
Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

VERSATILE OFFLINE IMITATION LEARNING VIA STATE
OCCUPANCY MATCHING

Jason Yecheng Ma, Andrew Shen, Dinesh Jayaraman & Osbert Bastani
Department of Computer & Information Science
University of Pennsylvania
Philadelphia, PA 19104, USA
jasonyma@seas.upenn.edu

ABSTRACT

We propose State Matching Offline DIstribution Correction Estimation
(SMODICE), a novel and versatile algorithm for offline imitation learning (IL) via
state-occupancy matching. Without requiring access to expert actions, SMODICE
can be effectively applied to three offline IL settings: (i) imitation from observa-
tions (IfO), (ii) IfO with dynamics or morphologically mismatched expert, and
(iii) example-based reinforcement learning, which we show can be formulated
as a state-occupancy matching problem. We show that the SMODICE objective
admits a simple optimization procedure through an application of Fenchel duality,
reducing a nested optimization problem to a sequence of stable supervised learning
problems. We extensively evaluate SMODICE on both gridworld environments
as well as on high-dimensional offline benchmarks. Our results demonstrate that
SMODICE is effective for all three problem settings and significantly outperforms
prior state-of-art.

1 INTRODUCTION

The offline reinforcement learning (RL) framework Lange et al. (2012); Levine et al. (2020) aims
to use pre-collected, reusable offline data—without further interaction with the environment—for
sample-efficient, scalable, and practical data-driven decision-making. However, this assumes that
the offline dataset comes with reward labels, which may not always be possible. To address this,
offline imitation learning (IL) Zolna et al. (2020); Chang et al. (2021); Kim et al. (2022) has recently
been proposed as an alternative where the learning algorithm is provided with a small set of expert
demonstrations and a separate set of offline data of unknown quality. The goal is to learn a policy
that mimics the provided expert data while avoiding test-time distribution shift Ross et al. (2011) by
using the offline dataset.

Expert demonstrations are often much more expensive to acquire than offline data; thus, offline IL
benefits significantly from minimizing assumptions about the expert data. In this work, we aim to
remove two assumptions about the expert data in current offline IL algorithms: (i) expert action
labels must be provided for the demonstrations, and (ii) the expert demonstrations are performed
with identical dynamics (same embodiment, actions, and transitions) as the imitator agent. These
requirements preclude applications to important practical problem settings, including (i) imitation
from observations, (ii) imitation with mismatched expert that obeys different dynamics or embodiment
(e.g., learning from human videos), and (iii) learning only from examples of successful outcomes
rather than full expert trajectories Eysenbach et al. (2021).

For these reasons, many algorithms for online IL have already sought to remove these assump-
tions Torabi et al. (2018; 2019); Liu et al. (2019); Radosavovic et al. (2020); Eysenbach et al. (2021),
but extending them to offline IL remains an open problem.

We propose State Matching Offline DIstribution Correction Estimation (SMODICE), a general
offline IL framework that can be applied to all three problem settings described above. At a high
level, SMODICE is based on a state-occupancy matching view of IL; in particular, it optimizes a
tractable offline upper bound of the KL-divergence of the state-occupancy d between the imitator π

1

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

Figure 1: Diagram of SMODICE. First, a state-based discriminator is trained using the offline
dataset dO and expert observations (resp. examples) dE . Then, the discriminator is used to train the
Lagrangian value function. Finally, the value function provides the importance weights for policy
training, which outputs the learned policy d∗.

and the expert E:
min
π

DKL(d
π(s)∥dE(s)). (1)

This state-occupancy matching objective allows SMODICE to infer the correct actions from the offline
data in order to match the state-occupancy of the provided expert demonstrations. This naturally
enables imitation when expert actions are unavailable, and even when the expert’s embodiment
or dynamics are different, as long as there is a shared task-relevant state. Finally, we show that
example-based RL Eysenbach et al. (2021), where only examples of successful states are provided as
supervision, can be formulated as a state-occupancy matching problem between the imitator and a
“teleporting” expert that is able to reach success states in one step. Hence, SMODICE can also be
used as an offline example-based RL1 method without any modification.

(a) Mismatched experts (b) IL from examples

Figure 2: Illustrations of tabular SMODICE.

Naively optimizing the offline upper bound on
(1) would result in an actor-critic style IL algo-
rithm akin to prior work Ho & Ermon (2016);
Kostrikov et al. (2018; 2020); however, these
algorithms suffer from training instability in the
offline regime Kumar et al. (2019); Lee et al.
(2021); Kim et al. (2022) due to the entangled
nature of actor and critic learning, leading to er-
roneous value bootstrapping Levine et al. (2020).
SMODICE bypasses this issue and achieves
“actor-free” training by directly estimating the
importance weight ratio of the occupancy mea-
sures between the optimal policy and the empirical behavior policy of the offline data, leveraging the
stationary distribution correction estimation Nachum et al. (2019a); Nachum & Dai (2020) (DICE)
paradigm. Specifically, by formulating the policy optimization problem via its dual (i.e., optimizing
over the space of valid state-action occupancy distributions) and applying Fenchel duality, SMODICE
obtains an unconstrained convex optimization problem over a value function arising from Lagrangian
duality, which admits closed-form solutions in the tabular case and can be easily optimized using
stochastic gradient descent (SGD) in the deep RL setting. Then, SMODICE projects the optimal
value function onto the dual space to extract the optimal importance weights, and learns the optimal
policy via weighted Behavior Cloning. Note that SMODICE does not learn a policy until the value
function has converged.

Through extensive experiments, we show that SMODICE is effective for all three problem settings we
consider and outperforms all state-of-art methods in each respective setting. A benefit of the improved
optimization is that SMODICE is substantially more stable compared to prior methods—we obtain
all SMODICE results using a single set of hyperparameters, modulo a choice of f -divergence which
can be tuned offline. In contrast, prior methods suffer from much greater performance fluctuation
across tasks and settings. Altogether, our proposed method SMODICE can serve as a versatile offline
IL algorithm that is suitable for a wide range of assumptions on expert data.

Pedagogical examples. To illustrate SMODICE’s versatility, we have applied it to two gridworld
tasks, testing offline IL from mismatched experts and examples, respectively. Figure 2(a) shows

1We refer to this problem as “offline imitation learning from examples” to unify nomenclature with the other
two problems.

2

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

an expert agent that can move diagonally in any direction, whereas the imitator can only move
horizontally or vertically. In Figure 2(b), only a success state (the star) is provided as supervision.
An offline dataset collected by a random agent is given to SMODICE for training in both cases. As
shown, SMODICE recovers an optimal policy (i.e. minimum state-occupancy divergence to that of
the expert) in both cases. See Appendix D.1 for details.

2 PRELIMINARIES

Markov decision processes. We consider a time-discounted Markov decision process (MDP) Put-
erman (2014) M = (S,A,R, T, µ0, γ) with state space S, action space A, deterministic rewards
R(s, a), stochastic transitions s′ ∼ T (s, a), initial state distribution µ0(s), and discount factor
γ ∈ (0, 1]. A policy π : S → ∆(A) determines the action distribution conditioned on the state.

The state-action occupancies (also known as stationary distribution) dπ(s, a) : S ×A → [0, 1] of π
is

dπ(s, a) := (1− γ)

∞∑
t=0

γtPr(st = s, at = a | s0 ∼ µ0, at ∼ π(st), st+1 ∼ T (st, at)) (2)

which captures the relative frequency of state-action visitations for a policy π. The state occupancies
then marginalize over actions: dπ(s) =

∑
a d

π(s, a). The state-action occupancies satisfy the
single-step transpose Bellman equation:

dπ(s, a) = (1− γ)µ0(s)π(a | s) + γ · T π
⋆ dπ(s, a), (3)

where T π
⋆ is the adjoint policy transition operator,

T π
⋆ dπ(s, a) := π(a | s)

∑
s̃,ã

T (s | s̃, ã)d(s̃, ã) (4)

Divergences and Fenchel conjugates. Due to space constraint, their definitions are included in
Appendix A.

Offline imitation learning. Many imitation learning approaches rely on minimizing the f -divergence
between the state-action occupancies of the imitator and the expert Ho & Ermon (2016); Ke et al.
(2020); Ghasemipour et al. (2019):

min
π

Df

(
dπ(s, a)∥dE(s, a)

)
(5)

In imitation learning, we do not have dE ; instead, we are provided with expert demonstrations
DE := {(s(i), a(i))}Ni=1.

