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Abstract

Building speech processing models with Large
Language Models (LLMs) has become a new
effective paradigm. A key challenge in this
approach is representing speech features that
align well with LLMs. While continuous
speech features from self-supervised learning
(SSL) models capture rich information, they
pose alignment challenges and lead to high
computational costs. Discrete tokenization us-
ing K-means improves efficiency but suffers
from fixed cluster constraints and limited adapt-
ability to diverse speech signals. In this paper,
we propose SED, a novel Structural Entropy-
based Speech Discretization method that mod-
els speech features as graph nodes and per-
forms adaptive clustering by minimizing 2D
Structural Entropy. SED automatically deter-
mines the optimal number of clusters and cap-
tures robust acoustic correlations to improve
cluster quality. Experimental results demon-
strate that SED achieves lower word error rates
(WER) and higher clustering purity than K-
means, highlighting its effectiveness for dis-
crete token-based ASR.

1 Introduction

With the rapid development of Large Language
Models (LLMs), significant revolution has been
made in various natural language processing (NLP)
(Peng et al., 2023; Pu et al., 2023; Ravaut et al.,
2023; Lu et al., 2023) and computer vision (CV)
(Driess et al., 2023; Liu et al., 2023; Ye et al., 2024)
tasks. Simultaneously, the field of speech process-
ing has seen remarkable developments, especially
with the emergence of Speech Language Models
(SpeechLLMs) such as SpeechGPT (Zhang et al.,
2023), Salmonn (Tang et al., 2024) and Qwen-
Audio (Chu et al., 2023). These models have
demonstrated impressive speech recognition, syn-
thesis, translation and understanding capabilities,
driving a shift toward more integrated, efficient and
multi-modal Al systems.

Building on the foundational architecture and
powerful capabilities of LLMs, adapting them for
speech processing tasks is a natural progression.
This adaption allows us to take advantage of both
the rich contextual understanding of language and
the nuanced features of speech, enabling more ac-
curate and robust multimodal applications. Such
advancements have led researchers to explore im-
proved representations of speech as a sequence
for LLMs. Broadly speaking, methods for repre-
senting speech inputs can be categorized into con-
tinuous features and discrete tokens. Continuous
speech features are commonly extracted using self-
supervised learning (SSL) models such as HuBERT
(Hono et al., 2024), WavLM (Das et al., 2024), and
the encoder of Whisper (Shu et al., 2023). Raw
waveforms are converted into high-dimensional
embeddings and fed into large language models
(LLMs) through adapters. In this paradigm, the
key challenge lies in effectively bridging the repre-
sentation gap between continuous speech features
and the embedding space of LLMs. To address
this issue, (Yu et al., 2024a) and SALMONN (Tang
et al., 2024) proposed using a query transformer
(Q-Former) (Li et al., 2023) to convert whisper-
extracted speech features into fixed-length repre-
sentations suitable for models such as LLaMA
(Touvron et al., 2023) and Vicuna (Chiang et al.,
2023). Furthermore, (Dong et al., 2024) introduces
a word boundary-sensitive compression method
combined with the optimal transport algorithm to
improve the alignment between speech characteris-
tics and LLM text embeddings. Despite the effec-
tiveness of these methods, the high dimensionality
and length of the continuous speech features in-
crease computational costs and memory demands.

Alternatively, recent studies (Yang et al., 2024a;
Wang et al., 2024; Mousavi et al., 2024; Chang
et al., 2024) have explored discrete speech units de-
rived from SSL representations. These approaches
typically employ K-means clustering to convert



continuous speech features into discrete tokens.
Models such as AudioPalm (Rubenstein et al.,
2023) and SpeechGPT (Zhang et al., 2023) lever-
age these discretized speech tokens for SpeechLMs.
Discrete speech tokens not only preserve the se-
mantic content and temporal structure of speech
but also align with the next-token prediction mech-
anisms of large language models (LLMs), thereby
eliminating the need for additional adapters and
facilitating unified speech-text modeling. However,
K-means-based discretization relies heavily on pre-
defined cluster centroids and a fixed number of
clusters, which may limit its adaptability to diverse
speech signals. This could result in suboptimal
clustering performance and unstable outcomes.

