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Abstract

Graph Neural Networks (GNNs) have empow-
ered the advance in graph-structured data analy-
sis. Recently, the rise of Large Language Models
(LLMs) like GPT-4 has heralded a new era in deep
learning. However, their application to graph data
poses distinct challenges due to the inherent diffi-
culty of translating graph structures to language.
To this end, we introduce the Large Language
and Graph Assistant (LLaGA), an innovative
model that effectively integrates LLM capabili-
ties to handle the complexities of graph-structured
data. LLaGA retains the general-purpose nature
of LLMs while adapting graph data into a format
compatible with LLM input. LLaGA achieves
this by reorganizing graph nodes to structure-
aware sequences and then mapping these into
the token embedding space through a versatile
projector. LLaGA excels in versatility, general-
izability and interpretability, allowing it to per-
form consistently well across different datasets
and tasks, extend its ability to unseen datasets
or tasks, and provide explanations for graphs.
Our extensive experiments across popular graph
benchmarks show that LLaGA delivers outstand-
ing performance across four datasets and three
tasks using one single model, surpassing state-of-
the-art graph models in both supervised and zero-
shot scenarios. Our code is available at https:
//github.com/VITA-Group/LLaGA

1. Introduction
Graphs are omnipresent, representing a myriad of real-world
data from social networks, biological networks and recom-
mendation systems, etc. Graph neural networks (GNNs)
(Kipf & Welling, 2017; Defferrard et al., 2016; Veličković
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et al., 2017), embedded with message passing and aggrega-
tion techniques, are powerful algorithmic tools on handling
complex graph structures.

Recently, the advent of large language models (LLMs) that
have massive context-aware knowledge and semantic com-
prehension capabilities (e.g., LLaMa (Touvron et al., 2023),
GPTs (Achiam et al., 2023), Claude (Perez et al., 2022))
marks a significant advancement in AI research. A key ad-
vantage of LLMs is their ability to solve various tasks with
a single model, showcasing strong language skills and the
capacity to explain provided answers. These models have
demonstrated remarkable proficiency not only in language-
related tasks but also in understanding and generating visual
content (Liu et al., 2023b; Wang et al., 2023). However,
the direct application of such models presents challenges
over graph-structured data, which inherently contains rich
relational and structural information.

Researchers (Fatemi et al., 2023; Chen et al., 2023a) ex-
plored ways to translate graph structures into natural lan-
guage suitable for consumption by language models. Yet,
describing graphs in plain texts tends to be verbose and fails
to directly represent the intrinsic characteristics of graphs,
often leading to repetitive and unintuitive descriptions of
nodes and edge relationships. Consequently, LLMs would
perform poorly on basic graph tasks without specific adap-
tations (Chen et al., 2023a). InstructGLM (Ye et al., 2023)
describes graphs in language and attempts to enhance LLMs’
graph-task performance by task-specific fine-tuning. How-
ever, this specialization constrains the model’s versatility,
potentially limiting its effectiveness in other graph tasks or
non-graph-related domains. GraphGPT (Tang et al., 2023)
combines text descriptions with a self-supervised graph
transformer to incorporate graph data into LLMs. However,
the pre-trained graph transformer might not distill all rele-
vant structural information for specific downstream tasks,
leading to less satisfactory performances. Motivated by
these issues, this work poses an important question: How
to develop a framework that effectively encodes structural
information for graphs across various tasks and domains,
enabling its comprehension by LLMs, while maintaining
LLMs’ general-purpose ?

In response, we introduce the Large Language and Graph
Assistant (LLaGA), a novel framework that seamlessly in-
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tegrates rich graph-structured data with the massive context-
awareness skills and comprehension capabilities of Large
Language Models. LLaGA has three impressive characteris-
tics that distinguish LLaGA with prior works as follows:

• Versatility: LLaGA adopts a simple but universally appli-
cable method for encoding structural details in graphs, and
achieves a general alignment between graph and token
spaces using a single, versatile projector. This projector
efficiently handles various graph tasks across multiple
datasets, eliminating the need for task-specific adjust-
ments. Significantly, the performance of our versatile
LLaGA framework can even exceed that of specialized
task-focused graph models.

• Generalizability: Given the comprehensive alignment
between graph and token spaces, LLaGA not only excels
in those datasets and tasks encountered during training
but also demonstrates robust generalization to previously
unseen datasets and tasks without additional tuning.

• Interpretability: A key feature of LLaGA is its abil-
ity to provide detailed interpretations of node embed-
dings, greatly enhancing the understanding of its decision-
making processes.

To achieve this, LLaGA uniquely reorganizes graph data
into node sequences, without converting structural infor-
mation into potentially ambiguous natural language de-
scriptions. These sequences are formatted with the help
of novel node-level templates, to reflect the structural in-
formation surrounding each central node while preserving
the graph’s node features. Note that this transformation
is parameter-free, ensuring the preservation of the original
structural integrity without necessitating further distillation.
Subsequently, LLaGA translates node representations into
LLMs’ comprehensible token embedding space through a
versatile projector, which can help in mitigating the ex-
pensive computational cost of fine-tuning LLMs as well as
keeping LLMs’ general purpose. The projector is generally
trained on multiple graph datasets across various tasks, such
as node classification, link prediction, and node description.
This ensures it can interpret graph data from diverse per-
spectives and ingest an inherent ability to handle multiple
tasks (all at once), bolstering its practical utility, and po-
tentially augmenting LLaGA’s generalization capabilities
across various unseen datasets and tasks.

Notably, unlike traditional multi-task learning methodolo-
gies used in GNNs, LLaGA trained all tasks in a uni-
form Question-Answer format, eschewing the need for task-
specific loss functions or heads. Our extensive experiments
illustrate that LLaGA achieves a robust alignment between
the graphs and token space of LLMs, facilitating the model’s
application to multiple tasks, unseen test set, and interest-
ingly out-of-distribution datasets.

2. Methodology
In this section, we introduce the details of LLaGA frame-
work. We start with the notation setup, followed by a de-
tailed explanation of the method employed for translating
graphs into token embedding space. Subsequently, we delve
into the training process, encompassing both the design of
prompts and tasks as well as the training objectives.

