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ABSTRACT

Recently, approaches using Large Language Models (LLM) as planners for
robotic tasks have become widespread. In such systems, the LLM must be
grounded in the environment in which the robot is operating in order to suc-
cessfully complete tasks. One way to achieve this grounding is to use a scene
graph that contains all the information necessary to complete the task, including
the presence and location of objects. In this paper, we propose an approach that
works with a scene graph containing only immobile static objects, and augments
the scene graph with the necessary movable objects during instruction following
using a visual language model and an image from the agent’s camera. We conduct
thorough experiments on the compiled GRASIF dataset that contain tasks from
SayPlan Office, Behaviour-1K, and RobotHow datasets, and demonstrate that the
proposed approach effectively handles the task, bypassing approaches that use
pre-created scene graphs.

1 INTRODUCTION

Figure 1: LookPlanGraph enhances an agent’s
ability to operate in dynamic environments by in-
tegrating real-time updates from the environment
into its graph representation.

The pursuit of autonomous agents that can
comprehend and execute complex human in-
structions in dynamic environments is a funda-
mental objective in robotics. Recent strides in
Large Language Models (LLMs) have shown
significant potential in reasoning and planning
for a variety of tasks articulated in natural lan-
guage (Huang et al., 2022; Ahn et al., 2022; Ko-
valev & Panov, 2022; Singh et al., 2023; Sark-
isyan et al., 2023). For robots to effectively
carry out these tasks, it is crucial that LLMs are
grounded in the physical environments where
the robots operate. One effective strategy for
achieving this grounding is through the use of
scene graphs (Gu et al., 2023), which offer
structured representations of environments by
detailing objects and their interrelationships.

Traditionally, the processes of constructing a scene graph and executing tasks using it have been
treated separately. SayPlan (Rana et al., 2023) leverages static scene graph representations to gen-
erate viable task plans for embodied agents. However, this reliance on static graphs presupposes
unchanging environments, a condition rarely met in real-world scenarios where objects frequently
change locations or states. Consequently, when the environment undergoes changes, methods such
as SayPlan require the entire scene graph to be reconstructed. This reconstruction involves additional
procedures like scene navigation, image capturing, and data analysis, all of which are time-intensive
and computationally demanding, thus impeding real-time application.

The assumption of a static scene graph is particularly impractical in dynamic settings for several
reasons. Firstly, other agents or unforeseen events may alter the state, location, or relationships of
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objects within the environment. Secondly, certain objects might be concealed within closed con-
tainers like boxes or cabinets. Including these hidden objects in the initial graph would necessitate
a thorough examination of all possible storage spaces during graph construction, an approach that is
neither efficient nor scalable. Therefore, an agent operating in a dynamic environment must possess
the capability to dynamically extend and update its scene graph based on real-time observations
made during task execution.

Another major limitation of existing methods like SayPlan is its reliance on large, computationally
heavy closed models like GPT-4. Although these models are highly effective, their significant re-
source demands create challenges for applications that requires local computation. To overcome
these challenges, we present three key contributions:

1. SayPlan Lite: We present SayPlan Lite, a streamlined version of the original SayPlan
method, designed to boost the efficiency of smaller LLMs for local machine use. Its success
showcases the potential for broader application in resource-limited contexts, making it a
viable tool for building LLM agents tailored to constrained environments.

2. LookPlanGraph: We propose LookPlanGraph, a graph-based planning framework for
dynamic environments. Unlike static scene graphs, this approach initializes with unmov-
able assets and dynamically updates with movable objects using a Visual Language Model
(VLM) and the agent’s egocentric camera. It employs a Memory Graph Mechanism to
adapt to environmental changes by focusing on relevant, nearby objects, reducing compu-
tational demand. A Graph Augmentation Mechanism further allows real-time exploration
and updates, ensuring adaptability to the agent’s surroundings.

3. The GRASIF Dataset: We have created a 558-task dataset GRASIF (Graph Scenes for
Instruction Following) for graph-based instruction-following, featuring automated valida-
tion. Built from SayPlan Office, Behaviour-1K, and VirtualHome RobotHow environ-
ments, this dataset offers a robust resource for assessing planning methods across diverse
settings.

2 RELATED WORKS

2.1 EMBODIED PLANNING

Robotic task planning generates sequences of actions to achieve goals within an environment. Tra-
ditional methods use domain-specific languages, such as Planning Domain Definition Language
(PDDL) (Fox & Long, 2003) and Temporal Logic (TL) (Doherty & Kvarnstram, 2001), combined
with parsing, search methods, and heuristics. These are effective in controlled settings but struggle
with scalability and generality in complex environments. Recently, LLMs are being utilized for task
planning due to their in-context learning abilities. Huang et al. (2022) used LLMs to translate ac-
tions into executable commands specific to environments. LOTA-Bench (Choi et al., 2024) employs
LLMs to predict the next action based on sequence probability, while LLM+P approach (Liu et al.,
2023) integrates grounding by creating a PDDL description for classical planners.