In this paper, we address the aforementioned
challenges from an information-theoretic perspec-
tive. Drawing inspiration from graph-based clus-
tering methods widely used in NLP tasks such as
social event and community detection (Ren et al.,
2022; Yang et al., 2024b; Yu et al., 2024b), we ex-
plore the potential application to speech processing
and propose SED, a novel Structural Entropy (SE)-
based Speech Discretization method for discrete
token-based ASR. Specifically, we model speech
features extracted from SSL models as nodes in a
graph, where edges represent similarity between
speech features. Clustering is performed by mini-
mizing 2D SE, which iteratively and incrementally
partitions the graph while preserving structural co-
herence and minimizing information loss. This
process adaptively determines the optimal number
of clusters. It captures robust correlations among
speech units, ensuring that similar acoustic patterns
are grouped more compactly, ultimately enhancing
the performance of discrete token-based ASR. Our
contributions are summarized as follows.

* We propose a new speech discretization
method based on 2D Structural Entropy mini-
mization. Unlike K-means, this approach au-
tomatically determines the number of clusters,
offering a more adaptive and precise align-
ment with acoustic units by effectively captur-
ing correlations among speech features.

* To mitigate the high computational cost of
graph clustering for large-scale speech repre-
sentations, we utilize an incremental structural
entropy-based graph partitioning method, sig-
nificantly improving clustering efficiency.

* By integrating adaptive similarity regulariza-

tion, our SED method further improves clus-
tering robustness and generalization, achiev-
ing superior performance over discrete token-
based ASR baselines.

2 Preliminary

Structural Entropy (SE) (Li and Pan, 2016) is de-
fined as the minimum number of bits required to
encode a vertex that can be reached in a single step
of a random walk on a graph G. Quantifies the
complexity of the intrinsic structure of the graph
and is closely associated with its encoding tree 7.
In the following, we provide the definitions of the
encoding tree and structural entropy as presented
in (Li and Pan, 2016).

Given an undirected and weighted graph G =
(V, E') with n vertices and weights W, where V' is
the vertex set and F is the edge set, we have the
following.

Definition 1) An encoding tree 7 of graph G is
a hierarchical clustering partition of (G, which in-
cludes all nodes of (& as leaf nodes. This encoding
tree represents a graph partition, making it applica-
ble to partition-based clustering. The root node A
of 7 corresponds to the whole sets of the graph, i.e.
Tn = V. Each tree node o C T corresponds to a
partitioning of the graph, i.e. 7, C V. For any tree
node o, its leaf nodes {1, ..., 7, } form a partition
of To.

Definition 2) The height of each node « in T
is denoted as h(«a). By definition, the leaf node -y
has a height of zero, i.e., h(y) = 0. For any other
node «, its height is given by h(a) = h(a™) + 1,
where o~ represents its parent node. The height
of the encoding tree 7 is defined as h(7T) =
maxq,e7{h(a)}.

Definition 3) The structural entropy of a graph
G with encoding tree T is defined as:

H'(G)= ) H'(Ga)
a€T ,a#N
Ly gy, vell) D
_aeT,a;éA vol(\) 2 wol (o)

where g, represents the sum of the degrees of cut
edges in 7,, where cut edges are those in F that
have exactly one endpoint within 7,. The terms
vol (@), vol(a), and vol (™) denote the total sum
of vertex degrees in GG, 7, and its parent node 7,
respectively.

Definition 4) The 2-Dimension (2D) SE is de-
fined using an encoding tree with a height of 2. A
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Figure 1: The framework and workflow of the proposed SED method.

