

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FROM PREDICTION TO PERFECTION: INTRODUCING REFINEMENT TO AUTOREGRESSIVE IMAGE GENERATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Autoregressive (AR) models have emerged as a powerful framework for image generation, yet they remain bound by a fundamental limitation: once a prediction is made, it cannot be revised. Each step marches forward in a strict left-to-right sequence, causing small errors to accumulate and compromise the final image. In this work, we reimagine this process with **TensorAR**, a decoder-only AR model that shifts from predicting discrete tokens to predicting overlapping *tensors*, which are essentially several adjacent discrete image tokens. This simple change transforms image synthesis into a process of *next-tensor prediction*, enabling the model to refine earlier outputs while preserving the causal structure that defines autoregression. To guard against information leakage during training, we introduce a discrete tensor noising mechanism inspired by discrete diffusion theory, which injects categorical noise into input tensors. TensorAR is designed to be plug-and-play: unlike masked AR methods, it requires no architectural modifications, and unlike autoregressive diffusion, it preserves the familiar AR training paradigm. We evaluate TensorAR across both class-to-image and text-to-image tasks, showing consistent gains in generation quality and instruction-following ability, while achieving a superior balance between quality and latency. In doing so, TensorAR offers a new path forward for autoregressive generation—one where predictions are not just produced, but continually refined.

1 INTRODUCTION

Building on the exceptional success of autoregressive (AR) models in natural language processing, attributable to their scalability, flexibility, and capacity to capture complex sequential dependencies, researchers have extended AR approaches to conditional image generation and to unified understanding and generation frameworks (Pang et al., 2024; Yu et al., 2024; Sun et al., 2024; Luo et al., 2024; Yu et al., 2023; Tian et al., 2024; Li et al., 2024a; Esser et al., 2021; Lee et al., 2022). At their core, AR models rely on a simple yet effective self-supervised objective: predicting the next token in a sequence. Compared with other generation paradigms (e.g., flow-matching models), AR models enable structured, step-by-step synthesis and offer advantages in controllability and multimodal integration (Wu et al., 2024; Team, 2024).

For image generation tasks, standard AR models (Pang et al., 2024; Yu et al., 2024; Sun et al., 2024) typically serialize images by treating each image patch as a discrete token and modeling dependencies in a predefined order (e.g., a raster scan). This paradigm forces prediction in a counter-intuitive sequence order that disrupts spatial continuity; early tokens are often blurry, which can degrade overall quality. To improve AR generation quality, a variety of approaches have been proposed, including combining AR with continuous diffusion (Gu et al., 2024; Deng et al., 2024), modeling per-token probability distributions (Li et al., 2024a; Fan et al., 2024), and exploring alternative generation paradigms (Tian et al., 2024; Ren et al., 2025). For example, MAR (Li et al., 2024a) models per-token probability distributions via a diffusion procedure, enabling AR models to operate in continuous space and eliminating the need for discrete tokenizers. DART (Gu et al., 2024) unifies autoregression and diffusion within a non-Markovian framework, iteratively denoising image patches across spatial and spectral dimensions using an AR model with a standard language-model architecture. **VAR** (Tian et al., 2024) adopts a next-scale prediction framework that emulates hu-

man sketching through coarse-to-fine, 2D-parallel generation. Despite strong results, these methods typically require additional VQ-VAE training or a modification in training objective (from classification to regression), which increases computational and memory costs and may hinder multimodal integration. Parallel to these existing works, motivated by the coarse-to-fine principle that underpins diffusion and flow-matching models, we ask: *Can existing standard AR models be enabled to refine their own predictions without modifying their architecture or training recipe?*

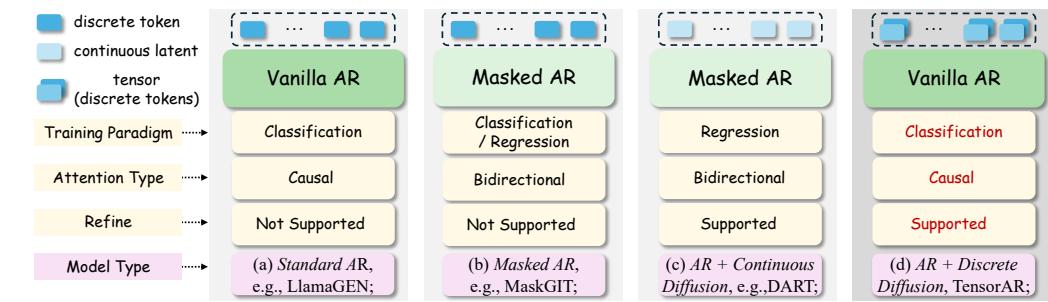


Figure 1: Comparison with different AR-based methods. (a) Vanilla AR models that directly perform next-token-prediction; (b) Masked AR models that predict masked tokens given clean tokens; (c) Integration with diffusion models that utilize the continuous output latent of AR models as the condition to an additional diffusion generation head; (d) The proposed TensorAR that does not modify the base architecture and classification-based training paradigm.

In this paper, we introduce *TensorAR*, a coarse-to-fine autoregressive image generation framework that reframes the conventional next-token prediction paradigm as “*next-tensor-prediction*”. The core idea behind TensorAR is simple. **Unlike standard AR models that generate one token at a time, TensorAR predicts a tensor, i.e., a group of consecutive tokens, at each step, which is the origin of the name, i.e., TensorAR.** Because adjacent tensors overlap, later predictions can revise earlier ones, enabling iterative refinement of image content similar to diffusion models. For a better understanding, we provide a visual comparison in Figure 1. Unlike masked AR models, TensorAR does not require architectural modifications, and unlike autoregressive diffusion models, it does not alter the training paradigm.

However, training TensorAR is nontrivial. A naive strategy would mimic standard AR training by feeding a sequence of ground-truth tensors and supervising the prediction of next-step tensors. Nevertheless, because tensors are generated with a sliding window fashion, some tokens in the predicted tensor already appear in the input tensors, causing information leakage, where the model can minimize loss by copying overlapping tokens rather than learning meaningful causal dependencies. To address this, we introduce a discrete tensor noising mechanism based on discrete diffusion theory, which injects categorical noise into input tensors during training. By modulating noise levels token-wise within each tensor, we stimulate an internal progressive denoising process in TensorAR. In addition, we incorporate two lightweight modules, i.e., an input encoder and an output decoder, to interface with tensor-based inputs and outputs. Both modules use the residual design to better leverage pretrained models and promote faster, more stable convergence. Together, these components make TensorAR a plug-and-play extension that integrates with existing AR models with minimal changes to the base architecture, improving practical flexibility relative to training from scratch. We evaluate TensorAR on representative AR models for class-conditional (e.g., Llam-

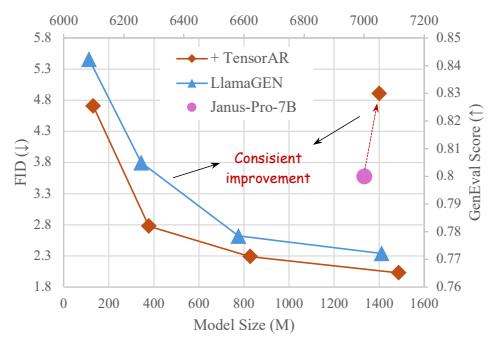


Figure 2: Model size-FID curves on TensorAR across different tasks. TensorAR achieves consistent improvements on both class-to-image and text-to-image generation tasks. Best view in color.

aGen (Sun et al., 2024)) and text-conditional (e.g., Janus-Pro-7B) image generation across multiple model sizes. We conduct extensive experiments across a range of base models and model sizes and comprehensive ablation studies, consistent performance gains on both tasks (Figure 2) confirm the effectiveness of the refinement mechanism and show a better trade-off between quality–latency.

