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Abstract

Chamfer Distance (CD) and Earth Mover’s Distance (EMD) are two broadly
adopted metrics for measuring the similarity between two point sets. However, CD
is usually insensitive to mismatched local density, and EMD is usually dominated by
global distribution while overlooks the fidelity of detailed structures. Besides, their
unbounded value range induces a heavy influence from the outliers. These defects
prevent them from providing a consistent evaluation. To tackle these problems,
we propose a new similarity measure named Density-aware Chamfer Distance
(DCD). It is derived from CD and benefits from several desirable properties: 1) it
can detect disparity of density distributions and is thus a more intensive measure of
similarity compared to CD; 2) it is stricter with detailed structures and significantly
more computationally efficient than EMD; 3) the bounded value range encourages
a more stable and reasonable evaluation over the whole test set. We adopt DCD
to evaluate the point cloud completion task, where experimental results show that
DCD pays attention to both the overall structure and local geometric details and
provides a more reliable evaluation even when CD and EMD contradict each
other. We can also use DCD as the training loss, which outperforms the same
model trained with CD loss on all three metrics. In addition, we propose a novel
point discriminator module that estimates the priority for another guided down-
sampling step, and it achieves noticeable improvements under DCD together with
competitive results for both CD and EMD. We hope our work could pave the way
for a more comprehensive and practical point cloud similarity evaluation. Our
code will be available at https://github.com/wutong16/Density_aware_
Chamfer_Distance.

1 Introduction

Point cloud as one of the fundamental 3D representations is attracting increasing attention due to its
efficiency, flexibility, and direct connection to real-world objects through 3D scanning devices. It
has been employed in a wide range of application scenarios and studied for various tasks [1, 4, 7,
11, 25, 33, 35, 27, 21, 36, 38]. A proper similarity measure between two point clouds is always a
crucial aspect for both guiding the training process and providing a fair and reasonable evaluation.
However, this is a challenging design considering the unordered and irregular data form and varying
point numbers.

Chamfer Distance (CD) and Earth Mover’s Distance (EMD) are two of the most universally acknowl-
edged metrics in various point cloud tasks. CD is a nearest-neighbour-based method and benefits from
its efficient computation and flexible applicability for point sets with different point numbers. EMD
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Figure 1: To generate the examples on the left, a complete yet noisy shape (blue) with n points is combined
with a partial yet clean shape (pink) with 2048 points and then down-sampled back to 2048 points via FPS. Four
point set distances are calculated between the generated shape and the ground truth. The results are averaged
over the whole dataset to get the 3D histograms on the right: CD and HD are not sensitive to the mismatched
density while highly influenced by noise when the intensity achieves a certain level; EMD and DCD share a
similar pattern as n changes, but DCD is more sensitive to the noise which also represents detailed structures.

relies on solving an optimization problem to find the least expensive one-to-one transportation flow
between two point sets. Although sometimes considered to be more faithful to visual quality than
CD [1, 13], it is significantly more computationally expensive. The desirable properties of a good
similarity metric can be different across application scenarios. 1) For perception and registration,
it should be robust to sampling strategies and noisy points on detecting the similarity between the
continuous surfaces represented by the discrete points. 2) For modelling and generation, it should
be stricter with the quality of local point distributions, which is also crucial for visual quality. We
mainly focus on the second aspect in this paper.

Take a closer look at the two metrics above. The formulation of CD sometimes suffers from its
intrinsic deficiencies: being insensitive to different density distributions while significantly influenced
by outliers [22]. In particular, we specialize one concept closely related to visual quality, namely a
matched density distribution between two point sets. This can also be denoted as ’balance’, assuming
the ground truth is uniformly distributed. We visualize the issue in Fig. 1 through the task of point
cloud completion: 1) under a low noise level, CD hardly changes with the imbalance ratio; 2) it
increases dramatically once the noise intensity rises to some extent; 3) under a high noise level, higher
imbalance even results in a lower CD, which leads to a tricky operation to reduce CD for the task:
increasing the point density in the seen area with assured accuracy while reducing it in the unseen
area to lower down the risk from abnormal points. But severe imbalance also significantly affects
the global appearance. On the contrary, EMD can steadily detect the change of distribution in Fig. 1.
However, the requirement for one-to-one mapping is usually over harsh. Consequently, the optima of
the transportation problem is dominated by the global distribution while ignoring the fine-structured
local details [5], as to be described in Sec. 3. Therefore, both CD and EMD are not ideally suitable
for evaluating the quality of the generated shapes.