2D encoding tree T corresponds to a graph parti-
tioning P = {p1,pa,...,pr} over V, where each
p; denotes a partition of the graph. The 2D SE is
formally defined as:

HA(G) = - Z Z Uolg(jG) log, vo?(jpi)

piEP v;Ep;
Ip; vol(pi)
— I
Z vol(G) 082 vol(GQ)’
piEP
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where d; represents the degree of vertex v;, while
g; denotes the total weight of edges linking v; to
other vertices. The terms vol(p;) and vol(G) cor-
respond to the volumes, which are defined as the
sum of degrees of the vertex within the partition p;
and throughout the graph G, respectively. Further-
more, gp, quantifies the total weight of the edges
connecting vertices inside p; to those outside it.

3 Methodology

The entire framework of the proposed SED method
is illustrated in Figure 1.

3.1 Problem Formalization

Given a series of waveform data, the
high-dimensional feature matrix H =
{hi,hs,....,hy} € RT*P is extracted us-

ing a speech SSL model (e.g., HuBERT (Hsu

et al., 2021) or WavLM (Chen et al., 2022)), where
T represents the length of the feature sequence,
and D denotes the dimensionality of the speech
features.

By treating each h; as a node, we construct a
speech feature graph G = (V, E, W), where V is
the set of vertices corresponding to speech features
H, E represents the edges connecting the vertices,
and W denotes the edge weights, which measure
the similarities of cosine between the vertices. Min-
imizing the structural entropy of the graph G results
in partitioning the nodes into unsupervised clusters.
Each speech feature is assigned to a cluster, which
discretizes the speech data into a token sequence
Z = {z1,22,...,27}. These tokens can be pro-
cessed as text symbols, allowing their direct input
into LLMs.

3.2 Graph Construction

A well-structured graph serves as the foundation
for effective graph partitioning. Unlike traditional
clustering methods that rely on predefined assump-
tions about the number of clusters (e.g., K-means),
a graph-based approach enables us to model the in-
trinsic relationships between speech features more
flexibly and adaptively. Using graph partitioning,
we aim to uncover the inherent structure of speech
and effectively capture dependencies within the
feature space.

Given an SSL-extracted speech feature sequence



H = {hy,ha,...,hp}, we construct a speech fea-
ture graph G = (V, E, W), where V represents the
set of feature nodes and E denotes the edges that
capture the relationships between these nodes. This
graph-based formulation explicitly models depen-
dencies among frames, providing a more structured
representation of speech dynamics. We establish
edges based on the similarity between speech fea-
tures to define the graph topology. The weight
of each edge, represented by the weighted adja-
cency matrix W, is calculated using cosine similar-
ity: w(i,j) = CosSim(h;, hj), where h; and h;
are vectors corresponding to nodes ¢ and j. This
weighted graph ensures that strongly correlated
speech features remain closely connected.

3.3 Speech Discretization via Incremental
2D-SE Minimization

Minimizing structural entropy (SE) effectively re-
veals reliable node correlations in noisy raw graphs
and has been applied in various fields. Although
2D SE minimization is unsupervised and effective,
it becomes computationally prohibitive for large-
scale and complex graphs. Traditional bottom-
up greedy merging method (Li and Pan, 2016)
is costly, making them impractical for large and
densely connected graphs. Hierarchical 2D SE
minimization (Cao et al., 2024) improves efficiency
to some extent, but the dense interconnections be-
tween nodes make graph partitioning challenging,
potentially leading to information loss.

Optimization efficiency becomes critical in
speech processing, where many speech frames
must be clustered. To address this, we build upon
the incremental 2D-SE minimization approach pro-
posed by (Xian et al., 2025) and treat the clustering
process as an incremental and dynamic procedure.
Specifically, we introduce two key strategies to
enhance efficiency while preserving essential struc-
tural information: 1) Downsampling: a sampling
factor s is defined to downsample the feature se-
quence, reducing computational complexity while
retaining critical structural correlations. 2) Block-
wise Processing: the downsampled speech fea-
ture sequence is then divided into N equal-length
blocks: {Bi,...,Bn}, where N = |T'/L|, and L
is the block length. Graph construction and 2D-SE
minimization are performed block by block, en-
suring incremental optimization while maintaining
computational feasibility.

Initially, 2D-SE minimization is applied to the
first block B and the resulting clusters are retained.

