
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

LOOKPLANGRAPH: EMBODIED INSTRUCTION FOL-
LOWING METHOD WITH VLM GRAPH AUGMENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, approaches using Large Language Models (LLM) as planners for
robotic tasks have become widespread. In such systems, the LLM must be
grounded in the environment in which the robot is operating in order to success-
fully complete tasks. One way to do this is to use a scene graph that contains all the
information necessary to complete the task, including the presence and location
of objects. In this paper, we propose an approach that works with a scene graph
containing only immobile static objects, and augments the scene graph with the
necessary movable objects during instruction following using a visual language
model and an image from the agent’s camera. We conduct thorough experiments
on the SayPlan Office, BEHAVIOR-1K, and VirtualHome RobotHow datasets,
and demonstrate that the proposed approach effectively handles the task, bypass-
ing approaches that use pre-created scene graphs.

1 INTRODUCTION

PictureAction:

Look on

Flower pot 
on Table

Action LLM

VLM

MemoryStarting graph

New nodes

Environment

Figure 1: LookPlanGraph enhances an agent’s
ability to operate in dynamic environments by in-
tegrating real-time updates from the environment
into its graph representation.

The pursuit of autonomous agents that can
comprehend and execute complex human in-
structions in dynamic environments is a funda-
mental objective in robotics. Recent strides in
Large Language Models (LLMs) have shown
significant potential in reasoning and planning
for a variety of tasks articulated in natural lan-
guage (Huang et al., 2022; Ahn et al., 2022;
Singh et al., 2023). For robots to effectively
carry out these tasks, it is crucial that LLMs are
grounded in the physical environments where
the robots operate. One effective strategy for
achieving this grounding is through the use of
scene graphs (Gu et al., 2023), which offer
structured representations of environments by
detailing objects and their interrelationships.

Traditionally, the processes of constructing a scene graph and executing tasks using it have been
treated separately. SayPlan (Rana et al., 2023) leverage static scene graph representations to gen-
erate viable task plans for embodied agents. However, this reliance on static graphs presupposes
unchanging environments, a condition rarely met in real-world scenarios where objects frequently
change locations or states. Consequently, when the environment undergoes changes, methods such
as SayPlan require the entire scene graph to be reconstructed. This reconstruction involves additional
procedures like scene navigation, image capturing, and data analysis, all of which are time-intensive
and computationally demanding, thus impeding real-time application.

The assumption of a static scene graph is particularly impractical in dynamic settings for several
reasons. Firstly, other agents or unforeseen events may alter the state, location, or relationships of
objects within the environment. Secondly, certain objects might be concealed within closed con-
tainers like boxes or cabinets. Including these hidden objects in the initial graph would necessitate
a thorough examination of all possible storage spaces during graph construction, an approach that is
neither efficient nor scalable. Therefore, an agent operating in a dynamic environment must possess

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

the capability to dynamically extend and update its scene graph based on real-time observations
made during task execution.

Another significant limitation of existing methods like SayPlan is their dependency on large, com-
putationally intensive models such as GPT-4. While these models are powerful, their substantial
resource requirements pose challenges for applications that necessitate localized computation or op-
erate under hardware constraints. To overcome these challenges, we present three key contributions:

1)Development of SayPlan Lite: We present SayPlan Lite, a streamlined version of the original
SayPlan method, designed to boost the efficiency of smaller LLMs for local machine use. Its success
showcases the potential for broader application in resource-limited contexts, making it a viable tool
for building LLM agents tailored to constrained environments.

2)Proposal of LookPlanGraph for Dynamic Environments: We propose LookPlanGraph, a graph-
based planning framework for dynamic environments. Unlike static scene graphs, this approach
initializes with unmovable assets and dynamically updates with movable objects using a Visual Lan-
guage Model (VLM) and the agent’s egocentric camera. It employs a Memory Graph Mechanism
to adapt to environmental changes by focusing on relevant, nearby objects, reducing computational
demand. A Graph Augmentation Mechanism further allows real-time exploration and updates, en-
suring adaptability to the agent’s surroundings.

3)Compilation of a Graph Dataset: We have created a 558-task dataset for graph-based instruction-
following, featuring automated validation. Built from SayPlan Office, BEHAVIOR-1K, and Virtual-
Home RobotHow environments, this dataset offers a robust resource for assessing planning methods
across diverse settings.

2 RELATED WORKS

2.1 EMBODIED PLANNING

Robotic task planning generates sequences of actions to achieve goals within an environment. Tra-
ditional methods use domain-specific languages, such as PDDL (Fox & Long, 2003) and Temporal
Logic (TL) (Doherty & Kvarnstram, 2001), combined with parsing, search methods, and heuristics.
These are effective in controlled settings but struggle with scalability and generality in complex en-
vironments. Recently, LLMs are being utilized for task planning due to their in-context learning
abilities. Huang et al. (2022) used LLMs to translate actions into executable commands specific to
environments. LOTA-Bench (Choi et al., 2024) employs LLMs to predict the next action based on
sequence probability, while the LLM+P approach (Liu et al., 2023) integrates grounding by creating
a PDDL description for classical planners.

Effective grounding needs a reliable environmental representation, achieved by scene graphs, which
organize entities and their relationships (Gu et al., 2023; Liu et al., 2021; Devarakonda et al., 2024).
Innovative methods like Delta (Liu et al., 2024b) extend the LLM+P approach using scene graphs
to describe PDDL domains. KARMA (Wang et al., 2024) introduces a memory-augmented sys-
tem for LLM-based planning in embodied AI agents, integrating long-term 3D scene graphs and
dynamic short-term memory. Dai et al. (2024) integrates LLMs with hierarchical metric-semantic
models for task planning over scene graphs. It translates natural language tasks into LTL automata
and introduces an optimal hierarchical planning method guided by LLM heuristics. SayPlan (Rana
et al., 2023) prompts scene graphs in LLMs to make methods executable. These methods effec-
tively combine scene graphs with LLMs for task planning, particularly with large models. However,
smaller models face challenges due to limited capacity and context handling, highlighting the need
for optimized solutions for smaller architectures.