2 TENSORAR

In this section, we first revisit the details about autoregressive modeling and discrete diffusion in 2.1 and then provide detailed explanations of our proposed method in 2.2.

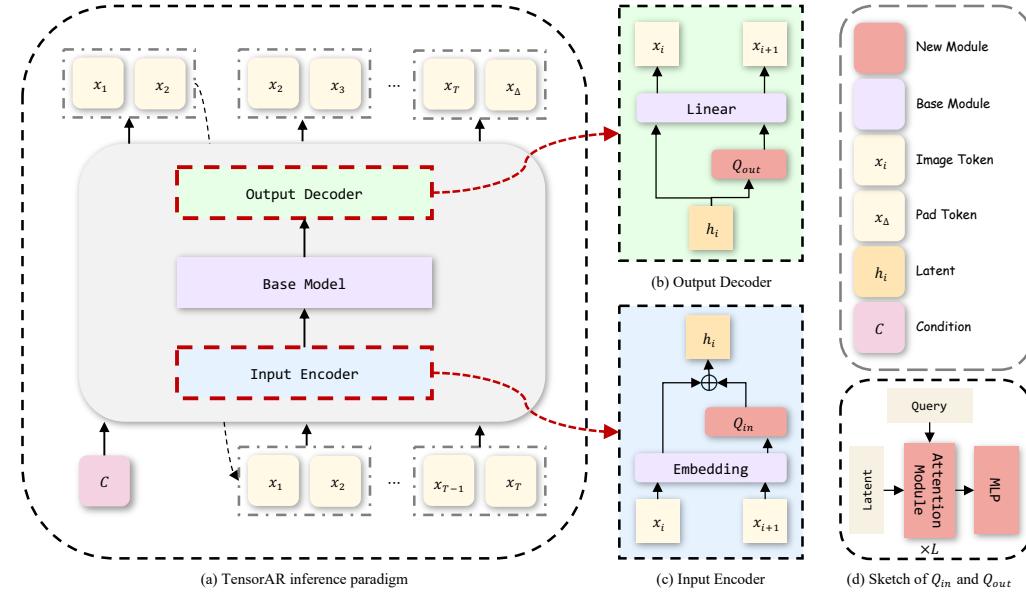


Figure 3: (a) Overview of our proposed TensorAR framework during inference time with the window size $k = 2$ and the sequence length T ; (b) Output decoder that wraps the original linear output layer with residual design; (c) Input encoder that wraps the original embedding layer with residual design; (d) Sketch of Q_{in} and Q_{out} , which can be implemented by query transformers. The newly introduced modules are colored in orange and the base modules are in purple.

2.1 PRELIMINARIES

In the following paragraph, we use \mathbf{x} to denote a sequence of discrete tokens; x denotes one discrete token; \mathbf{x} denotes the one-hot version of x ; x^* denotes the noisy token of x .

2.1.1 AUTOREGRESSIVE IMAGE GENERATION

Given a sequence of discrete tokens $\mathbf{x} = [x_1, x_2, \dots, x_T]$ of length T and its condition c , where $x_i \in \{0, 1, \dots, C - 1\}$ is an integer from a vocabulary of size C , an autoregressive model ζ_θ are trained to model the probability distribution of each variable x_t based on its precedents $[x_1, x_2, \dots, x_{t-1}]$:

$$\zeta_\theta(\mathbf{x}; c) = \prod_{t=1}^T \zeta_\theta(x_t | x_1, \dots, x_{t-1}; c), \text{ where } c \text{ may be either class labels or textual prompts, and } \zeta_\theta \text{ is the token distribution predictor with a model parameterized by } \theta.$$

To apply autoregressive modeling to 2D images, images are first tokenized into several discrete tokens via a pre-defined order, where each discrete token corresponds to an image patch. Given p_{data} as the distribution of discrete image data, the training objective of autoregressive models is to

162 minimize the negative log-likelihood loss, which is formulated as:
 163

$$164 \quad \mathcal{L}(\theta) = \mathbb{E}_{\mathbf{x}_{1:T} \sim p_{\text{data}}} \left[- \sum_{t=1}^T \log \zeta_{\theta}(x_t \mid x_{<t}, c) \right]. \quad (1)$$

$$165$$

$$166$$

167 2.1.2 DISCRETE DIFFUSION
 168

169 Discrete diffusion models (Sohl-Dickstein et al., 2015; Hoogeboom et al., 2021; Austin et al., 2021)
 170 are a class of latent variable models characterized by a forward noising process and a learned reverse
 171 denoising process. The forward process $q(\mathbf{x}_{1:T} \mid \mathbf{x}_0) = \prod_{t=1}^T q(\mathbf{x}_t \mid \mathbf{x}_{t-1})$ corrupts the original data
 172 \mathbf{x}_0 into a sequence of increasingly noisy latent variables $\mathbf{x}_{1:T}$. The backward process learns to grad-
 173 ually denoise the latent variables of the data distribution as $p_{\theta}(\mathbf{x}_{0:T}) = p(\mathbf{x}_T) \prod_{t=1}^T p_{\theta}(\mathbf{x}_{t-1} \mid \mathbf{x}_t)$.
 174

175 According to existing studies (Zheng et al., 2023), by defining both the forward and backward dis-
 176 tribution as categorical distribution, i.e., $q(\mathbf{x}_t \mid \mathbf{x}_{t-1}) = \text{Cat}(\mathbf{x}_t; p = \mathbf{Q}_t \mathbf{x}_{t-1})$, where $\text{Cat}(\mathbf{x} \mid p)$ is a
 177 categorical distribution over the one-hot vector \mathbf{x} with probabilities given by the vector p and \mathbf{Q}_t
 178 is the time-dependent transition matrix, the forward process posterior $q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0)$ and the op-
 179 timization objectives can be calculated analytically, which is simply as a weighted cross-entropy
 180 loss.
 181

$$\mathcal{L}(\theta) = \mathbb{E}_{\mathbf{x}_0 \sim p_{\text{data}}, t \sim \gamma(t), \mathbf{x}_t \sim q(\mathbf{x}_t \mid \mathbf{x}_0, t)} \left[-w_t \log p_{\theta}(\mathbf{x}_0 \mid \mathbf{x}_t, t) \right], \quad (2)$$

$$182$$

$$183$$

182 where p_{data} is the true data distribution, t is the noise timestep calculated by the scheduling function
 183 $\gamma(\cdot)$, w_t is the weighting coefficient.