2.1. Notation

A graph is a structure that encapsulates a set of entities and
the interrelationships among them. Formally, a graph is
denoted as G = (V, E ,X ). Here, V denotes the set of nodes
(entities). The set of edges, E , represents the connections
between the nodes in V . X is the attribute information cor-
responding to the nodes. Each node vi ∈ V is associated
with an attribute feature xi ∈ X . In this paper, our pri-
mary focus is on text-attributed graphs, implying that the
attributes xi ∈ X of each node are expressed in a textual
format. Additionally, we introduce N k

v to denote the kth

hop neighborhood set surrounding the node v.

2.2. Structure-Aware Graph Translation

The key step of LLaGA is to translate graph inputs into a
token embedding space that is comprehensible to LLMs.
This translation enables the utilization of LLMs’ inherent
reasoning capabilities for graph-related tasks, without neces-
sitating any LLM parameter modifications. LLaGA accom-
plishes this by initially reorganizing nodes in graphs into
node embedding sequences. These sequences are structured
according to our proposed templates and are then converted
into a sequence of token embeddings using a projector.

The first step involves converting graphs into node embed-
ding sequences. Recognizing that the fundamental unit for
graph analysis is the node, we developed two node-level
templates for analysis on graphs. These templates are versa-
tile, applicable not only to node-level tasks but also to other
tasks like link prediction. Both templates are designed to
encode structural information surrounding a node, offering
different perspectives for analysis. The first, the Neighbor-
hood Detail Template, provides an in-depth view of the
central node and its immediate surroundings. The second,
the Hop-Field Overview Template, offers a summarized
view of a node’s neighborhood, extendable to larger fields.

Neighborhood Detail Template is designed to elaborate
on the detailed information of a node and its surrounding
neighborhood. Given a node v, we first construct a fixed-
shape, sampled computational tree centered around v. For
every hop of neighbors, we define a neighbor sample size,
denoted as n1, n2, ..., where ni indicates the sample size for
the ith hop. The computational tree is built with the root
node being the central node v. From the 1-hop neighbor set

2



LLaGA: Large Language and Graph Assistant

A

B C

DE
G

HI F

A

B

A G

C

A

D

A E F

Node Sequence:
A B C D A G [pad] A [pad] [pad] A E F

Neighborhood Detail Template

Node Sequence:
[Hop 0] [Hop 1] [Hop 2] [Hop 3]

A A

B C

D
A

B C

DE
G

F

A

B C

DE
G

HI F

Hop 0 Hop 1 Hop 2 Hop 3

Hop-Field Overview Template

Freezed LLM

Please Describe the graph:     <graph>

Projector

Given a node-centered graph: <node sequence>, 
we need to classify the center node into 40 
classes: cs.NA(Numerical Analysis), 
cs.MM(Multimedia), …, please tell me which 
class the center node belongs to?

Node Classification 

cs.NA(Numerical Analysis)

Given two node-centered subgraphs: <node 
sequence> and < node sequence>... Please tell me 
whether two center nodes in the subgraphs should 
connect to each other. Answer yes or no.

Link Prediction

No

Please describe the center node : <node sequence>.

Node Description

The center node represents a paper in 
cs.AI(Artificial Intelligence), it’s about 
simultaneous merging multiple grid maps using 
the robust motion averaging.

Prompt Design (Base Model: Vicuna-v1.5)
SYSTEM MESSAGE: A chat between a curious user and an 
artificial intelligence assistant. The assistant gives helpful, detailed, 
and polite answers to the user's questions.
USER:  Given you a node: <node sequence>…Please tell me…
ASSISTANT:   <Answer>

Training Prompt: [SYSTEM MESSAGE] USER:[USER] 
ASSISTANT: [ASSISTANT]  </STOP>
Inference Prompt: [SYSTEM MESSAGE] USER:[USER] 
ASSISTANT: 

or

Step 1:  Graph Structure -> Node Sequence Step 2:   Node Sequence -> Token Embedding Sequence Training Task

message passing

Tuned

Figure 1. Illustration of LLaGA framework and its prompt design paradigm.

of v, denoted as N 1
v , we randomly select n1 nodes to form

a new neighbor set Ñ 1
v . If the size of N 1

v is smaller than
n1, i.e., |N 1

v | < n1, we supplement the set with placeholder
nodes to reach a size of n1. Therefore, the size of Ñ 1

v is con-
sistently n1, i.e., |Ñ 1

v | = n1 . The nodes in Ñ 1
v are treated

as children of the root node. Subsequently, for each node
in Ñ 1

v , we recursively sample n2 neighbors as its children.
Any sets with insufficient nodes are filled with placeholder
nodes. For any placeholder node, its children are exclusively
placeholder nodes. As illustrated in upper-left of Figure 1,
with the root node being A, we display a 2-hop neighbor
structure of A, with the sample size of 3 for both hops. The
first-order neighbors of A are {B,C,D}, so they are shown
in the second layer of the computational graph. Since B has
2 neighbors {A,G}, we expand this set to {A,G, [pad]},
where [pad] represents the placeholder node. And similarly
for nodes C and D. Ultimately, this process yields a perfect
3-ary computational tree centered around node A. We then
perform a level-order traversal on the computational tree,
transforming the comprehensive details of the central node
and its neighborhood into a fixed-length node sequence. For
instance, in Figure 1, the sequence representing node A and
its neighborhood is A B C D A G [pad] A [pad] [pad] A
E F , where each sequence position uniquely corresponds
to a relative structural position within the original graph.