2.2 VLM INTEGRATION

Recent VLM advancements benefit robotics by interpreting visual data directly. Unlike LLM, VLM
handle raw pixel data, enhancing robotic perception. ActPlan-1K (Su et al., 2024) introduces a
benchmark to evaluate VLM in multi-modal and counterfactual task planning, revealing their lim-
itations in generating effective procedural plans. RT-2 (Brohan et al., 2023) and PaLM-E (Driess
et al., 2023) integrate VLM for multimodal inputs in robotics. ViLa (Hu et al., 2023) employs VLM

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

bench microwave

peppers

bowl meat platebutter

fridge

Augmented subgraph

kitchen living 
room

scene

bench microwave fridge

agent

Memory graph

Graph
Executable

action

If action 
“Look”

Augment 
graph

Agent view from 
environment

Environment

Instruction: Put salmon 

into microwaveStarting graph

(1)

(2)

 LLM

Action: Look at microwave
Simulator: microwave is 
accessible



Action is executable

Simulator

ActionFeedback (3)
(4)

(5)

(6)

VLM
[fridge microvave bench]
Known nodes in room

Figure 2: LookPlanGraph Overview: The LookPlanGraph starts with an instruction and a static
environment graph (1). A memory graph, initially a copy of the starting graph, is processed with the
task description by the LLM and is also sent to the Scene Graph Simulator (2). The LLM suggests an
action, which the Simulator checks for feasibility. If executable, the action changes the environment,
updating the memory graph (3). For actions needing visual feedback (e.g., ”look”), the environment
sends a camera view to the VLM (4). The VLM processes this image, along with room node data
from the memory graph, to produce an augmented subgraph (5), which updates the memory graph
(6). This cycle (2-6) repeats until the LLM decides the task is complete.

for direct task execution. The integration of VLM with graph structures shows promise due to VLMs
ability to build and use graph-based representations. ConceptGraphs (Gu et al., 2023) uses 2D model
outputs to create 3D scene graphs and generate plans using LLMs. VeriGraph (Ekpo et al., 2024)
emphasizes benefits of combining graphs with VLM, especially in complex tasks. While often in
smaller settings, structured representations like graphs can greatly improve planning efficiency in
complex scenarios.

3 PROBLEM FORMULATION

We address the challenge of enabling an autonomous mobile manipulator robot to plan, navigate, and
manipulate objects within large-scale household environments using natural language instructions.
The robot must reason about dynamic scenes and adapt to environmental changes, such as object
locations and states. Our solution necessitates generating executable actions that involve complex
navigation and manipulation tasks, effectively accommodating the dynamics of multi-room environ-
ments where static representations are inadequate.

Formally, given a 3DSG G and a task instruction T expressed in natural language, our framework,
LookGraphPlan, can be conceptualized as a high-level decision-making module denoted by π(a |
T,G). This decision-making module is capable of generating an action a that is grounded in the
environment where the embodied agent operates. Furthermore, the generated action is designed to
concurrently follow the instruction to be carried out.

Our approach focuses on two primary challenges: 1) Develop a framework capable of operating
with scene representations that initially include only the static elements of the environment. This
framework must enable the agent to iteratively expand and modify the scene graph during task exe-
cution, reflecting changes in the environment; 2) Enabling effective planning using smaller LLMs,
that can run locally, to reduce reliance on computationally intensive, large-scale models.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

4 METHOD

We introduce LookPlanGraph, a scalable method leveraging scene graphs to operate in environments
without predefined states or positions for movable objects. Central to this approach is the Scene
Memory Graph (SMG), which is continuously maintained and updated to reflect the current state
of the environment. This method empowers exploration and interaction within the environment,
augmenting the SMG with newly detected objects.

Illustrated in Figure 2, the LookPlanGraph methodology integrates a LLM, a scene graph represen-
tation, and VLM to execute tasks. The process begins with an starting graph outlining the rooms
and fixed assets within the environment, which is then replicated into the SMG for use throughout
the method. As the agent engages with the environment, the SMG is dynamically updated, incorpo-
rating modifications made by the agent via the Scene Graph Simulator and new objects identified by
the VLM. Algorithm 1 of the method follows a structured cycle (4-15):

Algorithm 1 LookPlanGraph
1: Given: LLM planner LLM, VLM parser

VLM, Environment ENV, Memory graph
M , Graph Simulator Sim

2: Inputs: Starting graph G, Task T
3: M = G
4: while action ! = done do
5: while feedback ! = None do
6: action← LLM(M,T, feedback)
7: feedback← Sim(M,action)
8: end while
9: ENV(action)

10: if action=′ look on′ then
11: new nodes← VLM(ENV,M)
12: M .append(new nodes)
13: end if
14: end while

LLM Decision-Making (7): The SMG is en-
coded into a prompt and provided to the LLM,
along with the task instructions. Using this in-
put, the LLM determines the next action for the
agent to perform. In our approach, the list of
possible actions is limited to manipulation tasks
such as goto, pick up, open, close, put on, put
in, and two scene exploration actions: look on
and look inside.

Simulation and Feedback (5-9): The pro-
posed action is sent to the Scene Graph Simula-
tor, which evaluates its feasibility. If the action
is valid, the simulator updates the SMG to re-
flect the outcome. If the action is invalid, feed-
back is returned to the LLM for re-planning.

Environment Interaction (10): Once vali-
dated by the simulator, the action is executed
in the real environment.

Graph Augmentation via VLM (11-14): For exploration actions, such as look on or look inside,
the VLM is invoked. The VLM processes images of the environment and generates nodes for newly
identified objects. These objects are then added to the SMG.

4.1 MEMORY GRAPH

Scene

Place

Asset

Object

Agent

Figure 3: Memory graph structure con-
structed with four layers and an addi-
tional agent node to track the agent’s po-
sition.

The Memory Graph (Figure 3) is a hierarchical, graph-
based structure inspired by 3D Scene Graphs (Kim et al.,
2019; Kurenkov et al., 2021). It encodes spatial seman-
tics, object relationships, and affordances for efficient
robotic planning (Gay et al., 2019; Rosinol et al., 2021).
Organized into four layers—Scene, Place, Asset, and Ob-
ject—it abstracts the environment at different levels. The
Scene Layer represents the entire environment, the Place
Layer defines areas (e.g., rooms), the Asset Layer in-
cludes immovable objects, and the Object Layer con-
tains movable items. An additional agent node tracks the
agent’s position and interactions.