As new blocks arrive, the graph and cluster assign-
ments are dynamically updated. This update pro-
cess leads to one of three possible outcomes for
each node: 1) remaining in its current cluster,
2) leaving to form a new cluster, or 3) merging
into an existing cluster. Given a graph and its
corresponding partition is P = {p1,p2,...,pr},
first, if a node = remains in its current cluster, the
set of partition P remains unchanged. As a result,
there is no variation in the graph’s 2D structural
entropy, which can be expressed as: Ageep = 0.
Second, if node z leaves its current cluster p; and
forms a new cluster, the partition set is updated to:
P ={p1,...,p,,...,pL,x}, where p, = p;\{z}.
Consequently, the change in 2D structural entropy
is given by:

AlLecave = HT/(G) - HT(G)
=3 HOG) - Y HO )

peEP’! peEP
= HO () + HO() - HP)(py)

g vlp) S vol(p)

vol(QG) log vol(G)  wol(QG) log vol(QG)

vl vol(p) | du | vollp)

vol(G) " wol(p;)  wol(G) ©8 vol(G)’
3)

where Ajcqve denotes the variation in 2D SE when
a node x exits cluster p; to establish a new cluster.
The encoding tree associated with the updated par-
tition set P’ is represented as 7. The 2D SE values
of the graph under the partition sets P and P’ are
given by H7 (G) and H'' (@), respectively. The
term H?) (p;) indicates the SE of cluster p;. The
total volume of the graph, as well as the volumes
of cluster p; and its newly formed counterpart p;,
are denoted as vol(G), vol(p; ), and vol(p}), respec-
tively. Additionally, g,, and gy, Tepresent the cuts
associated with p; and p}, respectively. Third, the
process of merging node x from cluster p; into clus-
ter p; can be decomposed into two sequential steps:
a) node x departs from p; and forms a new cluster.
b) Then, it transitions from this newly formed clus-
ter to p;. Notably, the change in the graph’s 2D SE
resulting from leaving the new cluster and joining
pj is exactly the inverse of the change caused by
leaving p; (where p; = p; U x) and forming a new
cluster. Thus, the node merging strategy can be
formalized as follows:

AMer’ge = ALeave(xvpi) - ALeave(map;‘)a (4)



where Ajrerge represents the variation in the
graph’s 2D SE when node x moves from cluster p;
to p;. The terms Apcqpe(x, p;) and ALeave(x,p;-)
correspond to the changes in 2D SE when node z
exits clusters p; and p;-, respectively, to form a new
cluster.

Based on the above analysis, the optimal strategy
for updating the partition tree to minimize the 2D
SE for a newly arrived node z is determined as:

4)

Finally, after determining the partition P, each
speech feature in H is assigned a cluster label based
on the maximum cosine similarity. The workflow
of the proposed method is described in Algorithm
1. The time complexity is analyzed in Appendix A.

min{AKeepa ALeave; AMerge } .

Algorithm 1 Incremental 2D-SE Minimization for
Speech Feature Clustering.
Input: Speech features: H = {hy, ho, .
Output: Cluster labels: Z = {z1, 29, ..
Initialization: Define block size L,

sampling factor s, similarity threshold 6,

Initialize partition P = ()
forn=1to N =|T/L] do
Extract block By, = {h—1)41,- -+ Pnr}
Down-sample B,, with factor s to obtain BJ,;
Construct graph G,, = (V,,, E,, W,,) from
B!, keep edges that weight greater than 6;
if n == 1 then

Compute H®(G1),
obtain initial partition P

hr
'7ZT}

else
repeat

foreach node x € B], do

Assign x to
arg min{AKeepv ALeavev AMerge}

end
until ’ASE‘ < €
Update partition P accordingly

end

end

Finally: Dump cluster labels
foreach speech feature h € H do
|z = argmaxyep CosSim(h, p)

end

return final cluster labels Z

3.4 Adaptive Similarity Regularizatio

We introduce an adaptive similarity regularization
strategy that injects Gaussian noise into the simi-
larity calculation to improve clustering robustness
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Figure 2: The framework of the discrete token-based,
decoder-only language model for ASR. Model is trained
to predict the next token using cross-entropy loss.

and reduce sensitivity to spurious correlations. This
strategy aims to simulate real-world speech vari-
ability caused by the environment or speakers. We
modify the cosine similarity by adding Gaussian
noise:

(i, j) = CosSim{hi, h;} + N (0,0%)  (6)
where N (0,02) represents zero-mean Gaussian
noise with variance o. This perturbation encour-
ages the clustering to be more robust.