Post conversion of the center node and its structural infor-
mation into a node sequence, we shift to mapping them into
the node embedding space. In the context of text-attributed
graphs, we can utilize various off-the-shelf text encoding
models ϕ, such as SBERT (Reimers & Gurevych, 2019),
RoBERTa (Liu et al., 2019), and SimTeG (Duan et al., 2023),
to encode text features. Placeholder nodes are represented
by a zero vectors of the same size. We further integrate a
Laplacian Embedding (Dwivedi & Bresson, 2020) at each
sequence position, enhancing the representation of struc-

tural information. Denoting the adjacency matrix of the
computational tree by Atree, the Laplacian Embedding is
defined as the eigenvectors of the Laplacian matrix of Atree:

L = I −D− 1
2AtreeD− 1

2 = UTΛU (1)

where D represents the degree matrix of Atree and U sym-
bolizes the Laplacian Embedding of the template. Notably,
with a fixed sample size, the computational tree’s shape
remains unchanged, so the Laplacian Embedding is com-
puted only once for all graphs using this template. This
Embedding is then appended to the encoded node feature
to form the final node embedding. The process is outlined
as follows: Let v1, v2, ..., vn represent the encoded node
sequence. The final node embedding hvi for vi is given by

hvi =

{
0 || Ui, if vi = [pad];

ϕ(xvi) || Ui, otherwise,
(2)

where || denotes concatenation. Subsequently, the central
node and its structural information are transformed into the
node embedding sequence hv1 , hv2 , ..., hvn .

Hop-Field Overview Template provides a summarized
view of the central node and its neighborhood. This template
employs hop embeddings to characterize the node features
across various neighborhood hops. These hop embeddings
are obtained through parameter-free message passing on
encoded text features. For each central node v, the ith-hop
embedding hi

v is calculated as follows:

hi
v =

1

|N 1
v |

∑
v′∈N 1

v

hi−1
v′ , (3)

where h0
x = ϕ(xv). Through this calculation, hi

v potentially
contains information from all neighbors in the ith-hop neigh-
borhood set N i

v . A sequence of hop embeddings h0
v , h1

v , h2
v ,

3



LLaGA: Large Language and Graph Assistant

. . . can represent the central node and its structural infor-
mation. Unlike the Neighborhood Detail Template, which
utilizes individual embeddings for each neighbor, the Hop-
Field Overview Template summarizes each hop’s neighbors
with a single embedding. This approach may sacrifice some
detail for the sake of a broader respective field. The choice
between these templates should be based on the nature of
the input data and the required level of detail.

To enhance the natural comprehension of graph inputs by
Large Language Models (LLMs), it is essential to align the
node embedding space with the input token space. This
alignment is realized by mapping each node embedding
into the token embedding space, utilizing a specifically cali-
brated projector, denoted as fθ. Mathematically, this process
can be represented for a given node embedding hi as:

ei = fθ(hi). (4)

Consequently, a sequence of node embeddings, h1, h2, ...,
hn, is transformed into a corresponding sequence of token
embeddings, e1, e2, ..., en. In our framework, this trans-
formation is facilitated by a simple MLP serving as the
projector. It is important to note that the parameters θ of the
projector are the only parameters subject to tuning during
the training process of LLaGA.

2.3. Alignment Tuning

In LLaGA, we employ three key tasks on graphs – node
classification, link prediction, and node description – to
meticulously tune the projector. The first two tasks, node
classification and link prediction, are well-established and
widely recognized in the field of graph ML. Contrastingly,
the node description task, which is somewhat less common
in conventional graph analysis, is designed to align node em-
beddings with specific descriptive texts. This innovative task
enables the provision of rich semantic interpretations of the
graphs, providing a deeper insight of the logic behind graph-
based predictions.The questions and answers to this task can
be articulated as follows: Questions: Please describe the
center node: <node sequence>. Answers: The center node
represents a [paper / products /...], it’s about [node descrip-
tion]. For textual-attributed graphs, the node description
can be obtained from node features. By integrating these
three diverse tasks into the training process, our projector
develops a comprehensive and nuanced understanding of
graphs and can serve as a versatile translator between node
embedding and token embedding space for all those tasks.
Moreover, it can explicitly generate explanations for node
embeddings, enhancing interpretability.

During training, we organize our questions and answers in
a chat format. In our experiments, Vicuna (Chiang et al.,
2023) serves as the primary foundational Large Language
Model (LLM), so we follow the implementation strategy of

Vicuna and set the system message accordingly. For details
regarding the question-answer template and the training or
inference input sequences, please refer to the illustrations
in Figure 1. In the input processing phase, we tokenize all
words in the prompt and convert them into their respective
token embeddings. For the <node sequence>, we substitute
this part with the projected node embeddings e1, e2, ..., en,
maintaining their original positions. The training objective
is to maximize the probability of generating the correct
answer, formulated as

maximize
θ

p(Xanswer|Xgraph, Xquestion, Xsystem). (5)

3. Experimental Results
We conduct comprehensive experiments to validate the ef-
fectiveness of our framework across various settings, aiming
to address several key research questions:

• RQ1: How does LLaGA perform in comparison to base-
line models in standard graph tasks, such as node classifi-
cation and link prediction?

• RQ2: How good are the interpretations generated by
LLaGA for node embeddings?

• RQ3: How effectively does the model transfer knowledge
when adapting to new datasets or tasks in zero-shot?

• RQ4: What is the contribution of our encoding templates
to the overall performance?

3.1. Setup

Datasets. We train and evaluate our model on four widely-
recognized graph datasets: ogbn-Arxiv (Hu et al., 2020),
ogbn-Products (Hu et al., 2020), Pubmed, and Cora (Yang
et al., 2016). These datasets span domains of citation net-
works and e-commerce, varying in terms of sparsity and
size, ranging from small to large scales. Detailed statistics
and data splitting methods are presented in Appendix A.

Tasks. Our model utilizes LLaGA for 3 tasks: node clas-
sification, link prediction, and graph-based node descrip-
tion. The targets of node classification are to categorize
nodes based on research topics or product characteristics. In
the link prediction task, we predict the existence of edges
between node pairs. The node description task involves
generating node descriptions based on encoded node em-
beddings. The training ground truth is derived from classi-
fication labels and text features, structured as: The center
node represents a paper/product in the [label] domain, it’s
about [text feature].

Evaluation Metrics. For evaluation metrics, we employ
Accuracy for both node classification and link prediction
tasks, Sbert score and Description Label Accuracy for the
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node description task. The Sbert score measures the sim-
ilarity between embeddings of the generated descriptions
and the ground truth descriptions encoded by Sbert. De-
scription Label Accuracy represents the Accuracy of labels
inferred from node descriptions. For LLaGA framework,
a sample is considered accurate only if it precisely identi-
fies the category’s full name in its response. Besides, we
also employ AUC and Hits@k metrics for evaluating link
prediction tasks, with details provided in AppendixB.