In offline imitation learning, the agent further cannot interact with the MDP M; instead, they are given
a static dataset of logged transitions DO := {τi}Mi=1, where each trajectory τ (i) = (s

(i)
0 , a

(i)
0 , s

(i)
1 , ...)

with s
(i)
0 ∼ µ0; we denote the empirical state-action occupancies of DO as dO(s, a).

3 THE SMODICE ALGORITHM

SMODICE aims to minimize a state-occupancy matching objective based on the KL-divergence:

min
π

DKL(d
π(s)∥dE(s)) (6)

Later, we show that we can optimize any f -divergence that upper bounds KL-divergence, as the
conjugate of the KL-divergence may be numerically unstable.

Minimizing (6) requires on-policy samples from π, as the expectation is over dπ . To derive an offline
objective, we first derive an upper bound involving the offline dataset.

First, we assume expert coverage of the offline data:

Assumption 1. dO(s) > 0 whenever dE(s) > 0.

3

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

This assumption ensures that the offline dataset has coverage over the expert state-marginal, and is
necessary for imitation learning to succeed. Whereas prior offline RL approaches Kumar et al. (2020);
Ma et al. (2021) assume full coverage of the state-action space, our assumption2 is considerably
weaker since it only requires expert coverage. Given this assumption, we proceed to derive the offline
upper bound on state-occupancy matching:
Theorem 1. Given Assumption 1, we have

DKL(d
π(s)∥dE(s)) ≤ Es∼dπ

[
log

(
dO(s)

dE(s)

)]
+DKL(d

π(s, a)∥dO(s, a)) (7)

Furthermore, for any f -divergence such that Df ≥ DKL,

DKL(d
π(s)∥dE(s)) ≤ Es∼dπ

[
log

(
dO(s)

dE(s)

)]
+Df (d

π(s, a)∥dO(s, a)) (8)

Proofs are in Appendix A. Intuitively, this says that offline state-occupancy matching can be achieved
by matching states in the offline data that resemble expert states (the first term), while remaining in
the support of the offline state-action distribution (the second term). Replacing KL-divergence with
other divergences can be useful since the conjugate of KL divergence involves a log-sum-exp, which
has been found to be numerically unstable in many RL tasks Zhu et al. (2020); Lee et al. (2021);
Rudner et al. (2021).

Note that (8) requires samples from dπ , so it still cannot be easily optimized without online interaction.
To address this, we first rewrite it as an optimization problem over the space of valid state-action
occupancies Puterman (2014):

max
d(s,a)≥0

Es∼d(s,a)

[
log

(
dE(s)

dO(s)

)]
−Df (d(s, a)∥dO(s, a)) (9)

s.t.
∑
a

d(s, a) = (1− γ)µ0(s) + γT⋆d(s),∀s ∈ S (10)

where T⋆d(s) =
∑

s̄,ā T (s | s̄, ā)d(s̄, ā); here, (10) ensures that d is the occupancy distribution for
some policy. We assume that (9) is strictly feasible.
Assumption 2. There exists at least one d(s, a) such that constraints (10) are satisfied and ∀s ∈
S, d(s) > 0.

This assumption is mild and can be satisfied in practice for any MDP for which every state is reachable
from the initial state distribution. Next, we can form the dual of (9):

max
d(s,a)≥0

min
V (s)≥0

Es∼d

[
log

(
dE(s)

dO(s)

)]
−Df (d(s, a)∥dO(s, a)) +

∑
s

V (s)

(
(1− γ)µ0(s) + γT⋆d(s)−

∑
a

d(s, a)

)
(11)

where V (s) are the Lagrangian multipliers. Now, because T⋆ is the adjoint of T , we have the
following: ∑

s

V (s) · T⋆d(s) =
∑
s,a

d(s, a) · (T V)(s, a) (12)

Using this equation, we can write (11) as

max
d(s,a)≥0

min
V (s)≥0

(1− γ)Es∼µ0
[V (s)] + E(s,a)∼d

[
log

(
dE(s)

dO(s)

)
+ γT V (s, a)− V (s)

]
−Df (d(s, a)∥dO(s, a))

(13)

We note that the original problem (9) is convex Lee et al. (2021). By Assumption 2, it is strictly
feasible, so by strong duality, we can change the order of optimization in (13):

= min
V (s)≥0

max
d(s,a)≥0

(1− γ)Es∼µ0
[V (s)] + E(s,a)∼d [(R(s) + γT V (s, a)− V (s))]−Df (d(s, a)∥dO(s, a))

(14)

2Furthermore, it is not needed in practice, and is only required for our technical development to ensure that
all state-occupancy quantities are well-defined (i.e., no division-by-zero).

4

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

where R(s) = log dE(s)
dO(s)

. We briefly discuss how to compute R(s). In the tabular case, R(s) can
be computed using empirical estimates of dE(s) and dO(s). In the continuous case, we can train a
discriminator c : S → (0, 1):

min
c

Es∼dE [log c(s)] + Es∼dO [log 1− c(s)] (15)

The optimal discriminator is c⋆(s) = dO(s)
dE(s)+dO(s)

Goodfellow et al. (2014), so we can use R(s) =

− log
(

1
c⋆(s) − 1

)
.

Finally, using the Fenchel conjugate, (14) can be reduced to a single unconstrained optimization
problem over V : S → R≥0 that depends on samples from only dO and not d; we also obtain the
importance weight of the state-occupancy of the optimal policy with respect to the offline data.
Theorem 2. The optimization problem (14) is equivalent to

min
V (s)≥0

(1− γ)Es∼µ0 [V (s)] + E(s,a)∼dO [f⋆ (R(s) + γT V (s, a)− V (s))] (16)

Furthermore, given the optimal solution V ∗, the optimal state-occupancy importance weights are

d∗(s, a)

dO(s, a)
= f ′

⋆(R+ γT V ∗(s, a)− V ∗(s)) (17)

This result can be viewed as using Fenchel duality to generalize prior DICE-based offline ap-
proaches Lee et al. (2021); Kim et al. (2022). In particular, the inner maximization problem in (14)
is precisely the Fenchel conjugate of Df (d(s, a)∥dO(s, a)) at R(s) + γT V (s, a)− V (s) (compare
(14) to (23)). Similarly, (17) can be derived from leveraging the relationship between the optimal
solutions of a pair of Fenchel primal-dual problems. This generality allows us to choose problem-
specific f -divergences that improve stability during optimization. In Appendix C, we specialize the
SMODICE objective for the KL- and χ2-divergences, which we use in our experiments.

Finally, using the optimal importance weights, we can extract the optimal policy π using weighted
Behavior Cloning:

min
π

−E(s,a)∼d∗ [log π(a | s)] = min
π

−E(s,a)∼dO [ξ∗(s, a) log π(a | s)] (18)

where ξ∗(s, a) = d∗(s,a)
dO(s,a)

. Here, V (s) can be viewed as the value function—it is trained by minimiz-
ing a convex function of the Bellman residuals and the values of the initial states. Then, it can be
used to inform policy learning.

Putting everything together, SMODICE can achieve stable policy learning through a sequence of
three disjoint supervised learning problems, summarized in Figure 1. The full pseudo-code is in
Algorithm 2 in Appendix 2.

SMODICE for Tabular MDPs. An appealing property of SMODICE is that it admits closed-form
analytic solution in the tabular case. The derivation is in Appendix D.

4 OFFLINE IMITATION LEARNING FROM EXAMPLES

Next, we describe how SMODICE can be applied to offline imitation learning from examples. Starting
from the original problem objective from Eysenbach et al. (2021), we derive a state-occupancy
matching objective, enabling us to apply SMODICE without any modification.

Problem setting. We assume given success examples S∗ = {s∗ ∼ pU (st | et = 1)}, where
e ∈ {0, 1} indicates whether the current state is a success outcome, and offline data D = {(s, a, s′)}.
Here, U is the state distribution of the “user” providing success examples. Then, Eysenbach et al.
(2021) proposes the example-based RL objective

argmax
π

log pπ(et+ = 1) = logEs∼µ0
[pπ(et+ = 1|s0)] (19)

That is, we want a policy that maximizes the probability of reaching success states in the future. To
tackle this problem in the offline setting, our strategy is to convert (19) into an optimization problem
over the state-occupancy space.

5

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

Figure 3: Offline imitation learning from observations results.

Derivation. We first transform the problem into state-occupancy space—i.e.,

max
π

logEs∼µ0 [p
π(et+ = 1|s0)] = max

d≥0
logEs∼d(s) [p(e|s)] (20)

which is valid given that the original objective can be thought of as a regular RL problem with reward
function r(s) = p(e | s) Eysenbach et al. (2021).

