
Deep Learning: When Conventional Wisdom Fails to
be Wise

Anonymous Author(s)
Affiliation
Address
email

Abstract

A major tenet of conventional wisdom dictates that models should not be over-1

parameterized: the number of free parameters should not exceed the number of2

training data points. This tenet originates from centuries of shallow learning, pri-3

marily in the form of linear or logistic regression. It is routinely applied to all kinds4

of data analyses and modeling and even to infer properties of the brain. However,5

through a variety of precise mathematical examples, we show that this conventional6

wisdom is completely wrong as soon as one moves from shallow to deep learning.7

In particular, we construct sequences of both linear and non-linear deep learning8

models whose number of parameters can grow to arbitrarily large values, and which9

remain well defined and trainable using a fixed, finite size, training set. In deep10

models, the parameter space is partitioned into large equivalence classes. Learning11

can be viewed as a communication process where information is communicated12

from the data to the synaptic weights. The information in the training data only can,13

and needs to, specify an equivalence class of the parameters. It cannot, and does14

not need to, specify individual parameter values. As such, the number of training15

examples can be smaller than the number of free parameters.16

1 Introduction17

A long held form of conventional wisdom is that in order to train a model with n parameters one18

should have at least n training examples, and preferably more. The origin of this statistical “dogma”19

stems from linear regression and other forms of shallow learning1. The soundness of this dogma20

appears to be obvious from our experiences with linear regression: in general n examples are21

necessary and sufficient in order to solve a system of n linear equations in n unknown variables. As a22

result, the dogma is routinely repeated and used in myriads applications of statistics to modeling data23

across all areas of human inquiry, often well beyond shallow learning, and to inspire a fear, if not a24

disgust, for the so-called over-parameterized models. The dogma is also routinely used in a variety25

of “back-of-the-enveloppe”calculations, for instance to infer properties or processing strategies for26

the human brain. Here we show, through a variety of examples, that this central dogma is valid only27

for shallow learning and that it is completely wrong when it comes to deep learning. Hence, in deep28

learning it may not be unwise to get rid of the conventional wisdom entirely.29

1.1 The Origin of the Dogma30

For the past three centuries, since the discovery of least square linear regression by Gauss and31

Legendre in the late 1700s (e.g. [9]), one of the most central dogma of statistics has been that a model32

1The mathematically correct distinction between shallow and deep learning is whether there are hidden
units/layers or not

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

should not have more parameters than data points. There is little doubt that the origin of this dogma33

lies in linear regression, or equivalently in linear systems of equations where in general if there are n34

unknown variables one needs n linear equations (or training examples) to uniquely solve the system.35

However, this is not a characteristic of linear systems alone. The same holds true immediately for36

logistic regression. Since the logistic function is monotone increasing, it has a unique inverse and37

by inverting the targets one can reduce logistic regression to a linear system. While this is true for38

single linear or logistic neurons, the same result holds for a shallow layer of linear or logistic neurons,39

since in this case each neuron operates and learns independently of all the other neurons. Similar40

observations can be made for single-variable polynomial regression. Thus, in short, the origin of the41

conventional wisdom can easily be traced back to shallow learning and basic results in linear algebra.42

Not only the soundness of the dogma seems obvious from basic linear algebra considerations, but43

its violation in shallow learning leads to two kinds of problems: (1) an over-parameterized shallow44

model is not well defined, in the sense that its parameters are not uniquely determined by the data;45

and, as a result, (2) such a model can overfit the data by achieving low error on the training data,46

while performing poorly on held out data. Finally, the widespread aversion for over-parameterized47

models stems also from our sense of elegance and simpliciy, as embodied in the principle of Occam’s48

razor.49

1.2 Applications of the Dogma50

While the dogma makes sense for shallow learning situations, it is often applied to deep learning51

situations. For instance, many articles have been published in the literature recommending that deep52

learning models ought to have training sets that are 10 times [1] or 50 times [2] bigger than the53

number of free parameters. Obviously these arbitrary, constant, and widely discording prescriptive54

multiplicative factors should be viewed with a grain of suspicion.55

Another standard application of the dogma is to infer properties of complex, non-shallow systems,56

like the brain. For instance, Geoff Hinton and others like to point out that the human brain has on57

the order of say 1015 synapses, while human lives last on the order of 3× 109 seconds. Assuming58

one training example per second, or even 1000 training examples per second, the brain does not have59

enough training examples to train its army of synapses. From this false premise, one may draw all60

kinds of conclusion from “the brain must be doing something special” to “the majority of synapses61

must be hardwired”. However, as we shall see, all these conclusions are worthless: they may be false62

or true, since they are derived from a false premise. The false premise is obtained by applying a63

statistical principle, correctly observed in shallow learning situations, to deep learning situations.64