Implementation Details. In our model’s implementation,
we primarily employ Vicuna-7B-v1.5-16K (Chiang et al.,
2023) as the foundational base models, and SimTeg (Duan
et al., 2023) as default text-encoding model. Additionally,
we conduct a comparative analysis of various base LLMs
and embeddings in Appendix D and E. The learning rate is
consistently set to 2e-5, and the batch size is maintained at
16 for all models. We train our model for one epoch. How-
ever, to compensate for the limited data size, we replicate the
training samples from the smallest dataset, Cora, three times.
For the Neighborhood Detail Template, we sample two-hop
neighbors around each node, setting the sample size to 10
for each hop. In the Hop-Field Overview Template, 4 hop
embeddings are employed to encapsulate the structural in-
formation surrounding the central node. We denote LLaGA
implementations with the Neighborhood Detail Template
and Hop-Field Overview Template as LLaGA-ND-7B and
LLaGA-HO-7B, respectively.

Baselines. In our comparative analysis, we benchmark
our framework against three categories of state-of-the-art
models to ensure a thorough evaluation. The first category
comprises Graph Neural Networks, including GCN (Kipf
& Welling, 2016), GraphSage (Hamilton et al., 2017),
GAT (Veličković et al., 2018), SGC (Wu et al., 2019), and
SAGN (Sun et al., 2021). The second category encompasses
transformer-based graph models, NodeFormer (Wu et al.,
2022). The final category is represented by GPT-3.5, a
leading general LLM. For the first two categories, identical
text-encoding methods are employed to encode text features,
ensuring a fair comparison. For GPT-3.5, we utilized node
classification results from the survey by Chen et al. (Chen
et al., 2023a) and extended this approach to the link pre-
diction task by employing a consistent graph-description
prompt format. In addition, we also compare with the con-
current work, GraphGPT (Tang et al., 2023).

3.2. Overall Performance Comparison (RQ1)

We compare our LLaGA model with various baselines
across four distinct settings: Single Focus, Task Expert,
Classification Expert, and General Model. The Single Fo-
cus setting involves models trained on a single dataset for
a specific task, thereby concentrating exclusively on that
task. Task Expert refers to models trained across all datasets

but focused on a single task, enabling them to perform as
specialists in that area. In the Classification Expert setting,
models are trained on all datasets for both node classifi-
cation and link prediction tasks. The General Model is
trained for node classification, link prediction, and node
description across all datasets, equipping the model to han-
dle not just classification tasks but also semantic tasks like
node description. The comparative results are presented in
Table 1. Notably, when implementing the GNN-based or
Transformer-based baselines in the Task Expert or Classifi-
cation Expert settings, they were trained using a multi-task
learning approach, which incorporates a shared backbone
with task-specific classification heads for different datasets
or tasks. In contrast, our LLaGA framework employs a
single projector to handle all tasks.

Comparision with Baselines: Our analysis reveals
three key observations: Observation 1: LLaGA framework
demonstrates superior performance compared to baseline
models across all settings, particularly in multi-task learn-
ing scenarios. This highlights LLaGA’s versatility and ro-
bust capability in addressing various graph tasks.

Observation 2: While many baseline models experience sig-
nificant performance degradation in multi-task learning sce-
narios, LLaGA stands out by exhibiting minimal decline or
even improvements in performance. This reflects LLaGA’s
proficiency in extracting common patterns across different
datasets and tasks. Such a trait hints at the potential for
developing a powerful multi-model LLM equipped with
simple projectors.

Observation 3: Both the Neighborhood Detail Template and
the Hop-Field Overview Template exhibit distinct advan-
tages. The Neighborhood Detail Template excels in tasks
requiring detailed neighbor information, whereas the Hop-
Field Overview Template is more effective in tasks that
depend on a broader overview of neighbor information with
a larger receptive field. For instance, in identifying prod-
uct categories, it is illogical to classify a product as ’Video
Games’ based solely on many of its neighbors being ’Elec-
tronics’. A more detailed analysis, revealing numerous
’Nintendo Switch’ neighbors, makes classification more ac-
curate, as seen in the case of the ogbn-Products dataset. Con-
versely, for some citation graphs, an overview of a paper’s
neighboring categories can be more informative, making the
Hop-Field Overview Template the preferable choice.

Comparison with Concurrent Work: We conduct
a comparative analysis with our concurrent work,
GraphGPT (Tang et al., 2023). GraphGPT is a generaliz-
able model designed for solving graph tasks using LLM. It
employs a text-encoding model to extract node features and
utilizes a pre-trained graph transformer for encoding struc-
tural information. In our comparison, we focus on our most
robust and generalizable models, with the results detailed

5



LLaGA: Large Language and Graph Assistant

Table 1. Performance comparison with baseline models on both node classification and link prediction under 4 settings. Single Focus
denotes models trained on a single task and dataset. Task Expert refers to models trained exclusively on one task across all datasets,
specializing in that task.Classification Expert indicates models trained in both node classification and link prediction on all datasets,
becoming proficient in classification tasks. General Model are capable of handling classification tasks across datasets and excel in
semantic tasks, such as generating interpretable descriptions for node embeddings. (bold signifies the best result across all methods,
while underline highlights the best baseline result under this setting)

MODEL TYPE MODEL
NODE CLASSIFICATION ACCURACY(%) LINK PREDICTION ACCURACY(%)