Given this formulation, we can derive a tractable lower bound to (20) through Jensen’s inequality and
Bayes’ rule:

logEs∼d(s) [pU (e | s)] ≥ Es∼d(s) [log pU (e | s)] ≥ −DKL (d(s)∥pU (s | e)) + const.

We can optimize the original objective by maximizing this lower bound. Doing so is equivalent to
solving mind≥0 DKL (d(s)∥pU (s | e)) , which is exactly in the form of the state-occupancy matching
objective (6) that SMODICE optimizes. Furthermore, this objective admits an intuitive explanation
from a purely imitation learning lens. We can think of pU (s | e) as the state-occupancy distribution of
an expert agent who can “teleport” to any success state in one time-step. Therefore, we have shown
that example-based RL can be understood as a state-occupancy minimization problem between a
MDP-dynamics abiding imitator and a teleporting expert agent. Consequently, SMODICE can be
used in the offline setting without any algorithmic modification.

5 EXPERIMENTS

We experimentally demonstrate that SMODICE is effective for offline IL from observations, mis-
matched experts, and examples. We give additional experimental details in Appendices G, H, and
I.

5.1 OFFLINE IMITATION LEARNING FROM OBSERVATIONS

(a) Mujoco (b) AntMaze (c) Kitchen

Figure 4: Evaluation environments.

Datasets. We utilize the D4RL Fu et al. (2021) offline
RL dataset. The dataset compositions for all tasks
are listed in Table 3 in Appendix G. We consider the
following standard Mujoco environments: Hopper,
Walker2d, HalfCheetah, and Ant. For each, we take
a single expert trajectory from the respective “expert-
v2” dataset as the expert dataset and omit the actions.
For the offline dataset, following Kim et al. (2022),
we use a mixture of small number of expert trajectories (≤ 200 trajectories) and a large number of
low-quality trajectories from the “random-v2” dataset (we use the full random dataset, consisting of
around 1 million transitions). This dataset composition is particularly challenging as the learning
algorithm must be able to successfully distinguish expert from low-quality data in the offline dataset.

We also include two more challenging environments from D4RL: AntMaze and Franka Kitchen. Dur
to space constraint, we describe their dataset compositions in Appendix G.

6

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

Figure 5: Offline imitation learning from mismatched experts results.

Figure 6: Offline imitation learning from examples results.

Method and baselines. We use SMODICE with χ2-divergence for all tasks (in other problem settings
as well) except Hopper, Walker, and Halfcheetah, where we find SMODICE with KL-divergence to
perform better; in Appendix E.2, we explain how to choose the appropriate f -divergence offline by
monitoring SMODICE’s policy loss. For comparisons, we consider both IfO and regular offline IL
methods, which make use of expert actions. For the former, we compare against (i) SAIL-TD3-BC,
which combines a state-of-art state-matching based online IL algorithm (SAIL) Liu et al. (2019)
with a state-of-art offline RL algorithm (TD3-BC) Fujimoto & Gu (2021),3 (ii) Offline Reinforced
Imitation Learning (ORIL) Zolna et al. (2020), which adapts GAIL Ho & Ermon (2016) to the
offline setting by using an offline RL algorithm for policy optimization; we implement ORIL using
the same state-based discriminator as in SMODICE, and TD3-BC as the offline RL algorithm. For
the latter, we consider the state-of-art DEMODICE Kim et al. (2022) as well as Behavior Cloning
(BC). We train all algorithms for 1 million gradient steps and keep track of the normalized score
(i.e., 100 is expert performance, 0 is random-action performance) during training; the normalized
score is averaged over 10 independent rollouts. All methods are evaluated over 3 seeds, and one
standard-deviation confidence intervals are shaded.

Results. As shown in Figure 3, only SMODICE achieves stable and good performance in all six
tasks. It achieves (near) expert performance in all the Mujoco environments, performing on-par
with DEMODICE and doing so without the privileged information of expert actions. SMODICE’s
advantage over DEMODICE is more apparent in AntMaze and Kitchen. In the former, SMODICE
outperforms BC, while DEMODICE cannot; in the latter, DEMODICE quickly collapses due to its
use of KL-divergence, which may be numerically unstable in high-dimensional environments. BC is
a strong baseline for tasks where the offline dataset contains (near) expert data (i.e., AntMaze and
Kitchen); however, as the dataset becomes more diverse, BC’s performance drops significantly.

SAIL-TD3-BC and ORIL both fail to learn in some environments and otherwise converge to a worse
policy than SMODICE. The only exception is AntMaze; however, in Appendix G.2, we show that
both methods collapse with a more diverse version of the AntMaze offline dataset, indicating that
unlike SMODICE, these methods are highly sensitive to the composition of the offline dataset, and
work best with task-aligned offline data. The sub-par performances of SAIL and ORIL highlight
the challenges of adapting online IL methods to the offline setting; we hypothesize that it is not
sufficient to simply equip the original methods (i.e., SAIL and GAIL) with a strong base offline RL
algorithm. Together, these results demonstrate that SMODICE is stable, scalable, and robust, and
significantly outperforms prior methods. Finally, in Appendix G.2, we ablate SMODICE by zeroing
out its discriminator-based reward to validate that SMODICE’s empirical performance comes from
its ability to discriminate expert data in the offline dataset.

3We chose TD3-BC due to its simplicity and stability.

7

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

5.2 OFFLINE IL FROM MISMATCHED EXPERTS

Datasets and baselines. Due to space constraint, they are described in Appendix H.

Results. The training curves are shown in Figure 5; we illustrate the original maximum performance
attained by each method (i.e., using the original expert trajectory, Section 5.1) using dashed lines
as points of reference. As can be seen, SMODICE is significantly more robust to mismatched
experts than either SAIL-TD3-BC or ORIL. On AntMaze, the task where SAIL-TD3-BC and ORIL
originally outperform SMODICE, learning from a PointMass expert significantly deteriorates their
performances, and the learned policies are noticably worse than that of SMODICE, which has the
smallest performance drop. The other two tasks exhibit similar trends; SMODICE is able to learn
an expert level policy for the original Ant embodiment using a disabled Ant expert, and is the only
method that shows any progress on the hardest HalfCheetah-Short task. Despite using the same
discriminator for reward supervision, SMODICE is substantially more robust than ORIL, likely due
to the occupancy-constraint Df (d(s, a)∥dO(s, a)) term in its objective (8), which ensures that the
learned policy is supported by the offline data as it attempts to match the expert states. In Appendix
H.2, we provide additional quantitative analysis of Figure 5.

5.3 OFFLINE IMITATION LEARNING FROM EXAMPLES

Tasks. We use the AntMaze and Kitchen environments and create example-based task variants. For
AntMaze, we replace the full demonstration with a small set of success states (i.e., Ant in the goal
region) extracted from the offline data. For Kitchen, we consider two subtasks in the environment:
Kettle and Microwave. and define task success to be only whether the specified object is correctly
placed (instead of all objects as in the original task); the success states are extracted from the offline
data accordingly. Examples of the success states are illustrated in Figure 13 in Appendix I. Note that
the kitchen dataset contains many trajectories where the kettle is moved first. Thus, the kettle task is
easy even for Behavior Cloning (BC), since cloning the offline data can lead to success. This is not
the case for the microwave task, making it much more difficult to solve using only success examples.
In addition, we introduce the PointMass-4Direction environment. Here, a 2D PointMass agent is
tasked with navigating to the middle point of a specified edge of the square that encloses the agent
(see Figure 13(a)). The offline dataset is generated using a waypoint navigator controlling the agent
to each of the four possible goals and contains equally many trajectories for each goal. At training
and evaluation time, we set the left edge to be the desired edge and collect success states from the
offline data accordingly. This task is low-dimensional but consists of multi-task offline data, making
it challenging for algorithms such as BC that do not solve the example-based RL objective.

Approaches. We make no modification to SMODICE; the only difference is that the discriminator is
trained using success states instead of full expert state trajectories. Our main comparison is RCE-
TD3-BC, which combines RCE Eysenbach et al. (2021), the state-of-art online example-based RL
method, and TD3-BC. We also compare against ORIL Zolna et al. (2020), using the same architecture
as in Section 5.1. Finally, we also include BC.

Results. As shown in Figure 6, SMODICE is the best performing method on all four tasks and is the
only one that can solve the Microwave task. RCE-TD3-BC is able to solve the first three tasks, but
achieves worse solutions and exhibits substantial performance fluctuation during training; we posit
that the optimization for RCE, which requires alternate updates to a recursive classifier and a policy,
is substantially more difficult than that of SMODICE. ORIL is unstable and fails to make progress in
most tasks. Interestingly, as in the mismatched expert setting, on AntMaze, ORIL’s performance is
far below that of SMODICE, despite attaining better results originally (Figure 3). This comparison
demonstrates the versatility of SMODICE afforded by its state-occupancy matching objective; in
contrast, ORIL treats offline IL from examples as an offline RL task with discriminator-based reward
and cannot solve the task. See Appendix I for additional analysis.