4.2 ACTION GENERATION

Action generation by the LLM involves structured prompting, graph filtering, and a feedback loop
with the Scene Simulator. The prompt consists of three parts: a static prompt, dynamic components,
and feedback. The static prompt describes actions and states derived from the graph, focusing on
essential home environment tasks like pick-and-place, opening/closing, and turning devices on/off.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

Additional actions, such as “look on” and “look inside”, enable visual interaction. A detailed prompt
structure and the full action list are provided in Appendix A.

To optimize for compact LLM models, the prompt is concise yet informative by including only ob-
jects in the agent’s immediate environment (e.g., the same room) and adding previously interacted
objects, especially for long-term planning tasks. The Scene Graph Simulator, similar to SayPlan,
ensures actions are executable in the real environment. It attempts to execute LLM-generated ac-
tions and updates the memory graph and environment state if successful. If an action fails due
to constraints, the simulator provides feedback, which is included in the next prompt to improve
subsequent actions.

4.3 GRAPH AUGMENTATION

For visual interaction with the environment, the LLM can inspect the top or interior of accessible
assets by calling corresponding action and incorporate newly discovered objects into the memory
graph. Example of such interaction shown in the right part of Figure 2. This process involves
capturing an image from the environment that represents the agent’s field of view. The image is
then passed to a Vision-Language Model along with list of assets and objects already present in the
memory graph to ensure that only new nodes are added. The VLM is prompted to identify new
objects, their states, and their relationships with existing assets. Subsequently, the identified nodes
are integrated into the memory graph, making them available for future interactions.

5 DATASET PREPARATION

Graph-based scene representation methods are gaining traction in research, yet there is a notice-
able lack of 3DSG datasets tied to specific tasks, which has led researchers to rely on propri-
etary data. To bridge this gap, we have curated a comprehensive dataset by integrating resources
from multiple sources. Specifically, we combined textual instructions and environmental data from
BEHAVIOR-1K (Li et al., 2024), VirtualHome RobotHow (Puig et al., 2018), and SayPlan Of-
fice (Rana et al., 2023). While BEHAVIOR-1K lacks task descriptions and graph representations,
VirtualHome RobotHow offers graph representations but not in the 3DSG format, and SayPlan Of-
fice lacks a coded implementation. Our curated dataset addresses these limitations, providing a
valuable resource for evaluating and advancing graph-based methods in robotics research.

Table 1: Comparison of datasets: SayPlan Office is the
largest environment, BEHAVIOR-1K offers the most long-
horizon tasks, and VirtualHome features numerous objects
in compact environments.

Data Tasks Rooms Nodes Actions
SayPlan Office 25 37 202.6 2.1
Behaviour-1k 186 1.23 12.1 4.9
VirtualHome 347 4 195.7 1.6

The SayPlan Office and BEHAVIOR-
1K datasets assess general planning
capabilities without scene graph aug-
mentation during execution. Virtu-
alHome RobotHow evaluates perfor-
mance when initial scene graphs lack
objects later observed by the agent.
Dataset characteristics are summa-
rized in Table 1.

We constructed initial and goal
graphs for each task, representing environment states before and after execution. This approach
enables automatic validation across large, complex environments, reducing reliance on human eval-
uation. Combined, the datasets cover 10 environments and 558 tasks paired with initial and goal
graphs, highlighting various aspects of embodied planning. Full dataset details are provided in sup-
plementary materials.

SayPlan Office. For evaluating our method on diverse, human-formulated tasks, we used the Say-
Plan Office Dataset. As the original dataset is unavailable, we reconstructed environment graph
representations based on details from the original paper. To align the graph format with our 3DSG
structure, we removed pose nodes and directly connected rooms to the scene node. Graph represen-
tations and corresponding action sequences were manually constructed, selecting tasks from both
simple and complex planning sections of the paper. Using these reconstructed initial graphs and ac-
tion sequences, we employed a Scene Graph Simulator to generate goal graph representations after
task execution. Ambiguous tasks, such as “Put an object into a place where I can enjoy it,” were

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

excluded. The final dataset includes 25 curated tasks with initial and goal graph pairs, detailed in
Appendix C.

BEHAVIOR-1K. The Behaviour-1k dataset includes descriptions of 1,000 tasks relevant to real-
world scenarios, paired with a simulator providing rooms, scenes, and PDDL task descriptions. We
construct graph representations of the environment from PDDL descriptions. The initial graph is
derived using a rule-based approach with ontop and inroom predicates. The goal state is generated by
GPT-4o (Achiam et al., 2023), which modifies the initial graph based on the task goal and provides
human-like task instructions and step-by-step plans. To focus on manipulation tasks, we filter the
Behaviour-1k dataset to exclude tasks requiring cooking or cleaning skills, selecting only tasks with
predicates ontop, real, inside, open, and toggled on. This results in 186 tasks with
initial and goal graph pairs. The graphs are constructed solely from task descriptions, excluding
nodes unrelated to instruction following. This allows for a clear evaluation of planning performance
without the need to filter out irrelevant nodes.

VirtualHome RobotHow. For evaluating vision capabilities, we use the VirtualHome simulator,
an interactive platform simulating complex household activities. VirtualHome enables interactions
such as picking up objects, toggling appliances, and opening appliances, allowing the agent to cap-
ture environment images for graph augmentation. We use the RobotHow dataset (Liao et al., 2019),
designed for VirtualHome, which includes 1,800 tasks with initial and goal state graphs across 7
home environments. Tasks are filtered to focus on robot-performable manipulation actions, exclud-
ing irrelevant tasks (e.g., “Play video game”, “Get shower”) and those involving doors, as they are
not represented in the graph structure. Scene descriptions in VirtualHome are translated into graphs
using a rule-based approach. Non-grabbable objects are treated as asset nodes, and redundant nodes
(e.g., multiple floors, ceilings, walls) are removed for simplicity. The final dataset includes 347
tasks, with duplicates across environments noted. Full details on actions and filtered tasks are in
Appendix C.