ARXIV PRODUCTS PUBMED CORA ARXIV PRODUCTS PUBMED CORA

SINGLE
FOCUS

GCN 73.72 80.75 92.96 88.93 91.43 93.95 90.91 81.59
GRAPHSAGE 76.29 82.87 94.87 88.89 91.64 94.96 90.64 79.15

GAT 74.06 83.06 92.33 88.97 85.99 93.85 83.96 80.06
SGC 71.77 75.47 87.35 87.97 87.99 88.51 83.60 80.94

SAGN 75.70 82.58 95.17 89.19 90.62 94.85 90.48 79.88
NODEFORMER 74.85 83.72 94.90 88.23 91.84 90.93 77.69 77.26

LLAGA-ND-7B 75.98 84.60 95.03 88.86 91.24 97.36 91.41 83.79
LLAGA-HO-7B 76.66 84.67 95.03 89.22 94.15 95.56 89.18 86.82

TASK
EXPERT

GCN 71.45 80.88 89.25 81.62 88.51 93.54 81.01 78.88
GRAPHSAGE 72.56 82.50 94.15 81.99 87.76 93.49 76.14 80.74

GAT 72.19 82.61 87.97 83.58 82.58 92.03 76.85 79.76
NODEFORMER 72.35 82.99 94.41 83.27 84.11 93.42 80.40 81.03

LLAGA-ND-7B 76.41 84.60 94.78 88.19 91.20 97.38 93.27 89.41
LLAGA-HO-7B 76.40 84.18 95.06 89.85 94.36 95.85 88.88 87.50

CLASSIFICATION
EXPERT

GCN 70.95 80.02 89.00 82.77 89.67 93.02 78.79 79.82
GRAPHSAGE 71.91 81.62 91.81 82.44 89.23 92.22 75.36 82.09

GAT 70.90 81.83 87.72 82.07 85.18 92.11 75.00 80.35
NODEFORMER 63.20 75.55 89.50 69.19 82.33 75.42 78.22 81.47

LLAGA-ND-7B 75.85 83.58 95.06 87.64 90.81 96.56 92.36 87.35
LLAGA-HO-7B 75.99 83.32 94.80 89.30 94.30 96.05 88.64 88.53

GENERAL
MODEL

GPT3.5-TURBO 55.00 75.25 88.00 71.75 63.80 60.30 68.70 65.74
LLAGA-ND-7B 74.29 82.21 92.42 87.82 90.53 96.82 86.31 81.91
LLAGA-HO-7B 75.01 82.07 94.45 87.82 92.04 86.80 89.81 84.41

Table 2. Compare with Concurrent Work.

MODEL
ARXIV PUBMED PUBMED

NC NC LP

GRAPHGPT-MIX-7B 64.76 74.16 58.86
GRAPHGPT-STD-7B 63.90 – 80.26

LLAGA-ND-7B(GENERAL) 74.29 92.42 86.31
LLAGA-HO-7B(GENERAL) 75.01 94.45 89.81

in Table 2, GraphGPT’s results are referenced directly from
its original paper. ’Mix’ and ’Std’ represent two categories
of prompts used in GraphGPT’s training process. LLaGA’s
most general model is trained across 12 tasks, including
node classification, link prediction, and node description
on datasets such as Arxiv, Products, Pubmed, and Cora. In
contrast, GraphGPT’s most general model is trained on just
three tasks: node classification on Arxiv and Pubmed, and
link prediction on Pubmed. But our model still demonstrates
superior performance on these three tasks, highlighting the
efficacy of our LLaGA framework.

3.3. Interpretation Ability Investigation (RQ2)

As previously stated, our LLaGA framework excels in pro-
viding comprehensive interpretations of node embeddings.
We initially assess LLaGA’s performance in the node de-
scription task using several quantitative metrics, with results
presented in Table 4. The Sbert Score indicates the semantic
similarity between the ground truth and LLaGA-generated
text, measured using Sbert. We also include a Base value for
your reference, representing the average similarity across
two randomly chosen samples. Notably, LLaGA’s Sbert
score significantly exceeds this base value, demonstrating its
effectiveness in generating meaningful and relevant descrip-
tions for node embeddings. Furthermore, the high accuracy
in extracting labels from these descriptions corroborates the
precision of the generated content.

To further illustrate this, Table 3 showcases sample descrip-
tions. These examples indicate the high quality of text pro-
duced by LLaGA. Even in some instances where LLaGA’s
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Table 3. Examples Demonstrating the Interpretability of the LLaGA Framework.

Title: Real time hand gesture detection and classification using convolutional neural networks.
Abstract: Real-time recognition of dynamic hand gestures from video streams is a challenging task since (i) there is no indication when
a gesture starts and ends in the video, (ii) performed gestures should only be recognized once, and (iii) the entire architecture should be
designed considering the memory and power budget. In this work, ...
Label: cs.CV(Computer Vision and Pattern Recognition)
USER: Please describe the center node: <node embedding sequence>.
LLaGA: This node represents a paper in cs.CV(Computer Vision and Pattern Recognition) domain, it’s about learning to detect and
recognize hand gestures using convolutional neural networks.

Title: An efficient graph convolutional network technique for the travelling salesman problem.
Abstract: This paper introduces a new learning-based approach for approximately solving the Travelling Salesman Problem on 2D
Euclidean graphs. We use deep Graph Convolutional Networks to build efficient TSP graph representations and output tours in a
non-autoregressive manner via highly parallelized beam search. Our approach ...
Label: cs.LG(Machine Learning)
USER: Please describe the center node: <node embedding sequence>.
LLaGA: This node represents a paper in cs.LG(Machine Learning) domain, it’s about deep graph convolutional networks for solving
the traveling salesman problem.

Title: Inverse boosting pruning trees for depression detection on twitter
Abstract: Depression is one of the most common mental health disorders, and a large number of depression people commit suicide each
year... We argue that it is feasible to identify depression at an early stage by mining online social behaviours. Our approach, ...
Label: cs.LG(Machine Learning)
USER: Please describe the center node: <node embedding sequence>.
LLaGA: This node represents a paper in cs.SI(Social and Information Networks) domain, it’s about predicting suicide risk using
social media data. (Label is different from ground truth, but also reasonable)

Table 4. Quantitative evaluation of the node description task using
Sbert Score and Description Label Accuracy. The term Base value
refers to the mean Sbert similarity calculated between the ground
truth descriptions of two randomly selected samples.

DATASET MODEL
BASE

VALUE
SBERT
SCORE

ACC

ARXIV
LLAGA-ND-7B 0.2231 0.6023 74.64
LLAGA-HO-7B 0.6228 75.49

PRODUCTS
LLAGA-ND-7B 0.1513 0.4952 83.18
LLAGA-HO-7B 0.5193 84.60

PUBMED
LLAGA-ND-7B 0.4869 0.6847 92.27
LLAGA-HO-7B 0.6934 94.27

CORA
LLAGA-ND-7B 0.3221 0.6465 86.72
LLAGA-HO-7B 0.6545 86.90

label predictions diverge from the ground truth, its results
are found to be reasonable and LLaGA effectively utilizes its
generated text to substantiate these plausible interpretations.