2 Preliminary Evidence against the Dogma65

Preliminary evidence that something may be wrong with the dogma comes from at least three66

directions: Bayesian statistical theory, statistical ensembles, and deep learning practice.67

From a purely Bayesian perspective, selecting the complexity of a model based on the amount of68

training data makes no sense at all, as there is in general no relationship between the two. Using a69

prior that favors simple models may be convenient, or satisfy tradition, however there is no intrinsic70

epistemological reason for selecting such a prior. If anything, a situation with few data points may be71

the sign that data are hard or expensive to acquire. In turn, this is possibly the sign of an underlying72

complex phenomena, which may call for a complex model rather than a simple one. Using a prior73

that favors models with few parameters is analogous to the paradigm of searching for one’s car keys74

at night under the only lamp present in a dark parking lot: there is no epistemoligical reason for the75

keys to be under the lamp. But what about Occaam’s razor? As noted in [10, 11], such a prior is76

not needed to implement Occam’s razor which naturally emerges from the Bayesian framework. To77

see this in a simple way, imagine having an overall class of models comprising two sub-classes of78

models: simple models (S) and complex models (C). Imagine that a priori one has no preference79

between the two classes S and C, and likewise that within each class one has no preference among80

the models in that class. Let s and c denote the value of the constant prior probability shared by all81

the models in class S and in class C respectively. Thus the overall prior distribution must satisfy82

s|S|+ c|C| = 1

2

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

Figure 1: A A(4, 5, 1) architecture.

where |S| and |C| represent the volumes of the corresponding classes. Because the complex models83

have more parameters, in general |S| << |C|. As a result, we must have: s >> c. In short, simple84

models will automatically have a much higher prior probability, and this effect will tend to be reflected85

also in the posterior probabilities.86

A second line of evidence against the soundness of the dogma comes from the widespread use,87

and recognized effectiveness, of statistical ensembles, where many different models are combined88

together, for instance through a simple weighted averaging operation. This combination alone89

generally results in a deep overall model, even if the individual models are shallow. And even if90

the number of parameters of each individual model satisfies the dogma, obviously as the number of91

models in the ensembles is increased, there is a point where the overall model starts to violate the92

dogma. Perhaps surprisingly, the over-parameterization aspect of ensembles does not seem to have93

systematically worried statisticians.94

Finally, and perhaps most importantly, it has been observed several times that in deep learning practice95

that over-parameterized models can work well, with no significant sign of overfitting. However, this96

phenomena has been used either to criticize deep learning, or is regarded as some kind of oddity or a97

mystery (e.g. [12, 13, 8]), possibly requiring novel strategies for combating the over-fitting curse.98

Here we set out to prove why the conventional wisdom is simply wrong when it comes to deep99

learning. In particular we give several examples of large networks with many parameters that can be100

trained with far fewer examples in both the linear and non-linear cases. We consider primarily the101

supervised learning framework, but through the use of autoencoder architectures we show that the102

same basic ideas can be applied to the unsupervised, or semi-supervised, learning frameworks. At103

the linear end of the spectrum of models, we look at deep, fully-connected ,linear networks. At the104

other extreme non-linear end of the spectrum, we look at deep, fully-connected, unrestricted Boolean105

networks. And in the middle of the spectrum, we look at deep fully-connected networks of linear106

threshold gates.107

Notation: We use the notation A(n0, n1, . . . , nL) to denote a deep feedforward architectures with108

ni units in layer i, where the input layer is layer 0 and the output layer is layer L (Figure 1).109

3 The Linear Regime110

Deep feed-forward linear networks have been studied for quite some time (e.g. [4, 7, 5, 6]) in the111

context of least square linear regression. One of the main theoretical results is that, in the fully-112

connected case, the error functions of these networks does not have any spurious local minima. All113

the critical points where the gradient of the error function is zero are either global minima or saddle114

points. As a result, properly applied stochastic gradient descent will tend to converge to a global115

minimum. The structure of the global minima and the saddle points can be understood in terms of116

Principal Component Analysis (CS). Clearly, as the depth of these models is increased the number117