6 EXPERIMENTS

6.1 BASELINES

We evaluate LookPlanGraph against two baseline methods that incorporate large language models
(LLMs) as graph planners.

SayPlan (Rana et al., 2023), operates in two distinct stages: semantic search and iterative replan-
ning. During the semantic search stage, the LLM identifies a minimal sufficient scene graph by
expanding room nodes containing relevant items. In the iterative replanning stage, the graph is used
to query the same LLM for generating a high-level plan, which is revised based on graph simulation
feedback. Notably, both stages are executed sequentially using the same LLM dialogue, with the
same prompt being called for both operations.

Since the open-source implementation of SayPlan is unavailable, we developed our own version,
referred to as SayPlan*. This version is adapted to process 3DSGs without pose nodes. Additionally,
as the graph representation in our context does not require the access functions used for real robots
in the original paper, we replaced the access and release function combination with simpler “put on”
and “put in” functions.

To reduce the complexity of the task for the LLM and enhance efficiency, we introduced a simplified
variant of SayPlan, named SayPlan Lite. This approach decomposes the planning process into two
distinct LLM dialogues: one dedicated to semantic search and the other to iterative replanning.
By separating these tasks and few-shot learning examples, we streamline the planning for LLM,
making it more manageable and effective, especially for smaller models. Additionally, we refined
the representation of the graph within the prompts to further simplify communication with the LLM.
A detailed explanation of these modifications can be found in Appendix A.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

6.2 EXPERIMENTAL SETUP

Our experimental framework rigorously evaluates model performance in generating plans across a
diverse set of environments depicted within our dataset. Each task within the experiment frame-
work consists of an input method, an initial environment graph, and corresponding environmental
functions. The models engage in iterative processing of these inputs to propose plans or determine
actions, which are then executed within a scene graph simulator. The resultant graph is subse-
quently compared to a predefined goal graph, enabling the computation of various performance
metrics (1–4).

To ensure equitable testing conditions for the planning capabilities of different methods, asset ex-
ploration is simulated by incorporating objects connected to the asset under investigation. The re-
planning process is uniformly constrained to a maximum of five iterations across all methods.

The ability to augment graphs was assessed using environments derived from the VirtualHome
framework. The scenarios simulated consist of an agent entering a room, initially surveying the
surroundings, and subsequently inspecting specific assets. The final node count is compared against
the ground truth as obtained from the graph representation. Further details on the VLM prompt
structure are provided in Appendix B.

In these experiments, models were utilized, including Llama3.3 (Dubey et al., 2024) with 70 bil-
lion parameters, Gemma2 (Team et al., 2024) with 27 billion parameters, and gpt-4o-2024-08-
06 (Achiam et al., 2023) for planning tasks. For visual language tasks gpt-4o-2024-08-06 and
Llava (Liu et al., 2024a) with 34 billion parameters were employed.

Local models was running on a server equipped with two Tesla V100 GPUs, each with 32GB of
VRAM, while other model experiments were conducted via the OpenAI API.

6.3 METRICS

To evaluate the performance of methods based on scene graph we use following metrics. Equations
for metric listed in Appendix D.

The Success Rate (1) quantifies the percentage of tasks where the method successfully transitions
the graph from its initial state to the goal state. A task is considered successful if all nodes are
correctly transformed to match their goal configuration.

Average Plan Accuracy (2) evaluates the proportion of correctly modified nodes in the generated
plan relative to the total number of modified nodes. This metric measures the precision of the method
in altering graph nodes to achieve the goal state.

Average Plan Length (3) reflects the average number of actions required to achieve the goal state
across tasks. This metric evaluates the efficiency of the generated plans, with shorter plans generally
being preferred, provided they achieve task success.

Node Relevance Ratio (4) measures the method’s ability to focus on task-relevant nodes during the
planning process. It quantifies the ratio of observed nodes to the number of important nodes, where
important nodes are those that differ between the initial and goal graphs. A lower ratio indicates
that the method observes fewer unnecessary nodes, which helps reduce token usage for models and
improves computational efficiency.

7 RESULTS

The results are divided into three experiments, each addressing a different aspect of the evaluation.
Experiment 1 analyses performance across different methods on tasks with static graph where no
changes in environment. Experiment 2 analyses the performance of different methods with smaller
language models, highlighting their sensitivity to model size and its impact on task success.

7.1 PLANNING CAPABILITY ACROSS DATASETS

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 2: Methods comparison for Llama3.3.
Method SR APA APL NRR

SayPlan Office
SayPlan* 0.00 0.00 0.00 -
SayPlan Lite 0.16 0.39 4.04 19.83
LookPlanGraph 0.12 0.34 6.01 15.72

BEHAVIOR-1K
SayPlan* 0.00 0.00 0.00 -
SayPlan Lite 0.56 0.65 11.56 3.04
LookPlanGraph 0.33 0.41 10.53 2.67

RobotHow
SayPlan* 0.00 0.00 0.00 -
SayPlan Lite 0.39 0.41 2.08 40.51
LookPlanGraph 0.25 0.26 3.14 2.67

Table 2 representing performance across
datasets. For Llama3.3-70b, SayPlan Lite
achieves a success rate of 0.56 and an average
plan length of 11.56 in BEHAVIOR-1K but
struggles in SayPlan Office with a 0.16 success
rate. This suggests methods like SayPlan Lite
adapt better to structured tasks but face chal-
lenges in contexts requiring nuanced reasoning.
Deviations from the original paper’s reported
80% success rates likely stem from differences
in evaluation metrics, as the original study
included human evaluation, which may have
considered ambiguous solutions as successful.

The performance drop in smaller models, such
as Gemma 27b, underscores their limitations in
managing complex graph-based planning tasks,
while larger models like GPT-4o handle multi-
step reasoning more effectively. SayPlan Lite’s
relatively strong performance with smaller models suggests that reducing prompt complexity can
partially address model limitations. Dataset characteristics also influence outcomes, with structured
tasks in BEHAVIOR-1K yielding better results than the more ambiguous SayPlan Office tasks.