3.5 Speech Discrete Token based ASR Model

In line with discrete token-based ASR models, we
build an ASR model with a decoder-only language
model, incorporating discrete speech tokens ob-
tained through 2D SE minimization, as illustrated
in Figure 2. Given the speech token sequence
Z = {z1,29,...,2r} and its corresponding tran-
scription Y = {y1,v2,...,Ym}, the language
model is trained to generate the text sequence Y
based on the discrete speech tokens Z. To integrate
both speech and text within the model, the original
embedding matrix E of the language model, which
has dimensions ¢ X d (where ¢ represents the num-
ber of text tokens and d is the embedding size), is
expanded to (¢ + s) x d to accommodate an addi-
tional set of s speech tokens. The cross-entropy
(CE) is utilized for training:

Lop ==Y logp(yil Z,y<i; ¢),

where y, is the text token at time step £ and y < ¢
is the text tokens earlier than time step ¢, Z is the
speech discrete token, and ¢ are trainable parame-
ters.

(N

4 Experiments Setup

Dataset: Consistent with widely used benchmarks
for discrete token-based ASR models (Chen et al.,



Architecture Models dev-clean dev-other test-clean test-other
Encoder-Decoder Conformer 3.10 8.91 3.29 8.81
Whisper Large-v2 2.22 6.07 2.37 6.08
Decoder-Only HuBERT-Large + GPT2 3.05 6.63 3.11 7.12
Discretized via K-means WavLM-Large + GPT2 341 7.26 3.59 7.21
HuBERT-Large + QWen2-0.5B 5.02 9.1 5.56 9.39
WavLM-Large + QWen2-0.5B 4.65 8.51 5.01 8.58
Decoder-Only, HuBERT-Large + GPT2 2.83 5.71 2.94 6.02
Discretized via SE (ours) WavLM-Large + GPT2 3.10 6.52 3.21 6.58
HuBERT-Large + QWen2-0.5B 3.77 6.79 3.70 7.33
WavLM-Large + QWen2-0.5B 3.71 7.36 4.09 7.26
Discretized via SE (ours), HuBERT-Large + GPT2 2.68 545 2.71 5.89
+ Adaptive Regularization HuBERT-Large + QWen2-0.5B 3.60 6.32 3.61 7.06

Table 1: WER on the LibriSpeech dev and test sets for ASR models with different architectures. Results are
reported on dev-clean, dev-other, test-clean, and test-other sets. Lower WER indicates better performance.

2024; Wang et al., 2024), we evaluate the effec-
tiveness of the proposed SED method on the Lib-
riSpeech corpus (Panayotov et al., 2015), which
consists of a 960-hour training set. Performance
is evaluated regarding word error rates (WER)
across the dev-clean, dev-other, test-clean, and test-
other sets. Evaluation is also conducted on the
GigaSpeech (Guoguo Chen, 2021) M-size datasets.
Speech Token Discretization: For speech feature
extraction, we use HuBERT-large! and WavLM-
Large? pre-trained models, both composed of con-
volutional layers and transformer encoder layers
with a hidden size of 1024. To reduce the com-
putational cost, the downsampling factor s is set
to 0.001, resulting in approximately 177K ran-
domly sampled speech frames for clustering. These
frames are grouped into blocks of length 1000.
For graph construction, we evaluate performance
across different cosine similarity thresholds 6. Fol-
lowing the baseline configuration, we employ Sen-
tencePiece® to tokenize speech tokens, yielding
6000 subword units.

