuous latent

discrete token

tensor
(discrete tokens)

Training Paradigm

Attention Type

Refine

Model Type

Classification Classification
/ Regression Regression Classification

Causal Bidirectional Bidirectional Causal

Not Supported Not Supported Supported Supported

(a) Standard AR,
e.g., LlamaGEN;

(b) Masked AR,
e.g., MaskGIT;

(c) AR + Continuous
Diffusion, e.g.,DART;

(d) AR + Discrete
Diffusion, TensorAR;

Figure 1: Comparison with different AR-based methods. (a) Vanilla AR models that directly per-
form next-token-prediction; (b) Masked AR models that predict masked tokens given clean tokens;
(c) Integration with diffusion models that utilize the continuous output latent of AR models as the
condition to an additional diffusion generation head; (d) The proposed TensorAR that does not mod-
ify the base architecture and classification-based training paradigm.

In this paper, we introduce TensorAR, a coarse-to-fine autoregressive image generation framework
that reframes the conventional next-token prediction paradigm as “next-tensor-prediction”. The
core idea behind TensorAR is simple. Unlike standard AR models that generate one token at a
time, TensorAR predicts a tensor, i.e., a group of consecutive tokens, at each step, which is the
origin of the name, i.e., TensorAR. Because adjacent tensors overlap, later predictions can revise
earlier ones, enabling iterative refinement of image content similar to diffusion models. For a better
understanding, we provide a visual comparison in Figure 1. Unlike masked AR models, TensorAR
does not require architectural modifications, and unlike autoregressive diffusion models, it does not
alter the training paradigm.

6000 6200 6400 6600 6800 7000 7200

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

1.8

2.3

2.8

3.3

3.8

4.3

4.8

5.3

5.8

0 200 400 600 800 1000 1200 1400 1600

G
en

Ev
al

 S
co

re
 (↑

)

FI
D

 (↓
)

Model Size (M)

+ TensorAR
LlamaGEN
Janus-Pro-7B

Consisient
improvement

Figure 2: Model size-FID curves on TensorAR
across different tasks. TensorAR achieves con-
sistent improvements on both class-to-image and
text-to-image generation tasks. Best view in color.

However, training TensorAR is nontrivial. A
naive strategy would mimic standard AR train-
ing by feeding a sequence of ground-truth ten-
sors and supervising the prediction of next-step
tensors. Nevertheless, because tensors are gen-
erated with a sliding window fashion, some to-
kens in the predicted tensor already appear in
the input tensors, causing information leakage,
where the model can minimize loss by copying
overlapping tokens rather than learning mean-
ingful causal dependencies. To address this,
we introduce a discrete tensor noising mecha-
nism based on discrete diffusion theory, which
injects categorical noise into input tensors dur-
ing training. By modulating noise levels token-
wise within each tensor, we stimulate an inter-
nal progressive denoising process in TensorAR.
In addition, we incorporate two lightweight
modules, i.e., an input encoder and an output
decoder, to interface with tensor-based inputs
and outputs. Both modules use the residual de-
sign to better leverage pretrained models and promote faster, more stable convergence. Together,
these components make TensorAR a plug-and-play extension that integrates with existing AR mod-
els with minimal changes to the base architecture, improving practical flexibility relative to training
from scratch. We evaluate TensorAR on representative AR models for class-conditional (e.g., Llam-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

aGen (Sun et al., 2024)) and text-conditional (e.g., Janus-Pro-7B) image generation across multiple
model sizes. We conduct extensive experiments across a range of base models and model sizes and
comprehensive ablation studies, consistent performance gains on both tasks (Figure 2) confirm the
effectiveness of the refinement mechanism and show a better trade-off between quality–latency.

2 TENSORAR

In this section, we first revisit the details about autoregressive modeling and discrete diffusion in 2.1
and then provide detailed explanations of our proposed method in 2.2.

(a) TensorAR inference paradigm

𝑥! 𝑥!"#

𝑄!$

ℎ!

Embedding

(c) Input Encoder

(b) Output Decoder

Linear

𝑥! 𝑥!"#

ℎ!

𝑄%&'

𝑥∆ Pad Token

𝑥! Image Token

ℎ! Latent

𝐶 Condition

New Module

Base Module

MLP

Query

Attention
Module

×𝐿
La

te
nt

Base Model

Input Encoder

Output Decoder

···𝑥# 𝑥) 𝑥) 𝑥* 𝑥+ 𝑥∆

𝐶 ··· 𝑥+𝑥# 𝑥)

(d) Sketch of 𝑄!$ and 𝑄%&'

𝑥+,#

Figure 3: (a) Overview of our proposed TensorAR framework during inference time with the window
size k = 2 and the sequence length T ; (b) Output decoder that wraps the original linear output
layer with residual design; (c) Input encoder that wraps the original embedding layer with residual
design; (d) Sketch of Qin and Qout, which can be implemented by query transformers. The newly
introduced modules are colored in orange and the base modules are in purple.

2.1 PRELIMINARIES

In the following paragraph, we use x to denote a sequence of discrete tokens; x denotes one discrete
token; x denotes the one-hot version of x; x∗ denotes the noisy token of x.