3

Figure 2: An A(1, . . . , 1) architecture with L single-layer neurons. There is a single synaptic weight wi

connecting neuron i− 1 to neuroni. In the linear case, with no biases, the input-output function is given by
y = Px where P is the product of all the synaptic weights. While the number of parameters L can be arbitrarily
large, a single training example is sufficient to constrain the value of the multiplier. Gradient descent rapidly
converges onto an optimal solution where the product of the synaptic weight has the optimal value: P = α/β
where α = E(xt) and β = E(x2) (see text).

of parameters can grow to infinity. But what are the requirements on the size of the corresponding118

training sets?119

3.1 The Simplest Deep Linear Model120

To begin with, we consider an architecture A(1, 1, . . . , 1), with a single linear neuron in each layer121

(Figure 2). For simplicity we assume that there are no biases, but the same analysis can easily be122

extended to the case with biases. The weights are w1, . . . , wL and the neural network behaves as a123

multiplier, in the sense that given an input x the output is simply:124

y = Px with P =
∏
i

wi

This is a deep linear regression architecture with L parameters. The supervised training data consists125

of input-target pairs of the form (x, t) that provide information about what the overall multiplier P126

should be. Taking expectations over the training data, let E(tx) = α and E(x2) = β. The error127

E is the standard least square error. It is easy to check that the error is convex in P and that at the128

optimum one must have α− βP = 0 or P = α/β. It can be shown (see [3]) that, except for trivial129

cases, given any initial starting point, gradient descent, or even random backpropagation (feedback130

alignment), will converge to a global minimum satisfying P = α/β.131

While the architecture has an arbitrary large number of parameters L, in principle a single training132

example is sufficient to determine the value of the correct multiplier. The value of the overall product133

P partitions the space of synaptic weights into equivalence classes: all the architectures which134

produce the same value P are equivalent. The training data need only to provide enough information135

for selecting one equivalence class, but not the value of the individual weights within the equivalence136

class. Thus there is a manifold of equivalent solutions satisfying the optimal relationship P = α/β137

and the volume of this manifold grows with the number L of parameters. However the training set138

can remain as small as a single training example, a clear violation of the dogma.139

Of course, here and everywhere else in the following examples, one may wonder what could be the140

purpose of having L layers, when a single layer could be sufficient to implement the same overall141

input-output function. There could be multiple purposes. The most obvious one is that the volume142

of the solutions grows with the depth of the architectures and this may facilitate learning. But in143

addition, one must also think about the possible constraints that may be associated with physical144

neural systems, as opposed to the virtualized simulations of neural systems we routinely carry on145

our digital computers using the likes of Keras, PyTorch, and TensorFlow. For example, even in the146

simplest linear case described above, imagine that the overall desired multiplier is P = 210 = 1024147

4

but that the individual synaptic weights connecting one neuron to the next are bounded in the [−2,+2]148

range. Then no architecture with less than 10 layers is capable of implementing the optimal input-149

output function. Deeper architectures are needed to implement the overall optimal function and to150

robustly distribute the load across multiple synapses.151

3.2 Deep Linear Models with No Bottlenecks152

At first sight, one may tempted to think that the example above is due to the fact that there is a153

single neuron per layer. However, this is not the case and exactly the same phenomena is observed154

for a linear regression architectures of the form A(n, n, . . . , n) where all the layers have size n155

and the weights are given by matrices W1, . . . ,WL. Again, in vector-matrix form, the input output156

relationship is given by:157

y = Px with P =WLWL−1 . . .W1

Again it is easy to see that this architecture has Ln2 parameters. The overall input-output function158

corresponds to a singlen × n matrix P . But in order to specify such a linear map, we only need159

to specify the images of the canonical basis of Rn, in other words, n training examples in general160

position are sufficient, again violating the dogma.161

Note that this property remains true if the architectures also contains expansive hidden layers of size162

greater than n, or if the input and output layers have different sizes and all the hidden layers have size163

greater than the input and output layer (i.e. the hidden layers do not affect the rank of the optimal164

overall input-output function).165

3.3 Deep Linear Models with Bottlenecks166

In the previous two examples, all the layers have the same size, or are expansive. However it is easy to167

relax this assumption and consider compressive architectures. To begin with, consider a purely linear168

compressive autoencoder architecture of the form A(n,m, n), with m < n (Figure 3). In this case,169