7.2 IMPACT OF LLM ON PLANNING PERFORMANCE

Table 3: Average Plan Accuracy for different models on the
SayPlan Office dataset.

Method GPT-4o Llama3.3 Gemma2
SayPlan* 0.48 0.00 0.00
SayPlan Lite 0.61 0.39 0.00
LookPlanGraph 0.63 0.34 0.15

Dependence of plan accuracy for dif-
ferent LLM model presented in Ta-
ble 3. Results highlight the depen-
dency of planning methods on the
underlying LLM’s size and capabil-
ities. SayPlan* performs well with
GPT-4o, achieving 0.48 accuracy, but
fails entirely with smaller models like
Llama3.3-70b and Gemma 27b. This decline reflects the susceptibility of smaller models to hallu-
cinations, with unreliable function calls and node predictions. While GPT-4o also exhibits some
hallucinations, these occur less frequently due to its larger parameter space and improved contextual
understanding.

SayPlan Lite shows balanced performance, particularly with Llama3.3-70b, where it achieves 0.39
accuracy. Its modularized prompt structure mitigates planning inaccuracies in smaller models. How-
ever, its success rate remains low, as shown by its 0.16 score in SayPlan Office. LookPlanGraph
demonstrates slightly better accuracy, reaching 0.63 on GPT-4o and 0.33 on Llama3.3-70b.

7.3 GRAPH AUGMENTATION CAPABILITY

Table 4: VirtualHome results on the graph aug-
mentation task. The Node Presence (NP) col-
umn represents the percentage of nodes from the
ground truth number of nodes. The ’On’ and ’In-
side’ columns denote the percentage of nodes with
specific relationships.

Method NP On Inside
LookPlanGraphgpt−4o 0.66 0.30 0.36
LookPlanGraphllava - - -

Results for graph augmentation pipeline rep-
resented at Table 4. LookPlanGraphgpt−4o

demonstrates a relatively modest performance
in graph augmentation tasks, with varying
levels of success across different relationship
types.

The LookPlanGraphllava model was able to un-
derstand and add nodes in graph augmenta-
tion tasks. However, it faces challenges when
dealing with larger graphs due to memory con-
straints. When the number of nodes in the graph
becomes too large, the model’s performance degrades, and it may stop functioning effectively. This
indicates that while the model is good at interpreting tasks, it requires better memory management
and scalability optimizations to handle more complex graphs with a higher node count.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

Development of SayPlan Lite: We present SayPlan Lite, a streamlined version of the original Say-
Plan method, designed to boost the efficiency of smaller LLMs for local machine use. Its success
showcases the potential for broader application in resource-limited contexts, making it a viable tool
for building LLM agents tailored to constrained environments.

Proposal of LookPlanGraph for Dynamic Environments: We propose LookPlanGraph, a graph-
based planning framework for dynamic environments. Unlike static scene graphs, this approach
initializes with immobile receptacles and dynamically updates with movable objects using a Visual
Language Model (VLM) and the agent’s egocentric camera. It employs a Memory Graph Mech-
anism to adapt to environmental changes by focusing on relevant, nearby objects, reducing com-
putational demand. A Graph Augmentation Mechanism further allows real-time exploration and
updates, ensuring adaptability to the agent’s surroundings.

8 LIMITATIONS

A fundamental aspect of LookPlanGraph is constructing a graph representation of the scene using
a 3D Scene Graph structure. This graph-based approach organizes spatial relationships and object
states but limits applicability to environments that fit this model. For example, the current represen-
tation mainly supports spatial relations like “inside” and “on top”, which may not capture the full
range of relationships in diverse datasets or real-world scenarios.

LookPlanGraph faces LLM and VLM limitations, including biases, inaccuracies, and incomplete
visual inputs. These affect decision-making, especially in complex tasks. Future improvements like
fine-tuning, better visual models, or alternative sensory inputs could enhance reliability.

LookPlanGraph assumes perfect low-level action policies, which remains a challenge in robotics.
While this simplifies high-level planning, it ignores execution errors, sensor noise, and real-world
dynamics. Addressing these challenges would require robust error recovery mechanisms and adap-
tive control strategies to bridge the gap between high-level plans and real-world execution.

Finally, the Scene Graph Simulator’s feedback quality may decline as task complexity grows, par-
ticularly with diverse actions and predicates. Developing a more advanced feedback system with
improved error detection and corrective dialogue presents a valuable future direction.

9 CONCLUSION

This paper addresses the limitations of static graph representations in dynamic environments by
introducing LookPlanGraph, which integrates LLMs and VLMs to update scene graphs in real-
time. This approach improves efficiency by focusing on the agent’s immediate surroundings while
maintaining scalability for smaller LLMs.

Additionally, we present SayPlan Lite, a streamlined version of SayPlan that enhances task decom-
position for resource-constrained settings, enabling local execution. Our experiments on SayPlan
Office, VirtualHome RobotHow, and BEHAVIOR-1K validate the effectiveness of both methods,
demonstrating improved adaptability and efficiency in dynamic environments. These advancements
bring LLM-based planning closer to real-world deployment.

10 ETHICAL CONSIDERATIONS

Our approach is based on a large language model that operates in generation mode, and despite
the use of a prompt that limits the output format, the model can potentially generate inappropriate
and/or offensive output. In addition, language models are prone to hallucinations and can generally
produce unforeseen results, so giving them control over mechanisms that could potentially cause
harm and testing such mechanisms should be done in a regulated manner, in a specially designated
area with limited access to the people involved in the experiments. It is also potentially possible to
deliberately execute harmful plans on a robot with the intent to cause harm.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choroman-
ski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023.

Jae-Woo Choi, Youngwoo Yoon, Hyobin Ong, Jaehong Kim, and Minsu Jang. Lota-bench: Bench-
marking language-oriented task planners for embodied agents. arXiv preprint arXiv:2402.08178,
2024.

Zhirui Dai, Arash Asgharivaskasi, Thai Duong, Shusen Lin, Maria-Elizabeth Tzes, George Pappas,
and Nikolay Atanasov. Optimal scene graph planning with large language model guidance. In
2024 IEEE International Conference on Robotics and Automation (ICRA), pp. 14062–14069.
IEEE, 2024.