6 CONCLUSION

We have proposed SMODICE, a simple, stable, and versatile algorithm for offline imitation learning
from observations, mismatched experts, and examples. Leveraging Fenchel duality, SMODICE
optimizes a state-occupancy matching objective that enjoys closed-form tabular solution and stable
optimization with deep neural networks. Through extensive experiments, we have shown that
SMODICE significantly outperforms prior state-of-art methods in all three settings.

8

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

REFERENCES

Leemon Baird. Residual algorithms: Reinforcement learning with function approximation. In
Machine Learning Proceedings 1995, pp. 30–37. Elsevier, 1995.

Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.

Jonathan D. Chang, Masatoshi Uehara, Dhruv Sreenivas, Rahul Kidambi, and Wen Sun. Mitigating
covariate shift in imitation learning via offline data without great coverage, 2021.

Bo Dai, Niao He, Yunpeng Pan, Byron Boots, and Le Song. Learning from conditional distributions
via dual embeddings, 2016.

Bo Dai, Ofir Nachum, Yinlam Chow, Lihong Li, Csaba Szepesvári, and Dale Schuurmans. Coindice:
Off-policy confidence interval estimation. arXiv preprint arXiv:2010.11652, 2020.

Benjamin Eysenbach, Sergey Levine, and Ruslan Salakhutdinov. Replacing rewards with exam-
ples: Example-based policy search via recursive classification. In Thirty-Fifth Conference on
Neural Information Processing Systems, 2021. URL https://openreview.net/forum?
id=VXeoK3fJZhW.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2021.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
arXiv preprint arXiv:2106.06860, 2021.

Seyed Kamyar Seyed Ghasemipour, Richard Zemel, and Shixiang Gu. A divergence minimization
perspective on imitation learning methods, 2019.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning. arXiv preprint
arXiv:1910.11956, 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor, 2018.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti
Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández
del Rı́o, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy,
Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming
with NumPy. Nature, 585(7825):357–362, September 2020. doi: 10.1038/s41586-020-2649-2.
URL https://doi.org/10.1038/s41586-020-2649-2.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning, 2016.

Liyiming Ke, Sanjiban Choudhury, Matt Barnes, Wen Sun, Gilwoo Lee, and Siddhartha Srinivasa.
Imitation learning as f -divergence minimization, 2020.

Geon-Hyeong Kim, Seokin Seo, Jongmin Lee, Wonseok Jeon, HyeongJoo Hwang, Hongseok
Yang, and Kee-Eung Kim. DemoDICE: Offline imitation learning with supplementary imperfect
demonstrations. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=BrPdX1bDZkQ.

Kuno Kim, Yihong Gu, Jiaming Song, Shengjia Zhao, and Stefano Ermon. Domain adaptive imitation
learning. In International Conference on Machine Learning, pp. 5286–5295. PMLR, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

9

https://openreview.net/forum?id=VXeoK3fJZhW
https://openreview.net/forum?id=VXeoK3fJZhW
https://doi.org/10.1038/s41586-020-2649-2
https://openreview.net/forum?id=BrPdX1bDZkQ
https://openreview.net/forum?id=BrPdX1bDZkQ

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan Tompson.
Discriminator-actor-critic: Addressing sample inefficiency and reward bias in adversarial imitation
learning. arXiv preprint arXiv:1809.02925, 2018.

Ilya Kostrikov, Ofir Nachum, and Jonathan Tompson. Imitation learning via off-policy distribution
matching. In International Conference on Learning Representations, 2020. URL https://
openreview.net/forum?id=Hyg-JC4FDr.

Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Stabilizing off-policy q-learning via
bootstrapping error reduction. arXiv preprint arXiv:1906.00949, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In
Reinforcement learning, pp. 45–73. Springer, 2012.

Jongmin Lee, Wonseok Jeon, Byung-Jun Lee, Joelle Pineau, and Kee-Eung Kim. Optidice:
Offline policy optimization via stationary distribution correction estimation. arXiv preprint
arXiv:2106.10783, 2021.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Fangchen Liu, Zhan Ling, Tongzhou Mu, and Hao Su. State alignment-based imitation learning.
arXiv preprint arXiv:1911.10947, 2019.

Yecheng Ma, Dinesh Jayaraman, and Osbert Bastani. Conservative offline distributional reinforcement
learning. Advances in Neural Information Processing Systems, 34, 2021.

Ofir Nachum and Bo Dai. Reinforcement learning via fenchel-rockafellar duality, 2020.

Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. Dualdice: Behavior-agnostic estimation of
discounted stationary distribution corrections. arXiv preprint arXiv:1906.04733, 2019a.

Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schuurmans. Algaedice:
Policy gradient from arbitrary experience, 2019b.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Ilija Radosavovic, Xiaolong Wang, Lerrel Pinto, and Jitendra Malik. State-only imitation learning for
dexterous manipulation, 2020.

Dripta S. Raychaudhuri, Sujoy Paul, Jeroen van Baar, and Amit K. Roy-Chowdhury. Cross-domain
imitation from observations, 2021.

Stephane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning, 2011.

Tim G. J. Rudner, Cong Lu, Michael Osborne, Yarin Gal, and Yee Whye Teh. On pathologies in
KL-regularized reinforcement learning from expert demonstrations. In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems,
2021. URL https://openreview.net/forum?id=sS8rRmgAatA.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation, 2018.

Faraz Torabi, Garrett Warnell, and Peter Stone. Generative adversarial imitation from observation,
2019.

Chao Yang, Xiaojian Ma, Wenbing Huang, Fuchun Sun, Huaping Liu, Junzhou Huang, and Chuang
Gan. Imitation learning from observations by minimizing inverse dynamics disagreement. arXiv
preprint arXiv:1910.04417, 2019.

10

https://openreview.net/forum?id=Hyg-JC4FDr
https://openreview.net/forum?id=Hyg-JC4FDr
https://openreview.net/forum?id=sS8rRmgAatA

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

Ruiyi Zhang*, Bo Dai*, Lihong Li, and Dale Schuurmans. Gendice: Generalized offline estimation of
stationary values. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=HkxlcnVFwB.

Zhuangdi Zhu, Kaixiang Lin, Bo Dai, and Jiayu Zhou. Off-policy imitation learning from observations.
Advances in Neural Information Processing Systems, 33, 2020.

Konrad Zolna, Alexander Novikov, Ksenia Konyushkova, Caglar Gulcehre, Ziyu Wang, Yusuf
Aytar, Misha Denil, Nando de Freitas, and Scott Reed. Offline learning from demonstrations and
unlabeled experience. arXiv preprint arXiv:2011.13885, 2020.

11

https://openreview.net/forum?id=HkxlcnVFwB
https://openreview.net/forum?id=HkxlcnVFwB

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

A PROOFS

A.1 PRELIMINARIES

Definition 1 (f -divergence). Given a continuous, convex function f and two probability distributions
p, q ∈ ∆(X) over a domain X , the f -divergence of p at q is

Df (p∥q) = Ex∼q

[
f

(
p(x)

q(x)

)]
(21)

A common f -divergence in machine learning is the KL-divergence, which corresponds to f(x) =
x log x. Now, we introduce Fenchel conjugate for f -divergences.

Definition 2 (Fenchel conjugate). Given a vector space Ω with inner-product ⟨·, ·⟩, the Fenchel
conjugate f⋆ : Ω⋆ → R of a function f : Ω → R is

f⋆(y) := max
x∈Ω

⟨x, y⟩ − f(x) (22)

For an f -divergence, under mild realizability assumptions Dai et al. (2016) on f , the Fenchel
conjugate of Df (p∥q) at y : X → R is

D⋆,f (y) = max
p∈∆(X)

Ex∼p[y(x)]−Df (p∥q) = Ex∼q[f⋆(y(x))] (23)

A.2 TECHNICAL LEMMAS

Lemma 1. We have

DKL(d
π(s)∥dE(s)) ≤ DKL(d

π(s, a)∥dE(s, a))

Proof. We first state and prove a related lemma, which first appeared in Yang et al. (2019).

Lemma 2.

DKL

(
dπ(s, a, s′)∥dE(s, a, s′)

)
= DKL

(
dπ(s, a)∥dE(s, a)

)
.

Proof.