3.4. Zero-Shot Ability Investigation (RQ3)

In this section, we illustrate the generalization capabilities
of LLaGA, concentrating on the task of link prediction and
node classification within a zero-shot setting. Zero-shot
learning entails training a model on certain datasets and sub-
sequently evaluating it on unseen datasets or tasks. This ap-
proach is instrumental in assessing a model’s proficiency in
transferring knowledge. In our study, we examine LLaGA’s
zero-shot performance in both in-domain and out-of-domain
transfer scenarios. For in-domain transfer, the model is

Table 5. Zero-Shot on Link Prediction

TRAIN → TEST MODEL ACCURACY

ARXIV+PUBMED
↓

CORA

GCN 58.97
GRAPHSAGE 67.68

GRAPHGPT-7B 50.74
LLAGA-ND-7B 86.47
LLAGA-HO-7B 87.35

ARXIV+PUBMED+CORA
↓

PRODUCTS

GCN 56.73
GRAPHSAGE 58.92

GRAPHGPT-7B 50.74
LLAGA-ND-7B 92.65
LLAGA-HO-7B 92.99

trained on the Arxiv and Pubmed datasets and evaluated
on the Cora dataset. All three datasets comprise citation
graphs. Conversely, for out-of-domain transfer, training is
conducted on the Arxiv, Pubmed, and Cora datasets, with
the evaluation on the Products dataset. Here, while the
training datasets are citation graphs, the test set consists of
e-commerce graphs. For the link prediction task, we train
and test the model both on link prediction tasks. The node
classification task, however, presents unique challenges in
applying zero-shot learning due to distinct label sets and
varied knowledge requirements across tasks. A universal
aspect potentially transferable across all node classification
tasks is the alignment between the graph structure and the
semantic token space. To this end, we trained models on
node description tasks from training datasets to establish a
generalized alignment between the graph structure and the
token space, and then tested this alignment on node classifi-
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Table 6. Zero-Shot on Node Classification

TRAIN → TEST PROMPT TYPE MODEL ACCURACY(%)

ARXIV+PUBMED → CORA

(TEST TASK: 7 CATEGORIES)

ONLY NODE EMBEDDING
GRAPHGPT-7B 8.30

LLAGA-7B 34.69

NODE EMBEDDING+TEXT ATTRIBUTES
GRAPHGPT-7B 44.65

LLAGA-7B 59.59

ARXIV+PUBMED+CORA → PRODUCTS

(TEST TASK: 47 CATEGORIES)

ONLY NODE EMBEDDING
GRAPHGPT-7B 1.40

LLAGA-7B 13.89

NODE EMBEDDING+TEXT ATTRIBUTES
GRAPHGPT-7B 18.84

LLAGA-7B 43.79

cation tasks using testing datasets. Since traditional GNNs
rely on task-specific classification heads and new classifica-
tion tasks may have different label sets, they are unsuitable
for zero-shot learning on node classification tasks. Our
node classification comparison was limited by the use of
llm-based baselines, specifically GraphGPT. We conducted
the tests using two different prompts to evaluate node classi-
fication capabilities. In the first prompt, the model is only
supplied with node embedding sequences, containing both
attribute and structural information of the central node. The
second prompt enhances this by also incorporating the tex-
tual attributes of the central node to assist the model.

We present the link prediction results in Table 5 and node
classification results in Table 6. The results indicate that
our model exhibits robust zero-shot capabilities across all
scenarios. This superiority is attributed to LLaGA’s compre-
hensive alignment between the graph space and the token
space, enabling the model to effectively discern and leverage
similar patterns across datasets, adeptly transferring knowl-
edge not only to analogous data but also to datasets that
significantly differ in domain. Moreover, the evaluation of
the node classification task shows that including the central
node’s textual attributes appears to offer some advantages
in zero-shot scenarios. However, prompts based solely on
node sequence embeddings show potential for application
to graphs whose node attributes are challenging to describe
textually, such as non-textual graphs.

3.5. Templates Ablation Study (RQ4)

We conduct an ablation study to examine the individual
contributions of our encoding templates. For this purpose,
we train a new model under a classification expert setting,
omitting parts of our template design.

We use ’None’ to denote the model that does not utilize
templates and relies solely on the embedding of the center
node for prediction, instead of a node embedding sequence
that captures structural information surrounding the center
node. ’ND w/o Order’ refers to using the ND template but
shuffling the order of all neighbors, thereby disregarding

Table 7. Templates Ablation Study.

TASK TEMPLATE ARXIV PRODUCTS PUBMED CORA

NC

NONE 73.92 80.45 94.60 84.50
ND W/O ORDER 74.35 82.87 94.93 86.16

ND W/O LAP 75.53 82.77 94.70 86.35
ND 75.85 83.58 95.06 87.64
HO 75.99 83.32 94.80 89.30

LP

NONE 89.98 91.73 78.19 83.97
ND W/O ORDER 90.16 96.31 81.32 80.00

ND W/O LAP 90.59 96.26 84.48 85.88
ND 90.81 96.56 92.36 87.35
HO 94.30 96.05 88.64 88.53

the structural information encoded into the sequence order.
’ND w/o Lap’ indicates that we do not use the Laplacian em-
bedding. The results are presented in Table 7. It is clear that
both the Neighborhood Detail Template and the Hop-Field
Overview Template significantly enhance performance com-
pared to the model without a template, particularly in the
link prediction task, which heavily depends on structural
information. Additionally, the sequence order and Laplacian
embedding play crucial roles in providing structural infor-
mation. These findings highlight the effectiveness of our
templates in capturing the structural information of nodes.