184 2.2 TENSORAR
 185

186 2.2.1 OVERALL FRAMEWORK
 187

188 TensorAR serves as a plug-and-play module compatible with existing transformer-based autore-
 189 gressive models. Unlike standard AR models that operate on sequences of tokens, TensorAR
 190 operates on sequences of *tensors*. To this end, TensorAR rearranges the sequence of tokens
 191 $\mathbf{x} = [x_1, x_2, \dots, x_T]$ into the sequence of overlapping tensors $\mathbf{x}_k = [\mathbf{x}_{1,k}, \mathbf{x}_{2,k}, \dots, \mathbf{x}_{T,k}]$, where
 192 $\mathbf{x}_{i,k} = [x_i, x_{i+1}, \dots, x_{i+k-1}]$ is a single tensor with k being its the window size. It is worth noting
 193 that an additional padding token x_{Δ} is added in the last few tensors of \mathbf{x}_k , as shown in Figure 3.
 194 During training, we ignore the loss on these padding tokens, while during inference, these padding
 195 tokens do not contribute to the final results. By reformulating the original Markov process over
 196 a token sequence into a Markov process over a tensor sequence, TensorAR adopts the *next-tensor*
 197 *generation* paradigm, which can be expressed as:
 198

$$199 \quad p_{\theta}(\mathbf{x}_k; c) = \prod_{t=1}^T p_{\theta}(\mathbf{x}_{t,k} \mid \mathbf{x}_{1,k}, \dots, \mathbf{x}_{t-1,k}; c); \quad \mathbf{x}_{i,k} = [x_i, x_{i+1}, \dots, x_{i+k-1}]. \quad (3)$$

$$200$$

$$201$$

202 2.2.2 REFINEMENT MECHANISM
 203

203 The major advantage of TensorAR is its ability to refine previously generated tokens, a capability
 204 that standard autoregressive models lack. Consider a predicted tensor $\mathbf{x}_{i,k}$, within this tensor, the
 205 first token x_i is the most refined, having undergone k refinement steps, whereas the last token x_{i+k-1}
 206 has been produced only once. Consequently, the corresponding image patch is expected to exhibit
 207 finer-grained details as the number of refinement steps increases. Intuitively, TensorAR decodes
 208 image patches iteratively in a coarse-to-fine manner, whereas standard AR methods generate each
 209 patch once in a single pass. This paradigm enables TensorAR to more effectively exploit future
 210 context to refine earlier content, resulting in higher generation quality.

211 As shown in Figure 3 (d), to accommodate tensor-based inputs and outputs, TensorAR introduces an
 212 input encoder M_{enc} and an output decoder M_{dec} that wrap the original embedding and linear output
 213 layers, respectively. The input encoder compresses several token embeddings into one single hidden
 214 state, while the output decoder reconstructs several consecutive tokens from one single hidden state.
 215 Specifically, compression and decompression are performed by two additional modules, Q_{in} and
 Q_{out} , respectively. These modules share a similar architecture and can be implemented with query

216 transformers, which contain an attention module with several cross-attention layers and one output
 217 MLP module. Moreover, to better leverage pretrained models and to facilitate stable convergence
 218 during early training, we incorporate a residual mechanism into both M_{enc} and M_{dec} .
 219

220 2.2.3 NOISE MECHANISM

221 As shown in Figure 3 (a), considering the overlapping tokens during training, directly applying
 222 autoregressive models to tensor sequences encounters the information leakage problem, as some
 223 tokens in the predicted tensor already appear in the input tensor. This causes the model to collapse
 224 into simply replicating the overlapping tokens, rather than learning meaningful dependencies.
 225

226 To address this issue, inspired by discrete diffusion theory, we propose the discrete tensor noising
 227 scheme, which adds noise to the input tensors during training. Let us begin with a simple case with a
 228 tensor $(x_i, x_{i+1}^*, \dots, x_{i+k-1}^*)$ where the superscript * represents noisy tokens. During training time,
 229 the ideal output will be a tensor of clean tokens $(x_{i+1}, \dots, x_{i+k})$. Therefore, for the overlapping
 230 tokens, TensorAR serves as the *denoiser* that reconstructs clean tokens from noisy ones. We provide
 231 details about the noise mechanism in the following paragraph.

232 Given a tensor $\mathbf{x}_{t,k} = [x_t, \dots, x_{t+k-1}]$ and the vocabulary size V , we define the discrete diffusion
 233 process to each token except the first one using a categorical distribution that has a $\beta(j)$ probability
 234 of resampling a category uniformly:

$$q(x_{t+j}^* | x_{t+j}, j) = \text{Cat}(x_{t+j}^* | (1 - \beta(j))x_{t+j} + \beta(j)/V), j \in [2, \dots, k-1], \quad (4)$$

235 where x_j^* is the noisy token and Cat represents the categorical distribution. Besides, the noise weight
 236 $\beta(j)$ is monotonically increased from 0 to 1 within each tensor, i.e., for $j \in [2, \dots, k-1]$.
 237

238 We design a series of scheduling functions $\beta(\cdot)$ as shown
 239 in Table 1, to control how the input and noise tokens are
 240 fused. These noise scheduling functions include linear,
 241 sine, square root, and exponential forms. By modulating
 242 the noise intensity across different tokens within a tensor,
 243 we simulate a progressive denoising process in autore-
 244 gressive model training, akin to that in diffusion models.
 245 Furthermore, as shown in Figure 3, it is worth noting that
 246 we utilize an additional padding token x_Δ , and we ignore
 247 the loss calculation at the position of the padding token.
 248 By combining Equation 1 and Equation 2, the overall training objective of TensorAR can be formu-
 249 lated as follows:
 250

$$\mathcal{L}(\theta) = \sum_{i=1}^T \sum_{j=1}^k \mathbb{E}_{x_{i+j} \sim p_{\text{data}}, x_{i+j}^* \sim q(x_{i+j}^* | x_{i+j}, j)} \left[w_j \log(p_\theta(x_{i+j} | \mathbf{x}_{<i,k}; \theta)) \right]. \quad (5)$$

254 Due to the page limit, we provide the pseudo-code of TensorAR during training in the appendix.

255 2.3 RELATION TO OTHER IMAGE GENERATION PARADIGMS

256 Compared with diffusion models, TensorAR models and trains on image patches in an autoregres-
 257 sive manner, naturally aligning with the discrete sequence modeling paradigm and causal masking
 258 used by multimodal large language models. This design enables seamless integration with standard
 259 Transformer backbones. Besides, unlike classical diffusion methods that update the entire image at
 260 every step, TensorAR updates only the local region covered by the sliding window, preserving iter-
 261 ative refinement while enabling online generation and better scalability. Moreover, unlike standard
 262 autoregressive models that generate each patch only once, TensorAR can iteratively refine previously
 263 generated patches while producing subsequent content, improving both efficiency and overall visual
 264 quality and consistency. *In particular, when $k = 1$, TensorAR reduces to a standard autoregressive
 265 model; when k equals the total number of image patches T , TensorAR becomes equivalent to a dis-
 266 crete variant of a diffusion process (with a different generation order, i.e., left-to-right in TensorAR
 267 and random in standard discrete diffusion).* During decoding, TensorAR can simultaneously attend
 268 to conditions and forthcoming visual information to enforce consistency on earlier content and to
 269

Table 1: Noise scheduling functions.

Function	Expression
Linear	$\beta(j) = j/k$
Sine	$\beta(j) = \sin(\pi j/2k)$
Square root	$\beta(j) = \sqrt{j/k}$
Exponential	$\beta(j) = j^{1/k}$

complete fine details. Besides, considering the slow inference speed of AR models, especially for large context length, several distillation methods (Liu et al., 2024a; 2025) have been proposed to accelerate the decoding process of AR models with acceptable performance degradation. It will be interesting and promising to integrate these distillation methods and TensorAR to further achieve more flexibility in the trade-off between sample quality and sampling speed.