2.1.1 AUTOREGRESSIVE IMAGE GENERATION

Given a sequence of discrete tokens x = [x1, x2, ..., xT] of length T and its condition c, where xi ∈
{0, 1, ..., C − 1} is an integer from a vocabulary of size C, an autoregressive model ζθ are trained to
model the probability distribution of each variable xt based on on its precedents [x1, x2, ..., xt−1]:

ζθ(x; c) =
T∏

t=1
ζθ(xt|x1, ..., xt−1; c), where c may be either class labels or textual prompts, and ζθ

is the token distribution predictor with a model parameterized by θ.

To apply autoregressive modeling to 2D images, images are first tokenized into several discrete
tokens via a pre-defined order, where each discrete token corresponds to an image patch. Given
pdata as the distribution of discrete image data, the training objective of autoregressive models is to

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

minimize the negative log-likelihood loss, which is formulated as:

L(θ) = Ex1:T∼pdata

[
−

T∑
t=1

log ζθ(xt | x<t, c)
]
. (1)

2.1.2 DISCRETE DIFFUSION

Discrete diffusion models (Sohl-Dickstein et al., 2015; Hoogeboom et al., 2021; Austin et al., 2021)
are a class of latent variable models characterized by a forward noising process and a learned reverse
denoising process. The forward process q(x1:T |x0) =

∏T
t=1 q(xt|xt−1) corrupts the original data

x0 into a sequence of increasingly noisy latent variables x1:T . The backward process learns to grad-
ually denoise the latent variables of the data distribution as pθ(x0:T) = p(xT)

∏T
t=1 pθ(xt−1|xt).

According to existing studies (Zheng et al., 2023), by defining both the forward and backward dis-
tribution as categorical distribution, i.e., q(xt|xt−1) = Cat(xt; p = Qtxt−1), where Cat(x|p) is a
categorical distribution over the one-hot vector x with probabilities given by the vector p and Qt

is the time-dependent transition matrix, the forward process posterior q(xt−1|xt,x0) and the op-
timization objectives can be calculated analytically, which is simply as a weighted cross-entropy
loss.

L(θ) = Ex0∼pdata, t∼γ(t), xt∼q(xt|x0,t)

[
− wt log pθ(x0 | xt, t)

]
, (2)

where pdata is the true data distribution, t is the noise timestep calculated by the scheduling function
γ(·), wt is the weighting coefficient.

2.2 TENSORAR

2.2.1 OVERALL FRAMEWORK

TensorAR serves as a plug-and-play module compatible with existing transformer-based autore-
gressive models. Unlike standard AR models that operate on sequences of tokens, TensorAR
operates on sequences of tensors. To this end, TensorAR rearranges the sequence of tokens
x = [x1, x2, ..., xT] into the sequence of overlapping tensors xk = [x1,k,x2,k, ...,xT,k], where
xi,k = [xi, xi+1, ..., xi+k−1] is a single tensor with k being its the window size. It is worth noting
that an additional padding token x∆ is added in the last few tensors of xk, as shown in Figure 3.
During training, we ignore the loss on these padding tokens, while during inference, these padding
tokens do not contribute to the final results. By reformulating the original Markov process over
a token sequence into a Markov process over a tensor sequence, TensorAR adopts the next-tensor
generation paradigm, which can be expressed as:

pθ(xk; c) =

T∏
t=1

pθ(xt,k|x1,k, ...,xt−1,k; c); xi,k = [xi, xi+1, ..., xi+k−1]. (3)

2.2.2 REFINEMENT MECHANISM

The major advantage of TensorAR is its ability to refine previously generated tokens, a capability
that standard autoregressive models lack. Consider a predicted tensor xi,k, within this tensor, the
first token xi is the most refined, having undergone k refinement steps, whereas the last token xi+k−1

has been produced only once. Consequently, the corresponding image patch is expected to exhibit
finer-grained details as the number of refinement steps increases. Intuitively, TensorAR decodes
image patches iteratively in a coarse-to-fine manner, whereas standard AR methods generate each
patch once in a single pass. This paradigm enables TensorAR to more effectively exploit future
context to refine earlier content, resulting in higher generation quality.

As shown in Figure 3 (d), to accommodate tensor-based inputs and outputs, TensorAR introduces an
input encoder Menc and an output decoder Mdec that wrap the original embedding and linear output
layers, respectively. The input encoder compresses several token embeddings into one single hidden
state, while the output decoder reconstructs several consecutive tokens from one single hidden state.
Specifically, compression and decompression are performed by two additional modules, Qin and
Qout, respectively. These modules share a similar architecture and can be implemented with query

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

transformers, which contain an attention module with several cross-attention layers and one output
MLP module. Moreover, to better leverage pretrained models and to facilitate stable convergence
during early training, we incorporate a residual mechanism into both Menc and Mdec.

2.2.3 NOISE MECHANISM

As shown in Figure 3 (a), considering the overlapping tokens during training, directly applying
autoregressive models to tensor sequences encounters the information leakage problem, as some
tokens in the predicted tensor already appear in the input tensor. This causes the model to collapse
into simply replicating the overlapping tokens, rather than learning meaningful dependencies.

To address this issue, inspired by discrete diffusion theory, we propose the discrete tensor noising
scheme, which adds noise to the input tensors during training. Let us begin with a simple case with a
tensor (xi, x

∗
i+1, ..., x

∗
i+k−1) where the superscript ∗ represents noisy tokens. During training time,

the ideal output will be a tensor of clean tokens (xi+1, ..., xi+k). Therefore, for the overlapping
tokens, TensorAR serves as the denoiser that reconstructs clean tokens from noisy ones. We provide
details about the noise mechanism in the following paragraph.