DKL

(
dπ(s, a, s′)∥dE(s, a, s′)

)
=

∫
S×A×S

dπ(s, a, s′) log
dπ(s, a) · T (s′ | s, a)
dE(s, a) · T (s′ | s, a)

ds′dads

=

∫
S×A×S

dπ(s, a, s′) log
dπ(s, a)

dE(s, a)
ds′dads

=

∫
S×A

dπ(s, a) log
dπ(s, a)

dE(s, a)
dads

=DKL

(
dπ(s, a)∥dE(s, a)

)

12

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

Using this result, we can show the desired upper bound:

DKL

(
dπ(s, a)∥dE(s, a)

)
=DKL

(
dπ(s, a, s′)∥dE(s, a, s′)

)
=

∫
S×A×S

dπ(s, a, s′) log
dπ(s, a) · T (s′ | s, a)
dE(s, a) · T (s′ | s, a)

ds′dads

=

∫
S×A×S

dπ(s)π(a | s)T (s′ | s, a) log dπ(s, a) · T (s′ | s, a)
dE(s, a) · T (s′ | s, a)

ds′dads

=

∫
dπ(s)π(a | s)T (s′ | s, a) log dπ(s)

dE(s)
ds′dads+

∫
dπ(s)π(a | s)T (s′ | s, a) log π(a | s)T (s′ | s, a)

πE(a | s)T (s′ | s, a)
ds′dads

=

∫
dπ(s) log

dπ(s)

dE(s)
ds+

∫
dπ(s)π(a | s) log π(a | s)

πE(a | s)
dads

=DKL

(
dπ(s)∥dE(s)

)
+DKL

(
π(a | s)∥πE(a | s)

)
≥DKL

(
dπ(s)∥dE(s)

)

A.3 PROOF OF THEOREM 1

Proof.

DKL

(
dπ(s)∥dE(s)

)
=

∫
dπ(s) log

dπ(s)

dE(s)
· d

O(s)

dO(s)
ds, we assume that dO(s) > 0 whenever dE(s) > 0.

=

∫
dπ(s) log

dO(s)

dE(s)
ds+

∫
dπ(s) log

dπ(s)

dO(s)
ds

≤Es∼dπ

[
log

dO(s)

dE(s)

]
+DKL

(
dπ(s, a)∥dE(s, a)

)
where the last step follows from Lemma 1. Then, for any Df ≥ DKL, we have that

DKL

(
dπ(s)∥dE(s)

)
≤ Es∼dπ

[
log

dO(s)

dE(s)

]
+Df

(
dπ(s, a)∥dE(s, a)

)

A.4 PROOF OF THEOREM 2

Proof. We begin with

min
V (s)≥0

max
d(s,a)≥0

(1−γ)Es∼µ0
[V (s)]+E(s,a)∼d [(R(s) + γT V (s, a)− V (s))]−Df (d(s, a)∥dO(s, a))

(24)
We have that

min
V (s)≥0

max
d(s,a)≥0

(1− γ)Es∼µ0
[V (s)] + E(s,a)∼d [(R(s) + γT V (s, a)− V (s))]−Df (d(s, a)∥dO(s, a))

(25)

= min
V (s)≥0

(1− γ)Es∼µ0
[V (s)] + max

d(s,a)≥0
+E(s,a)∼d [(R(s) + γT V (s, a)− V (s))]−Df (d(s, a)∥dO(s, a))

(26)
= min

V (s)≥0
(1− γ)Es∼µ0

[V (s)] + E(s,a)∼dO [f⋆ (R(s) + γT V (s, a)− V (s))] (27)

where the last step follows from recognizing that the inner-maximization is precisely the Fenchel
conjugate of Df (d(s, a)∥dO(s, a)) at R(s) + γT V (s, a)− V (s).

To show the relationship among V ⋆ and ξ⋆, we recognize that (27) and (9) are a pair of Fenchel
primal-dual problems.

13

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

Lemma 3.
min

V (s)≥0
(1− γ)Es∼µ0

[V (s)] + E(s,a)∼dO [f⋆ (R(s) + γT V (s, a)− V (s))]

is the Fenchel dual to

max
d(s,a)≥0

Es∼d

[
log

(
dE(s)

dO(s)

)]
−Df (d(s, a)∥dO(s, a)) (28)

s.t.
∑
a

d(s, a) = (1− γ)µ0(s) + γT⋆d(s),∀s ∈ S (29)

Proof. We define the indicator function δX (x) as

δX (x) =

{
0 x ∈ X
∞ otherwise

Then, we define g : R|S| → R as g(·) := δ{(1−γ)µ0}(·). Then, it can be shown that the Fenchel
conjugate of g is g⋆(·) = (1 − γ)Eµ0

[·]. In addition, we denote h(·) := D + f(·∥dO); then,
h⋆(·) = E(s,a)∼dO [f⋆(·)]. Finally, define matrix operator A := γT⋆ − I . Using these notations, we
can write (27) as

min
V

g⋆(V) + h⋆(A⋆V +R) (30)

Then, we proceed to derive the Fenchel dual of (30):

min
V

g⋆(V) + h⋆(A⋆V +R) (31)

=min
V

max
d

g⋆(V) + ⟨d,A⋆V +R⟩ − h(d) (32)

=min
V

max
d

g⋆(V) + ⟨d,A⋆V ⟩+ ⟨d,R⟩ − h(d) (33)

=max
d

(
min
V

g⋆(V) + ⟨d,A⋆V ⟩
)
+ ⟨d,R⟩ − h(d) (34)

=max
d

(
min
V

g⋆(V) + ⟨Ad, V ⟩
)
+ ⟨d,R⟩ − h(d) (35)

=max
d

(
max
V

−g⋆(V) + ⟨−Ad, V ⟩
)
+ ⟨d,R⟩ − h(d) (36)

=max
d

g(−Ad) + ⟨d,R⟩ − h(d) (37)

where (32) follows applying Fenchel conjugacy to h⋆, (34) follows from strong duality, (35) follows
from the property of an adjoint operator, and (37) follows from applying Fenchel conjugacy to g⋆.
Here, we recognize that (37) is precisely the optimization problem (28)-(29), where we have moved
the constraint (29) to the objective as the indicator function g(−Ad):

g(−Ad) = δ{(1−γ)µ0} (d− γT⋆d)

⇔
∑
a

d(s, a) = (1− γ)µ0(s) + γT⋆d(s),∀s ∈ S

Giving Lemma 3, we use the fact that d∗ and V ∗ admit the following relationship:

d∗ = h′
⋆(−A⋆V

∗ +R) (38)

This follows from the characterization of the optimal solutions for a pair of Fenchel primal-dual
problems with convex g, h and linear operator A Nachum & Dai (2020). In this case, assuming that
we can exchange the order of expectation and derivative (e.g, conditions of Dominated Convergence
Theorem hold), we have

d∗ = E(s,a)∼dO [f⋆ ((R(s) + γT V (s, a)− V (s))] , (39)

or equivalently,

d∗(s, a) = f⋆ (R(s) + γT V (s, a)− V (s)) · dO(s, a),∀s, a ∈ S ×A, (40)

as desired.

14

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

B RELATED WORK

Offline imitation learning. The closest work is concurrent work, DEMODICE Kim et al. (2022),
a state-action based offline IL method, also using the DICE paradigm to estimates the occupancy
ratio between the expert and the imitator; we overview the DICE literature in Appendix B. Due to its
dependence on expert actions, DEMODICE cannot be applied to the three problem settings we study.
At a technical level, a key limitation of DEMODICE is that it does not exploit the form of general
Fenchel duality and only support the KL-divergence, forgoing other f -divergences that can lead to
more stable optimization Ghasemipour et al. (2019); Ke et al. (2020); Zhu et al. (2020). Another
related work is ORIL Zolna et al. (2020), which adapts GAIL Ho & Ermon (2016) to the offline
setting. Finally, there has been recent work learning a pessimistic dynamics model using the offline
dataset and then performs imitation learning by minimizing the state-action occupancy divergence
with respect to the expert inside this learned model Chang et al. (2021). As with DEMODICE, this
approach requires expert actions and cannot be applied to the settings we study.

Imitation from observations, imitation with mismatched experts, and example-based RL All
three of these problems have been studied in the online setting. IfO is often achieved through training
an additional inverse dynamics model to infer the expert actions Torabi et al. (2018; 2019); Liu et al.
(2019); Radosavovic et al. (2020); in contrast, SMODICE matches the expert observations by identi-
fying the correct actions supported in the offline data. To handle experts with dynamics mismatch,
some work explicitly learns a correspondence between the expert and the imitator MDPs Kim et al.
(2020); Raychaudhuri et al. (2021); however, these approaches make much stronger assumptions on
access to the expert MDP that are difficult to satisfy in the offline setting, such as demonstrations from
auxillary tasks. In contrast, SMODICE falls under the category of state-only imitation learning Liu
et al. (2019); Radosavovic et al. (2020), which overcomes expert dynamics differences by only
matching the shared task-relevant state space (e.g., xy coordinates for locomotion tasks). Finally,
example-based RL was first studied in Eysenbach et al. (2021); they introduce a recursive-classifier
based off-policy actor critic method to solve it. By casting this problem as state-occupancy matching
between an imitator and a “teleporting” expert agent, SMODICE can solve the offline variant of this
problem without modification.