In summary, TensorAR bridges autoregressive and diffusion paradigms, offering a flexible refinement mechanism and a controllable compute-quality trade-off: $k = 1$ provides minimal-latency autoregressive decoding, $k = T$ approximates a discrete diffusion-like multi-step denoising process, and intermediate settings $1 < k < T$ balance efficiency and quality by exploiting future information to iteratively improve previously generated content.

3 EXPERIMENTS

3.1 EVALUATION ON CLASS-TO-IMAGE GENERATION TASK

We use Fréchet Inception Distance (FID) (Heusel et al., 2017) as our primary metric; we also report Inception Score (IS) (Salimans et al., 2016), Precision and Recall (Kynkänniemi et al., 2019).

Table 2: Model comparisons on class-conditional ImageNet 256×256 benchmark. Metrics are Fréchet inception distance (FID), inception score (IS), precision, and recall. “ \downarrow ” or “ \uparrow ” indicate lower or higher values are better.

Type	Model	#Para.	FID \downarrow	IS \uparrow	Precision \uparrow	Recall \uparrow
Mask AR	MAGVIT-v2 (Yu et al., 2023)	307M	1.78	319.4	-	-
	MaskBit (Weber et al., 2024)	305M	1.52	328.6	-	-
	MAR (Li et al., 2024a)	943M	1.55	303.7	-	-
Casual AR	DART (Gu et al., 2024)	812M	3.98	256.8	-	-
	RQTran. (Lee et al., 2022)	3.8B	3.80	323.7	-	-
	ViT-VQGAN-re (Yu et al., 2021)	1.7B	3.04	227.4	-	-
	SAR-XL (Liu et al., 2024b)	893M	2.76	273.8	0.84	0.55
	RandAR-L (Pang et al., 2024)	1.4B	2.15	322.0	0.79	0.62
	VAR (Tian et al., 2024)	2.0B	1.73	350.2	0.82	0.60
<i>Open-MAGVIT2 (Luo et al., 2024)</i>						
Open-MAGVIT2-B (256×256)						
		343M	3.08	258.3	0.85	0.51
+TensorAR		352M (+2.7%)	2.91	260.2	0.86	0.50
Open-MAGVIT2-L (256×256)		804M	2.51	271.7	0.84	0.54
+TensorAR		820M (+2.0%)	2.35	273.4	0.84	0.53
<i>LlamaGEN (Sun et al., 2024)</i>						
LlamaGEN-B (256×256)						
TensorAR	LlamaGEN-B (256 \times 256)	111M	5.46	193.6	0.83	0.45
	+TensorAR	116M (+4.6%)	4.71	225.8	0.85	0.45
	LlamaGEN-L (256×256)	343M	3.80	248.3	0.83	0.52
	+TensorAR	352M (+2.7%)	2.78	254.8	0.82	0.56
	LlamaGEN-L (384×384)	343M	3.07	256.1	0.83	0.52
	+TensorAR	352M (+2.7%)	2.52	258.9	0.83	0.55
LlamaGEN-XL (384×384)						
	LlamaGEN-XL (384×384)	775M	2.62	244.1	0.80	0.57
	+TensorAR	789M (+1.9%)	2.29	260.4	0.81	0.59
	LlamaGEN-XXL (384×384)	1411M	2.34	253.9	0.81	0.60
LlamaGEN-XXL (384×384)						
	+TensorAR	1432M (+1.5%)	2.03	267.7	0.82	0.61

3.1.1 QUANTITATIVE COMPARISON

We evaluate TensorAR on two representative autoregressive (AR) generators—Open-MAGVIT2 (Luo et al., 2024) and LlamaGEN (Sun et al., 2024)—across multiple model scales. Table 2 compares our approach with current state-of-the-art methods. Unless otherwise noted, we set the window size to $k = 4$, use single-layer Q_{in} and Q_{out} modules, and adopt an exponential scheduling function. TensorAR consistently brings substantial gains over the underlying AR baselines while adding only a small number of parameters. For example, augmenting LlamaGEN-B with TensorAR reduces Fréchet Inception Distance (FID) by 0.71 points. Even on

a 1.4B-parameter model, TensorAR achieves a 0.31-point reduction in FID, narrowing the gap to leading diffusion-based models. Moreover, because the auxiliary modules (Q_{in} and Q_{out}) are kept fixed across backbones and scales, the relative parameter overhead decreases with model size, i.e., it is approximately inversely proportional to the backbone’s overall computational cost.

3.1.2 TRAINING FID CURVE

In Figure 5, we plot the training FID curves for TensorAR alongside those from standard fine-tuning of LlamaGEN-B and LlamaGEN-L. Fine-tuning for the same number of steps as used with TensorAR yields no improvement in FID, confirming that TensorAR’s gains stem from its design rather than from additional training.

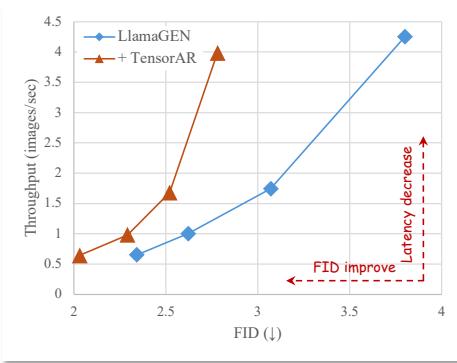


Figure 4: Throughput/FID trade-off. TensorAR consistently improves generation quality with negligible decreases in throughput.

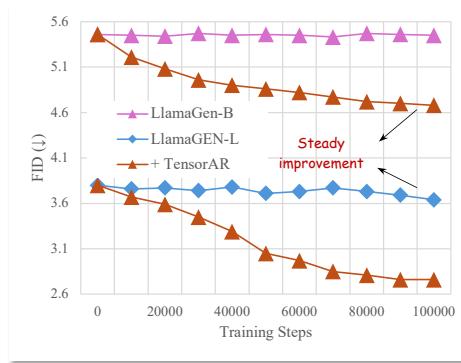


Figure 5: Training FID curves. TensorAR shows steady training dynamics based on two different backbones.

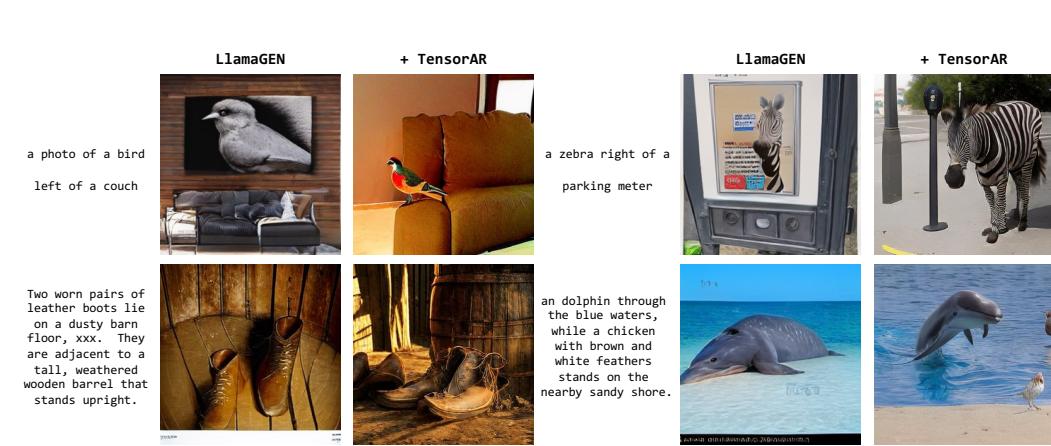
3.1.3 THROUGHPUT-FID CURVE

Figure 4 further compares the sampling throughput of TensorAR and LlamaGEN across multiple model sizes. Throughput is measured as the number of samples generated per second (including AR generation and VQ decoding) on a single A100 GPU, using float32 precision and a batch size of 128. Although TensorAR incurs modest additional latency, it delivers substantial FID improvements, yielding a superior efficiency–quality trade-off.