Given a tensor xt,k = [xt, ..., xt+k−1] and the vocabulary size V , we define the discrete diffusion
process to each token except the first one using a categorical distribution that has a β(j) probability
of resampling a category uniformly:

q(x∗
t+j |xt+j , j) = Cat(x∗

t+j |(1− β(j))xt+j + β(j)/V), j ∈ [2, ..., k − 1], (4)

where x∗
j is the noisy token and Cat represents the categorical distribution. Besides, the noise weight

β(j) is monotonically increased from 0 to 1 within each tensor, i.e., for j ∈ [2, ..., k − 1].

Table 1: Noise scheduling functions.

Function Expression

Linear β(j) = j/k
Sine β(j) = sin(πj/2k)

Square root β(j) =
√

j/k

Exponential β(j) = j
1

k/2

We design a series of scheduling functions β(·) as shown
in Table 1, to control how the input and noise tokens are
fused. These noise scheduling functions include linear,
sine, square root, and exponential forms. By modulating
the noise intensity across different tokens within a tensor,
we simulate a progressive denoising process in autore-
gressive model training, akin to that in diffusion models.
Furthermore, as shown in Figure 3, it is worth noting that
we utilize an additional padding token x∆, and we ignore
the loss calculation at the position of the padding token.
By combining Equation 1 and Equation 2, the overall training objective of TensorAR can be formu-
lated as follows:

L(θ) =
T∑

i=1

k∑
j=1

Exi+j∼pdata,x∗
i+j∼q(x∗

i+j |xi+j ,j)

[
wj log(pθ(xi+j |x<i,k; c))

]
. (5)

.

Due to the page limit, we provide the pseudo-code of TensorAR during training in the appendix.

2.3 RELATION TO OTHER IMAGE GENERATION PARADIGMS

Compared with diffusion models, TensorAR models and trains on image patches in an autoregres-
sive manner, naturally aligning with the discrete sequence modeling paradigm and causal masking
used by multimodal large language models. This design enables seamless integration with standard
Transformer backbones. Besides, unlike classical diffusion methods that update the entire image at
every step, TensorAR updates only the local region covered by the sliding window, preserving iter-
ative refinement while enabling online generation and better scalability. Moreover, unlike standard
autoregressive models that generate each patch only once, TensorAR can iteratively refine previously
generated patches while producing subsequent content, improving both efficiency and overall visual
quality and consistency. In particular, when k = 1, TensorAR reduces to a standard autoregressive
model; when k equals the total number of image patches T , TensorAR becomes equivalent to a dis-
crete variant of a diffusion process (with a different generation order, i.e, left-to-right in TensorAR
and random in standard discrete diffusion). During decoding, TensorAR can simultaneously attend
to conditions and forthcoming visual information to enforce consistency on earlier content and to

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

complete fine details. Besides, considering the slow inference speed of AR models, especially for
large context length, several distillation methods (Liu et al., 2024a; 2025) have been proposed to
accelerate the decoding process of AR models with acceptable performance degradation. It will be
interesting and promising to integrate these distillation methods and TensorAR to further achieve
more flexibility in the trade-off between sample quality and sampling speed.

In summary, TensorAR bridges autoregressive and diffusion paradigms, offering a flexible refine-
ment mechanism and a controllable compute–quality trade-off: k = 1 provides minimal-latency
autoregressive decoding, k = T approximates a discrete diffusion-like multi-step denoising pro-
cess, and intermediate settings 1 < k < T balance efficiency and quality by exploiting future
information to iteratively improve previously generated content.

3 EXPERIMENTS

3.1 EVALUATION ON CLASS-TO-IMAGE GENERATION TASK

We use Fréchet Inception Distance (FID) (Heusel et al., 2017) as our primary metric; we also report
Inception Score (IS) (Salimans et al., 2016), Precision and Recall (Kynkäänniemi et al., 2019).

Table 2: Model comparisons on class-conditional ImageNet 256 × 256 benchmark. Metrics are
Fréchet inception distance (FID), inception score (IS), precision, and recall. “↓” or “↑” indicate
lower or higher values are better.

Type Model #Para. FID↓ IS↑ Precision↑ Recall↑

Mask AR
MAGVIT-v2 (Yu et al., 2023) 307M 1.78 319.4 - -
MaskBit (Weber et al., 2024) 305M 1.52 328.6 - -
MAR (Li et al., 2024a) 943M 1.55 303.7 - -

Casual AR

DART (Gu et al., 2024) 812M 3.98 256.8 - -
RQTran. (Lee et al., 2022) 3.8B 3.80 323.7 - -
ViT-VQGAN-re (Yu et al., 2021) 1.7B 3.04 227.4 - -
SAR-XL (Liu et al., 2024b) 893M 2.76 273.8 0.84 0.55
RandAR-L (Pang et al., 2024) 1.4B 2.15 322.0 0.79 0.62
VAR (Tian et al., 2024) 2.0B 1.73 350.2 0.82 0.60

TensorAR

Open-MAGVIT2 (Luo et al., 2024)

Open-MAGVIT2-B (256× 256) 343M 3.08 258.3 0.85 0.51
+TensorAR 352M (+2.7%) 2.91 260.2 0.86 0.50
Open-MAGVIT2–L (256× 256) 804M 2.51 271.7 0.84 0.54
+TensorAR 820M (+2.0%) 2.35 273.4 0.84 0.53

LlamaGEN (Sun et al., 2024)