Venkata Naren Devarakonda, Raktim Gautam Goswami, Ali Umut Kaypak, Naman Patel, Rooholla
Khorrambakht, Prashanth Krishnamurthy, and Farshad Khorrami. Orionnav: Online planning for
robot autonomy with context-aware llm and open-vocabulary semantic scene graphs, 2024. URL
https://arxiv.org/abs/2410.06239.

Patrick Doherty and Jonas Kvarnstram. Talplanner: A temporal logic-based planner. AI Magazine,
22(3):95–95, 2001.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multi-
modal language model. arXiv preprint arXiv:2303.03378, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Daniel Ekpo, Mara Levy, Saksham Suri, Chuong Huynh, and Abhinav Shrivastava. Verigraph:
Scene graphs for execution verifiable robot planning. arXiv preprint arXiv:2411.10446, 2024.

Maria Fox and Derek Long. Pddl2. 1: An extension to pddl for expressing temporal planning
domains. Journal of artificial intelligence research, 20:61–124, 2003.

Paul Gay, James Stuart, and Alessio Del Bue. Visual graphs from motion (vgfm): Scene understand-
ing with object geometry reasoning. In Computer Vision–ACCV 2018: 14th Asian Conference on
Computer Vision, Perth, Australia, December 2–6, 2018, Revised Selected Papers, Part III 14, pp.
330–346. Springer, 2019.

Qiao Gu, Alihusein Kuwajerwala, Sacha Morin, Krishna Murthy Jatavallabhula, Bipasha Sen,
Aditya Agarwal, Corban Rivera, William Paul, Kirsty Ellis, Rama Chellappa, Chuang Gan,
Celso Miguel de Melo, Joshua B. Tenenbaum, Antonio Torralba, Florian Shkurti, and Liam
Paull. Conceptgraphs: Open-vocabulary 3d scene graphs for perception and planning, 2023.
URL https://arxiv.org/abs/2309.16650.

Yingdong Hu, Fanqi Lin, Tong Zhang, Li Yi, and Yang Gao. Look before you leap: Unveiling the
power of gpt-4v in robotic vision-language planning. arXiv preprint arXiv:2311.17842, 2023.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International conference on
machine learning, pp. 9118–9147. PMLR, 2022.

10

https://arxiv.org/abs/2410.06239
https://arxiv.org/abs/2309.16650


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

Ue-Hwan Kim, Jin-Man Park, Taek-Jin Song, and Jong-Hwan Kim. 3-d scene graph: A sparse and
semantic representation of physical environments for intelligent agents. IEEE transactions on
cybernetics, 50(12):4921–4933, 2019.

Andrey Kurenkov, Roberto Martı́n-Martı́n, Jeff Ichnowski, Ken Goldberg, and Silvio Savarese. Se-
mantic and geometric modeling with neural message passing in 3d scene graphs for hierarchical
mechanical search. In 2021 IEEE International Conference on Robotics and Automation (ICRA),
pp. 11227–11233. IEEE, 2021.

Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gokmen, Sanjana Srivastava, Roberto Martı́n-
Martı́n, Chen Wang, Gabrael Levine, Wensi Ai, Benjamin Martinez, et al. Behavior-1k: A human-
centered, embodied ai benchmark with 1,000 everyday activities and realistic simulation. arXiv
preprint arXiv:2403.09227, 2024.

Yuan-Hong Liao, Xavier Puig, Marko Boben, Antonio Torralba, and Sanja Fidler. Synthesizing
environment-aware activities via activity sketches. In 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 6284–6292, 2019. doi: 10.1109/CVPR.2019.00645.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter Stone.
Llm+p: Empowering large language models with optimal planning proficiency, 2023. URL
https://arxiv.org/abs/2304.11477.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36, 2024a.

Hengyue Liu, Ning Yan, Masood Mortazavi, and Bir Bhanu. Fully convolutional scene graph gener-
ation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 11546–11556, 2021.

Yuchen Liu, Luigi Palmieri, Sebastian Koch, Ilche Georgievski, and Marco Aiello. Delta: De-
composed efficient long-term robot task planning using large language models, 2024b. URL
https://arxiv.org/abs/2404.03275.

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and Antonio Tor-
ralba. Virtualhome: Simulating household activities via programs. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 8494–8502, 2018.

Krishan Rana, Jesse Haviland, Sourav Garg, Jad Abou-Chakra, Ian D Reid, and Niko Suenderhauf.
Sayplan: Grounding large language models using 3d scene graphs for scalable task planning.
CoRR, 2023.

Antoni Rosinol, Andrew Violette, Marcus Abate, Nathan Hughes, Yun Chang, Jingnan Shi, Arjun
Gupta, and Luca Carlone. Kimera: From slam to spatial perception with 3d dynamic scene graphs.
The International Journal of Robotics Research, 40(12-14):1510–1546, 2021.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using
large language models. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pp. 11523–11530. IEEE, 2023.

Ying Su, Zhan Ling, Haochen Shi, Jiayang Cheng, Yauwai Yim, and Yangqiu Song. Actplan-1k:
Benchmarking the procedural planning ability of visual language models in household activities.
arXiv preprint arXiv:2410.03907, 2024.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma
2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118, 2024.

Zixuan Wang, Bo Yu, Junzhe Zhao, Wenhao Sun, Sai Hou, Shuai Liang, Xing Hu, Yinhe Han, and
Yiming Gan. Karma: Augmenting embodied ai agents with long-and-short term memory systems.
arXiv preprint arXiv:2409.14908, 2024.

11

https://arxiv.org/abs/2304.11477
https://arxiv.org/abs/2404.03275


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

A APPENDIX – PROMPT STRUCTURES

A.1 LOOKPLANGRAPH

A.1.1 STATIC PROMPT

The static prompt remains constant across all tasks and provides foundational information to the
LLM. It includes the agent’s role and objectives, a description of states and relationships that can
appear in the JSON graph representation, a list of functions available to the agent (e.g., ”look on,”
”look inside,” ”pick up”), the expected output format (structured JSON response detailing the next
action), and two examples of how the agent should respond.