Decoder-only LM: Due to limited GPU resources,
we employ GPT2-medium* (350M parameters)
and Qwen2-0.5B° as language models for decoder
only for discrete token-based ASR. GPT2-medium
consists of a 24 layers transformer, a hidden size
of 1024, and a vocabulary of 50,257 text tokens,
while Qwen2-0.5B has a 24 layers transformer, a
hidden size of 896, and a vocabulary of 151,643

"https://dl.foaipublicfiles.com/hubert/hubert_large_I160k.pt
Zhttps://github.com/microsoft/unilm/tree/master/wavim
*https://github.com/google/sentencepiece
*https://huggingface.co/gpt2-medium
>https://huggingface.co/Qwen/Qwen2-0.5B

text tokens. We expand the vocabulary with 6000
speech subword units to accommodate speech to-
kens. Additionally, we introduce two special end
tokens, <speech_end> and <text_end> for GPT2-
medium, while reuses <lendoftext/> and <lim_end|>
for Qwen2-0.5B as delimiters.

The models are trained using the Adam opti-
mizer, which has a learning rate 3e-4 for 10 epochs
on 8 A40 GPUs. Additionally, time masking is
applied to all input tokens, including speech and
text tokens, by replacing each token with a special
padding token with a probability of 0.3.

5 Results

5.1 Main Results

Table 1 presents the WER results in the Lib-
riSpeech dataset. The Whisper Large-v2 model
performs best, with WERs of 2.22% on dev-clean
and 6.07% on dev-other. However, this can be
attributed to its large model size (1.55B parame-
ters) and extensive weakly labeled training data
(680,000 hours). The Conformer model (consists
of 12-layers Conformer encoder and 6-layers Trans-
former decoder), achieving a WER of 3.10% on
dev-clean.

For discrete token-based ASR models, HuBERT-
Large + GPT2 trained on K-means clustered to-
kens achieves a WER of 3.05% on dev-clean and
6.63% on dev-other. WavLM-Large + GPT2 shows
slightly higher WERs while using Qwen2-0.5B,
as the language model results in a performance
drop, likely due to architectural and linguistic dif-
ferences. The proposed SE method significantly
improves WER compared to K-means. Specifi-



cally, HuBERT-Large + GPT2 with SE reduces
WER from 3.05% to 2.83% on dev-clean and from
6.63% to 5.71% on dev-other. Similar trends are
observed across the test sets, confirming that SE
enhances speech token clustering quality, thereby
improving ASR performance. Notably, SE sub-
stantially improves dev-other and test-other, which
contain more acoustically challenging and diverse
data. This shows its robustness in handling noisy
and complex speech scenarios. Furthermore, incor-
porating adaptive regularization further refines clus-
tering, leading to improved generalization. This
enhancement achieves the best performance among
all discrete token-based models, demonstrating the
effectiveness of SE and adaptive regularization in
handling speech variations.

Table 2 presents the WER results for the Gi-
gaSpeech M-size test set. The performance trend is
consistent with the results on LibriSpeech. The SE
method significantly outperforms the K-means in
all evaluated models. For instance, HuBERT-Large
+ GPT?2 reduces WER from 17.74% (K-means) to
13.35% (SE), while WavLM-Large + GPT2 im-
proves from 15.48% to 13.89%. Similarly, the use
of SE leads to notable improvements for models
that incorporate Qwen2-0.5B. These results fur-
ther confirm that SE provides more phonemically
coherent discrete representations, which benefit
downstream ASR performance.