Stationary distribution correction estimation. Estimating the optimal policy’s stationary distribu-
tion using off-policy data was introduced by Nachum et al. (2019a) as the DICE trick. This technique
has been shown to be effective for off-policy evaluation Nachum et al. (2019a); Zhang* et al. (2020);
Dai et al. (2020), policy optimization Nachum et al. (2019b); Lee et al. (2021), online imitation
learning Kostrikov et al. (2020); Zhu et al. (2020), and concurrently, offline imitation learning Kim
et al. (2022). Within the subset of DICE-based policy optimization methods, none has tackled
state-occupancy matching or directly apply Fenchel Duality to its full generality to arrive at the form
of value function objective we derive.

C SMODICE WITH COMMON f -DIVERGENCES

Example 1 (SMODICE with χ2-divergence). Suppose f(x) = 1
2 (x − 1)2, corresponding to χ2-

divergence. Then, we can show that f⋆(x) = 1
2 (x+ 1)2 and f ′

⋆(x) = x+ 1. Hence, the SMODICE
objective amounts to

min
V (s)≥0

(1− γ)Es∼µ0
[V (s)] +

1

2
E(s,a)∼dO

[
(R(s) + γT V (s, a)− V (s) + 1)

2
]

(41)

and

ξ∗(s, a) =
d∗(s, a)

dO(s, a)
= max (0, R(s, a) + γT V ∗(s, a)− V ∗(s) + 1) (42)

Example 2 (SMODICE with KL-divergence). We have f(x) = x log x. Using the fact that the
conjugate of the negative entropy function, restricted to the probability simplex, is the log-sum-exp
function Boyd et al. (2004), it follows that D⋆,f (y) = logEx∼q[expy(x)]. Hence, the KL-divergence
SMODICE objective is

min
V (s)≥0

(1− γ)Es∼µ0 [V (s)] +
1

2
logE(s,a)∼dO [exp (R(s) + γT V (s, a)− V (s))] (43)

15

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

and

ξ∗(s, a) =
d∗(s, a)

dO(s, a)
= exp (R+ γT V ∗(s, a)− V ∗(s)) (44)

D SMODICE FOR TABULAR MDPS

In this section, we derive the closed-form expression of SMODICE for tabular MDPs. For simplicity,
we assume that the expert state occupancies are given, dE(s) ∈ ∆(|S|). A behavior policy πb is
used to collect the offline dataset DO. Then, we can construct a surrogate MDP M̂ using maximum
likelihood estimation (i.e., T̂ (s, a, s′) = n(s,a,s′)

n(s,a)). Using M̂, we can extract the empirical estimate
of the behavior policy occupancies dO ∈ ∆(|S||A|) using linear programming. Then, we can define
the reward vector R ∈ R|S|

+ as R(s) = log dE(s)
dO(s)

. Using the χ2-divergence version of SMODICE,

we can write down the objective for V (s) ∈ R|S|
+ :

min
V (s)≥0

(1− γ)Es∼µ0 [V (s)] +
1

2
E(s,a)∼dO

[
(R(s) + γT V (s, a)− V (s) + 1)

2
]

(45)

We rewrite this expression in vector-matrix form to derive the closed-form solution. To this end,
we define T ∈ R|S||A|×|S| and B ∈ R|S||A|×|S| such that (T V)(s, a) =

∑
s′ T (s

′|s, a)V (s′) and
(BV)(s, a) = V (s). Additionally, we denote µ0 ∈ ∆(|S|) and D = diag(dO) ∈ R|S||A|×|S||A|.
Then, we can rewrite (45):

min
V (s)≥0

(1− γ)Es∼µ0
[V (s)] +

1

2
E(s,a)∼dO

[
(R(s) + γT V (s, a)− V (s) + 1)

2
]

⇒min
V (s)

(1− γ)µ⊤
0 V +

1

2
E(s,a)∼dO


BR(s, a) + γT V (s, a)− BV (s, a)︸ ︷︷ ︸

rV (s,a)

+1


2

⇒min
V (s)

(1− γ)µ⊤
0 V +

1

2
(rV + I)⊤D(rV + I)

(46)

where rV ∈ R|S||A| and I is the all-one vector in R|S||A|. Denoting J(V) := (1− γ)µ⊤
0 V + 1

2 (rV +

I)⊤D(rV + I), it is clear that J(V) is a convex program in V . Therefore, we can find its optimal
solution by solving the first-order stationary point. We have:

∂J(V)

∂V
=

∂

∂V

(
(1− γ)µ⊤

0 V +
1

2
(rV + I)⊤D(rV + I)

)
=

∂

∂V

(
(1− γ)µ⊤

0 V +
1

2
r⊤V DrV + r⊤V DI + I⊤DI

)
=(1− γ)µ0 + (γT − B)⊤DrV + (γT − B)⊤DI

=(1− γ)µ0 + (γT − B)⊤D(BR+ (γT − B)V) + (γT − B)⊤DI

Then, by setting this expression to zero and solving for V gives the optimal V ∗:

(γT − B)⊤D(γT − B)V = (γ − 1)µ0 + (B − γT)⊤D(I +BR)

⇒V ∗ =
(
(γT − B)⊤D(γT − B)

)−1 (
(γ − 1)µ0 + (B − γT)⊤D(I +BR)

) (47)

and we can recover ξ∗(s, a) = d∗(s,a)
dO(s,a)

:

ξ∗(s, a) = BR(s, a) + γT V ∗(s, a)− BV ∗(s, a) + 1 (48)

Pythonic pseudo-code using NumPy Harris et al. (2020) is given in Algorithm 1.

16

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

D.1 GRIDWORLD EXPERIMENTS

In this subsection, we provide more experimental details and analysis of the tabular SMODICE
experiments shown in Figure 1.

To generate the offline dataset, a random policy (i.e., a policy that chooses each action with equal
probabilities) is executed in the MDP for 10000 epsiodes. We use this dataset to compute the
approximate MDP. Then, this MDP is used as an input to SMODICE (see Algorithm 1). The data
collection procedure for the offline imitation learning from examples setting is identical.

Offline IL from mismatched experts. In this task, we consider an expert agent that can move
one grid cell diagonally in any direction, whereas the imitator is only able to move one grid cell
horizontally or vertically. The expert policy is shown in black in Figure 2(a). Using purely an offline
dataset collected by a random agent, we compute the closed-form tabular SMODICE solution (??)
using Algorithm 1 and obtain the zig-zagging policy shown in blue. Indeed, this solution is one of
the two correct solutions that minimize the state-occupancy divergence (the other one mirrors this
path along the expert demo), while being feasible under the imitator dynamics.

Offline IL from examples. We arbitrarily select a state to be the success state denoted by the green
star in Figure 2(b). In this case, the expert’s state occupancies is simply a one-hot vector with weight
1 at the success state. Then, we again use the tabular version of SMODICE to compute the policy
whose state occupancies is as close to this one-hot vector as possible; the solution is illustrated in
blue. As can be seen, this policy successfully reaches the goal. Furthermore, it is easy to see that in
this task, a policy that minimizes state-occupancy divergence to the expert (i.e., the one-hot vector) is
one that reaches the goal with the fewest steps. The policy learned by SMODICE is indeed among
the set of optimal policies.

Furthermore, we compute the state occupancies of all states in the gridworld. For the success state,
d(s) ≈ 0.915, whereas the second largest state occupancy is 0.01. This validates the intuition that∑

s∈S∗ dπ(s) ≫
∑

s/∈S∗ dπ(s).

E SMODICE WITH DEEP NEURAL NETWORKS

For high-dimensional MDP with continuous state and action spaces, we instantiate SMODICE using
deep neural networks. In particular, we parameterize Vθ and πϕ using DNNs with weights θ and ϕ,
respectively.

Remark. We note that the sample-based estimation of Equation (16) (Line 9) is biased because T V
is itself an expectation that is inside a (non-linear) convex function f Baird (1995); however, as in
several prior works Nachum et al. (2019b); Nachum & Dai (2020); Lee et al. (2021), we do not find
this biased estimate to impact empirical performance and keep it for simplicity.