After the static prompt, dynamic components follow. These include the instruction, which is a
natural language description of the task, a filtered JSON graph representation, and feedback. The
JSON graph is simplified to include only the nodes and attributes relevant to performing the action,
such as those in the same room as the agent or objects the agent interacted with earlier in the task.
This filtering ensures the prompt remains concise while providing necessary context for long-horizon
tasks.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

Agent Role: You are an expert in graph-based task planning. Given a graph representation of
the environment, your goal is to generate a next move for the agent to follow to solve the given
instruction.

Graph environment states:

• ontop of(<asset>): Object is located on <asset>.
• inside of(<asset>): Object is located inside <asset>.
• closed: Asset can be opened.
• open: Asset can be closed or kept open.
• on: Asset is currently on.
• off: Asset is currently off.

Available Functions:

• go to(<room>): Move the agent to room node. Use it only with room nodes.
• pick up(<object>): Pick up an accessible object from the accessed node. You can

handle only one item.
• put on(<asset>): Put held object on <asset>.
• put inside(<asset>): Put held object inside of <asset>.
• turn on/off(<node>): Toggle object on or off.
• open/close(<node>): Open or close node.
• look on(<asset>): Look on top of <asset>. Adds the discovered objects to the

memory graph.
• look inside(<asset>): Look inside of <asset>. Adds the discovered objects to

the memory graph.
• done(<node>): Call this function with any node when the goal has been achieved.

Answer only with JSON without comments. Output Response Format:

{
"chain_of_thought": Break down your reasoning into intermediate steps.
"next_move": {
"function_name": Name of the function from Available Functions.
"function_target": Node name.

}
}

Examples of output:

{
"chain_of_thought": [

"i have found the coffee mug,
the coffee machine and tom’s wardrobe on the graph",
"collect coffee mug",
"generate plan for making coffee",
"place coffee mug on Tom’s wardrobe"

],
"next_move": {

"function_name": "go_to",
"function_target": "bobs_room"

}

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

}

{
"chain_of_thought": [

"goal is reached",
"i am inside bobs_room",
"now i call function to show thats i am done with task"

],
"next_move": {

"function_name": "done",
"function_target": "bobs_room"

}
}

A.1.2 DYNAMIC PROMPT EXAMPLE

Instruction: Take the socks, bottle of perfume, toothbrush, and notebook out of the carton and place
them on the sofa in the living room.

Memory graph:

{"nodes":{"room":[
{"id":"living_room1"}],
"asset":[{"id":"floor1","located":"living_room1","states":[]},
{"id":"sofa1","located":"living_room1","states":[]}],"object":[
{"id":"carton1","relation":"ontop_of","related_to":"sofa1","states":["closed"]},
{"id":"sock1","relation":"ontop_of","related_to":"sofa1","states":[]},
{"id":"sock2","relation":"ontop_of",
"related_to":"sofa1","states":[]},
{"id":"bottle__of__perfume1","relation":"ontop_of",
"related_to":"sofa1","states":["closed"]},
{"id":"toothbrush1","relation":"ontop_of","related_to":"sofa1","states":[]},
{"id":"notebook1","relation":"ontop_of","related_to":"sofa1","states":[]}],
"agent":[{"id":"agent1","location":"living_room1","holding":""}]}}

A.2 SAYPLAN LITE

SayPlan Lite splits the prompt into two stages corresponding to SayPlan’s workflow, hiding irrel-
evant information at each stage and separating the LLM’s API interactions into two parts. This
approach minimizes potential hallucinations.

A.2.1 SEMANTIC SEARCH

Agent Role:
You are an efficient graph search agent tasked with exploring
a graph-based environment to find specific items based on a given instruction.
You interact with the environment via an API to expand or contract room nodes.
Objective:
Your goal is to identify the relevant
parts of the graph to fulfill the instruction.
You must expand appropriate room nodes, filter out irrelevant ones,
and verify the graph using the environment’s API.

Environment API:
expand_node(<room>): Reveal assets/objects connected to a room node.
contract_node(<room>): Hide assets/objects, reducing
graph size for memory constraints.
verify_plan(): Verify graph in the scene graph environment.

Guidelines:

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

1. Do not expand asset or object nodes, only room nodes.
2. Contract irrelevant nodes to reduce memory usage.
3. Once all relevant objects are found, use verify_plan() to confirm that graph
is rellevant to the task.

Output Response Format: Your response should follow this structure:
{
"chain_of_thought": break your problem down into a series of intermediate
reasoning steps to help you determine your next command,
"reasoning": justify why the next action is important
"command":

{
"command_name": Environment API call
"node_name": node to perform an operation on
}

}

Example of output:
{

"chain_of_thought": [
"i have found a wardrobe in tom’s room",
"leave this node expanded",
"the coffee mug is not in his room",
"still have not found the coffee machine",
"kitchen might have coffee machine and coffee mug",
"explore this node next"

],
"reasoning": "i will expand the kitchen next",
"command": {

"command_name": "expand_node",
"node_name": "kitchen1"

}
}

A.2.2 ITERATIVE RE-PLANNING

Agent Role: You are an expert in graph-based task planning.
Given a graph representation of the environment,
your goal is to generate a precise, step-by-step task plan
for the agent to follow and solve the given instruction.

Graph environment states:
ontop_of(<asset>): Object is located on <asset>
inside_of(<asset>): Object is located inside <asset>
attached_to(<asset>): Object is attached to <asset>
closed: Asset can be opened
open: Asset can be closed or kept open
on: Asset is currently on
off: Asset is currently off

Available Functions (use these exclusively for planning):
go_to(<room>): Move the agent to room node. Use it only with room nodes.
pick_up(<object>): Pick up an accessible object from the accessed node.
You can handle only one item.
put_on(<asset>): Put holded object on asset.
put_inside(<asset>): Put holded object inside of asset.
put_under(<asset>): Put holded object under of asset.
attach(<asset>): Attach holded object to asset.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

turn_on/off(<object>): Toggle object at agent’s node,
if accessible and has affordance.
open/close(<node>): Open/close node at agent’s node, affecting object.