2.2 PLANNING WITH GRAPH REPRESENTATION

Effective grounding requires a reliable environmental representation, typically achieved through
scene graphs that structure entities and their relationships (Gu et al., 2023; Liu et al., 2021; De-
varakonda et al., 2024). However, as scene complexity increases, different methods have been in-
troduced to manage graph size and relevance. For PDDL-based planning, Taskography (Agia et al.,
2022) employs a filtering strategy that hides unrelated nodes by matching task-relevant node names
with those in the graph. Delta (Liu et al., 2024b) extends the LLM+P approach by using scene
graphs to define PDDL domains, leveraging LLMs to prune irrelevant nodes. SayPlan (Rana et al.,
2023) follows a similar strategy, using semantic search to iteratively reveal and hide nodes from
different rooms until all task-relevant objects are found, with an LLM guiding the process. Addi-
tionally, Chen et al. (2025) introduces a retriever module that dynamically generates code to answer
graph-related queries from the planner during task execution. While these methods effectively re-
duce graph complexity and optimize context length for LLMs, they are not well-suited for dynamic
environments, due to unreliability provided in graph object positions.
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Figure 2: LookPlanGraph Overview: The LookPlanGraph starts with an instruction and a static
environment graph (1). A memory graph, initially a copy of the starting graph, is processed by the
LLM with the task description and is also sent to the Scene Graph Simulator (2). The LLM suggests
an action, which the Simulator checks for feasibility. If feasible, the action changes the environment
and updates the memory graph (3). For actions requiring visual feedback (e.g., “Look”), the envi-
ronment sends an egocentric camera view to the VLM (4). The VLM processes this image, along
with known nodes from the memory graph, to generate an augmented subgraph (5), which updates
the memory graph (6). This cycle (2-6) repeats until the LLM decides that the task is complete or
the action limit is exceeded..

2.3 DYNAMIC GRAPH AUGMENTATION

ConceptGraphs (Gu et al., 2023) constructs 3D scene graphs using pre-collected images of the en-
vironment, allowing graph augmentation by incorporating more recent visual data. OpenIN (Tang
et al., 2025) dynamically builds graphs by segmenting a robot’s input during navigation tasks. How-
ever, both methods struggle with occluded objects stored inside closed containers, as the agent lacks
the ability to explore their interiors. Moma-LLM (Honerkamp et al., 2024) addresses this limitation
by introducing an ”open” action, allowing the agent to examine occluded objects. However, this
approach depends on ground-truth semantic masks and object localization rather than constructing
graphs purely from real-time observations. VeriGraph (Ekpo et al., 2024) leverages VLMs to con-
struct task-specific graph representations and generate plans based on them. While VLMs demon-
strate promising capabilities in graph construction, the evaluation of VeriGraph remains restricted to
tabletop environments, limiting its applicability to more complex, dynamic settings.

3 PROBLEM FORMULATION

We address the challenge of enabling an autonomous mobile manipulator robot to plan, navigate, and
manipulate objects within large-scale household environments using natural language instructions.
The robot must reason about dynamic scenes and adapt to environmental changes, such as object
locations and states. Our solution necessitates generating executable actions that involve complex
navigation and manipulation tasks, effectively accommodating the dynamics of multi-room environ-
ments where static representations are inadequate.

Graphs offer a layered representation of the environment, integrating spatial semantics with the
relationships between objects while also capturing key states, and properties associated with entities
in the scene. In the case of a 3DSG, this is structured as a hierarchical multigraph G = (V,E).
The vertex set V is organized into several hierarchical levels: V1 ∪ V2 ∪ · · · ∪ VK . Each group Vk

consists of vertices at a specific hierarchical level k. The edges emanating from any vertex v ∈ Vk
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are restricted to connect to vertices in Vk−1 ∪ Vk ∪ Vk+1, thereby ensuring that connections occur
within the same level or to adjacent levels.

Formally, given a 3DSG G and a task instruction T expressed in natural language, our framework,
LookGraphPlan, can be conceptualized as a high-level decision-making module denoted by π(a |
T,G). This decision-making module is capable of generating an action a that is grounded in the
environment where the embodied agent operates. Furthermore, the generated action is designed to
concurrently follow the instruction to be carried out.

Our approach focuses on two primary challenges: 1) Develop a framework capable of operating
with scene representations that initially include only the static elements of the environment. This
framework must enable the agent to iteratively expand and modify the scene graph during task exe-
cution, reflecting changes in the environment; 2) Enabling effective planning using smaller LLMs,
that can run locally, to reduce reliance on computationally intensive, large-scale models.

4 METHOD

We introduce LookPlanGraph, a scalable method leveraging scene graphs to operate in environments
without predefined states or positions for movable objects. Central to this approach is the Scene
Memory Graph (SMG), which is continuously maintained and updated to reflect the current state
of the environment. This method empowers exploration and interaction within the environment,
augmenting the SMG with newly detected objects.