the bottleneck layer imposes a rank restriction on the overall transformation. It is well known [4] that170

not only the quadratic error function of such an autoencoder has no spurious local minima, but all171

its critical points correspond, up to changes of coordinates in the hidden layer, to projections onto172

subspaces spanned by eigenvectors of the data covariance matrix. The global minima is associated173

with Principal Component Analysis using projections onto a subspace of dimension m. Obviously174

one can include additional linear layers of size greater or equal to m between the input layer and175

the bottleneck layer, or between the bottleneck layer and the output layer, arbitrarily increasing the176

total number of parameters, but without affecting the essence of the optimal solution. The minimal177

training set to specify the optimal solution consists of m vectors of size n to specify the project178

hyperplane, providing another egregious violation of the dogma. Again there are large equivalence179

classes of parameters associated with the same overall performance (e.g. in the linear case with a180

single bottleneck, we have P = AB = ACC−1B; thus the overall map P is defined up to invertible181

transformations applied to the hidden layer). The results in [4, 7] show that the same observations182

can be made for arbitrary fully connected deep linear architectures (i.e. beyond autoencoders) and183

not only in the real-valued case, but also in the complex-valued case [6].184

All the previous examples correspond to linear networks. Thus one may be mislead to think that185

the analyses apply only to linear networks. Next we show that exactly the same phenomena can be186

observed in non-linear deep architectures. Among the non-linear model to be discussed, we will187

examine first the most non-linear model of all which is the unrestricted Boolean model, where each188

neuron implements a Boolean function, with no restrictions on the kinds of Boolean functions. An189

unrestricted Boolean neuron with n inputs implements a function f with 2n parameters, since one190

must specify one binary value for each of the 2n possible entries of the truth table of f . Then we will191

consider also the case of Boolean neurons implemented by linear threshold functions, or perceptrons.192

5

Figure 3: An A(n,m, n) compressive (m < n) autoencoder architecture. In the linear case, the transformations
A and B correspond to matrices and the overall linear transformation P is given by: y = Px = ABx.

4 The Non-Linear Regime: Unrestricted Boolean Model193

4.1 The Simplest Deep Non-Linear Model194

We can use the same architectureA(1, . . . , 1) as in the first example above. In the Boolean unrestricted195

model, each Boolean function from one neuron to the next is either the identity or the negation196

(Boolean NOT function). So there is one binary degree of freedom associated with each layer and197

again the number of degrees of freedom grows linearly with the depth. The overall input-output198

function is either the identity, or the negation, and a single training example is sufficient to establish199

whether the overall function ought to be the identity or the negation of the identity. If the architecture200

contains an even number of negations the overall input-output function is the identity, and if the201

architecture contains and odd number of negations, the overall input-output function is the negation.202

Thus again the dogma is violated.203

To get a slightly more interesting non-linear example, we can use the same architecture A(1, . . . , 1)204

as in the first example above, with L weights w1, . . . , wL. The difference is that all the neurons have205

a non-linear activation function g(x) = x2 (more generally we could use for instance g(x) = xk).206

Thus the overall input-output function is given by:207

y = (wL.....(w2w1x)
2))2......)2 = w2

Lw
4
L−1 . . . w

2L
1 x2

L

or208

y = Px2L with P =
∏

w2L−2i+2
i

Thus in this case the multiplier P realized by the architecture is positive. Again the number of209

parameters is L and it can be arbitrarily large. As in the linear case, a single training example of210

the form (x, t) is sufficient to determine the multiplier P , with a manifold of equivalent solutions211

corresponding to parameters satisfying P =
∏
w2L−2i+2

i = α/β, with this time α = E(tx2) and212

β = E(x4), when α > 0. If α < 0, the optimum is obtained for P = 0 which can be achieved by213

having at least one of the weights of the architectures equal to zero. In short, in both examples treated214

in this subsection, the dogma is again violated.215

6

4.2 Deep Non-Linear Models with No-Bottlenecks (Unrestricted Boolean)216

Consider an architecture A(n0, . . . , nL) where each neuron can implements any Boolean function217

of the neurons in the previous layer. The error function is the Hamming distance between target218

and output vectors. For simplicity, let us first assume that all the layers have the same size n. The219

overall input-output function is a Boolean map from Hn to Hn, where Hn denotes the n-dimensional220

hypercube. This architecture has Ln2n parameters, since each unrestricted Boolean neuron with221

n inputs has 2n free parameters. The overall input-output map can be specified using only n2n222

examples. It can easily be implemented with 0 error through a large class of equivalent networks. As223

the number of layers L goes to infinity the number of parameters goes to infinity, while the number224

of required training examples remains fixed and is determined entirely by the size of the input and225

output layers. This can easily be generalized to a Boolean unrestricted architecture of the form226