3.1.4 IMAGE QUALITY COMPARISON IN THE CLASS-TO-IMAGE GENERATION TASK

We present a qualitative comparison of images generated by LlamaGEN-XXL and TensorAR across four categories. Relative to the base LlamaGEN-XXL, TensorAR produces higher-quality images with richer semantic detail. Additional TensorAR samples are included in the appendix, further demonstrating its ability to generate diverse outputs.

Figure 6: Image generation results comparison. TensorAR can generate high-quality images without loss of diversity. Best viewed in zoom.

378 3.1.5 VISUAL COMPARISON IN THE TEXT-TO-IMAGE GENERATION TASK
379380 We present a qualitative comparison of images generated by LlamaGEN and TensorAR in the text-
381 to-image generation task. Compared with the base LlamaGEN, TensorAR generates higher-quality
382 images and exhibits more stable instruction-following.398 Figure 7: Visual Comparison between LlamaGEN-B and TensorAR in the text-to-image generation
399 task. The two prompts in the first row are selected from the GenEval benchmark, and the other two
400 are selected from the DPG-Bench benchmark. Benefiting from the effectiveness of the proposed
401 TensorAR framework and high-quality data from the BLIP3o dataset, TensorAR can generate more
402 vivid and instruction-following images compared to its baseline counterpart.404 3.2 EVALUATION ON TEXT-TO-IMAGE GENERATION TASK
405406 We evaluate TensorAR’s text-to-image generation on GenEval (Ghosh et al., 2023) and DPG-
407 Bench (Hu et al., 2024), two benchmarks designed to assess instruction following and compositional
408 alignment. Following the official protocols and metrics, we compare TensorAR with published re-
409 sults for state-of-the-art image generation models, summarized in Table 3 and Table 4. Across both
410 benchmarks, TensorAR delivers consistent gains over its base backbones and remains competitive
411 with state-of-the-art flow-based generators. These findings indicate that integrating TensorAR into
412 existing models enhances instruction-following capability while maintaining strong overall perfor-
413 mance. Additional qualitative comparisons of image quality between TensorAR and Janus-Pro-7B
414 are provided in the appendix.415 Table 3: Evaluation of text-to-image generation ability on GenEval benchmark. Applying TensorAR
416 brings consistent improvements for different base models.
417

418 Model	Single Obj.	Two Obj.	Counting	Colors	Position	Color Attri.	Overall↑
419 Emu3-Gen (Wang et al., 2024)	0.98	0.71	0.34	0.81	0.17	0.21	0.54
420 DALL-E 3 (Betker et al., 2023)	0.96	0.87	0.47	0.83	0.43	0.45	0.67
421 SD3-Medium (Esser et al., 2024)	0.99	0.94	0.72	0.89	0.33	0.60	0.74
422 SEED-X (Ge et al., 2024)	0.97	0.58	0.26	0.80	0.19	0.14	0.49
423 Show-o (Xie et al., 2024)	0.95	0.52	0.49	0.82	0.11	0.28	0.53
424 D-DiT (Li et al., 2025)	0.97	0.80	0.54	0.76	0.32	0.50	0.65
<i>TensorAR</i>							
425 LlamaGen (Sun et al., 2024)	0.71	0.34	0.21	0.58	0.07	0.04	0.32
426 + TensorAR	0.99	0.70	0.57	0.89	0.28	0.19	0.61
427 Janus-Pro-7B (Chen et al., 2025b)	0.99	0.89	0.59	0.90	0.79	0.66	0.80
+ TensorAR	0.99	0.93	0.53	0.92	0.85	0.79	0.83

428 3.3 ABLATION STUDIES
429430 3.3.1 DIFFERENT NOISE SCHEDULING FUNCTIONS
431

432 Table 4: Evaluation of text-to-image generation ability on DPG-Bench benchmark. Applying Ten-
 433 sorAR brings consistent improvements for different base models.
 434

435 Model	436 Global	437 Entity	438 Attribute	439 Relation	440 Other	441 Overall ↑
PixArt- α (Chen et al., 2023)	74.97	79.32	78.60	82.57	76.96	71.11
Emu3-Gen (Wang et al., 2024)	85.21	86.68	86.84	90.22	83.15	80.60
DALL-E 3 (Betker et al., 2023)	90.97	89.61	88.39	90.58	89.83	83.50
SD3-Medium (Esser et al., 2024)	87.90	91.01	88.83	80.70	88.68	84.08
Hunyuan-DiT (Li et al., 2024b)	84.59	80.59	88.01	74.36	86.41	78.87
PixArt- Σ (Chen et al., 2024)	86.89	82.89	88.94	86.59	87.68	80.54
<i>TensorAR</i>						
LlamaGen (Sun et al., 2024)	78.72	58.63	68.22	76.63	44.00	43.13
+ TensorAR	84.50	81.92	81.65	90.68	74.80	73.33
Janus-Pro-7B (Chen et al., 2025b)	86.90	88.90	89.40	89.32	89.48	84.19
+ TensorAR	86.39	90.67	90.66	91.35	84.52	85.57

442
 443 As discussed above, the noise scheduling function
 444 controls the noise level assigned to each
 445 position within a tensor. We evaluate four
 446 schedules: linear, sine, square root, and expon-
 447 ential, whose definitions and hyperparameters
 448 are summarized in Table 5. We set the base
 449 model of all the following ablation studies as
 450 LlamaGEN-B in the class-to-image generation
 451 task. Across settings, all four schedules yield
 452 substantial gains over the base configuration,
 453 indicating that TensorAR is robust to the specific choice of schedule. Among them, the exponential
 454 schedule achieves the lowest Fréchet Inception Distance (FID), making it a strong default in prac-
 455 tice. Overall, these results suggest that the scheduling function is an important factor in TensorAR’s
 456 performance, with the exponential schedule offering the best efficiency–quality trade-off.
 457

Table 5: Different noise scheduler functions.

Model	FID	IS	Precision	Recall
Baseline	5.46	193.6	0.83	0.45
Linear	4.79	218.8	0.85	0.44
Sine	4.75	221.3	0.84	0.45
Square root	4.84	214.9	0.83	0.43
Exponential	4.71	225.8	0.85	0.45

Table 6: Ablation studies on the design of TensorAR.