E.1 HYPERPARAMETERS AND ARCHITECTURE

We use the same hyperparameters for all SMODICE experiments in this paper modulo the choice of
f -divergences (explained in the next section). In terms of architecture, we use a simple 2-layer ReLU
network with hidden size 256 to parameterize the value network. For the policy network, we use
the same architecture to parameterize a Gaussian output distribution; the mean and the log standard
deviation are ouputs of two separate heads. In addition, we use an tanh function on the Gaussian
samples to enforce bounded actions, as in Haarnoja et al. (2018). The discriminator uses the same
architecture. Table 1 summarizes the hyperparameters as well as the architecture.

E.2 CHOOSING f -DIVERGENCE IN PRACTICE

In our experiments, SMODICE is implemented using χ2-divergence for all tasks except Hopper,
Walker2d, and HalfCheetah. Here, we show that a suitable choice of f -divergence can be chosen
offline by observing the initial direction of the SMODICE policy loss on the offline dataset. More
specifically, on the environments in which SMODICE exhibited largest performance discrepancies
between using KL-divergence or χ2-divergence, we have found that SMODICE returns are negatively
correlated with the policy loss. As shown in Figure 7, the poor performing variant of SMODICE

17

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

Table 1: SMODICE Hyperparameters.
Hyperparameter Value

SMODICE Hyperparameters Optimizer Adam Kingma & Ba (2014)
Critic learning rate 3e-4
Discriminator learning rate 3e-4
Actor learning rate 3e-5
Mini-batch size 256
Discount factor 0.99
Actor Mean Clipping (-7.24, 7.24)
Actor Log Std. Clipping (-5,2)

Architecture Discriminator hidden dim 256
Discriminator hidden layers 2
Discriminator activation function Tanh
Critic hidden dim 256
Critic hidden layers 2
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU

Figure 7: SMODICE returns are negatively correlated with the direction of its policy losses.

always has a policy loss that initially jumps and vice-versa. This makes intuitive sense given the
composition of the offline datasets, which is a mix of small amount of expert data with a large amount
of poor quality data (see Appendix G for more details). When SMODICE fails to pick out the expert
data, which is often narrowly distributed, then it must have assigned relatively higher importance
weights to the lower quality data, which is more diverse. This creates a more difficult supervised
learning task, leading to higher training loss for the policy. Therefore, in practice, we recommend
monitoring SMODICE’s initial policy loss direction to determine whether the current f -divergence
will lead to good performance and make changes accordingly.

F BASELINES

TD3-BC. Many of our baselines are implemented using TD3-BC as their offline policy optimizer. We
use the default hyperparameters for TD3-BC provided by Fujimoto & Gu (2021), shown in Table 2.

18

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

Implementation Details. We use the official PyTorch implementation of TD3-BC, publicly available
at https://github.com/sfujim/TD3_BC. For DEMODICE, because the code is not public
available, we implement it using PyTorch, adapting from https://github.com/secury/
optidice; we use the hyperparameters reported in the paper. Note that DEMODICE shares
many architectures with SMODICE. For example, DEMODICE uses a state-action discriminator,
and we implement it by simply changing the input space of the state-based discriminator used in
our SMODICE implementation. For SAIL, we use the official PyTorch implementation (https:
//github.com/FangchenLiu/SAIL) and combine it with TD3-BC. We implement RCE
using PyTorch, adapting from the official TensorFlow implementation https://github.com/
google-research/google-research/tree/master/rce.

Table 2: TD3+BC Hyperparameters. This table is reproduced from Fujimoto & Gu (2021) directly.
Hyperparameter Value

TD3 Hyperparameters Optimizer Adam (Kingma & Ba, 2014)
Critic learning rate 3e-4
Actor learning rate 3e-4
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
Policy noise 0.2
Policy noise clipping (-0.5, 0.5)
Policy update frequency 2

Architecture Critic hidden dim 256
Critic hidden layers 2
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU

TD3+BC Hyperparameters α 2.5

G OFFLINE IL FROM OBSERVATIONS EXPERIMENTAL DETAILS

G.1 DATASETS

For Hopper, Walker2d, HalfCheetah, Ant, and AntMaze, we construct the offline datasets by com-
bining a small amount of expert data and a large amount of low quality random data. For the first
four tasks, we leverage the respective “expert-v2” and “random-v2” datasets in the D4RL benchmark.
For AntMaze, we use trajectories from “antmaze-umaze-v2” as the expert data; for the random data,
we simulate the antmaze environment for 1M steps using random actions and take the resulting
transitions. For the kitchen environment, we use the full “kitchen-mixed-v0” dataset as the offline
dataset without further augmentation. See Table 3 for dataset breakdown.

In AntMaze (Figure 4(b)), an Ant agent is tasked with navigating an U-shaped maze from one end
to the other end (i.e., the goal region). The offline dataset (i.e., “antmaze-umaze-v2”) consists of
trajectories (≈ 300k transitions) of an Ant agent navigating to the goal region from initial states;
The trajectories are not always successful; often, the Ant flips over to its legs before it reaches the
goal. As above, we additionally include 1 million random-action transitions to increase the task
difficulty. We take one trajectory from the offline dataset that successfully reaches the goal to be
the expert trajectory. Franka Kitchen (Figure 4(c)), introduced by Gupta et al. (2019), involves
controlling a 9-DoF Franka robot to manipulate common household kitchen objects (e.g., microwave,
kettle, cabinet) sequentially to achieve a pre-specified configuration of objects. The dataset (i.e.,
“kitchen-mixed-v0”) consists of undirected human teleoperated demonstrations, meaning that each
trajectory only solves a subset of the tasks. Together, these six tasks (illustrated in Figure 5.1) require
scalability to high-dimensional state-action spaces and robustness to different dataset compositions.

19

https://github.com/sfujim/TD3_BC
https://github.com/secury/optidice
https://github.com/secury/optidice
https://github.com/FangchenLiu/SAIL
https://github.com/FangchenLiu/SAIL
https://github.com/google-research/google-research/tree/master/rce
https://github.com/google-research/google-research/tree/master/rce

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

Table 3: Offline Dataset Compositions.
Task State Dim Expert Dataset Expert Data Size Random Data Size

Hopper 11 hopper-expert-v2 193430 999999
Walker2d 17 walker2d-expert-v2 99900 999999

HalfCheetah 17 halfcheetah-expert-v2 199800 999000
Ant 27 ant-expert-v2 192409 999427

AntMaze 29 antmaze-umaze-v2 349687 999000
Kitchen 60 kitchen-mixed-v0 136937 0

Figure 8: SMODICE vs. SMODICE-Zero. Using the discriminator-based reward, SMODICE assigns
much higher

G.2 ADDITIONAL RESULTS

In this section, we present some additional results as well as ablation experiments.

Diverse AntMaze. In Section 5.1, we have found that two of the baselines (SAIL-TD3-BC and
ORIL) outperform SMODICE on the AntMaze benchmark. To investigate their sources of empirical
gain, we have designed a diverse version of the AntMaze dataset to test how different approaches
are robust to the dataset composition on the same task. To this end, we take the AntMaze offline
dataset (explained above) and reverse half of the trajectories in their directions. In other words, these
reversed trajectories would navigate from the original goal to the initial state. This procedure is
easy to do because the U-shaped maze is symmetric. Then, using this dataset, we have trained all
approaches in Section 5.1 again. As shown in Figure 9(a), on this dataset, both SAIL-TD3-BC and
ORIL quickly collapse, indicating that these methods are very brittle to the dataset composition. In
contrast, SMODICE remains the best performing algorithm, despite overall drop in all methods’
performances.

SMODICE with Zero Reward. We compare SMODICE with SMODICE-Zero, which simply
assigns every transition zero reward (i.e., R(s) = 0) regardless of its similarity to an expert state.
Then, we compare the ratio of the importance weights (i.e., ξ(s, a)) assigned to the offline expert
data and the offline random data by the two SMODICE methods, respectively. As shown in Figure 8,
SMODICE assigns much higher relative weights to the expert data and consequently significantly
outperforms SMODICE-Zero. These results demonstrate that SMODICE’s empirical performance
comes from its superior ability to discriminate the offline expert data, which is a by-product of its
optimization procedure.

20

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

Figure 9: Offline imitation learning results on AntMaze-Reverse. SMODICE is still among the best
performing methods, while both SAIL-TD3-BC and ORIL collapse, demonstrating their sensitivity
to the offline dataset composition.

(a) HalfCheetah-Short (b) Ant-Disabled (c) PointMass-Maze

Figure 10: Illustrations of the mismatched experts.