In this work, we mainly focus on CD’s injustice as an evaluation metric and propose a new similarity
measure named Density-aware Chamfer Distance (DCD) to tackle the challenges above. Specifically,
DCD is derived from the original CD, while it benefits from a higher sensitivity to distribution quality
through a fraction term of query frequency and a higher tolerance to outliers through an approximation
of Taylor Expansion. It shares a similar trend with EMD under a varying point distribution while
being more computationally efficient and better at capturing the details. Moreover, due to their
different focus, CD and EMD often encounter divergence when evaluating different methods, which
makes them less reliable as consistent metrics, as to be demonstrated in Sec. 5. We empirically
observe that DCD usually provides a more consistent and reliable evaluation, especially when the
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Table 1: Comparison of properties among different metrics.

Metrics assignment efficient bounded density-aware detail-aware

CD nearest neighbour X × × X
EMD optimization × × X ×
DCD nearest neighbour X X X X

results of CD and EMD contradict each other. Note that the proposed metric is also beneficial at
dealing with ground truth with a non-uniform distribution such as curvature-based sampling, as to be
discussed in the supplementary material.

Furthermore, we analyze the property of DCD as a loss function and compare it with L1 and
L2 versions of CD. We introduce minor adjustments to it that are critical for a better training
process. We then propose to make better use of the information from the query frequency mentioned
above and design an MLP-based point discriminator inspired by the recent success of implicit
functions [18, 14, 19]. It is further integrated to our balanced design for a two-stage completion
framework, where the output of the module can be viewed as the “importance” of each point and
serve as priority for a following step of down-sampling. Finally, the guided down-sampling operation
benefits from removing outliers and preserving the critical points.

Extensive investigations are provided for the comparison among different metrics and methods for the
task of point cloud completion. Experimental results validate that the proposed metric, Density-aware
Chamfer Distance, successfully overcomes the aforementioned issues of CD. DCD can provide a
more reliable evaluation when CD and EMD contradict each other, and it is proved to be more faithful
to visual quality in Sec. 5 and a user study in the supplementary material. We validate its capacity
as a loss function on PCN [35] and VRCNet [17], showing that it not only helps reduce DCD itself
but also significantly lowers down the EMD metric and surprisingly reduces CD as well compared
with the network trained with CD. Our proposed balanced design also gains noticeable improvement
under the new metric, competitive results for both CD and EMD, and superior visual quality in the
experiments.

2 Related Works

Point Cloud Completion. Point cloud completion aims to recover a complete shape based on a
partial observation. Earlier works represent shapes with voxels [3, 6, 20], while PCN [35] first
proposes to use raw point data and leverages an encoder-decoder structure to generate a global-
feature-based coarse shape followed by the folding-based up-sampling [34]. Following works
enhance the feature representation by techniques like attention mechanisms [28, 17, 16], hierarchical
aggregation [8, 37], and grid structure for cubic feature sampling [32], etc.; the decoding process
can also be examined to leverage, for example, a tree-structure [23], iterative refinement [26, 31],
multiple patches generation [13], or separated prediction for the seen and unseen [37], etc. These
works use either CD or EMD for evaluation, yet the two may not be consistently satisfied due to their
different concerns, as to be shown in Sec. 5, and thus a more comprehensive metric is essential for a
fair and reliable comparison.

Point Cloud Distance. The term “distance” refers to a non-negative function that measures the
dissimilarity between two point sets. Considering the unordered structure of point clouds, the
shape-level distance usually comes from statistics of pair-wise point-level distances based on certain
assignment strategy. Chamfer Distance (CD) is one of the most widely used metrics based on the
nearest neighbour (Eqn. 1). There are variants of it used for training [34, 4] and some other similarly
formed distances like Hausdorff [9, 2, 29]. Another generally adopted metric is Earth Mover’s
Distance (EMD), which relies on solving an optimization problem to find the best mapping function
from one set to the other. It is sometimes considered to be more rational than CD [1, 13], but is
much more computationally expensive. Recently, Urbach et al [24] propose DPDist, which compares
point clouds by measuring the distance between the surfaces that they were sampled on. However,
it is estimated by a network rather than a mathematical formulation, making it inconvenient and
potentially unstable to be adopted into various tasks. Another closely related work is by Nguyen et
al [15], who propose the sliced Wasserstein distance that has equivalent properties as EMD and
similar computational complexity to CD, with the Monte Carlo method involved for approximation.
In comparison, we start from the opposite point of view by deriving a new formulation based on CD
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and result in a clean and explicit expression. Similarly, our DCD also shares the properties of EMD
in many cases (Fig. 1), while it detects the detail preserving issue better than EMD.