4. Related Work
4.1. Graph Neural Networks

GNNs have long been at the forefront of graph machine
learning. They are designed to transform input nodes into
compact vector representations, suitable for subsequent clas-
sification tasks when paired with a classification head. A
common strategy among many GNNs (Kipf & Welling,
2016; Veličković et al., 2018; Xu et al., 2018; Gao et al.,
2018; Chiang et al., 2019; You et al., 2020; Chen et al.,
2018; Thekumparampil et al., 2018), involves a layer-wise
message-passing mechanism. This approach enables nodes
to progressively aggregate and process information from
their immediate neighbors, thereby embedding the nodes
into lower-dimensional spaces. Concurrently, a growing
body of research (Yun et al., 2019; Ying et al., 2021; Wu
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et al., 2022; Chen et al., 2022; Dwivedi et al., 2023), has
been exploring the integration of transformer-based en-
coders for graph data analysis, opening new avenues for
enhancing GNN capabilities. Some studies (Zhao et al.)
also propose using learning techniques beyond message
passing. However, a significant limitation of traditional
graph models is their poor task generalization capability.
GNNs are usually trained on a single classification task.
When applied to a variety of datasets or downstream tasks,
these models often fail to perform consistently well across
all tasks with one single model (Ju et al., 2023).

4.2. Self-Supervised Learning for GNNs

Recent advancements have employed self-supervised learn-
ing strategies on GNNs to bolster their generalization perfor-
mance. These methods encompass developing specialized
pretext tasks for graph structures, such as mutual infor-
mation maximization (Veličković et al., 2019; Hassani &
Khasahmadi, 2020), whitening decorrelation (Zhang et al.,
2021), and generative reconstruction (Hou et al., 2022).
Moreover, investigations into integrating multi-task learn-
ing with self-supervised learning paradigms have been con-
ducted, offering novel insights into enhancing model gener-
alization ability (Ju et al., 2023). However, these methods
still require task-specific classification heads and tuning for
every downstream task, after obtaining a general embedding
from the graph encoder.

4.3. Large Language Models for Graphs

Recent studies have explored integrating Large Language
Models (LLMs) with GNNs, leveraging LLMs’ extensive
knowledge for graph data enhancement. Research has fo-
cused on augmenting GNNs with LLMs to enrich graph
textual attributes or provide high-quality node representa-
tions (Ye et al., 2023; Chen et al., 2023b; Tang et al., 2023;
Guo et al., 2023; He et al., 2023; Huang et al., 2023; Jin et al.,
2023). Most recently, OFA (Liu et al., 2023a) introduces a
graph prompting paradigm that incorporates task-specific
information directly into the input graph, enabling varied
task handling. However, these methods still rely heavily on
GNNs for predictions.

A complementary line of efforts aim to use LLMs as the
backbone for performing graph tasks, allowing for direct
interactions and reasoning over graphs with language, po-
sitioning LLMs as potential foundational models for graph
analysis (Mao et al., 2024; Liu et al., 2023c). Efforts to
linguistically represent graphs for direct LLM processing
have encountered challenges in effectively translating struc-
tures into natural language, often yielding suboptimal re-
sults (Huang et al., 2023; Guo et al., 2023). Graphllm (Chai
et al., 2023) focuses on customizing a task-specific, graph-
enhanced prefix for the keys (K) and values (V) in each layer,

with the goal of improving LLMs’ ability to reason about
graphs. GraphGPT (Tang et al., 2023) sought to find a pre-
trained graph transformer for encoding graph structures for
LLMs, though finding a universally applicable graph model
proved difficult. Our contribution differs from prior arts by
introducing a novel encoding method that translates graph
data into sequences directly compatible with LLMs, avoid-
ing the need for intermediary models. This method shows
superior versatility and generalizability across a range of
tasks, even in zero-shot scenarios, outperforming traditional
graph models.

5. Conclusion
This paper introduces LLaGA, an innovative framework that
effectively integrates LLMs into the graph domain while
preserving their proficiency in other tasks. Instead of us-
ing complex language for describing structure information,
LLaGA employs templates to transform graph structure
into sequences, and then maps node embeddings to token
embedding spaces using a tuned projector. This projector
establishes a comprehensive alignment between texts and
graphs, enabling the use of LLMs for fundamental graph
tasks like node classification and link prediction across var-
ious datasets. And it can be further generalized to unseen
datasets or tasks without any adaption. Additionally, it
facilitates the generation of textual explanations for node
embeddings. Through extensive evaluations in different set-
tings, our method has demonstrated its effectiveness in both
supervised and zero-shot graph learning scenarios.

Impact Statement
The broader impact of LLaGA extends to numerous fields
where graph data is pivotal, including but not limited to,
bioinformatics, social network analysis, and knowledge
graphs. As we push the boundaries of Machine Learning
and AI, we recognize the importance of monitoring for un-
intended consequences, such as the perpetuation of biases
or misuse of predictive insights. To this end, we encourage
continued ethical evaluation and the development of guide-
lines to ensure that the applications of LLaGA contribute
constructively to society. This work aspires to be a stepping
stone towards more sophisticated, equitable, and transparent
AI systems that respect the intricate structure of data across
various domains.
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A. Dataset Statistics

Table 8. Dataset Statistics

Dataset Domain #Node #Edge Sparsity(‱)

Cora citation 2708 5429 14.8065
Pubmed citation 19717 44338 2.2810
Arxiv citation 169343 1166243 0.8134

Products e-commerce 2449029 61859140 0.2063

In citation graphs (ogbn-Arxiv, Pubmed, Cora), each node represents a paper, where the title and abstract serve as node
features, and edges denote co-citations. For ogbn-Products, nodes represent Amazon products, featuring item descriptions
as node features, with edges indicating co-purchases.

Data Split. For node-level tasks, we adhere to the standard train/validation/test splits (Hu et al., 2020) for each dataset:
6:2:3 for Arxiv, 8:2:90 for Products, and 6:2:2 for both Pubmed and Cora. For link prediction, we randomly select node
pairs from the node-level training set for training and from the node-level test set for testing, ensuring the edge-level training
sets are equal in size to the node-level training sets.

B. More Metrics for Link Prediction Task

Table 9. AUC and Hits@k metrics on Link Prediction Task. Evaluated in classification expert and general model settings.