A(n0, . . . , nL), as long as there are no bottleneck layers. In such an architecture, the total number of227

parameters is given by:
∑L

i=1 ni2
ni−1 . The number of necessary and sufficient training examples228

needed to specify the overall input-output function is given by: nL2n0 , and thus again the dogma is229

violated. The case with bottle-neck layers is treated below.230

4.3 Deep Non-Linear Models with Bottlenecks (Unrestricted Boolean)231

For simplicity, consider first an unrestricted Boolean compressive autoencoder with architecture232

A(n,m, n) and m < n. The error function is the Hamming distance between the input vector and233

the output vector. The hidden layer can have 2m states. Thus if the number of training examples is234

at most 2m, it can be realized by the architecture with 0 Hamming distortion, since every input can235

be mapped to a unique hidden representation and the corresponding representation can be mapped236

back to the same input using unrestricted Boolean gates. Obviously if additional layers of size at237

least m are added between the input layer and the hidden layer, or between the hidden layer and the238

output layer, the number of parameters can be arbitrarily increased, while maintaining the same fixed239

training set and the ability to implement it exactly with no Hamming distortion. Thus in this regime240

the dogma is again violated.241

In the more interesting regime where the number of training examples exceeds 2m, then there must242

be clusters of training examples that are mapped to the same hidden representation. It is easy to see243

that for optimality purposes the corresponding representation must be mapped to the binary vector244

closest to the center of gravity of the cluster, essentially the majority vector, in order to minimize245

the Hamming distortion. Thus, in short, in this regime the optimal solution corresponds to a form of246

optimal clustering with respect to the Hamming distance with, in general, 2m clusters. As a back of247

the enveloppe calculation, assuming the clusters are spherical, these can be described by providing248

two points corresponding to a diameter. Thus in principle a training set of size 2× 2m = 2m+1 could249

suffice. The number of parameters of the architecture is given by: m2n + n2m which far exceeds250

the number of training examples. And even without the assumption of spherical clusters, it is clear251

that the number of parameters far exceeds the number of training examples, and that the gap can be252

made as large as possible, just by adding additional layers of size at least m between the input and253

the hidden layer, or the hidden layer and the output layer. Thus again the dogma is grossly violated.254

Finally, we turn to deep non-linear architecture where the neurons are linear or polynomial threshold255

gates. Linear threshold neurons, or perceptrons, are very similar to sigmoidal (e.g. logistic) neurons.256

5 The Non-Linear Regime: Linear or Polynomial Threshold Gates257

Here each neuron in the architecture is a linear or polynomial threshold function of degree d. In258

the linear threshold case (d = 1), any neuron with n inputs x = (x1, . . . , xn) produces an output259

equal to sign(
∑

i wixi)) in the -/+ case; or H((
∑

i wixi)) in the 0/1 case, where H denotes the260

Heaviside function. Such a neuron has n synaptic parameters. In the polynomial case of degree d,261

the output of a neuron has the form sign(p(x)) in the -/+ case; or H(p(x)) in the 0/1 case, where262

p(x) = p(x1, . . . , xn) is a polynomial of degree d. The number of parameters of a polynomial263

threshold neuron increases accordingly. As usual a bias can also be added or, equivalently, one of the264

input variables is considered to be constant and equal to 1.265

7

5.1 The Simplest Deep Non-Linear Model with Linear or Polynomial Threshold Gates266

We can use the same architecture A(1, . . . , 1) as in the first example above. Linear or polynomial267

threshold neurons can realize the identity and the negation, depending on whether the corresponding268

incoming weight is positive or negative. So the result here is similar to the Boolean unrestricted269

case. For instance for linear threshold gates, without the bias, the number of parameters is equal to L.270

The number of negative weights determines how many negations are present in the chain. A single271

input-ouput example determines whether the overall chain should be the identity or the negation.272