(a) Different window size k					(b) Depth of Q_{in} and Q_{out} .				
Model	FID	IS	Precision	Recall	Model	FID	Precision	Recall	Latency
Baseline	5.46	193.6	0.83	0.45	Baseline	5.46	0.83	0.45	0.11
k=2	4.78	221.3	0.84	0.45	d=1	4.71	0.85	0.45	0.12
k=4	4.71	225.8	0.85	0.45	d=2	4.79	0.85	0.46	0.14
k=8	4.68	226.7	0.85	0.46	d=4	4.90	0.82	0.43	0.15

472 3.3.2 DIFFERENT WINDOW SIZES

473 Increasing the window size allows TensorAR to revisit and improve each image token over more
 474 steps, which should enhance overall quality. To assess this effect, we vary the window size $k \in$
 475 $\{2, 4, 8\}$ and summarize the results in Table 6a. We observe a monotonic reduction in Fréchet
 476 Inception Distance (FID) as k increases, indicating that additional refinement passes are consistently
 477 beneficial. Even at $k = 2$ —which provides only a single refinement pass per token—TensorAR
 478 significantly outperforms the baseline, underscoring the effectiveness of explicit refinement. These
 479 findings validate the refinement mechanism as a key contributor to performance. Because larger
 480 k entails more sampling steps and thus higher inference cost, practitioners can select k to balance
 481 quality and latency, with moderate values offering a favorable trade-off.

482 3.3.3 DEPTH OF Q_{in} AND Q_{out}

483 Both Q_{in} and Q_{out} modules are implemented as query transformers, with each layer comprising
 484 a cross-attention layer. We investigate the optimal depth for these modules by varying the number

486 of layers $d \in \{1, 2, 4\}$. As reported in Table 6b, $d = 1$ achieves the lowest Fréchet Inception
 487 Distance (FID), while increasing to $d = 4$ yields no further improvement. However, considering the
 488 quality-latency trade-off, we adopt $d = 1$ as the default, which substantially improves throughput
 489 with only a modest impact on image quality. This choice offers a favorable balance for practical
 490 deployment.

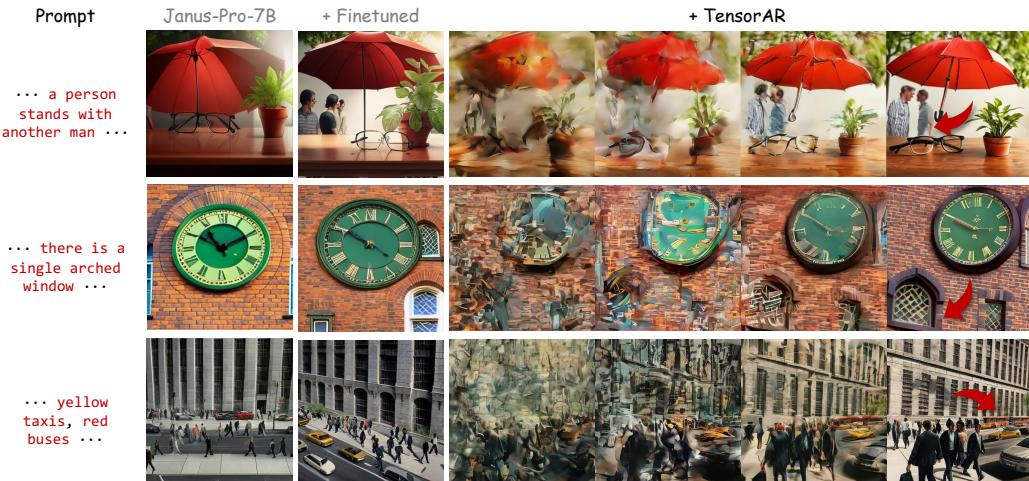
491

492 3.4 VISUALIZATION OF REFINEMENT

493

494 As described in Section 2.2, at each decoding step, TensorAR outputs a block of k consecutive
 495 tokens. The first token in the block is committed to the final sequence, while the remaining $k - 1$
 496 tokens are provisional and refined in subsequent steps. This commit-and-refine strategy induces a
 497 zig-zag, coarse-to-fine progression across positions (Sun et al., 2025): previously emitted tokens
 498 (except the first in each block) are iteratively improved as new tokens are introduced. To illustrate
 499 this behavior, Figure 10 visualizes the evolution of outputs produced by a Janus-Pro-7B model with
 500 a window size of $k = 4$. Applying TensorAR yields higher visual quality and stronger instruction
 501 following than the baseline. The images become progressively sharper and semantically richer as
 502 refinement proceeds. These qualitative results corroborate the effectiveness of the refinement mech-
 503 anism. Additional visualizations are provided in the appendix.

504



520

521 Figure 8: Visualization of the refinement process of TensorAR against its base model: Janus-Pro-7B
 522 with a window size $k = 4$. We mark the text that Janus-Pro-7B fails to generate in red and point
 523 to the corresponding object generated by TensorAR via a red arrow. All these prompts are from the
 524 DPG-Bench benchmark. Best viewed in zoom.

525

526

4 CONCLUSION

527

528

529 In this paper, we present TensorAR, to the best of our knowledge, the first visual autoregressive
 530 framework that integrates an explicit refinement mechanism into the decoding process. TensorAR
 531 extends the conventional next-token prediction paradigm to *next-tensor prediction* by introducing
 532 two lightweight plug-in modules, enabling iterative revision of recent outputs. Crucially, it functions
 533 as a drop-in augmentation to standard autoregressive transformers, requiring no modifications to the
 534 base architecture or changes to the training procedure. Across both class-conditional image synthesis
 535 and text-to-image generation, TensorAR delivers consistent improvements in quality, demonstrating
 the effectiveness of incorporating refinement into visual autoregressive models.

536

537

REFERENCES

538

539

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
 denoising diffusion models in discrete state-spaces. *Advances in neural information processing*

540 systems, 34:17981–17993, 2021.
 541

542 James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
 543 Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. *Computer
 544 Science*. <https://cdn.openai.com/papers/dall-e-3.pdf>, 2(3):8, 2023.

545 Jiuhan Chen, Zhiyang Xu, Xichen Pan, Yushi Hu, Can Qin, Tom Goldstein, Lifu Huang, Tianyi
 546 Zhou, Saining Xie, Silvio Savarese, et al. Blip3-o: A family of fully open unified multimodal
 547 models-architecture, training and dataset. *arXiv preprint arXiv:2505.09568*, 2025a.

548 Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
 549 Kwok, Ping Luo, Huchuan Lu, et al. Pixart-alpha: Fast training of diffusion transformer for
 550 photorealistic text-to-image synthesis. *arXiv preprint arXiv:2310.00426*, 2023.

551 Junsong Chen, Chongjian Ge, Enze Xie, Yue Wu, Lewei Yao, Xiaozhe Ren, Zhongdao Wang, Ping
 552 Luo, Huchuan Lu, and Zhengu Li. Pixart- σ : Weak-to-strong training of diffusion transformer for
 553 4k text-to-image generation. In *European Conference on Computer Vision*, pp. 74–91. Springer,
 554 2024.

555 Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, and
 556 Chong Ruan. Janus-pro: Unified multimodal understanding and generation with data and model
 557 scaling. *arXiv preprint arXiv:2501.17811*, 2025b.

558 Chaorui Deng, Deyao Zhu, Kunchang Li, Shi Guang, and Haoqi Fan. Causal diffusion transformers
 559 for generative modeling. *arXiv preprint arXiv:2412.12095*, 2024.

560 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances
 561 in neural information processing systems*, 34:8780–8794, 2021.

562 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
 563 synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
 564 tion*, pp. 12873–12883, 2021.

565 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 566 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
 567 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
 568 2024.

569 Lijie Fan, Tianhong Li, Siyang Qin, Yuanzhen Li, Chen Sun, Michael Rubinstein, Deqing Sun,
 570 Kaiming He, and Yonglong Tian. Fluid: Scaling autoregressive text-to-image generative models
 571 with continuous tokens. *arXiv preprint arXiv:2410.13863*, 2024.