3 Density-aware Chamfer Distance for Point Sets

3.1 Preliminaries

Chamfer Distance between two point sets S1 and S2 is defined as:

dCD(S1, S2) =
1

|S1|
∑
x∈S1

min
y∈S2

||x− y||2 +
1

|S2|
∑
y∈S2

min
x∈S1

||y − x||2. (1)

Each point x ∈ S1 finds its nearest neighbour in S2 and vice versa; all the point-level pair-wise
distances are averaged to produce the shape-level distance. The simple and flexible formulation
generalizes well across many tasks. Earth Mover’s Distance is defined as:

dEMD(S1, S2) = min
φ:S1→S2

∑
x∈S1

||x− φ(x)||2. (2)

It relies on solving an optimization problem that finds a one-to-one bijection mapping φ : S1 → S2,
thus only applicable when |S1| = |S2|. The pair-wise distances are then calculated between x and
φ(x). As computing the optimal mapping is computationally expensive and even hardly affordable,
several approximation schemes [13, 12] have been developed to relieve the computation burden.

3.2 Density-aware Chamfer Distance

Formulation and Interpretation. As discussed in Sec. 1, CD is not a comprehensive metric for
evaluating visual quality for the generation tasks, e.g., point cloud completion. We explain this
from its formulation: 1) the square operation makes it intensively influenced by outliers, and the
evaluation results have a huge varying range across the dataset; 2) the nearest point query operation
makes it less sensitive to the issue of mismatched density distribution, and hence resulting in a less
discriminative evaluation of visual quality. Therefore, we aim to propose a new metric based on
the original formulation that not only preserves the capacity of similarity measure but also highly
alleviates the problems above, namely Density-aware Chamfer Distance (DCD).

Firstly, CD grows quadratically with point pair distances, which can be dominated by the worst cases
and hence overlooking the others. To address this problem, we introduce the first order approximation
of Taylor Expansion ez =

∑∞
n=0 z

n/n!, i.e. ez ≈ 1 + z where z = −||x − y||2. Thanks to the
nearest neighbour assignment, the condition that z ≈ 0 is usually satisfied and the approximation is
reasonable. Thus we have:

dCD(S1, S2) ≈
1

|S1|
∑
x∈S1

min
y∈S2

(1− e−||x−y||2) + 1

|S2|
∑
y∈S2

min
x∈S1

(1− e−||y−x||2). (3)

Considering the property of the exponential function ez(z < 0), each point-level distance is mapped
to a value between [0, 1]. As a result, the formulation also sets a natural boundary of [0, 1] for the
overall shape distance. The approximation would be less accurate as the point-level distance gets
away from zero, yet it exactly helps to mitigate the over-sensitivity of the outliers by suppressing
the square growth. We add another scale factor α as in Eqn. 4 to adjust the sensitivity. The absolute
distance value depends on this factor, and we reveal its relative consistency across different choices
of α in the supplementary material, and we fix α = 1000 for evaluation in this paper.

Secondly, the ambiguity of CD is partially due to its “blindness” that each point only considers its
nearest neighbour in the other set while ignoring the surroundings. We denote the nearest neighbour
assignment process by “query” for simplicity and present a simple example here: assume S1 to
be a uniform point cloud and S2 an in-homogeneous one; consider two points y1, y2 ∈ S2 with y1
located at a sparse area and y2 in a relatively dense area. The calculation of dCD(S1, S2) would
likely get y1 frequently queried by points in S1 due to the local sparsity, and the case for y2 can be
exactly the opposite. Thus we denote that y1 and y2 are not equally critical in representing the shape.
Furthermore, assume a subset Sy1 ⊆ S1 so that each point in Sy1 queries y and that ny = |Sy1 |, points
in this set are unaware of each other under the formulation of CD, and the contribution of y to each
point in Sy1 is not affected as ny gets larger, which is unreasonable.
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Figure 2: Comparison of assignment strategies and distance calculation. CD and DCD take the nearest
neighbour locally, and DCD further considers the point-specific query frequency; EMD forces a one-to-one
mapping, and the assigned pair of points may locate far from each other with weaker physical meaning.