Illustrated in Figure 2, the LookPlanGraph methodology integrates an LLM, a scene graph repre-
sentation, and VLM to execute tasks. The process begins with an starting graph outlining the rooms
and fixed assets within the environment, which is then replicated into the SMG for use throughout
the method. As the agent engages with the environment, the SMG is dynamically updated, incorpo-
rating modifications made by the agent via the Scene Graph Simulator and new objects identified by
the VLM. Algorithm 1 of the method follows a structured cycle (4-15):

Algorithm 1 LookPlanGraph
1: Given: LLM planner LLM, VLM parser

VLM, Environment ENV, Memory graph
M , Graph Simulator Sim

2: Inputs: Starting graph G, Task T
3: M = G
4: while action ! = done do
5: while feedback ! = None do
6: action← LLM(M,T, feedback)
7: feedback← Sim(M,action)
8: end while
9: ENV(action)

10: if action=′ look on′ then
11: new nodes← VLM(ENV,M)
12: M .append(new nodes)
13: end if
14: end while

LLM Decision-Making (7): The SMG is en-
coded into a prompt and provided to the LLM,
along with the task instructions. Using this in-
put, the LLM determines the next action for the
agent to perform. In our approach, the list of
possible actions is limited to manipulation tasks
such as goto, pick up, open, close, put on, put
in, and two scene exploration actions: look on
and look inside.

Simulation and Feedback (5-9): The pro-
posed action is sent to the Scene Graph Simula-
tor, which evaluates its feasibility. If the action
is valid, the simulator updates the SMG to re-
flect the outcome. If the action is invalid, feed-
back is returned to the LLM for re-planning.

Environment Interaction (10): Once vali-
dated by the simulator, the action is executed
in the real environment.

Graph Augmentation via VLM (11-14): For exploration actions, such as look on or look inside,
the VLM is invoked. The VLM processes images of the environment and generates nodes for newly
identified objects. These objects are then added to the SMG.

4.1 MEMORY GRAPH

The Memory Graph (Figure 3) is a hierarchical, graph-based structure inspired by 3D Scene
Graphs (Kim et al., 2019; Kurenkov et al., 2021). It encodes spatial semantics, object relationships,
and states for efficient robotic planning (Gay et al., 2019; Rosinol et al., 2021). Organized into four
layers—Scene, Place, Asset, and Object—it abstracts the environment at different levels. The Scene
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Layer represents the entire environment, the Place Layer defines areas (e.g., rooms), the Asset Layer
includes immovable objects, and the Object Layer contains movable items. An additional agent
node tracks the agent’s position and interactions.

Each node in the graph has specific attributes based on its type. These attributes provide detailed
information that can be used in the planning and task execution process:

• Scene Node: Contains the name of the scene.

• Place Node: Contains the scene it belongs.

• Asset Node: Includes the asset’s place, its state, and properties.

• Object Node: Describes the object’s state and properties, including the name of the node
to which the object belongs and the type of relationship.

• Agent Node: Tracks the location of the agent and the item currently held.

Example of text serialized graph shown in Appendix A.

4.2 ACTION GENERATION

Scene

Place

Asset

Object

Agent

Figure 3: Memory graph structure con-
structed with four layers and an addi-
tional agent node to track the agent.

Action generation by the LLM involves structured
prompting, graph filtering, and a feedback loop with the
Scene Simulator. The prompt consists of three parts: a
static prompt, dynamic components, and feedback. The
static prompt describes actions and states derived from
the graph, focusing on essential home environment tasks
like pick-and-place, opening/closing, and turning devices
on/off. Additional actions, such as “look on” and “look
inside”, enable visual interaction. A detailed prompt
structure and the full action list are provided in Ap-
pendix A.

To optimize for compact LLM models, the prompt is con-
cise yet informative by including only objects in the agent’s immediate environment (e.g., the same
room) and adding previously interacted objects, especially for long-term planning tasks. The Scene
Graph Simulator, similar to SayPlan, ensures actions are executable in the real environment. It at-
tempts to execute LLM-generated actions and updates the memory graph and environment state if
successful. If an action fails due to constraints, the simulator provides feedback, which is included
in the next prompt to improve subsequent actions.

4.3 GRAPH AUGMENTATION

For visual interaction with the environment, the LLM can inspect the top or interior of accessible
assets by calling corresponding action and incorporate newly discovered objects into the memory
graph. Example of such interaction shown in the right part of Figure 2. This process involves
capturing an image from the environment that represents the agent’s field of view. The image is
then passed to a Vision-Language Model along with list of assets and objects already present in the
memory graph to ensure that only new nodes are added. The VLM is prompted to identify new
objects, their states, and their relationships with existing assets. Subsequently, the identified nodes
are integrated into the memory graph, making them available for future interactions.

5 THE GRASIF DATASET

Graph-based scene representation methods are gaining traction in research, yet there is a notice-
able lack of 3DSG datasets tied to specific tasks, which has led researchers to rely on proprietary
data. To bridge this gap, we have curated a comprehensive GRASIF dataset by integrating re-
sources from multiple sources. Specifically, we combined textual instructions and environmental
data from Behaviour-1K (Li et al., 2024), VirtualHome RobotHow (Puig et al., 2018), and SayPlan
Office (Rana et al., 2023). While Behaviour-1K lacks task descriptions and graph representations,
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VirtualHome RobotHow offers graph representations but not in the 3DSG format, and SayPlan Of-
fice lacks a coded implementation. Our curated dataset addresses these limitations, providing a
valuable resource for evaluating and advancing graph-based methods in robotics research.

Table 1: Comparison of datasets: SayPlan Office is the
largest environment, Behaviour-1K offers the most long-
horizon tasks, and VirtualHome features numerous objects
in compact environments.