Answer only with JSON without comments. Output Response Format:
{"chain_of_thought": Break down your reasoning into intermediate steps.
"plan": List the environment function calls to solve the task.}

Example of output:
{

"chain-of-thought": [
"i have found the coffee mug,
the coffee machine and tom’s wardrobe on the graph",
"collect coffee mug",
"generate plan for making coffee",
"place coffee mug on Tom’s wardrobe"

],
"plan": [

"go_to(bobs_room1)",
"pick_up(coffee_mug1)",
"go_to(kitchen1)",
"put_inside(coffee_machine1)",
"turn_on(coffee_machine1)",
"turn_off(coffee_machine1)",
"pick_up(coffee_mug1)",
"go_to(toms_room1)",
"put_on(wardrobe2)"

]
}

B APPENDIX – VLM PROMPT STRUCTURE

B.1 PROMPT

Describe the image.

Return the results in a predefined JSON format as follows:
[

{
"name": "object_name",
"relation": "relation_type",
"related_to": "related_object_name",
"states": "object_state",
"properties": "object_properties"

}
]

Guideline:

1. Include only objects that can be moved.
2. Possible states are: open, closed, turned_on, turned_off.
3. Possible relations are: ontop_of, inside_of.

Guidelane:
1. Include only objects that can be moved.
2. Possible states are: open, closed, turned_on, turned_off.
3. Possible relations are: ontop_of, inside_of.

Example Output:

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

[
{

"name": ["bowl",1],
"relation": "ontop_of",
"related_to": ["bench", 1],
"states": "",
"properties": "black"

},
{

"name": ["apple",1],
"relation": "inside_of",
"related_to": ["bowl", 1],
"states": "",
"properties": "red"

},
{

"name": ["apple",2],
"relation": "inside_of",
"related_to": ["bowl",1],
"states": "",
"properties": "green"

},
{

"name": ["bottle",1],
"relation": null,
"related_to": null,
"states": "closed",
"properties": "green"

}
]

Do not add objects from list:
<list of assets in the same room and already founded objects>

C APPENDIX – DATASET PREPARATION

The graphs is implemented using the NetworkX library, tool for creating and manipulating graph
data structures.

Each node in the graph has specific attributes based on its type. These attributes provide detailed
information that can be used in the planning and task execution process:

• Scene Node: Contains the name of the scene.

• Place Node: Contains the scene it belongs to, identifying its broader location in the envi-
ronment.

• Asset Node: Includes the location of the asset, its current state, allowed actions, and any
other properties relevant to its use in the environment.

• Object Node: Describes the relationship type with other nodes, the asset it belongs to, its
states, allowed actions, and properties.

• Agent Node: Tracks the location of the agent and the item currently held by the agent.

Filtered actions from VirtualHome:

Open door, Lock door, Look out window, Movie, Clean, Write school paper, Dust, Play games, Get
dressed, Playing video game, Shave, Print out papers, Watch fly, Walk through, Admire art, Gaze
out window, Look at painting, Check appearance in mirror, Shut front door, Look at mirror, Write
an email, Browse internet, Watch TV, Take shower, Work, Drink, Wash teeth, Wash dishes by hand,

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

Pet cat, Brush teeth, Keep an eye on stove as something is cooking, Open front door, Close door,
Pick up phone.

Limited actions for VirtualHome:

”FIND”, ”WALK”, ”GRAB”, ”SWITCHON”, ”TURNTO”, ”PUTBACK”, ”LOOKAT”, ”OPEN”,
”CLOSE”, ”PUTOBJBACK”, ”SWITCHOFF”, ”PUTIN”, ”RUN”,

SayPlan Office tasks: SayPlan Office tasks instructions listed in Table 5.

Table 5: SayPlanOffice Tasks
Tasks description
Close Jason’s cabinet.
Refrigerate the orange left on the kitchen bench.
Take care of the dirty plate in the lunchroom.
Place the printed document on Will’s desk.
Peter is working hard at his desk. Get him a healthy snack.
Hide one of Peter’s valuable belongings.
Wipe the dusty admin shelf.
There is coffee dripping on the floor. Stop it.
Place Will’s drone on his desk.
Move the monitor from Jason’s office to Filipe’s.
My parcel just got delivered! Locate it and place it in the appropriate lab.
Check if the coffee machine is working.
Heat up the chicken kebab.
Something is smelling in the kitchen. Dispose of it.
Heat up the noodles in the fridge, and place it somewhere where I can enjoy it.
Throw the rotting fruit in Dimity’s office in the correct bin.
Safely file away the freshly printed document in Will’s office, then place the under-
graduate thesis on his desk.
Make Niko a coffee and place the mug on his desk.
Tobi spilt soda on his desk. Throw away the can and take him something to clean
with.
I want to make a sandwich. Place all the ingredients on the lunch table.
Empty the dishwasher. Place all items in their correct locations.
A delegation of project partners is arriving soon. We want to serve them snacks and
non-alcoholic drinks. Prepare everything in the largest meeting room. Use items
found in the supplies room only.
Serve bottled water to the attendees who are seated in meeting room 1. Each attendee
can only receive a single bottle of water.
Locate all 6 complimentary t-shirts given to the PhD students and place them on the
shelf in admin.
I’m at the lunch table. Let’s play a prank on Niko. Dimity might have something.

D APPENDIX – METRICS EQUATIONS

SR =
Number of successful tasks

Number of tasks
, (1)

APA =
Number of right changed nodes

Number of changed nodes
, (2)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

APL =

∑
Plan length

Number of tasks
, (3)

NRR =
Observed nodes
Important nodes

. (4)

19


	Introduction
	Related works
	Embodied Planning
	VLM integration

	Problem formulation
	Method
	Memory Graph
	Action generation
	Graph augmentation

	Dataset preparation
	Experiments
	Baselines
	Experimental setup
	Metrics

	Results
	Planning capability across datasets
	Impact of LLM on planning performance
	Graph augmentation capability

	Limitations
	Conclusion
	Ethical Considerations
	Appendix – Prompt structures
	LookPlanGraph
	Static prompt
	Dynamic prompt example

	SayPlan Lite
	Semantic search
	Iterative re-planning


	Appendix – VLM prompt structure
	Prompt

	Appendix – Dataset preparation
	Appendix – Metrics equations