Alternatively, we denote that the overall contribution of each point to the evaluation system shall be
normalized, and we introduce 1/ny to deal with the case where y is being shared by multiple xs:

dDCD(S1, S2) =
1

2

 1

|S1|
∑
x∈S1

(
1− 1

nŷ
e−α||x−ŷ||2

)
+

1

|S2|
∑
y∈S2

(
1− 1

nx̂
e−α||y−x̂||2

) ,

(4)
where ŷ = miny∈S2

||x− y||2, x̂ = minx∈S1
||y − x||2, and α denotes a temperature scalar. Finally,

consider the first term without loss of generality, each y contributes |− 1
ny

∑
x∈Sy

1
e−||x−y||2 | ∈ [0, 1]

to the overall distance metric (before averaging). A variants for DCD to deal with point sets with
different number of points will be discussed in the supplementary material.

Comparison among the Distance Metrics. We conduct a brief comparison of the properties among
the three metrics in Table 1, sketching their assignment strategies and computation schemes in Fig. 2.
As discussed above, both CD and DCD assign point pairs by querying the nearest neighbours, while
DCD further considers the point-specific query frequency ny , and incorporates the property of density
distribution into the measurement. In comparison, EMD naturally forces an equal query frequency
of 1 for each point via the mapping function, and the metric is highly sensitive to the global point
distribution. However, the harsh constraint not only imposes a significant increase in computational
cost but also tends to sacrifice its attention to visual quality for optimal mapping. As shown in Fig. 2,
the assigned pair of points could be located far from each other, and the distance is less physically
meaningful. Experimental results in Sec. 5 would also show that an over compacted and smoothed
shape can be favored by EMD despite its loss of detailed structure.

In brief, DCD takes a step from CD and attempts to provide a rationale bridge towards EMD for a
better sense of point distribution rather than being blinded by its nearest neighbour. Compared with
EMD, it is not only more efficient but also stricter with local structures. A balanced distribution
and good preservation of detailed structures are both important factors for the visual quality of the
completion result. More examples are to be shown in Sec. 5 for better illustration.

3.3 Application as an Objective Function

Gradient Analysis and Comparisons. Besides its usage as an evaluation metric, DCD is also
expected to serve as an objective function to guide the training process. Considering the same nearest
neighbour assignment, our analysis below will mainly focus on comparing CD (denoted by CD-T)
and its L1 version (denoted by CD-P), which is also widely adopted for training. The exponential
formulation in DCD takes in the L2 distance and modifies the gradient curve while bounding the loss
value between [0,1] at the same time.

We visualize the loss value and gradient curves of the three in Fig. 3 (a and b). The gradient by CD-T
grows linearly with the distance l of a single point pair: it becomes rather small when l is close to
zero and performs a heavy punishment on points with a large l. The CD-P loss, on the contrary,
produces a constant gradient. For the DCD loss, it would first rise and then approach 1 as l increases,
and its gradient can be calculated as: δd̂DCD(l)/δl = 2αle−αl

2

/n, where d̂DCD(l) denotes the
contribution of one point pair with a distance of l, and n = nŷ . The gradient first rises and then falls
to zero, indicating that the loss is only effective to point pairs whose distance lies within a certain
range. Similar to CD-T, it becomes small when l reduces to zero, which is more reasonable than the
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Figure 3: a presents the loss curves of CD-T, CD-P, and DCD and b presents the gradient curves of them; c and
d visualizes the gradient for DCD with different n and α, respectively.

constant gradient by CD-P, while it is also bounded by a maximum and will not be so harsh to the
points with an extremely large l and thus stabilizes the training process.

Adjustment on DCD for Training. There are two characteristic components that decide the property
of the curve, namely the hyper-parameter α and the query frequency n. As shown in Fig. 3(c), a
larger α promotes a higher peak and a smaller range for non-zero gradient, and we need to set
a proper α during training based on the practical distance distribution. We empirically find that
setting α ∈ [40, 100] best promotes the training. A larger n indicates a more serious mismatching of
density in a local region and leads to a higher loss value. When viewing both n and l as variables,
they are encouraged to be smaller to lower down the loss, but n is not differentiable and cannot
be directly changed by backpropagation. Meanwhile, a higher n reduces the gradient to l linearly
(Fig. 3(d)), which prevents one point from moving towards an over-dense region, while it may also
block the training process when the gradient to l gets too small. As a result, we introduce another
hyper-parameter λ ∈ [0, 1] and replace nx̂ and nŷ in Eqn. 4 with nλx̂ and nλŷ to get the practical loss
function for training.