Dataset Tasks Rooms Nodes Changed
nodes

SayPlan Office 25 37 202.6 2.1
Behaviour-1k 186 1.23 12.1 4.9
VirtualHome 347 4 195.7 1.6

We constructed initial and goal
graphs for each task, representing en-
vironment states before and after ex-
ecution. This approach enables au-
tomatic validation across large, com-
plex environments, reducing reliance
on human evaluation. Combined, the
datasets cover 10 environments and
558 tasks paired with initial and goal
graphs, highlighting various aspects
of embodied planning. Dataset char-
acteristics are summarized in Table 1.

SayPlan Office. For evaluating our method on diverse, human-formulated tasks, we used the Say-
Plan Office Dataset. As the original dataset is unavailable, we reconstructed environment graph
representations based on details from the original paper. To align the graph format with our 3DSG
structure, we removed pose nodes and connected rooms directly to the scene node. Graph rep-
resentations and corresponding action sequences were manually constructed, selecting tasks from
simple and complex planning sections of the paper. Using the reconstructed initial graphs and ac-
tion sequences, we utilized a Scene Graph Simulator to generate goal graph representations after
task execution. Ambiguous tasks, like ”Put an object into a place where I can enjoy it,” were ex-
cluded. The final dataset consists of 25 tasks, each with instructions and pairs of initial and goal
graphs, as detailed in Appendix C.

BEHAVIOR-1K. The Behaviour-1k dataset includes descriptions of 1,000 tasks relevant to real-
world scenarios, paired with a simulator providing rooms, scenes, and PDDL task descriptions. We
construct graph representations of the environment from PDDL descriptions. The initial graph is
derived using a rule-based approach with ontop and inroom predicates. The goal state is generated by
GPT-4o (Achiam et al., 2023), which modifies the initial graph based on the task goal and provides
human-like task instructions and step-by-step plans. To focus on manipulation tasks, we filter the
Behaviour-1k dataset to exclude tasks requiring cooking or cleaning skills, selecting only tasks with
predicates ontop, real, inside, open, and toggled on. This results in 186 tasks with
initial and goal graph pairs. The graphs are constructed solely from task descriptions, excluding
nodes unrelated to instruction following. This allows for a clear evaluation of planning performance
without the need to filter out irrelevant nodes.

VirtualHome RobotHow. RobotHow dataset (Liao et al., 2019), designed for VirtualHome,
which includes 1,800 tasks with initial and goal state graphs across 7 home environments. Tasks are
filtered to focus on robot-performable manipulation actions, excluding irrelevant tasks (e.g., “Play
video game”, “Get shower”) and those involving doors, as they are not represented in the graph
structure. Scene descriptions in VirtualHome are translated into graphs using a rule-based approach.
Non-grabbable objects are treated as asset nodes, and redundant nodes (e.g., multiple floors, ceil-
ings, walls) are removed for simplicity. The final dataset includes 347 tasks, with duplicates across
environments noted. Details on actions and filtered tasks are in Appendix C.

6 EXPERIMENTS

6.1 BASELINES

We evaluate LookPlanGraph against two baseline methods that incorporate LLM as graph planners.

SayPlan (Rana et al., 2023), operates in two distinct stages: semantic search and iterative replan-
ning. During the semantic search stage, the LLM identifies a minimal sufficient scene graph by
expanding room nodes containing relevant items. In the iterative replanning stage, the graph is used
to query the same LLM for generating a high-level plan, which is revised based on graph simulation
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feedback. Notably, both stages are executed sequentially using the same LLM dialogue, with the
same prompt being called for both operations.

Since the open-source implementation of SayPlan is unavailable, we developed our own version,
referred to as SayPlan*. This version is adapted to process 3DSGs without pose nodes. Additionally,
as the graph representation in our context does not require the access functions used for real robots
in the original paper, we replaced the access and release function combination with simpler “put on”
and “put in” functions.

To reduce the complexity of the task for the LLM and enhance efficiency, we introduced a simplified
variant of SayPlan, named SayPlan Lite. This approach decomposes the planning process into two
distinct LLM dialogues: one dedicated to semantic search and the other to iterative replanning.
By separating these tasks and few-shot learning examples, we streamline the planning for LLM,
making it more manageable and effective, especially for smaller models. Additionally, we refined
the representation of the graph within the prompts to further simplify communication with the LLM.
A detailed explanation of these modifications can be found in Appendix A.

6.2 EXPERIMENTAL SETUP

Our experimental framework rigorously evaluates the model’s performance in generating plans in a
variety of environments represented in our dataset. Each task in the experimental framework con-
sists of a task description, an initial environment graph, and corresponding environment functions.
The models iteratively process these inputs to propose plans or determine actions, which are then
executed within a scene graph simulator. The resulting graph is then compared to a predefined goal
graph, allowing the computation of various performance metrics (Section 6.3).

To compare planning performance, experiments are conducted on the GRASIF dataset using a
scene graph-based simulator. Given the graph structure of GRASIF, the LookPlanGraph augmenta-
tion mechanism is modified to add nodes that connected to explored nodes. For all methods replan-
ning process is uniformly constrained to a maximum of five iterations.

The graph augmentation capability was evaluated using tasks from the Behaviour-1K framework.
Images of required assets were collected from the OmniGibson simulator. Accuracy was measured
using the F1-score, comparing the generated nodes and edges to the ground truth scene graph. A
perfect match of both nodes and edges was considered a successful generation.