H OFFLINE IL FROM MISMATCHED EXPERT EXPERIMENTAL DETAILS

H.1 CONTINUOUS CONTROL EXPERIMENTS

Datasets and Baselines. We compare SMODICE to SAIL-TD3-BC and ORIL, which are both
state-based offline IL methods; in particular, we note that SAIL is originally designed to be robust
to mismatched experts. We consider only tasks in which both SAIL-TD3-BC and ORIL obtained
non-trivial performance, including HalfCheetah, Ant, and AntMaze. Then, for each environment, we
train a mismatched expert and collect one expert trajectory, replacing the original expert trajectory
used in Section 5.1. The mismatched experts for the respective tasks are (i) “HalfCheetah-Short”,
where the torso of the cheetah agent is halved in length, (ii) “Ant-Disabled”, where the front legs are
shrank by a quarter in length, and (iii) a 2D PointMass agent operating in the same maze configuration.
The mismatched experts are illustrated in Figure 10 in Appendix H. For the first two, we train an
expert policy using SAC Haarnoja et al. (2018) and collect one expert trajectory. The latter task is
already in D4RL; thus, we take one trajectory from “maze2d-umaze-v0” as the expert trajectory.
Because Ant and PointMass have different state spaces, following Liu et al. (2019), we train the
discriminator on the shared xy-coordinates of the two state spaces. The offline datasets are identical
to the ones in Section 5.1.

Mismatched Experts. The mismatched experts are illustrated in Figure 10.

Comparison between PointMass and Ant experts for AntMaze. The trajectories of PointMass
and Ant experts are illustrated in Figure 11. As can be seen, the PointMass trajectory is more regular
and smooth due to its simpler dynamics and the use of a waypoint controller. In contrast, the ant
trajectory is much less well-behaved because solving the maze task using the Ant agent is intrinsically
a difficult task; consequently, it is difficult to provide an Ant demonstration. This example serves as a
strong motivating problem for offline imitation learning with mismatched experts.

21

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

(a) PointMass Expert (b) Ant Expert

Figure 11: Trajectory visualizations of AntMaze experts.

Table 4: Relative performance drop with mismatched experts.
Algorithm HalfCheetah Ant AntMaze Average
SMODICE 70.7% 3.3% 29.7% 34.5%

SAIL-TD3-BC 88.9% 6.8% 50.6% 48.8%
ORIL 91.8% 42.2% 72.7% 68.9%

H.2 QUANTITATIVE ANALYSIS OF FIGURE 5

We quantitatively measure the percentage drop-in-performance for each method in Figure 5, computed
as |max original−max mismatched|

max original . Note that this metric favors the baselines as taking the maximum value
advantages methods that are more unstable. Nevertheless, as shown in Table 4, SMODICE is still by
far the most robust method overall and in each individual task. As expected, ORIL does the worst as
it is not designed to handle mismatched dynamics; this shows that using a state-based discriminator
in itself is not sufficient.

I OFFLINE IL FROM EXAMPLES EXPERIMENTAL DETAILS

I.1 DATASETS

We collect 300 success-state examples for each of the tasks. The examples are randomly sampled from
the subset of the offline dataset that achieves the task. Task success is verfied through a pre-defined
sparse reward function (e.g., distance threshold function).

I.2 ENVIRONMENTS.

PointMass-4Direction. This environment is adapted from the “maze2d-umaze-v0” environment in
D4RL by changing the map configuration. The environment termination condition is triggered when
the agent successfully comes within a small radius of the specified goal.

AntMaze-Example. This environment is identical to the environments used in previous two settings.

Kettle and Microwave. These environments are adapted from the ”kitchen-mixed-v0” environment
in D4RL. The environments are identical as the original except the termination conditions. Both of
these tasks terminate when the Franka robot places the specified object within a small radius of the
desired configuration.

I.3 EXAMPLES OF SUCCESS STATES

All success states are extracted from the offline dataset used for policy training. We illustrate one
representative example from each task in Figure 13.

22

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

(a) PointMass-4Direction (b) AntMaze (c) Kettle (d) Microwave

Figure 13: Illustrations of success examples.

I.4 ADDITIONAL ANALYSIS

To better understand SMODICE, on PointMass-4Direction, we visualize the importance weights
ξ(s, a) it assigns to the offline dataset. As shown in Figure 12, SMODICE assigns much higher
weights to transitions along the correct path from the initial state region to the success examples.
Interestingly, the weights progressively decrease along this path, indicating that SMODICE has
learned that it must pay more attention transitions at the beginning of the path, since making a mistake
there is more likely to derail progress towards the goal. This behavior occurs automatically via
SMODICE’s state-matching objective without any additional bias.

Figure 12: SMODICE weights.

23

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

Algorithm 1 SMODICE with χ2-divergence for Tabular MDPs

d_E: the expert state occupancies, |S|
mdp: the empirical MDP learned using offline data
pi_b: the behavior policy, |S||A|

def SMODICE(mdp, d_E, pi_b):
d_O_sa = compute_policy_occupancies(mdp, pi_b) # |S||A|
d_O = d_O_sa.reshape(mdp.S, mdp.A).sum(axis=1) # |S|

compute reward function
R = np.log(d_E/d_O) # |S|

define and reshape matrices
T = mdp.T.reshape(mdp.S * mdp.A, mdp.S) # |S||A| x |S|
B = np.repeat(np.eye(mdp.S), mdp.A, axis=0) # |S||A| x |S|
I = np.ones(mdp.S * mdp.A) # |S||A|
D = np.diag(d_O_sa) # |S||A| x |S||A|

compute optimal V
H = (mdp.gamma * P - B).T @ D @ (mdp.gamma * T - B) # |S| x |S|
y = -((1 - mdp.gamma) * p0 + (mdp.gamma * P - B).T @ D @ (I + B @ R)) # |S|
V_star = np.linalg.pinv(H) @ y # |S|

compute optimal occupancy ratios
xi_star = B @ R + (mdp.gamma * P - B) @ V_star + 1 # |S||A|
m = np.array(xi_star >= 0, dtype=np.float)
xi_star = xi_star * m

weighted BC
pi_star = (xi_star * d_O).reshape(mdp.S, mdp.A) # |S||A|
pi_star /= np.sum(pi_star, axis=1, keepdims=True)

f_divergence = d.dot(0.5 * (w_star ** 2))

return pi_star, f_divergence, V_star

Algorithm 2 SMODICE for Continuous MDPs
1: Require: Expert demonstration(s) DE , offline dataset DO , choice of f -divergence f
2: Randomly initialize discriminator cψ , value function Vθ , and policy πϕ.
3: // Train Expert (resp. Example) Discriminator
4: Train cψ using DE and DO using Equation (15)
5: // Train Lagrangian Value Function
6: for number of iterations do
7: Sample minibatch of offline data {sit, ait, sit+1}Ni=1 ∼ DO, {si0}Mi=1 ∼ DO(µ0)
8: Obtain reward: Ri = cθ(s

i
t), i = 1, ..., N

9: Compute value objective L(θ) := (1− γ) 1
M

∑M
i=1 Vθ(s

i
0) +

1
N
f⋆

(
Ri + γV (sit+1)− V (sit)

)
10: Update Vθ using SGD: Vθ ← Vθ − ηV∇L(θ)
11: end for
12: // Policy Learning
13: for number of iterations do
14: Sample minibatch of offline data {sit, ait, sit+1}Ni=1 ∼ DO
15: // Compute Optimal Importance Weights
16: Compute ξ∗(si, ai) = f ′

⋆

(
R(si) + γV (sit+1)− V (sit)

)
, i = 1, ..., N

17: // Weighted Behavior Cloning
18: Update πψ using Equation (18)
19: end for

24

	Introduction
	Preliminaries
	The SMODICE Algorithm
	Offline Imitation Learning from Examples
	Experiments
	Offline Imitation Learning from Observations
	Offline IL from Mismatched Experts
	Offline Imitation Learning from Examples

	Conclusion
	Proofs
	Preliminaries
	Technical Lemmas
	Proof of Theorem 1
	Proof of Theorem 2

	Related Work
	SMODICE with common f-divergences
	SMODICE for Tabular MDPs
	Gridworld Experiments

	SMODICE with Deep Neural Networks
	Hyperparameters and Architecture
	Choosing f-Divergence in Practice

	Baselines
	Offline IL from Observations Experimental Details
	Datasets
	Additional Results

	Offline IL from mismatched Expert Experimental Details
	Continuous Control Experiments
	Quantitative Analysis of Figure 5

	Offline IL from Examples Experimental Details
	Datasets
	Environments.
	Examples of Success States
	Additional Analysis