4 Incorporating Balanced Design in Point Cloud Completion

4.1 Point Cloud Completion Framework

We adopt a typical two-stage coarse-to-fine completion pipeline [35, 13, 26, 17] (Fig. 4(d)). In the
first stage, we extract a global feature from the partial observation and generate a complete yet coarse
point cloud; in the second stage, we then introduce local features with abundant geometry information
and obtain the final output with more details, higher visual quality, and high fidelity to the input.
More details of the network architecture and training loss are included in the supplementary material.

We would like to highlight two observations regarding the point distributions here. First, a mean shape
usually exists for each category, and there is an obvious imbalance of density for different regions
according to how commonly they are shared across the dataset (Fig. 4(a)); second, the evaluation
results by CD does not perfectly align with human assessment: the trick that place more points in the
seen region with high confidence usually boosts the CD performance while it introduces imbalanced
distribution and hurts the benign global distribution at the same time.

To address the problems above, we propose a simple yet effective method based on a current SoTA
approach [17] that significantly boosts both the qualitative and quantitative results. Specifically,
we tried our new metric as the objective function to replace LCD; we then propose a novel point
discriminator which is supervised by a carefully designed density-aware signal and estimates the
importance of each point; the output from the point discriminator is used as a priority for a final
guided down-sampling process that helps remove outliers and maintain a balanced distribution.

4.2 Point Discriminator

The generated points in a shape are usually not equally important. We can roughly group them
into three categories with the help of query frequency n introduced in Sec. 3: 1) when n > 0, the
points with a higher n often lie in a sparse area and play a critical role in representing the shape;
2) when n = 0, the point can lie on the ground truth surface while in an over-populated region and
become relatively unimportant; 3) another case with n = 0 is that the point locates far from the
underlying surface and can be regarded as an outlier that hurts the overall appearance. There are
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Figure 4: a. visualization of mean shape over the dataset; b. visualization of g(x) in Eqn. 5 at instance level; c.
module structure of the point discriminator; d. two-stage framework with guided down-sampling.

no hard boundaries among these cases above, but we carefully design a formulation g(x) in Eqn. 5
to map them into a proper value range for learning. Specifically, suppose we train the module with
the ground truth Pgt and the coarse output Pcoarse, when n > 0, we adopt a logarithmic function
for n and introduce the expected frequency |Pgt|/|Pcoarse| as the denominator; we add a bias of
1 to ensure g(0) = 0 at the boundary and finally invert the sign to distinguish from the following
cases. When n = 0, we denote that the distance from a point x to Pgt together with a scaling factor t
can serve as a suitable indicator to distinguish between case 2) and 3). To this end, we formulate a
conjoint objective g(x) as below:

g(x) =


min
y∈Pgt

||x− y||2 · t nx = 0,

− log2(
|Pcoarse|
|Pgt|

nx + 1) nx > 0.
(5)

Encouraged by the recent success of implicit functions [18, 14, 19], we train an MLP module h along
with the main network that learns to predict the target function g(x), namely point discriminator.
Specifically, it takes the local features of a point and its neighbours for edge convolution; the results
are concatenated with the local feature f lx, global feature fg, and point coordinates cx, denoted by
z = h(f lx′ , fg, f lx, cx), where x′ ∈ Nx andNx denotes the neighbours for point x. It outputs a single
scalar z which is supervised by the target function g(x) with a regression loss:

Lh =
1

|Pcoarse|
∑

x∈Pcoarse

||z − g(x)||2. (6)

The discriminator would be used for deciding point sampling privilege at inference time.