In these experiments, models were utilized, including Llama3.3 (Dubey et al., 2024) with 70
billion parameters, Gemma2 (Team et al., 2024) with 27 billion parameters, and gpt-4o-2024-
08-06 (Achiam et al., 2023) for planning tasks. For visual language tasks gpt-4o-2024-08-06,
Llama3.2 (Dubey et al., 2024) with 90 billion parameters and LLaVa (Liu et al., 2024a) with 34
billion parameters were employed. Local models was running on a server equipped with two Tesla
V100 GPUs, each with 32GB of VRAM, while other model experiments were conducted via the
official OpenAI API.

6.3 METRICS

We use the following four metrics to evaluate the performance of methods based on a scene graph.

Success Rate (SR) is the ratio of successfully completed tasks to all tasks: SR = S
N , where S – the

number of successful tasks, N – the number of tasks. A task is considered successfully completed
if all graph nodes are correctly transformed to match their goal configuration.

Average Plan Precision (APP) is the ratio of correctly modified nodes in the generated plan relative
to the total number of modified nodes: APP = 1

N

∑N
i=1

MC
i

Mi
, where N – the number of tasks, MC

i –
the number of correctly modified nodes in task i, Mi – the number of modified nodes in task i. APP
measures the precision of the method in modifying graph nodes to achieve the goal state.

Average Plan Length (APL) is the number of actions required to achieve the goal state, averaged
over successfully completed tasks: APL = 1

S

∑S
i=1 Li, where S – the number of successful tasks,

Li – the plan length in task i. APL evaluates the efficiency of the generated plans, with shorter plans
generally being preferred, provided they achieve task success.
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Node Relevance Ratio (NRR) is the ratio of observed nodes to the number of important nodes,
where important nodes are those that differ between the initial and goal graphs: NRR =
1
N

∑N
i=1

KO
i

KI
i
. where N – the number of tasks, KO

i – the number of observed nodes in task i, KI
i

– the number of important nodes in task i. NRR measures the ability of the method to focus on
task-relevant nodes during the planning process. A lower NRR indicates that the method observes
fewer unnecessary nodes, which helps reduce the number of tokens used and improves computa-
tional efficiency.

7 RESULTS

The evaluation is divided into three key areas, each focusing on a specific aspect. First, we assess the
planning performance of various methods on the GRASIF dataset. Second, we analyze the impact of
language model size on method performance, highlighting its influence on plan precision. Finally,
we evaluate the graph augmentation capabilities of LookPlanGraph using different visual models.

7.1 PLANNING CAPABILITY

Table 2: Methods comparison for Llama3.3.
Method SR APP APL NRR

SayPlan Office
SayPlan* 0.00 0.00 0.00 -
SayPlan Lite 0.16 0.39 4.04 19.83
LookPlanGraph 0.12 0.34 6.01 15.72

BEHAVIOR-1K
SayPlan* 0.00 0.00 0.00 -
SayPlan Lite 0.56 0.65 11.56 3.04
LookPlanGraph 0.33 0.41 10.53 2.67

RobotHow
SayPlan* 0.00 0.00 0.00 -
SayPlan Lite 0.39 0.41 2.08 40.51
LookPlanGraph 0.25 0.26 3.14 2.67

Table 2 presents the performance of vari-
ous methods utilizing the Llama3.3 model
for planning across three datasets within
the GRASIF framework. The integration
of Llama3.3 within the SayPlan pipeline
encounters challenges during the semantic
search stage owing to erroneous API calls.
The model frequently neglects the initial in-
structions, attempting to explore non-target
nodes or execute actions prematurely in-
tended for the iterative replanning phase.
This issue is effectively resolved with Say-
Plan Lite, which partitions these stages into
two distinct dialogues.

LookPlanGraph shows slightly lower overall
performance, but it achieves a higher Node
Relevance Ratio. This indicates a more effi-
cient Memory graph filtering strategy, which
also allows the agent to operate effectively in a dynamic environment.

Both approaches demonstrate superior performance when applied to Behaviour-1k tasks, which ben-
efit from pre filtered graphs, underscoring the crucial role of the filtering phase. In the RobotHow
dataset, a primary issue for LookPlanGraph was the inappropriate utilization of exploratory exten-
sions. For example, in “turn on lights” tasks, the agent incorrectly inspected the room lighting and
executed the “done” action without activating the essential switch.

7.2 IMPACT OF LLM ON PLANNING PERFORMANCE

Table 3: Average Plan Precision for different models on the
SayPlan Office dataset.

Method GPT-4o Llama3.3 Gemma2
SayPlan* 0.48 0.00 0.00
SayPlan Lite 0.61 0.39 0.00
LookPlanGraph 0.63 0.34 0.15

The precision of planning for vari-
ous LLMs is shown in Table 3. The
results demonstrate a dependency of
planning methods on the size and ca-
pabilities of the LLMs used. The
SayPlan* method achieves an preci-
sion of 0.48 with the GPT-4o model,
while it is ineffective with smaller
models such as Llama3.3-70b and Gemma 27b. This reduced performance in smaller models is
attributed to an increased susceptibility to hallucinations, resulting in unreliable function calls and
node predictions. Although GPT-4o also experiences hallucinations, they occur less frequently due
to its larger parameter space and enhanced contextual understanding. The discrepancy from the orig-
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inal study’s reported 80% success rates on SayPlanOffice is likely due to differences in evaluation
metrics; the original study’s inclusion of human evaluation may have allowed for more ambiguous
solutions to be deemed successful.