572 Yuying Ge, Sijie Zhao, Jinguo Zhu, Yixiao Ge, Kun Yi, Lin Song, Chen Li, Xiaohan Ding, and Ying
 573 Shan. Seed-x: Multimodal models with unified multi-granularity comprehension and generation.
 574 *arXiv preprint arXiv:2404.14396*, 2024.

575 Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework
 576 for evaluating text-to-image alignment. *Advances in Neural Information Processing Systems*, 36:
 577 52132–52152, 2023.

578 Jiatao Gu, Yuyang Wang, Yizhe Zhang, Qihang Zhang, Dinghuai Zhang, Navdeep Jaitly, Josh
 579 Susskind, and Shuangfei Zhai. Dart: Denoising autoregressive transformer for scalable text-
 580 to-image generation. *arXiv preprint arXiv:2410.08159*, 2024.

581 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 582 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in
 583 neural information processing systems*, 30, 2017.

584 Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax
 585 flows and multinomial diffusion: Towards non-autoregressive language models. *arXiv preprint
 586 arXiv:2102.05379*, 3(4):5, 2021.

587 Xiwei Hu, Rui Wang, Yixiao Fang, Bin Fu, Pei Cheng, and Gang Yu. Ella: Equip diffusion models
 588 with llm for enhanced semantic alignment. *arXiv preprint arXiv:2403.05135*, 2024.

594 Tuomas Kynkänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
 595 precision and recall metric for assessing generative models. *Advances in neural information*
 596 *processing systems*, 32, 2019.

597

598 Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image
 599 generation using residual quantization. In *Proceedings of the IEEE/CVF Conference on Computer*
 600 *Vision and Pattern Recognition*, pp. 11523–11532, 2022.

601 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
 602 training for unified vision-language understanding and generation. In *International conference on*
 603 *machine learning*, pp. 12888–12900. PMLR, 2022.

604

605 Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
 606 generation without vector quantization. *Advances in Neural Information Processing Systems*, 37:
 607 56424–56445, 2024a.

608

609 Zhimin Li, Jianwei Zhang, Qin Lin, Jiangfeng Xiong, Yanxin Long, Xinchi Deng, Yingfang Zhang,
 610 Xingchao Liu, Minbin Huang, Zedong Xiao, et al. Hunyuan-dit: A powerful multi-resolution
 611 diffusion transformer with fine-grained chinese understanding. *arXiv preprint arXiv:2405.08748*,
 612 2024b.

613

614 Zijie Li, Henry Li, Yichun Shi, Amir Barati Farimani, Yuval Kluger, Linjie Yang, and Peng Wang.
 615 Dual diffusion for unified image generation and understanding. In *Proceedings of the Computer*
 616 *Vision and Pattern Recognition Conference*, pp. 2779–2790, 2025.

617

618 Enshu Liu, Xuefei Ning, Yu Wang, and Zinan Lin. Distilled decoding 1: One-step sampling of
 619 image auto-regressive models with flow matching. *arXiv preprint arXiv:2412.17153*, 2024a.

620

621 Enshu Liu, Qian Chen, Xuefei Ning, Shengen Yan, Guohao Dai, Zinan Lin, and Yu Wang. Distilled
 622 decoding 2: One-step sampling of image auto-regressive models with conditional score distilla-
 623 tion. *arXiv preprint arXiv:2510.21003*, 2025.

624

625 Wenze Liu, Le Zhuo, Yi Xin, Sheng Xia, Peng Gao, and Xiangyu Yue. Customize your visual
 626 autoregressive recipe with set autoregressive modeling. *arXiv preprint arXiv:2410.10511*, 2024b.

627

628 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 629 *arXiv:1711.05101*, 2017.

630

631 Zhuoyan Luo, Fengyuan Shi, Yixiao Ge, Yujiu Yang, Limin Wang, and Ying Shan. Open-magvit2:
 632 An open-source project toward democratizing auto-regressive visual generation. *arXiv preprint*
 633 *arXiv:2409.04410*, 2024.

634

635 Ziqi Pang, Tianyuan Zhang, Fujun Luan, Yunze Man, Hao Tan, Kai Zhang, William T Freeman, and
 636 Yu-Xiong Wang. Randar: Decoder-only autoregressive visual generation in random orders. *arXiv*
 637 *preprint arXiv:2412.01827*, 2024.

638

639 Sucheng Ren, Qihang Yu, Ju He, Xiaohui Shen, Alan Yuille, and Liang-Chieh Chen. Beyond next-
 640 token: Next-x prediction for autoregressive visual generation. *arXiv preprint arXiv:2502.20388*,
 641 2025.

642

643 Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
 644 Improved techniques for training gans. *Advances in neural information processing systems*, 29,
 645 2016.

646

647 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 648 learning using nonequilibrium thermodynamics. In *International conference on machine learn-
 649 ing*, pp. 2256–2265. pmlr, 2015.

650

651 Mingzhen Sun, Weining Wang, Gen Li, Jiawei Liu, Jiahui Sun, Wanquan Feng, Shanshan Lao, SiYu
 652 Zhou, Qian He, and Jing Liu. Ar-diffusion: Asynchronous video generation with auto-regressive
 653 diffusion. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 7364–
 654 7373, 2025.

648 Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
 649 Autoregressive model beats diffusion: Llama for scalable image generation. *arXiv preprint*
 650 *arXiv:2406.06525*, 2024.

651 Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. *arXiv preprint*
 652 *arXiv:2405.09818*, 2024.

654 Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
 655 Scalable image generation via next-scale prediction. *Advances in neural information processing*
 656 *systems*, 37:84839–84865, 2024.

657 Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
 658 Zhang, Yueze Wang, Zhen Li, Qiying Yu, et al. Emu3: Next-token prediction is all you need.
 659 *arXiv preprint arXiv:2409.18869*, 2024.

661 Mark Weber, Lijun Yu, Qihang Yu, Xueqing Deng, Xiaohui Shen, Daniel Cremers, and Liang-
 662 Chieh Chen. Maskbit: Embedding-free image generation via bit tokens. *arXiv preprint*
 663 *arXiv:2409.16211*, 2024.

664 Junfeng Wu, Yi Jiang, Chuofan Ma, Yuliang Liu, Hengshuang Zhao, Zehuan Yuan, Song Bai, and
 665 Xiang Bai. Liquid: Language models are scalable and unified multi-modal generators. *arXiv*
 666 *preprint arXiv:2412.04332*, 2024.

668 Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
 669 Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
 670 to unify multimodal understanding and generation. *arXiv preprint arXiv:2408.12528*, 2024.

671 Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku, Yuanzhong
 672 Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with improved vqgan.
 673 *arXiv preprint arXiv:2110.04627*, 2021.

675 Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong
 676 Cheng, Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, et al. Language model beats diffusion-
 677 tokenizer is key to visual generation. *arXiv preprint arXiv:2310.05737*, 2023.

678 Qihang Yu, Ju He, Xueqing Deng, Xiaohui Shen, and Liang-Chieh Chen. Randomized autoregres-
 679 sive visual generation. *arXiv preprint arXiv:2411.00776*, 2024.

680 Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong. A reparameterized discrete diffusion model
 681 for text generation. *arXiv preprint arXiv:2302.05737*, 2023.