Guided Down-sampling. In view of the imbalanced population issue discussed above, an intuitive
idea to alleviate it would be to allow a larger number of points generated via up-sampling before
reducing to the desired number via Furthest Point Sampling (FPS). However, FPS tends to select more
points from outer regions, which increases the risk of including more outliers, and thus this operation
usually results in a noisier output. As a result, we aim to take advantage of the point discriminator
above for the down-sampling stage at inference time together with FPS. Specifically, for each point
x ∈ Pcoarse, we define a point-wise existing probability by:

p(x) = σ(−β · z − γ) = 1

1 + e(β·z+γ)
. (7)

Let s denote the scale for up-sampling, then x is corresponding to s points in the P+
coarse (up-sampled

from Pcoarse) and they all share the same p(x) ∈ (0, 1), an independent probability of each point
being sampled. P+

coarse is first down-sampled in this manner and then combined with Prec (up-
sampled from P0) before the final FPS, which ensures that we remain a pre-defined number of points.
This process leverages the prior learned during training to effectively reduce the unreasonably located
points at inference time (Fig. 7), relieving the side effect brought by FPS operation.
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Table 2: Point cloud completion results in terms of CD ×104, EMD ×102, and DCD, lower is better.
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PCN
CD 4.50 8.83 6.41 13.01 21.33 9.90 12.86 9.46 20.00 10.26 14.63 4.94 1.73 6.17 5.84 5.76 9.78

EMD 4.70 7.99 5.75 6.90 11.99 5.32 6.60 5.40 9.84 4.85 7.87 5.24 10.56 4.93 4.86 5.59 6.80
DCD 0.478 0.519 0.490 0.617 0.710 0.552 0.559 0.580 0.662 0.562 0.608 0.429 0.446 0.548 0.491 0.445 0.553

PCN++
CD 4.06 9.08 6.64 13.11 19.25 9.78 14.36 9.66 22.33 9.73 15.51 5.13 1.86 6.25 5.81 4.99 10.29

EMD 3.44 3.75 3.15 4.65 8.00 3.56 4.69 4.22 6.13 3.85 4.39 2.62 2.78 3.60 3.71 3.07 4.27
DCD 0.428 0.464 0.451 0.574 0.661 0.504 0.517 0.540 0.617 0.524 0.563 0.389 0.369 0.527 0.447 0.393 0.508

TopNet
CD 4.12 9.84 7.44 13.26 18.64 10.77 12.95 8.98 19.99 9.21 16.06 5.47 2.36 7.06 7.04 4.68 10.30

EMD 4.89 6.30 4.07 7.01 10.75 6.47 7.50 4.68 8.09 6.27 6.80 3.50 4.21 4.26 6.02 3.49 6.18
DCD 0.536 0.558 0.548 0.650 0.711 0.598 0.599 0.600 0.678 0.588 0.622 0.492 0.487 0.572 0.542 0.496 0.598

MSN
CD 2.73 8.92 6.50 10.75 13.37 9.26 10.17 7.70 17.27 6.64 12.10 5.21 1.37 4.59 4.62 3.38 7.99

EMD 2.75 4.02 3.47 4.44 6.28 3.74 4.46 3.82 5.27 3.34 4.28 2.92 2.07 3.30 3.62 2.21 3.94
DCD 0.404 0.509 0.516 0.537 0.539 0.532 0.498 0.515 0.574 0.471 0.541 0.458 0.388 0.491 0.463 0.422 0.499

VRC
CD 2.20 7.92 5.60 7.49 8.15 7.45 7.52 5.20 11.90 4.88 7.39 4.53 1.15 3.90 3.44 3.22 6.09

EMD 3.03 7.57 6.14 5.49 6.15 5.80 4.65 4.97 6.58 3.45 5.28 6.59 3.08 4.45 4.56 3.20 5.27
DCD 0.374 0.509 0.499 0.488 0.475 0.515 0.438 0.478 0.527 0.401 0.470 0.462 0.349 0.452 0.443 0.363 0.462

VRC-EMD
CD 2.72 9.03 6.58 9.93 11.53 9.38 9.80 6.71 17.22 6.88 10.34 5.32 1.39 4.47 4.62 4.69 7.87

EMD 2.50 3.65 3.23 4.15 5.31 3.61 3.93 3.58 5.17 3.19 3.97 2.69 2.08 3.06 3.48 2.29 3.62
DCD 0.369 0.483 0.473 0.502 0.499 0.509 0.450 0.478 0.547 0.423 0.487 0.424 0.349 0.445 0.430 0.370 0.461

Our
CD 2.22 8.00 5.41 7.88 8.28 7.94 8.89 5.46 14.76 5.78 9.37 4.44 1.30 3.59 3.43 2.39 6.51