LlamaGEN-B (256× 256) 111M 5.46 193.6 0.83 0.45
+TensorAR 116M (+4.6%) 4.71 225.8 0.85 0.45
LlamaGEN-L (256× 256) 343M 3.80 248.3 0.83 0.52
+TensorAR 352M (+2.7%) 2.78 254.8 0.82 0.56
LlamaGEN-L (384× 384) 343M 3.07 256.1 0.83 0.52
+TensorAR 352M (+2.7%) 2.52 258.9 0.83 0.55
LlamaGEN-XL (384× 384) 775M 2.62 244.1 0.80 0.57
+TensorAR 789M (+1.9%) 2.29 260.4 0.81 0.59
LlamaGEN-XXL (384× 384) 1411M 2.34 253.9 0.81 0.60
+TensorAR 1432M (+1.5%) 2.03 267.7 0.82 0.61

3.1.1 QUANTITATIVE COMPARISON

We evaluate TensorAR on two representative autoregressive (AR) generators—Open-
MAGVIT2 (Luo et al., 2024) and LlamaGEN (Sun et al., 2024)—across multiple model
scales. Table 2 compares our approach with current state-of-the-art methods. Unless otherwise
noted, we set the window size to k = 4, use single-layer Qin and Qout modules, and adopt an
exponential scheduling function. TensorAR consistently brings substantial gains over the under-
lying AR baselines while adding only a small number of parameters. For example, augmenting
LlamaGEN-B with TensorAR reduces Fréchet Inception Distance (FID) by 0.71 points. Even on

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

a 1.4B-parameter model, TensorAR achieves a 0.31-point reduction in FID, narrowing the gap to
leading diffusion-based models. Moreover, because the auxiliary modules (Qin and Qout) are kept
fixed across backbones and scales, the relative parameter overhead decreases with model size, i.e.,
it is approximately inversely proportional to the backbone’s overall computational cost.

3.1.2 TRAINING FID CURVE

In Figure 5, we plot the training FID curves for TensorAR alongside those from standard fine-
tuning of LlamaGEN-B and LlamaGEN-L. Fine-tuning for the same number of steps as used with
TensorAR yields no improvement in FID, confirming that TensorAR’s gains stem from its design
rather than from additional training.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2 2.5 3 3.5 4

Th
ro

ug
hp

ut
 (i

m
ag

es
/s

ec
)

FID (↓)

LlamaGEN
+ TensorAR

La
te

nc
y

de
cr

ea
se

FID improve

Figure 4: Throughput/FID trade-off. Tenso-
rAR consistently improves generation qual-
ity with negligible decreases in throughput.

2.6

3.1

3.6

4.1

4.6

5.1

5.6

0 20000 40000 60000 80000 100000
FI

D
 (↓

)
Training Steps

LlamaGen-B
LlamaGEN-L
+ TensorAR

Steady
improvement

Figure 5: Training FID curves. TensorAR
shows steady training dynamics based on two
different backbones.

3.1.3 THROUGHPUT-FID CURVE

Figure 4 further compares the sampling throughput of TensorAR and LlamaGEN across multiple
model sizes. Throughput is measured as the number of samples generated per second (including
AR generation and VQ decoding) on a single A100 GPU, using float32 precision and a batch size of
128. Although TensorAR incurs modest additional latency, it delivers substantial FID improvements,
yielding a superior efficiency–quality trade-off.

3.1.4 IMAGE QUALITY COMPARISON IN THE CLASS-TO-IMAGE GENERATION TASK

We present a qualitative comparison of images generated by LlamaGEN-XXL and TensorAR across
four categories. Relative to the base LlamaGEN-XXL, TensorAR produces higher-quality images
with richer semantic detail. Additional TensorAR samples are included in the appendix, further
demonstrating its ability to generate diverse outputs.

B
allo

o
n

S
c
h
o
o

n
er

G
o
ld

e
n
 retriev

e
r

S
p

ace
 sh

u
ttle

LlamaGEN-XXL + TensorAR + TensorARLlamaGEN-XXL

Figure 6: Image generation results comparison. TensorAR can generate high-quality images without
loss of diversity. Best viewed in zoom.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

3.1.5 VISUAL COMPARISON IN THE TEXT-TO-IMAGE GENERATION TASK

We present a qualitative comparison of images generated by LlamaGEN and TensorAR in the text-
to-image generation task. Compared with the base LlamaGEN, TensorAR generates higher-quality
images and exhibits more stable instruction-following.

an dolphin through
the blue waters,
while a chicken
with brown and
white feathers
stands on the

nearby sandy shore.

Two worn pairs of
leather boots lie
on a dusty barn
floor, xxx. They
are adjacent to a
tall, weathered

wooden barrel that
stands upright.

a photo of a bird

left of a couch

LlamaGEN + TensorAR

a zebra right of a

parking meter

LlamaGEN + TensorAR

Figure 7: Visual Comparison between LlamaGEN-B and TensorAR in the text-to-image generation
task. The two prompts in the first row are selected from the GenEval benchmark, and the other two
are selected from the DPG-Bench benchmark. Benefiting from the effectiveness of the proposed
TensorAR framework and high-quality data from the BLIP3o dataset, TensorAR can generate more
vivid and instruction-following images compared to its baseline counterpart.