Thus again the dogma is violated.273

5.2 Deep Non-Linear Models with Bottlenecks (Linear or Polynomial Threshold Gates)274

We can again start with a compressive autoencoder architecture with shape A(n,m, n) and m < n275

and linear threshold neurons with the Hamming error function. In the most interesting case where the276

number of examples exceeds 2m, then the optimal solution corresponds to the optimal approximation277

to the optimal Hamming clustering that can be achieved using linear threshold gates. The number of278

parameters of this architecture is 2nm which is not necessarily less than the number 2m+1 of required279

training examples, under the spherical cluster assumption. However, as in the similar previous280

examples, the number of parameters can be increased arbitrarily by adding additional layers of size281

at least m between the input and the hidden layer, or between the hidden layer and the output layer.282

Thus once again there are large equivalence classes in parameter space (e.g. applying permutations to283

the neurons in a given layer) and the dogma is grossly violated.284

6 Discussion285

The conventional dogma that models ought to have less parameters than the number of training286

examples is a mere product of shallow learning. It arises, and should be applied, only in shallow287

learning situations. As soon as one moves to deep learning situations, the dogma becomes non-sense288

and all the expectations it creates are simply wrong, even in the linear case. It is simply time to289

think about deep models in a different way, without the expectation that over-parameterization must290

necessarily lead to over-fitting. This is not to say, of course, that over-parameterized deep learning291

models cannot overfit, but expecting them to do so just because they are over-parmaterized is unwise292

and unnecessary.293

Over-parameterized models tend to partition the parameter space into large equivalence classes.294

All the parameter settings within one class are equivalent in terms of overall performance. Neural295

learning can be viewed as a communication process where information is communicated from the296

training data to the synaptic weights. The training data needs to contain enough information to select297

one of the equivalence classes, but not any particular setting of the weights within that class. Thus298

the information needed to specify one equivalence class is much less than the information required299

to specify a particular setting of the weights. And this explains why the number of data points can300

be much less than the number of parameters. Furthermore, the structure of the deep models and the301

partitioning into equivalence classes is such that it is not even possible for the training data to be able302

to specify each individual weight of the architecture. This is because the system cannot distinguish303

between two different settings of the parameters within the same equivalence class. For instance,304

once the optimal class is achieved with a particular setting of the weights, the gradient of the error305

is zero and there is no way of exploring or distinguishing other optimal architectures in the same306

equivalence class.307

Shallow learning, in particular linear regression, already contains many of the central themes of308

machine learning: from the use of a parameterized family of models, to model fitting by error309

minimization, to prediction and so forth. However, when transitioning to deep learning, linear310

regression is misleading in three major aspects. First, it has an analytic closed-form solution. Second,311

it is interpretable (or visualizable, at least in low dimensions). Third, it requires that the number of312

training examples be equal or even exceed the number of parameters in order to completely determine313

the solution. The first two points are now well established and accepted. We use stochastic gradient314

descent for deep learning model fitting and almost no one cares about not having a closed-form315

analytic solution. Likewise, no one expects to be able to easily visualize complex non-linear surfaces316

in high-dimensional spaces, although many are still working on various other issues related to317

8

interpretability. However, we are still struggling with the third point. It is time to move on this front318

too.319

It should be clear from the examples presented that one of the emergent characteristics of over-320

parameterized regimes is the existence of large equivalence classes in parameter space, all associated321

with roughly the same level of overall performance. The training data needs only to provide enough322

information to select one of the equivalence classes (at the relevant quantization level), and not323

to specify the value of each one of the parameters. Reflecting back on the human brain, most324

mature human brains can pass the Turing test and achieve some form of general intelligence using325

architectures that are similar, at least at the macroscopic level, and at the level of the basic hardware326

components (e.g. pyramidal cells), but presumably with significant differences at the level of327

individual synapses.328

Finally, there is the question of when deep architectures overfit the data. The results presented329

here provide a clear answer. Consider an architecture with w parameters. At the proper level of330

quantization of the weights and the error function, the architecture may partition the space of weights331

into e equivalence classes. Thus log2 e bits are needed to specify one of the equivalence classes. If the332

training data provides less than log2 e bits of information, then it does not contain enough information333

to select a relevant equivalence class and overfitting may occur. If the training data provides log2 e334

bits of information to select an equivalence class, then there is no overfitting and providing more data335

is not necessary. In the case of a classification architecture with independent binary inputs of length336

n, k training examples contain on the order of kn bits of information. Thus the important question is337

not whether k ≈ w (conventional wisdom) but whether kn ≈ log2 e.338

References339

[1] Yaser S Abu-Mostafa. Hints. Neural computation, 7(4):639–671, 1995.340

[2] Ahmad Alwosheel, Sander van Cranenburgh, and Caspar G Chorus. Is your dataset big enough?341

sample size requirements when using artificial neural networks for discrete choice analysis.342