5.2 Discrete Token Quality

We further assess the clustering performance of
the proposed SED method compared to the tradi-
tional K-means. The quality of the resulting dis-
crete speech tokens is measured based on their
correlation with phoneme boundaries and labels
on the Librispeech set dev-clean and dev-other.
Specifically, we employ three widely used met-
rics: Cluster Purity (ClsPur), Phoneme Purity (Ph-
nPur), and Phone-Normalized Mutual Informa-
tion (PNMI). ClsPur quantifies the homogeneity
of phoneme classes within each cluster. A higher
ClsPur indicates that clusters are more consistent
in representing specific phonemes. PhnPur mea-
sures the consistency of cluster assignments for
each phoneme. A higher PhnPur suggests that
phonemes are predominantly aligned with specific
clusters, indicating a stronger phoneme-to-cluster
correspondence. Phone-Normalized Mutual Infor-
mation (PNMI) evaluates the mutual dependency
between discrete speech tokens and phoneme la-
bels, normalized to account for phoneme frequency

Method Models WER
Discretized  HuBERT-L + GPT2 17.74
via K-means WavLM-L + GPT2 15.48
HuBERT-L + QWen2-0.5B  19.56
WavLM-L + QWen2-0.5B  16.85
Discretized  HuBERT-L + GPT2 13.35
via SE WavLM-L + GPT2 13.89
HuBERT-L + QWen2-0.5B  16.27
WavLM-L + QWen2-0.5B  14.71

Table 2: WER on the GigaSpeech M-size test set.

distribution. Higher PNMI values reflect a stronger
alignment between the discrete token and the un-
derlying phoneme.

As shown in Table 3, from the perspective of
WER, the clustering of K-means is highly sensitive
to the choice of K. In contrast, SE demonstrates
greater robustness to parameter variations, with
WER consistently decreasing as 6 increases and
maintains a relatively stable range between 4.36%
and 5.04%. This indicates that SE is less sensi-
tive to hyperparameter choices and provides more
reliable performance across different settings. Re-
garding cluster quality, the ClsPur score for SE
is 21.68%, more than three times higher than the
best K-means result (7.00%). This shows that SE
forms more compact and well-structured clusters.
Furthermore, SE consistently achieves higher Phn-
Pur and PNMI scores, indicating that the discrete
tokens generated by SE exhibit better phonemic
coherence, contributing to improved ASR perfor-
mance. Furthermore, we observed that SE yields a
more compact and balanced token distribution than
K-means while reducing the token sequence length.
See Appendix B for details.

5.3 Clustering Visualization

We conduct clustering visualization using Ground
Truth labels, K-means (K=2000) clustering, and
SE (0=0.7) clustering results on the LibriSpeech
dev-clean subset. High-dimensional speech fea-
tures were projected onto a 2D plane through PCA
for dimensionality reduction. For Ground Truth,
we directly utilize the provided phoneme labels,
while for K-means and SE Clustering, cluster as-
signments were derived from their respective algo-
rithms. It is important to note that the number of
clusters in K-means and SE clustering exceeds that
of the Ground Truth, meaning that multiple clusters
may correspond to a single phoneme in the Ground



Method #Clusters ClsPur(%)1 PhnPur(%)1 PNMI(%)1 AvgWER(%) |
K-means K = 1000 7.00/6.46 70.95/67.17 73.00/67.76 10.89
K = 2000 4.23/3.84 74.03/69.77 76.50/71.14 4.98
K = 3000 3.20/2.92 75.55/71.25 78.25/72.96 9.07
SE 0 =0.65,P =1323 21.68/20.63 71.18/73.51 67.84/69.79 5.04
f=0.68,P=2263 18.89/17.53 73.58/75.19 71.92/75.86 4.85
0 =0.70,P =3178 1645/15.72 77.32/74.57 75.64/77.60 4.36

Table 3: Clustering performance of K-means and SE in terms of clustering purity (ClsPur), phoneme purity (PhnPur),

and PNMI, as well as average WER (AvgWER) on the Librispeech dev and test sets.
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SE Clustering
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Figure 3: PCA-based 2D visualization of top-10 (upper) and top-20 (lower) clusters from Ground Truth, K-means,
and SE Clustering on the LibriSpeech dev-clean subset. Each point represents a sampled speech feature, with colors

indicating different clusters.

Truth. Each data point retained its original index,
ensuring precise alignment with its corresponding
label across different clustering methods.