3.2 EVALUATION ON TEXT-TO-IMAGE GENERATION TASK

We evaluate TensorAR’s text-to-image generation on GenEval (Ghosh et al., 2023) and DPG-
Bench (Hu et al., 2024), two benchmarks designed to assess instruction following and compositional
alignment. Following the official protocols and metrics, we compare TensorAR with published re-
sults for state-of-the-art image generation models, summarized in Table 3 and Table 4. Across both
benchmarks, TensorAR delivers consistent gains over its base backbones and remains competitive
with state-of-the-art flow-based generators. These findings indicate that integrating TensorAR into
existing models enhances instruction-following capability while maintaining strong overall perfor-
mance. Additional qualitative comparisons of image quality between TensorAR and Janus-Pro-7B
are provided in the appendix.

Table 3: Evaluation of text-to-image generation ability on GenEval benchmark. Applying TensorAR
brings consistent improvements for different base models.

Model Single Obj. Two Obj. Counting Colors Position Color Attri. Overall↑
Emu3-Gen (Wang et al., 2024) 0.98 0.71 0.34 0.81 0.17 0.21 0.54
DALL-E 3 (Betker et al., 2023) 0.96 0.87 0.47 0.83 0.43 0.45 0.67
SD3-Medium (Esser et al., 2024) 0.99 0.94 0.72 0.89 0.33 0.60 0.74
SEED-X (Ge et al., 2024) 0.97 0.58 0.26 0.80 0.19 0.14 0.49
Show-o (Xie et al., 2024) 0.95 0.52 0.49 0.82 0.11 0.28 0.53
D-DiT (Li et al., 2025) 0.97 0.80 0.54 0.76 0.32 0.50 0.65

TensorAR

LlamaGen (Sun et al., 2024) 0.71 0.34 0.21 0.58 0.07 0.04 0.32
+ TensorAR 0.99 0.70 0.57 0.89 0.28 0.19 0.61
Janus-Pro-7B (Chen et al., 2025b) 0.99 0.89 0.59 0.90 0.79 0.66 0.80
+ TensorAR 0.99 0.93 0.53 0.92 0.85 0.79 0.83

3.3 ABLATION STUDIES

3.3.1 DIFFERENT NOISE SCHEDULING FUNCTIONS

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Evaluation of text-to-image generation ability on DPG-Bench benchmark. Applying Ten-
sorAR brings consistent improvements for different base models.

Model Global Entity Attribute Relation Other Overall↑
PixArt-α (Chen et al., 2023) 74.97 79.32 78.60 82.57 76.96 71.11
Emu3-Gen (Wang et al., 2024) 85.21 86.68 86.84 90.22 83.15 80.60
DALL-E 3 (Betker et al., 2023) 90.97 89.61 88.39 90.58 89.83 83.50
SD3-Medium (Esser et al., 2024) 87.90 91.01 88.83 80.70 88.68 84.08
Hunyuan-DiT (Li et al., 2024b) 84.59 80.59 88.01 74.36 86.41 78.87
PixArt-Σ (Chen et al., 2024) 86.89 82.89 88.94 86.59 87.68 80.54

TensorAR

LlamaGen (Sun et al., 2024) 78.72 58.63 68.22 76.63 44.00 43.13
+ TensorAR 84.50 81.92 81.65 90.68 74.80 73.33
Janus-Pro-7B (Chen et al., 2025b) 86.90 88.90 89.40 89.32 89.48 84.19
+ TensorAR 86.39 90.67 90.66 91.35 84.52 85.57

Table 5: Different noise scheduler functions.

Model FID IS Precision Recall

Baseline 5.46 193.6 0.83 0.45

Linear 4.79 218.8 0.85 0.44
Sine 4.75 221.3 0.84 0.45
Square root 4.84 214.9 0.83 0.43
Exponential 4.71 225.8 0.85 0.45

As discussed above, the noise scheduling func-
tion controls the noise level assigned to each
position within a tensor. We evaluate four
schedules: linear, sine, square root, and expo-
nential, whose definitions and hyperparameters
are summarized in Table 5. We set the base
model of all the following ablation studies as
LlamaGEN-B in the class-to-image generation
task. Across settings, all four schedules yield
substantial gains over the base configuration,
indicating that TensorAR is robust to the specific choice of schedule. Among them, the exponential
schedule achieves the lowest Fréchet Inception Distance (FID), making it a strong default in prac-
tice. Overall, these results suggest that the scheduling function is an important factor in TensorAR’s
performance, with the exponential schedule offering the best efficiency–quality trade-off.

Table 6: Ablation studies on the design of TensorAR.

(a) Different window size k

Model FID IS Precision Recall

Baseline 5.46 193.6 0.83 0.45

k=2 4.78 221.3 0.84 0.45
k=4 4.71 225.8 0.85 0.45
k=8 4.68 226.7 0.85 0.46

(b) Depth of Qin and Qout.

Model FID Precision Recall Latency

Baseline 5.46 0.83 0.45 0.11

d=1 4.71 0.85 0.45 0.12
d=2 4.79 0.85 0.46 0.14
d=4 4.90 0.82 0.43 0.15

3.3.2 DIFFERENT WINDOW SIZES

Increasing the window size allows TensorAR to revisit and improve each image token over more
steps, which should enhance overall quality. To assess this effect, we vary the window size k ∈
{2, 4, 8} and summarize the results in Table 6a. We observe a monotonic reduction in Fréchet
Inception Distance (FID) as k increases, indicating that additional refinement passes are consistently
beneficial. Even at k = 2—which provides only a single refinement pass per token—TensorAR
significantly outperforms the baseline, underscoring the effectiveness of explicit refinement. These
findings validate the refinement mechanism as a key contributor to performance. Because larger
k entails more sampling steps and thus higher inference cost, practitioners can select k to balance
quality and latency, with moderate values offering a favorable trade-off.