Journal of choice modelling, 28:167–182, 2018.343

[3] P. Baldi. Deep Learning in Science. Cambridge University Press, Cambridge, UK, 2021.344

[4] P. Baldi and K. Hornik. Neural networks and principal component analysis: Learning from345

examples without local minima. Neural Networks, 2(1):53–58, 1989.346

[5] P. Baldi and K. Hornik. Learning in linear networks: a survey. IEEE Transactions on Neural347

Networks, 6(4):837–858, 1994. 1995.348

[6] P. Baldi and Z. Lu. Complex-valued autoencoders. Neural Networks, 33:136–147, 2012.349

[7] Pierre Baldi. Linear learning: Landscapes and algorithms. Advances in neural information350

processing systems, 1, 1988.351

[8] Abdulkadir Canatar, Blake Bordelon, and Cengiz Pehlevan. Spectral bias and task-model352

alignment explain generalization in kernel regression and infinitely wide neural networks.353

Nature communications, 12(1):1–12, 2021.354

[9] Adrien Marie Legendre. Nouvelles méthodes pour la détermination des orbites des cometes. F.355

Didot, 1805.356

[10] D. J. C. MacKay. Bayesian interpolation. Neural Computation, 4:415–447, 1992.357

[11] D. J. C. MacKay. A practical Bayesian framework for backprop networks. Neural Computation,358

4:448–472, 1992.359

[12] Terrence J Sejnowski. The unreasonable effectiveness of deep learning in artificial intelligence.360

Proceedings of the National Academy of Sciences, 117(48):30033–30038, 2020.361

[13] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding362

deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–363

115, 2021.364

9

Checklist365

1. For all authors...366

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s367

contributions and scope? [Yes]368

(b) Did you describe the limitations of your work? [Yes]369

(c) Did you discuss any potential negative societal impacts of your work? [N/A]370

(d) Have you read the ethics review guidelines and ensured that your paper conforms to371

them? [Yes]372

2. If you are including theoretical results...373

(a) Did you state the full set of assumptions of all theoretical results? [Yes]374

(b) Did you include complete proofs of all theoretical results? [Yes]375

3. If you ran experiments...376

(a) Did you include the code, data, and instructions needed to reproduce the main experi-377

mental results (either in the supplemental material or as a URL)? [N/A]378

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they379

were chosen)? [N/A]380

(c) Did you report error bars (e.g., with respect to the random seed after running experi-381

ments multiple times)? [N/A]382

(d) Did you include the total amount of compute and the type of resources used (e.g., type383

of GPUs, internal cluster, or cloud provider)? [N/A]384

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...385

(a) If your work uses existing assets, did you cite the creators? [N/A]386

(b) Did you mention the license of the assets? [N/A]387

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]388

389

(d) Did you discuss whether and how consent was obtained from people whose data you’re390

using/curating? [N/A]391

(e) Did you discuss whether the data you are using/curating contains personally identifiable392

information or offensive content? [N/A]393

5. If you used crowdsourcing or conducted research with human subjects...394

(a) Did you include the full text of instructions given to participants and screenshots, if395

applicable? [N/A]396

(b) Did you describe any potential participant risks, with links to Institutional Review397

Board (IRB) approvals, if applicable? [N/A]398

(c) Did you include the estimated hourly wage paid to participants and the total amount399

spent on participant compensation? [N/A]400

10

	Introduction
	The Origin of the Dogma
	Applications of the Dogma

	Preliminary Evidence against the Dogma
	The Linear Regime
	The Simplest Deep Linear Model
	Deep Linear Models with No Bottlenecks
	Deep Linear Models with Bottlenecks

	The Non-Linear Regime: Unrestricted Boolean Model
	The Simplest Deep Non-Linear Model
	Deep Non-Linear Models with No-Bottlenecks (Unrestricted Boolean)
	Deep Non-Linear Models with Bottlenecks (Unrestricted Boolean)

	The Non-Linear Regime: Linear or Polynomial Threshold Gates
	The Simplest Deep Non-Linear Model with Linear or Polynomial Threshold Gates
	Deep Non-Linear Models with Bottlenecks (Linear or Polynomial Threshold Gates)

	Discussion