EMD 2.29 4.43 3.46 3.92 4.98 3.98 3.89 3.51 5.34 3.13 3.91 3.29 2.21 3.02 3.38 2.39 3.67
DCD 0.335 0.447 0.427 0.451 0.445 0.469 0.423 0.426 0.504 0.399 0.453 0.382 0.336 0.401 0.365 0.345 0.420

5 Experiments

Dataset. We use the recently proposed MVP Dataset [17] for our study and experiments. It is a
multi-view partial point cloud dataset covering 16 categories with 62,400 and 41,600 pairs for training
and testing, respectively. It renders the partial 3D shapes from 26 uniformly distributed camera poses
for each 3D CAD model selected from ShapeNet [30], and the ground truth point cloud is sampled
via Poisson Disk Sampling (PDS).

Comparison Methods and Metrics. We include the following methods for comparison in the
main experiments: PCN [35], TopNet [23], MSN [13], and VRCNet [17] (with the PSK module
discarded to improve efficiency while slightly scarifying performance). PCN++ is a simple extension
of PCN [35] that generates the double number of points for training and down-sampled to the required
point number at inference time. We report per-class results on CD, EMD, and DCD for a clear
comparison across methods and a view of the different properties of these metrics.

Implementation Details. All the models are trained using the Adam optimizer [10] with the learning
rate initialized at 1e−4 and decayed by 0.7 every 40 epochs. We use a batch size of 32 and a total
epoch of 80. We set α = 1000 for the evaluation of DCD, and α ∈ [40, 100] for training. We set
λ ∈ [0, 0.5] and β = 9, γ = 1 for our approach in the main experiments. Our work is implemented
with PyTorch and is run on a Tesla V100 GPU.

5.1 Comparison of the Methods

The main experimental results for point cloud completion on MVP dataset are reported in Table 2.
Note that most networks are trained with the CD loss except when specified. Early works, PCN [35]
and TopNet [23] have relatively high loss for all the evaluated metrics, CD, EMD, and DCD. PCN
with an additional up-sampling step, namely PCN++, notably lowers down EMD and DCD, while
marginally raising CD for sacrifice; MSN [13] benefits from the multi-surface design and obtains low
EMD and DCD results, while its CD performance is not that satisfying. The previous SoTA method,
VRCNet [17] outperforms the other methods under the metric of CD and DCD, but we observe that
its EMD loss is surprisingly high. We further replace the CD loss with EMD when training VRCNet
(denoted as VRC-EMD), and it achieves the lowest EMD yet obviously higher CD than the original
version. In comparison, our method reports the lowest DCD, second-lowest CD, and comparable
EMD with VRC-EMD. Qualitative results (Fig. 5) show that our results are apparently superior in
both the global balanced point distributions and local structures. A user study in the supplementary
material will further validate that our method t benefits from a higher visual quality.
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PCN++ VRC Our Ground TruthPartial Input VRC-EMD

5.24 | 5.03 | 0.44 5.45 | 3.86 | 0.417.83 | 4.40 | 0.4811.95 | 4.10 | 0.60

1.47 | 2.12 | 0.331.89 | 3.36 | 0.432.24 | 2. 07 | 0.422.61 | 2.58 | 0.42

CD

EMD DCD

Case 2

Case 1

Case 3

6.23 | 4.69 | 0.52 5.31 | 3.29 | 0.50 5.30 | 8.10 | 0.55 5.07 | 3.89 | 0.45EMD | CD | DCD

Case 1: EMD↓ | CD↑| DCD↑

Case 2: EMD↑| CD↓ | DCD↑ Case 3: EMD↓| CD↓| DCD↓

PCN++ VRC-EMD

VRC OUR

Figure 5: Comparison of CD, EMD, and DCD through examples and statistics. Below: examples from different
methods that represent three typical cases: 1) EMD is low while CD is high; 2) CD is low while EMD is high; 3)
both CD and EMD are low. DCD can only be lowered down in the third case. Upper left: A close shot at the
cases above. Upper right: visualization of the three metrics on the test set, we can observe that 1) the positive
correlation between CD and EMD is weak and the scatter points form a fan-shaped area, and 2) DCD (denoted
by the point color) becomes lower towards the original point where both CD and EMD are low.