MODEL TYPE MODEL
ARIXV PRODUCTS PUBMED CORA

AUC HITS@100 AUC HITS@100 AUC HITS@50 AUC HITS@50

CLASSIFICATION
EXPERT

GCN 97.19 16.74 98.23 30.58 88.54 37.08 89.20 73.89
GRAPHSAGE 95.84 14.69 97.61 25.56 81.48 11.12 90.41 73.69

GAT 94.53 7.77 97.55 23.65 83.07 14.20 88.40 67.64
NODEFORMER 97.09 19.96 98.91 45.66 87.57 22.01 88.96 70.76

LLAGA-ND-7B 97.36 29.63 99.54 79.09 97.16 64.72 95.53 93.36
LLAGA-HO-7B 98.53 45.56 94.80 78.22 96.06 60.63 94.87 92.69

GENERAL
MODEL

LLAGA-ND-7B 97.43 36.85 99.39 79.93 86.75 63.44 94.69 89.37
LLAGA-HO-7B 97.80 38.05 98.95 43.52 96.07 51.48 91.06 82.72

We also employ the AUC and Hits@K metrics to evaluate the link prediction task. Since these metrics require ranking all
positive and negative links, we use the next token prediction logits for ’yes’ and ’no’ following the query, ”Please tell me
whether two center nodes should connect to each other,” as the scores for positive and negative links, respectively. Then,
we apply SoftMax to these scores and rank all links using the ’positive’ score post-SoftMax. AUC provides an unbiased
assessment of a predictive model’s ability to rank potential links, while Hits@K measures whether the true or relevant items
appear in the top ’K’ positions of the model’s predictions.

C. Extending to Non-TAGs
In this paper, we followed the settings of some recent works (Tang et al., 2023; Chen et al., 2023a) and conducted experiments
on four text-attributed graph datasets. However, it is important to note that unlike these methods, which predominantly
leverage textual node attributes as LLM input, the design of LLaGA is inherently independent of text attributes, allowing for a
wider range of applications. To evaluate LLaGA in a non-TAG setting, we tested it on the Cora and Facebook (Rozemberczki
et al., 2019), omitting all textual attributes. Specifically, in this setting, LLaGA’s input was simplified to solely one-hot
encoding of nodes, thereby eliminating reliance on any textual attributes. The results, shown in Table 10, demonstrate that
LLaGA still exhibits great capacity wwith non-TAGs.
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Table 10. Evaluation on non-TAGs

MODEL CORA FACEBOOK

GCN 84.46 93.89
GRAPHSAGE 84.58 93.98
LLAGA-ND 85.42 94.13
LLAGA-HO 85.98 94.77

D. Flexibility with Text Encoding Methods

Table 11. LLaGA Trained with SBert and Roberta Embedding.

EMBEDDING MODEL
NODE CLASSIFICATION ACCURACY LINK PREDICTION ACCURACY

ARXIV PRODUCTS PUBMED CORA ARXIV PRODUCTS PUBMED CORA

SBERT

GCN 66.00 77.41 82.04 79.70 91.38 94.91 84.31 83.15
GRAPHSAGE 66.79 76.00 82.74 80.66 88.18 94.23 78.38 83.62

LLAGA 74.46 80.70 90.04 88.56 93.68 96.84 91.39 87.79

ROBERTA

GCN 66.51 77.74 80.04 79.30 91.01 94.66 80.94 81.03
GRAPHSAGE 68.14 76.73 81.27 82.29 88.80 94.11 74.31 82.88

LLAGA 74.19 81.13 89.78 88.19 93.52 96.79 89.96 85.15

LLaGA demonstrates flexibility in its text encoding methods for node attributes. In our initial experiments, we employed
SimTeG (Duan et al., 2023) as the primary encoding model. This section also explores the use of SBERT (Reimers &
Gurevych, 2019) and RoBERTa (Liu et al., 2019) as alternative encoding methods. The outcomes of these trials are shown
in Table 11. All models, including baselines, underwent training in a classification expert setting. For LLaGA, we utilized
the Hop-Field Overview Template for structure encoding. Notably, LLaGA consistently surpassed other leading GNNs in
performance, regardless of the chosen encoding model.

E. Integration with Various LLMs

Table 12. Integration with Various LLMs

BASE MODEL
NODE CLASSIFICATION ACCURACY LINK PREDICTION ACCURACY

ARXIV PRODUCTS PUBMED CORA ARXIV PRODUCTS PUBMED CORA

VICUNA-7B 75.99 83.32 94.80 89.30 94.30 96.05 88.64 88.53
LLAMA2-7B 76.26 84.21 94.83 86.53 94.15 96.03 89.39 85.44

OPT-2.7B 75.66 83.01 95.01 88.38 93.36 92.83 86.92 89.41

LLaGA also demonstrates flexibility with various Base Large Language Models (LLMs). In our primary experiments,
Vicuna-7B served as the foundational model. This section details the substitution of LLaGA’s base LLM with alternative
models, including LLaMA2-7B and OPT-2.7B. The outcomes of these replacements are presented in Table 12. For structural
encoding, we employ the Hop-Field Overview Template. And models are trained in classification setting. It is evident
that LLaGA consistently yields favorable results irrespective of the base LLM, showcasing its effectiveness even with
comparatively lighter models such as OPT-2.7B.
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F. Compared with Baseline Targets for TAGs
Here we also broaden our comparison by including Patton (Jin et al., 2023) that concentrates on text-rich graphs. We test
both methods on node classification task and the results are as follows:

Table 13. Compared with Baseline Targets for TAGs

MODEL ARXIV PRODUCTS PUBMED CORA

PATTON 71.62 80.43 90.82 86.53
LLAGA-ND 75.98 84.60 95.03 88.86
LLAGA-HO 76.66 84.67 95.03 89.22

G. Experiment Variance

Table 14. Variance Information on Cora and Pubmed Dataset

SETTING DATASET MODEL NC(%) LP(%)

SINGLE FOCUS

CORA
LLAGA-ND-7B 88.86±0.78 83.79±1.26
LLAGA-HO-7B 89.22±0.46 86.82±0.88

PUBMED
LLAGA-ND-7B 95.03±0.12 91.41±0.21
LLAGA-HO-7B 95.03±0.07 89.18±0.34

We perform training and inference five times on relatively small datasets, with the variance information detailed in Table 14.
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