3.3.3 DEPTH OF Qin AND Qout

Both Qin and Qout modules are implemented as query transformers, with each layer comprising
a cross-attention layer. We investigate the optimal depth for these modules by varying the number

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

of layers d ∈ {1, 2, 4}. As reported in Table 6b, d = 1 achieves the lowest Fréchet Inception
Distance (FID), while increasing to d = 4 yields no further improvement. However, considering the
quality–latency trade-off, we adopt d = 1 as the default, which substantially improves throughput
with only a modest impact on image quality. This choice offers a favorable balance for practical
deployment.

3.4 VISUALIZATION OF REFINEMENT

As described in Section 2.2, at each decoding step, TensorAR outputs a block of k consecutive to-
kens. The first token in the block is committed to the final sequence, while the remaining k − 1
tokens are provisional and refined in subsequent steps. This commit-and-refine strategy induces a
zig-zag, coarse-to-fine progression across positions (Sun et al., 2025): previously emitted tokens
(except the first in each block) are iteratively improved as new tokens are introduced. To illustrate
this behavior, Figure 10 visualizes the evolution of outputs produced by a Janus-Pro-7B model with
a window size of k = 4. Applying TensorAR yields higher visual quality and stronger instruction
following than the baseline. The images become progressively sharper and semantically richer as
refinement proceeds. These qualitative results corroborate the effectiveness of the refinement mech-
anism. Additional visualizations are provided in the appendix.

Janus-Pro-7B

··· a person
stands with

another man ···

··· there is a
single arched
window ···

··· yellow
taxis, red
buses ···

Prompt + TensorAR+ Finetuned

Figure 8: Visualization of the refinement process of TensorAR against its base model: Janus-Pro-7B
with a window size k = 4. We mark the text that Janus-Pro-7B fails to generate in red and point
to the corresponding object generated by TensorAR via a red arrow. All these prompts are from the
DPG-Bench benchmark. Best viewed in zoom.

4 CONCLUSION

In this paper, we present TensorAR, to the best of our knowledge, the first visual autoregressive
framework that integrates an explicit refinement mechanism into the decoding process. TensorAR
extends the conventional next-token prediction paradigm to next-tensor prediction by introducing
two lightweight plug-in modules, enabling iterative revision of recent outputs. Crucially, it functions
as a drop-in augmentation to standard autoregressive transformers, requiring no modifications to the
base architecture or changes to the training procedure. Across both class-conditional image synthesis
and text-to-image generation, TensorAR delivers consistent improvements in quality, demonstrating
the effectiveness of incorporating refinement into visual autoregressive models.

REFERENCES

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in neural information processing

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

systems, 34:17981–17993, 2021.

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. Computer
Science. https://cdn. openai. com/papers/dall-e-3. pdf, 2(3):8, 2023.

Jiuhai Chen, Zhiyang Xu, Xichen Pan, Yushi Hu, Can Qin, Tom Goldstein, Lifu Huang, Tianyi
Zhou, Saining Xie, Silvio Savarese, et al. Blip3-o: A family of fully open unified multimodal
models-architecture, training and dataset. arXiv preprint arXiv:2505.09568, 2025a.

Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
Kwok, Ping Luo, Huchuan Lu, et al. Pixart-alpha: Fast training of diffusion transformer for
photorealistic text-to-image synthesis. arXiv preprint arXiv:2310.00426, 2023.

Junsong Chen, Chongjian Ge, Enze Xie, Yue Wu, Lewei Yao, Xiaozhe Ren, Zhongdao Wang, Ping
Luo, Huchuan Lu, and Zhenguo Li. Pixart-σ: Weak-to-strong training of diffusion transformer for
4k text-to-image generation. In European Conference on Computer Vision, pp. 74–91. Springer,
2024.

Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, and
Chong Ruan. Janus-pro: Unified multimodal understanding and generation with data and model
scaling. arXiv preprint arXiv:2501.17811, 2025b.

Chaorui Deng, Deyao Zhu, Kunchang Li, Shi Guang, and Haoqi Fan. Causal diffusion transformers
for generative modeling. arXiv preprint arXiv:2412.12095, 2024.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pp. 12873–12883, 2021.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
for high-resolution image synthesis. In Forty-first international conference on machine learning,
2024.

Lijie Fan, Tianhong Li, Siyang Qin, Yuanzhen Li, Chen Sun, Michael Rubinstein, Deqing Sun,
Kaiming He, and Yonglong Tian. Fluid: Scaling autoregressive text-to-image generative models
with continuous tokens. arXiv preprint arXiv:2410.13863, 2024.

Yuying Ge, Sijie Zhao, Jinguo Zhu, Yixiao Ge, Kun Yi, Lin Song, Chen Li, Xiaohan Ding, and Ying
Shan. Seed-x: Multimodal models with unified multi-granularity comprehension and generation.
arXiv preprint arXiv:2404.14396, 2024.

Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework
for evaluating text-to-image alignment. Advances in Neural Information Processing Systems, 36:
52132–52152, 2023.

Jiatao Gu, Yuyang Wang, Yizhe Zhang, Qihang Zhang, Dinghuai Zhang, Navdeep Jaitly, Josh
Susskind, and Shuangfei Zhai. Dart: Denoising autoregressive transformer for scalable text-
to-image generation. arXiv preprint arXiv:2410.08159, 2024.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax
flows and multinomial diffusion: Towards non-autoregressive language models. arXiv preprint
arXiv:2102.05379, 3(4):5, 2021.