The upper panel of Figure 3 illustrates the top 10
clusters for the ground truth, K-means, and SE clus-
tering results, whereas the lower panel presents the
top 20 clusters. We randomly sample 100 speech
features from each cluster to ensure representative
visualizations. The visualizations reveal that K-
means, due to its centroid-based approach, form
compact, well-defined clusters, whereas SE clus-
tering captures more organic, flexible structures.
Notably, SE Clustering outperforms K-means in
preserving the intrinsic data distribution, particu-
larly within complex clusters. As clusters increase,
SE Clustering demonstrates superior adaptability,
maintaining meaningful separations and reflecting
the underlying data structure more effectively.

6 Conclusion

In this paper, we proposes the SED, a new dis-
cretization method for speech token-based ASR
via 2D structure entropy minimization. Unlike tra-
ditional K-means clustering, this approach automat-
ically determines the number of clusters, offering a
more adaptive and precise alignment with acoustic
units by effectively capturing correlations among
speech features. Experimental results demonstrate
that the SED consistently outperforms K-means
across various ASR models, achieving notable re-
ductions in WER. Furthermore, clustering perfor-
mance metrics indicate that SED generates more
phonetically consistent speech tokens while reduc-
ing the average token length, leading significant
reduction in computational cost. These results vali-
date the effectiveness of SED in improving token
discretization and downstream ASR performance.



7 Limitations

Despite promising results, the proposed SED
method has limitations. First, its performance
depends on the quality of speech representations
extracted from SSL models. Variations in pre-
training data and model architectures may lead
to inconsistent clustering quality, potentially af-
fecting downstream ASR performance. Second,
SED employs a random sampling strategy for fea-
ture clustering, which may limit the representative-
ness of the clustered speech tokens and overlook
rare but important acoustic patterns in the entire
dataset. Lastly, K-means and SED focus on cluster-
ing high-dimensional speech features into discrete
tokens, which may inadvertently neglect the fine-
grained temporal dependencies inherent in contin-
uous speech. Future work will explore more effi-
cient clustering algorithms and robust adaptation
techniques to address these challenges and further
enhance the effectiveness of SED.
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A Time Complexity

The main computational steps of the proposed SED
method involve 1) Graph Construction: Construct-
ing a similarity graph from speech features has a
complexity of O(V?), where V is the number of
nodes (speech features); 2) Incremental 2D Struc-
tural Entropy minimization: The initialization step
requires O(L), where L is the block size of a
speech feature segment. During the incremental
minimization process, for each node, determining
the optimal action (staying in its current cluster,
forming a new cluster, or merging into an exist-
ing one) requires O(k) operations, where k is the
number of neighboring nodes considered. Given
1 iterations, the overall complexity of this step is
O(IEkV). Thus, the total computational complexity
is O(V2 4 IkV). The graph construction being the
most computationally intensive step.

B Discrete Token Distribution

We analyzed the frequency distribution of discrete
speech tokens obtained using two clustering meth-
ods: K-means and SE clustering. Additionally, we
compared the distribution of BPE-applied discrete
tokens, as shown in Figure 4. The upper subfig-
ure illustrates the clustering and BPE results using
K-means, while the lower subfigure presents the
results using SE clustering. The red dashed line
represents the 95% cumulative frequency thresh-
old.

From the figures, we observed that K-means clus-
tering results in a more imbalanced token distribu-
tion, which can lead to inefficient representation
and potential noise during downstream LLM train-
ing. In contrast, SE clustering generates a more
compact token distribution, utilizing the codebook
space more effectively and reducing the impact of
underutilized tokens. Moreover, applying BPE en-
hances token granularity and significantly reduces
the sequence length (as shown in 4), which can
improve representation efficiency and downstream
performance. The average token length using SE
is about 60% of that of K-means, indicating a sig-
nificant reduction in computational cost.
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Figure 4: Frequency distribution of discrete tokens obtained via K-means (KX = 2000) and SE (6 = 0.7) clustering

on Librispeech train set, as well as the BPE token distribution.

Method speech samples speech frames

avgTokenLen (BEP applied)

281,241
281,241

172,812,419
172,812,419

K-means
SE

414
253

Table 4: Statistics of Librispeech train-set token length obtained via K-means and SE clustering.
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