SayPlan Lite exhibits balanced accuracy, especially with the Llama3.3-70b model, achieving 0.39
precision. Its modular prompt structure helps to reduce planning inaccuracies in smaller models.
The LookPlanGraph method attains marginally higher precision, with values of 0.63 on the GPT-4o
model and 0.15 on Gemma2 models. This is attributed to its ability to dynamically iterate actions,
allowing the agent to complete portions of tasks before encountering incomprehensible state.

7.3 GRAPH AUGMENTATION CAPABILITY

Table 4: Graph augmentation capability results.
F1 Score

Method Node Edge Success
LLaVa - - -
Llama3.2-90b 0.67 0.67 0.33
GPT-4o 0.85 0.88 0.59

The results of the graph augmentation pipeline
are presented in Table 4. Graph augmentation
using GPT-4o, successfully generated accurate
graphs in 60% of instances across diverse assets
in house and store environments within the Om-
niGibson simulator. However, we found that
the VLM struggled when presented with a large
number of objects, typically around ten. In sce-
narios with fewer objects, the VLM could suc-
cessfully identify them, but sometimes encountered challenges with naming – for example, misla-
beling a candle as a cylinder, which does not count as accurate recognition.

Reducing the size of the model (Llama3.2) resulted in an overall decrease in recognition capabilities,
coupled with problems in producing structured output, reducing the SR to 33%. Meanwhile, the
LLaVa model was able to identify objects in the provided images, but faced problems with edge
detection and producing structured output, resulting in an SR of 0%.

8 CONCLUSION

In this work, we propose LookPlanGraph, a graph-based planning framework for dynamic envi-
ronments. LookPlanGraph overcomes the limitations of static graph representations by integrating
LLM and VLM to enable real-time updates of the scene graph. While the overall success rate
of our method is sometimes lower than that of the lighter version of SayPlan, our experiments with
graph augmentation highlight LookPlanGraph’s ability to effectively adapt to dynamic environments
through active exploration during task execution. In addition, we developed SayPlan Lite, a modular
version of SayPlan tailored for smaller LLMs, which reduces the incidence of erroneous function
calls. Experimental results consistently show that SayPlan Lite outperforms SayPlan* when applied
to smaller models such as Llama3.3, primarily due to its decentralized dialog structure, which en-
hances protection against erroneous semantic calls. By advancing adaptive, context-aware planning,
LookPlanGraph brings LLM-based planning systems closer to real-world applicability. It lays a
strong foundation for future breakthroughs in autonomous robotics and interactive agents, paving
the way for robust and versatile solutions.

9 LIMITATIONS

A fundamental aspect of LookPlanGraph is the construction of a graph representation of the scene
using a 3D scene graph structure. This graph-based approach organizes spatial relations and ob-
ject states, but limits the applicability to environments that fit this model. For example, the current
representation mainly supports spatial relationships such as “inside” and “on top”, which may not
capture the full range of relationships in diverse datasets or real-world scenarios. LookPlanGraph
also suffers from the limitations of LLM and VLM, including bias, inaccuracy, and incomplete vi-
sual input. These affect decision making, especially for complex tasks. Future improvements such
as fine-tuning, better visual models, or alternative sensory inputs could improve reliability. Look-
PlanGraph assumes perfect low-level action policies, which remains a challenge in robotics. While
this simplifies high-level planning, it ignores execution errors, sensor noise, or partial observability.
Addressing these challenges would require robust error recovery mechanisms and adaptive control
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strategies to bridge the gap between high-level plans and real-world execution. Finally, the feedback
quality of the scene graph simulator may degrade as task complexity increases, especially with di-
verse actions and predicates. The development of a more advanced feedback system with improved
error detection and correction dialog is a valuable future direction.

10 ETHICAL CONSIDERATIONS

Our approach is based on a large language model that operates in generation mode, and despite
the use of a prompt that limits the output format, the model can potentially generate inappropriate
and/or offensive output. In addition, language models are prone to hallucinations and can generally
produce unforeseen results, so giving them control over mechanisms that could potentially cause
harm and testing such mechanisms should be done in a regulated manner, in a specially designated
area with limited access to the people involved in the experiments. It is also potentially possible to
deliberately execute harmful plans on a robot with the intent to cause harm.
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A APPENDIX – PROMPT STRUCTURES

A.1 LOOKPLANGRAPH

The static prompt remains constant across all tasks and provides foundational information to the
LLM. It includes the agent’s role and objectives, a description of states and relationships that can
appear in the JSON graph representation, a list of functions available to the agent (e.g., ”look on,”
”look inside,” ”pick up”), the expected output format (structured JSON response detailing the next
action), and two examples of how the agent should respond.