Xiwei Hu, Rui Wang, Yixiao Fang, Bin Fu, Pei Cheng, and Gang Yu. Ella: Equip diffusion models
with llm for enhanced semantic alignment. arXiv preprint arXiv:2403.05135, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. Advances in neural information
processing systems, 32, 2019.

Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image
generation using residual quantization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 11523–11532, 2022.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International conference on
machine learning, pp. 12888–12900. PMLR, 2022.

Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
generation without vector quantization. Advances in Neural Information Processing Systems, 37:
56424–56445, 2024a.

Zhimin Li, Jianwei Zhang, Qin Lin, Jiangfeng Xiong, Yanxin Long, Xinchi Deng, Yingfang Zhang,
Xingchao Liu, Minbin Huang, Zedong Xiao, et al. Hunyuan-dit: A powerful multi-resolution
diffusion transformer with fine-grained chinese understanding. arXiv preprint arXiv:2405.08748,
2024b.

Zijie Li, Henry Li, Yichun Shi, Amir Barati Farimani, Yuval Kluger, Linjie Yang, and Peng Wang.
Dual diffusion for unified image generation and understanding. In Proceedings of the Computer
Vision and Pattern Recognition Conference, pp. 2779–2790, 2025.

Enshu Liu, Xuefei Ning, Yu Wang, and Zinan Lin. Distilled decoding 1: One-step sampling of
image auto-regressive models with flow matching. arXiv preprint arXiv:2412.17153, 2024a.

Enshu Liu, Qian Chen, Xuefei Ning, Shengen Yan, Guohao Dai, Zinan Lin, and Yu Wang. Distilled
decoding 2: One-step sampling of image auto-regressive models with conditional score distilla-
tion. arXiv preprint arXiv:2510.21003, 2025.

Wenze Liu, Le Zhuo, Yi Xin, Sheng Xia, Peng Gao, and Xiangyu Yue. Customize your visual
autoregressive recipe with set autoregressive modeling. arXiv preprint arXiv:2410.10511, 2024b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Zhuoyan Luo, Fengyuan Shi, Yixiao Ge, Yujiu Yang, Limin Wang, and Ying Shan. Open-magvit2:
An open-source project toward democratizing auto-regressive visual generation. arXiv preprint
arXiv:2409.04410, 2024.

Ziqi Pang, Tianyuan Zhang, Fujun Luan, Yunze Man, Hao Tan, Kai Zhang, William T Freeman, and
Yu-Xiong Wang. Randar: Decoder-only autoregressive visual generation in random orders. arXiv
preprint arXiv:2412.01827, 2024.

Sucheng Ren, Qihang Yu, Ju He, Xiaohui Shen, Alan Yuille, and Liang-Chieh Chen. Beyond next-
token: Next-x prediction for autoregressive visual generation. arXiv preprint arXiv:2502.20388,
2025.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29,
2016.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. pmlr, 2015.

Mingzhen Sun, Weining Wang, Gen Li, Jiawei Liu, Jiahui Sun, Wanquan Feng, Shanshan Lao, SiYu
Zhou, Qian He, and Jing Liu. Ar-diffusion: Asynchronous video generation with auto-regressive
diffusion. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 7364–
7373, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
Autoregressive model beats diffusion: Llama for scalable image generation. arXiv preprint
arXiv:2406.06525, 2024.

Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. arXiv preprint
arXiv:2405.09818, 2024.

Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
Scalable image generation via next-scale prediction. Advances in neural information processing
systems, 37:84839–84865, 2024.

Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
Zhang, Yueze Wang, Zhen Li, Qiying Yu, et al. Emu3: Next-token prediction is all you need.
arXiv preprint arXiv:2409.18869, 2024.

Mark Weber, Lijun Yu, Qihang Yu, Xueqing Deng, Xiaohui Shen, Daniel Cremers, and Liang-
Chieh Chen. Maskbit: Embedding-free image generation via bit tokens. arXiv preprint
arXiv:2409.16211, 2024.

Junfeng Wu, Yi Jiang, Chuofan Ma, Yuliang Liu, Hengshuang Zhao, Zehuan Yuan, Song Bai, and
Xiang Bai. Liquid: Language models are scalable and unified multi-modal generators. arXiv
preprint arXiv:2412.04332, 2024.

Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
to unify multimodal understanding and generation. arXiv preprint arXiv:2408.12528, 2024.

Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku, Yuanzhong
Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with improved vqgan.
arXiv preprint arXiv:2110.04627, 2021.

Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong
Cheng, Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, et al. Language model beats diffusion–
tokenizer is key to visual generation. arXiv preprint arXiv:2310.05737, 2023.

Qihang Yu, Ju He, Xueqing Deng, Xiaohui Shen, and Liang-Chieh Chen. Randomized autoregres-
sive visual generation. arXiv preprint arXiv:2411.00776, 2024.

Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong. A reparameterized discrete diffusion model
for text generation. arXiv preprint arXiv:2302.05737, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A IMPLEMENTATION DETAILS

A.1 BASELINES AND BENCHMARKS

We evaluate TensorAR on both class-to-image generation and text-to-image generation tasks. For
the class-to-image generation task, we report quantitative results on the ImageNet 256× 256 bench-
mark between TensorAR (based on LlaMAGEN (Sun et al., 2024), and Open-MAGVIT2 (Luo et al.,
2024)) against a range of state-of-the-art generative models. For the text-to-image generation task,
we provide results on the GenEval (Ghosh et al., 2023) and DPG-Bench (Hu et al., 2024) bench-
marks. The base models of TensorAR for the text-to-image generation task are LlaMAGEN and
Janus-Pro-7B (Chen et al., 2025b). As for the initialization of the two additional modules intro-
duced by TensorAR, i.e., Qin and Qout, we implement them by query transformers (Li et al., 2022),
with a depth (number of cross-attention layers) of 1 and a MLP layer with the bottleneck dimension
ratio equals to 1 for both tasks.

A.2 TRAINING DETAILS

The main difference between the training of the two tasks is the training datasets. We utilize the
ImageNet dataset as the training data to train class-to-image generation models for 20 epochs, while
the BLIP-3o pretrain dataset (Chen et al., 2025a) is utilized to train text-to-image generation models
for 1 epoch.

We use AdamW (Loshchilov & Hutter, 2017) optimizer with (β1, β2) as (0.9, 0.95) and the weight
decay as 0.05. The learning rate for Qin and Qout is set to 1× 10−4 while the learning rate for base
AR models is set to 1 × 10−5. Class embedding is randomly dropped with a 10% probability in
training.

A.3 SAMPLING PROTOCOLS

For class-to-image generation models, we sample 50,000 images for FID computation using the
evaluation code provided by ADM (Dhariwal & Nichol, 2021). The sampling hyperparameters,
such as top-k, are kept consistent with those used in the base AR models. And as for text-to-image
generation models, we follow the guidelines of GenEval and DPG-Bench benchmarks to sample four
images per prompt. Additionally, in line with previous studies, we apply classifier-free guidance
during sampling.

B PSEUDO CODE FOR TENSORAR

Algorithm 1 Trainging TensorAR

Input: autoregressive model fθ(·); data distribution pdata(x); noise scheduler γ; vocabulary size
V ; weighted cross-entropy WCE.

Output: model parameters θ
repeat

Draw x ∼ pdata(x);
Draw xk = [x1,k,x2,k, ...,xT,k] from x; ▷ Get tensor-based sequence
for i = 1, ..., T do

for j = 2, ..., k do
Draw x∗

i+k−1 ∼ Cat(x∗
i+k−1|(1− β(j))xi+k−1 + β(j)/V); ▷ Apply discrete

diffusion
end for

end for
L(θ) = −

∑N
n=1 log(pθ(xn|x1,k, ...,xn−1,k; c)))

−
∑N

n=1

∑k−1
j=1

β(j−1)−β(j)
1−β(j) log(pθ(xn+j |x1,k, ...,xn−1,k; c))

Minimize Lθ with respect to θ;
until converged

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C ADDITIONAL GENERATION RESULTS

Generation results (256 × 256). Golden retriever (ImageNet class 207) Generation results (256 × 256). Balloon (ImageNet class 417)

Generation results (256 × 256). Schooner (ImageNet class 780) Generation results (256 × 256). Volcano (ImageNet class 980)

Generation results (256 × 256). Lighthouse (ImageNet class 437) Generation results (256 × 256). Coral reef (ImageNet class 973)

Figure 9: Generation results of TensorAR based on LlamaGEN-XXL. Best viewed in zoom.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D ADDITIONAL VISUALIZATION RESULTS

Here we provide several visual comparisons between TensorAR and its baseline, Janus-Pro-7B.
TensorAR shows better instruction-following ability.

··· the fierce
heads of two
tigers···

··· eyes are
piercing
blue ···

··· a slice of
lemon on the

rim···

+ TensorAR Janus-Pro-7BPrompt

Figure 10: Visualization of the refinement process of TensorAR against its base model: Janus-Pro-
7B with a window size k = 4. We mark the text that Janus-Pro-7B fails to generate in red and point
to the corresponding object generated by TensorAR via a red arrow. All these prompts are from the
DPG-Bench benchmark. Best viewed in zoom.

E ETHICS STATEMENT

This work mainly relies exclusively on publicly available, open-source datasets that have been
widely used in prior academic research. All datasets are employed strictly for scholarly purposes
and will not be used in any commercial applications.

F REPRODUCIBILITY STATEMENT

To support reproducibility, we will release the project as open-source software. The model architec-
ture is described in detail in Section A.2 outlines the training datasets, implementation details, and
all hyperparameter settings to enable faithful replication.

16

	Introduction
	TensorAR
	Preliminaries
	Autoregressive Image Generation
	Discrete Diffusion

	TensorAR
	Overall framework
	Refinement Mechanism
	Noise Mechanism

	Relation to Other Image Generation Paradigms

	Experiments
	Evaluation on Class-to-image generation task
	Quantitative Comparison
	Training FID curve
	Throughput-FID curve
	Image quality comparison in the class-to-image generation task
	Visual Comparison in the text-to-image generation task

	Evaluation on Text-to-image generation task
	Ablation Studies
	Different noise scheduling functions
	Different window sizes
	Depth of Qin and Qout

	Visualization of Refinement

	Conclusion
	Implementation Details
	Baselines and Benchmarks
	Training Details
	Sampling Protocols

	Pseudo Code for TensorAR
	Additional Generation Results
	Additional Visualization Results
	Ethics statement
	REPRODUCIBILITY STATEMENT