683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702 A IMPLEMENTATION DETAILS
703704 A.1 BASELINES AND BENCHMARKS
705

706 We evaluate TensorAR on both class-to-image generation and text-to-image generation tasks. For
707 the class-to-image generation task, we report quantitative results on the ImageNet 256×256 bench-
708 mark between TensorAR (based on LLaMAGEN (Sun et al., 2024), and Open-MAGVIT2 (Luo et al.,
709 2024)) against a range of state-of-the-art generative models. For the text-to-image generation task,
710 we provide results on the GenEval (Ghosh et al., 2023) and DPG-Bench (Hu et al., 2024) bench-
711 marks. The base models of TensorAR for the text-to-image generation task are LLaMAGEN and
712 Janus-Pro-7B (Chen et al., 2025b). As for the initialization of the two additional modules intro-
713 duced by TensorAR, i.e., Q_{in} and Q_{out} , we implement them by query transformers (Li et al., 2022),
714 with a depth (number of cross-attention layers) of 1 and a **MLP layer with the bottleneck dimension**
715 **ratio equals to 1** for both tasks.

716 A.2 TRAINING DETAILS
717

718 The main difference between the training of the two tasks is the training datasets. We utilize the
719 ImageNet dataset as the training data to train class-to-image generation models for 20 epochs, while
720 the BLIP-3o pretrain dataset (Chen et al., 2025a) is utilized to train text-to-image generation models
721 for 1 epoch.

722 We use AdamW (Loshchilov & Hutter, 2017) optimizer with (β_1, β_2) as $(0.9, 0.95)$ and the weight
723 decay as 0.05. The learning rate for Q_{in} and Q_{out} is set to 1×10^{-4} while the learning rate for base
724 AR models is set to 1×10^{-5} . Class embedding is randomly dropped with a 10% probability in
725 training.

727 A.3 SAMPLING PROTOCOLS
728

729 For class-to-image generation models, we sample 50,000 images for FID computation using the
730 evaluation code provided by ADM (Dhariwal & Nichol, 2021). The sampling hyperparameters,
731 such as top-k, are kept consistent with those used in the base AR models. And as for text-to-image
732 generation models, we follow the guidelines of GenEval and DPG-Bench benchmarks to sample four
733 images per prompt. Additionally, in line with previous studies, we apply classifier-free guidance
734 during sampling.

736 B PSEUDO CODE FOR TENSORAR
737739 **Algorithm 1** Trainging TensorAR

740 **Input:** autoregressive model $f_\theta(\cdot)$; data distribution $p_{data}(\mathbf{x})$; noise scheduler γ ; vocabulary size
741 V ; weighted cross-entropy WCE.
742 **Output:** model parameters θ
743 **repeat**
744 Draw $\mathbf{x} \sim p_{data}(\mathbf{x})$;
745 Draw $\mathbf{x}_k = [\mathbf{x}_{1,k}, \mathbf{x}_{2,k}, \dots, \mathbf{x}_{T,k}]$ from \mathbf{x} ; ▷ Get tensor-based sequence
746 **for** $i = 1, \dots, T$ **do**
747 **for** $j = 2, \dots, k$ **do**
748 Draw $x_{i+k-1}^* \sim \text{Cat}(x_{i+k-1}^* | (1 - \beta(j))x_{i+k-1} + \beta(j)/V)$; ▷ Apply discrete
749 diffusion
750 **end for**
751 **end for**
752 $L(\theta) = -\sum_{n=1}^N \log(p_\theta(x_n | \mathbf{x}_{1,k}, \dots, \mathbf{x}_{n-1,k}; c))$
753 $- \sum_{n=1}^N \sum_{j=1}^{k-1} \frac{\beta(j-1) - \beta(j)}{1 - \beta(j)} \log(p_\theta(x_{n+j} | \mathbf{x}_{1,k}, \dots, \mathbf{x}_{n-1,k}; c))$
754 Minimize L_θ with respect to θ ;
755 **until** converged

756 C ADDITIONAL GENERATION RESULTS
757
758
759
760761 Generation results (256 × 256). Golden retriever (ImageNet class 207)
762
763
764
765
766
767
768
769
770
771
772
773
774
775

Generation results (256 × 256). Balloon (ImageNet class 417)

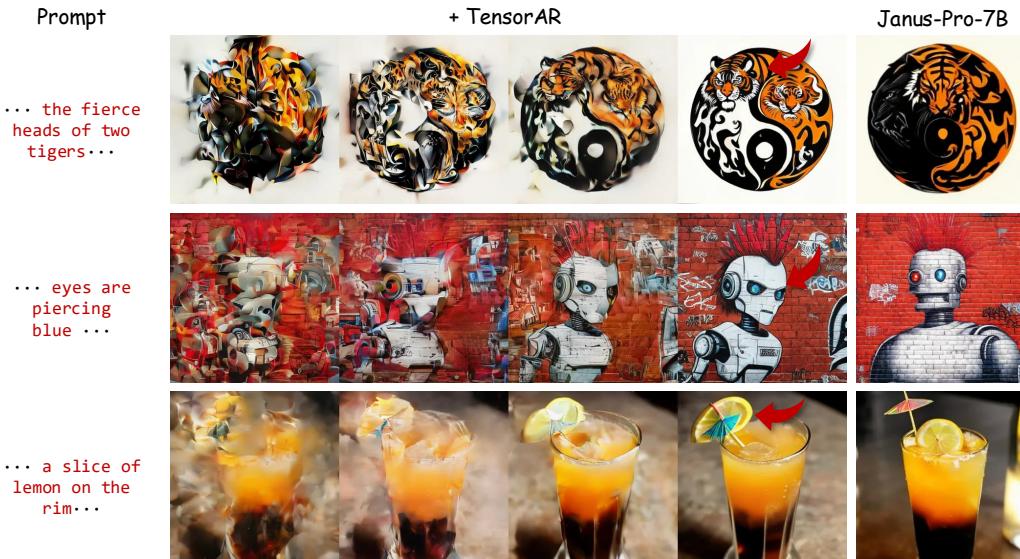
776 Generation results (256 × 256). Schooner (ImageNet class 780)
777
778
779
780
781
782
783
784
785
786
787
788
789
790

Generation results (256 × 256). Volcano (ImageNet class 980)

791 Generation results (256 × 256). Lighthouse (ImageNet class 437)
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807

Generation results (256 × 256). Coral reef (ImageNet class 973)

808 Figure 9: Generation results of TensorAR based on LlamaGEN-XXL. Best viewed in zoom.
809

810
811 D ADDITIONAL VISUALIZATION RESULTS812
813 Here we provide several visual comparisons between TensorAR and its baseline, Janus-Pro-7B.
814 TensorAR shows better instruction-following ability.833
834 Figure 10: Visualization of the refinement process of TensorAR against its base model: Janus-Pro-7B
835 with a window size $k = 4$. We mark the text that Janus-Pro-7B fails to generate in red and point
836 to the corresponding object generated by TensorAR via a red arrow. All these prompts are from the
837 DPG-Bench benchmark. Best viewed in zoom.838
839 E ETHICS STATEMENT840
841 This work mainly relies exclusively on publicly available, open-source datasets that have been
842 widely used in prior academic research. All datasets are employed strictly for scholarly purposes
843 and will not be used in any commercial applications.844
845 F REPRODUCIBILITY STATEMENT846
847 To support reproducibility, we will release the project as open-source software. The model architec-
848 ture is described in detail in Section A.2 outlines the training datasets, implementation details, and
849 all hyperparameter settings to enable faithful replication.850
851
852
853
854
855
856
857
858
859
860
861
862
863