After the static prompt, dynamic components follow. These include the instruction, which is a
natural language description of the task, a filtered JSON graph representation, and feedback. The
JSON graph is simplified to include only the nodes and attributes relevant to performing the action,
such as those in the same room as the agent or objects the agent interacted with earlier in the task.
This filtering ensures the prompt remains concise while providing necessary context for long-horizon
tasks.

A.1.1 STATIC PROMPT

Agent Role: You are an expert in graph-based task planning. Given a graph representation of
the environment, your goal is to generate a next move for the agent to follow to solve the given
instruction.

Graph environment states:

• ontop of(<asset>): Object is located on <asset>.

• inside of(<asset>): Object is located inside <asset>.

• closed: Asset can be opened.

• open: Asset can be closed or kept open.

• on: Asset is currently on.

• off: Asset is currently off.

Available Functions:

• go to(<room>): Move the agent to room node. Use it only with room nodes.

• pick up(<object>): Pick up an accessible object from the accessed node. You can
handle only one item.

• put on(<asset>): Put held object on <asset>.

• put inside(<asset>): Put held object inside of <asset>.

• turn on/off(<node>): Toggle object on or off.

• open/close(<node>): Open or close node.

• look on(<asset>): Look on top of <asset>. Adds the discovered objects to the
memory graph.

• look inside(<asset>): Look inside of <asset>. Adds the discovered objects to
the memory graph.

• done(<node>): Call this function with any node when the goal has been achieved.

Answer only with JSON without comments. Output Response Format:

{
"chain_of_thought": Break down your reasoning into intermediate steps.
"next_move": {
"function_name": Name of the function from Available Functions.
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"function_target": Node name.
}

}

Examples of output:

{
"chain_of_thought": [

"i have found the coffee mug,
the coffee machine and tom’s wardrobe on the graph",
"collect coffee mug",
"generate plan for making coffee",
"place coffee mug on Tom’s wardrobe"

],
"next_move": {

"function_name": "go_to",
"function_target": "bobs_room"

}
}

{
"chain_of_thought": [

"goal is reached",
"i am inside bobs_room",
"now i call function to show thats i am done with task"

],
"next_move": {

"function_name": "done",
"function_target": "bobs_room"

}
}

A.1.2 DYNAMIC PROMPT EXAMPLE

Instruction: Take the socks, bottle of perfume, toothbrush, and notebook out of the carton and place
them on the sofa in the living room.

Memory graph:

{"nodes":{"room":[
{"id":"living_room1"}],
"asset":[{"id":"floor1","located":"living_room1","states":[]},
{"id":"sofa1","located":"living_room1","states":[]}],"object":[
{"id":"carton1","relation":"ontop_of","related_to":"sofa1","states":["closed"]},
{"id":"sock1","relation":"ontop_of","related_to":"sofa1","states":[]},
{"id":"sock2","relation":"ontop_of",
"related_to":"sofa1","states":[]},
{"id":"bottle__of__perfume1","relation":"ontop_of",
"related_to":"sofa1","states":["closed"]},
{"id":"toothbrush1","relation":"ontop_of","related_to":"sofa1","states":[]},
{"id":"notebook1","relation":"ontop_of","related_to":"sofa1","states":[]}],
"agent":[{"id":"agent1","location":"living_room1","holding":""}]}}

A.2 SAYPLAN LITE

SayPlan Lite splits the prompt into two stages corresponding to SayPlan’s workflow, hiding irrel-
evant information at each stage and separating the LLM’s API interactions into two parts. This
approach minimizes potential hallucinations.

14
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A.2.1 SEMANTIC SEARCH

Agent Role:
You are an efficient graph search agent tasked with exploring
a graph-based environment to find specific items based on a given instruction.
You interact with the environment via an API to expand or contract room nodes.
Objective:
Your goal is to identify the relevant
parts of the graph to fulfill the instruction.
You must expand appropriate room nodes, filter out irrelevant ones,
and verify the graph using the environment’s API.

Environment API:
expand_node(<room>): Reveal assets/objects connected to a room node.
contract_node(<room>): Hide assets/objects, reducing
graph size for memory constraints.
verify_plan(): Verify graph in the scene graph environment.

Guidelines:
1. Do not expand asset or object nodes, only room nodes.
2. Contract irrelevant nodes to reduce memory usage.
3. Once all relevant objects are found, use verify_plan() to confirm that graph
is rellevant to the task.

Output Response Format: Your response should follow this structure:
{
"chain_of_thought": break your problem down into a series of intermediate
reasoning steps to help you determine your next command,
"reasoning": justify why the next action is important
"command":

{
"command_name": Environment API call
"node_name": node to perform an operation on
}

}

Example of output:
{

"chain_of_thought": [
"i have found a wardrobe in tom’s room",
"leave this node expanded",
"the coffee mug is not in his room",
"still have not found the coffee machine",
"kitchen might have coffee machine and coffee mug",
"explore this node next"

],
"reasoning": "i will expand the kitchen next",
"command": {

"command_name": "expand_node",
"node_name": "kitchen1"

}
}

A.2.2 ITERATIVE RE-PLANNING

Agent Role: You are an expert in graph-based task planning.
Given a graph representation of the environment,
your goal is to generate a precise, step-by-step task plan
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for the agent to follow and solve the given instruction.