5.2 Comparison of the Metrics

Consistency and Reliability. When taking a closer look at all the CD-EMD-DCD tuples (either for
each category or for the averaged results) in Table 2, the results by different metrics do not exhibit a
clear positive correlation. But we also observe that for those that have a similar value of CD, DCD is
usually dominated by their EMD performance, and for those with similar EMD results, DCD is highly
correlated with CD. Although the law is not strictly held or theoretically proved, the scatter plot by
each instance from different methods in Fig. 5 (upper right) also supports our empirical observation.
It reveals that since CD and EMD focus on different aspects of the point cloud, inconsistency and
confusion may exist for the similarity measurement, which prevents either of them from being a
comprehensive metric. In comparison, DCD reflects the behaviors of them both and could only be
reduced when both CD and EMD are relatively low so that it serves as a more consistent, stable,
and comprehensive metric, especially when CD and EMD encounter disparity. Our user study in the
supplementary material further indicates that DCD is a more faithful metric to visual quality.

Bounded Distance. One advantage of DCD is its bounded value range, which promotes an equal
consideration for all samples in the dataset at the evaluation stage. In contrast, CD and EMD are
dominated by the worst cases in the dataset due to their unbounded nature, as shown in Fig. 6.
Specifically, for CD, 80% of the normalized loss accumulation is contributed by only top 50% of the
samples ranked by the shape-level distance, and 50% contributed by the top 25%; a similar case is
also observed for EMD. This property makes them fail to comprehensively evaluate the quality of all
samples in the dataset. Our DCD overcomes this problem by assuring a clear [0,1] boundary for the
distance value, enabling more comprehensive and stable statistical results over the whole test set.

5.3 Ablation Study

We study the effectiveness of each component in our method separately, including DCD loss, the
additional point up-sampling (PU), and the guided point down-sampling (GPD). As shown in Table 3,
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Figure 6: Distribution and accumulation (normalized to 1) of evaluation results per-shape in the test set.

Table 3: Ablation Study.

DCD PU GPD
Metric

CD EMD DCD

6.09 5.27 0.462
X 5.85 5.14 0.457

X 6.91 3.78 0.425
X X 6.65 3.68 0.422
X X X 6.51 3.67 0.420

Table 4: Evaluation results on three metrics when
trained with each of them. * denotes applying LEMD

on the final outputs while LCD on intermediate ones.

Model PCN [35] VRC [17]

Metric LCD L∗
EMD LDCD LCD L∗

EMD LDCD

CD 9.78 10.70 9.36 6.09 7.87 5.85
EMD 6.80 3.97 4.71 5.27 3.62 5.14
DCD 0.553 0.537 0.526 0.462 0.461 0.457

leveraging LDCD loss usually outperforms the same model trained with LCD in all the three metrics;
the additional point up-sampling (PU) significantly reduces EMD while it increases CD at the same
time; after guided down-sampling (GPD) is applied to the model with both LDCD and PU, we achieve
the lowest EMD and DCD and a relatively low CD.

11.93 3.60 Ground Truth

7.50 5.30 Ground Truth 4.32 1.77 Ground Truth

9.53 7.86 Ground Truth

7.36 4.33 Ground truth

6.31 2.81 Ground Truth

Figure 7: Examples of guided down sampling (from left to right) and evaluation in terms of CD ×104.

5.4 Performance as the Loss Function

We evaluate the effectiveness of DCD as a loss function by training networks with each of the three
metrics (denoted by LCD, LEMD, and LDCD) and evaluate on all of them (denoted by CD, EMD,
and DCD). We conduct experiments on the baseline model PCN [35] and the SoTA VRCNet [17], as
shown in Table 4. Compared with LCD-trained networks, training with LEMD produces the lowest
EMD and a lower dDCD, yet it suffers from non-negligible scarification of CD and much heavier
computational burden, which is to be discussed in the supplementary material; training with LDCD
will produce the lowest DCD, significantly reduce EMD, and can even slightly reduce CD than
the LCD-trained models (especially on PCN). The time consumption is also comparable with LCD,
which further validates DCD’s convenience and superiority as an objective function. We set α = 50
or 100 here with β = 0 and replace all the LCD with LDCD. Experiments on how α and β affect the
performance are included in the supplementary material.

6 Conclusion

In this work, we propose a new similarity measure for point clouds named Density-aware Chamfer
Distance (DCD). It is bounded in value, effective in computation, and faithful to visual quality by
considering both the density distribution and detailed structures. Our method achieves noticeable
improvements under DCD and superior visual quality compared with previous works.
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