Graph environment states:
ontop_of(<asset>): Object is located on <asset>
inside_of(<asset>): Object is located inside <asset>
attached_to(<asset>): Object is attached to <asset>
closed: Asset can be opened
open: Asset can be closed or kept open
on: Asset is currently on
off: Asset is currently off

Available Functions (use these exclusively for planning):
go_to(<room>): Move the agent to room node. Use it only with room nodes.
pick_up(<object>): Pick up an accessible object from the accessed node.
You can handle only one item.
put_on(<asset>): Put holded object on asset.
put_inside(<asset>): Put holded object inside of asset.
put_under(<asset>): Put holded object under of asset.
attach(<asset>): Attach holded object to asset.
turn_on/off(<object>): Toggle object at agent’s node,
if accessible and has affordance.
open/close(<node>): Open/close node at agent’s node, affecting object.

Answer only with JSON without comments. Output Response Format:
{"chain_of_thought": Break down your reasoning into intermediate steps.
"plan": List the environment function calls to solve the task.}

Example of output:
{

"chain-of-thought": [
"i have found the coffee mug,
the coffee machine and tom’s wardrobe on the graph",
"collect coffee mug",
"generate plan for making coffee",
"place coffee mug on Tom’s wardrobe"

],
"plan": [

"go_to(bobs_room1)",
"pick_up(coffee_mug1)",
"go_to(kitchen1)",
"put_inside(coffee_machine1)",
"turn_on(coffee_machine1)",
"turn_off(coffee_machine1)",
"pick_up(coffee_mug1)",
"go_to(toms_room1)",
"put_on(wardrobe2)"

]
}

B APPENDIX – VLM PROMPT STRUCTURE

Describe the image.

Return the results in a predefined JSON format as follows:
[

{
"name": "object_name",
"relation": "relation_type",
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"related_to": "related_object_name",
"states": "object_state",
"properties": "object_properties"

}
]

Guideline:

1. Include only objects that can be moved.
2. Possible states are: open, closed, turned_on, turned_off.
3. Possible relations are: ontop_of, inside_of.

Example Output:
[

{
"name": ["bowl",1],
"relation": "ontop_of",
"related_to": ["bench", 1],
"states": "",
"properties": "black"

},
{

"name": ["apple",1],
"relation": "inside_of",
"related_to": ["bowl", 1],
"states": "",
"properties": "red"

},
{

"name": ["apple",2],
"relation": "inside_of",
"related_to": ["bowl",1],
"states": "",
"properties": "green"

},
{

"name": ["bottle",1],
"relation": null,
"related_to": null,
"states": "closed",
"properties": "green"

}
]

Do not add objects from list:
<list of assets in the same room and already founded objects>

C APPENDIX – DATASET PREPARATION

Filtered actions from VirtualHome:

Open door, Lock door, Look out window, Movie, Clean, Write school paper, Dust, Play games, Get
dressed, Playing video game, Shave, Print out papers, Watch fly, Walk through, Admire art, Gaze
out window, Look at painting, Check appearance in mirror, Shut front door, Look at mirror, Write
an email, Browse internet, Watch TV, Take shower, Work, Drink, Wash teeth, Wash dishes by hand,
Pet cat, Brush teeth, Keep an eye on stove as something is cooking, Open front door, Close door,
Pick up phone.

Limited actions for VirtualHome:
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”FIND”, ”WALK”, ”GRAB”, ”SWITCHON”, ”TURNTO”, ”PUTBACK”, ”LOOKAT”, ”OPEN”,
”CLOSE”, ”PUTOBJBACK”, ”SWITCHOFF”, ”PUTIN”, ”RUN”,

SayPlan Office tasks: SayPlan Office tasks instructions listed in Table 5.

Table 5: SayPlanOffice Tasks
Tasks description
Close Jason’s cabinet.
Refrigerate the orange left on the kitchen bench.
Take care of the dirty plate in the lunchroom.
Place the printed document on Will’s desk.
Peter is working hard at his desk. Get him a healthy snack.
Hide one of Peter’s valuable belongings.
Wipe the dusty admin shelf.
There is coffee dripping on the floor. Stop it.
Place Will’s drone on his desk.
Move the monitor from Jason’s office to Filipe’s.
My parcel just got delivered! Locate it and place it in the appropriate lab.
Check if the coffee machine is working.
Heat up the chicken kebab.
Something is smelling in the kitchen. Dispose of it.
Heat up the noodles in the fridge, and place it somewhere where I can enjoy it.
Throw the rotting fruit in Dimity’s office in the correct bin.
Safely file away the freshly printed document in Will’s office, then place the under-
graduate thesis on his desk.
Make Niko a coffee and place the mug on his desk.
Tobi spilt soda on his desk. Throw away the can and take him something to clean
with.
I want to make a sandwich. Place all the ingredients on the lunch table.
Empty the dishwasher. Place all items in their correct locations.
A delegation of project partners is arriving soon. We want to serve them snacks and
non-alcoholic drinks. Prepare everything in the largest meeting room. Use items
found in the supplies room only.
Serve bottled water to the attendees who are seated in meeting room 1. Each attendee
can only receive a single bottle of water.
Locate all 6 complimentary t-shirts given to the PhD students and place them on the
shelf in admin.
I’m at the lunch table. Let’s play a prank on Niko. Dimity might have something.
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