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Abstract

Building speech processing models with Large001
Language Models (LLMs) has become a new002
effective paradigm. A key challenge in this003
approach is representing speech features that004
align well with LLMs. While continuous005
speech features from self-supervised learning006
(SSL) models capture rich information, they007
pose alignment challenges and lead to high008
computational costs. Discrete tokenization us-009
ing K-means improves efficiency but suffers010
from fixed cluster constraints and limited adapt-011
ability to diverse speech signals. In this paper,012
we propose SED, a novel Structural Entropy-013
based Speech Discretization method that mod-014
els speech features as graph nodes and per-015
forms adaptive clustering by minimizing 2D016
Structural Entropy. SED automatically deter-017
mines the optimal number of clusters and cap-018
tures robust acoustic correlations to improve019
cluster quality. Experimental results demon-020
strate that SED achieves lower word error rates021
(WER) and higher clustering purity than K-022
means, highlighting its effectiveness for dis-023
crete token-based ASR.024

1 Introduction025

With the rapid development of Large Language026

Models (LLMs), significant revolution has been027

made in various natural language processing (NLP)028

(Peng et al., 2023; Pu et al., 2023; Ravaut et al.,029

2023; Lu et al., 2023) and computer vision (CV)030

(Driess et al., 2023; Liu et al., 2023; Ye et al., 2024)031

tasks. Simultaneously, the field of speech process-032

ing has seen remarkable developments, especially033

with the emergence of Speech Language Models034

(SpeechLMs) such as SpeechGPT (Zhang et al.,035

2023), Salmonn (Tang et al., 2024) and Qwen-036

Audio (Chu et al., 2023). These models have037

demonstrated impressive speech recognition, syn-038

thesis, translation and understanding capabilities,039

driving a shift toward more integrated, efficient and040

multi-modal AI systems.041

Building on the foundational architecture and 042

powerful capabilities of LLMs, adapting them for 043

speech processing tasks is a natural progression. 044

This adaption allows us to take advantage of both 045

the rich contextual understanding of language and 046

the nuanced features of speech, enabling more ac- 047

curate and robust multimodal applications. Such 048

advancements have led researchers to explore im- 049

proved representations of speech as a sequence 050

for LLMs. Broadly speaking, methods for repre- 051

senting speech inputs can be categorized into con- 052

tinuous features and discrete tokens. Continuous 053

speech features are commonly extracted using self- 054

supervised learning (SSL) models such as HuBERT 055

(Hono et al., 2024), WavLM (Das et al., 2024), and 056

the encoder of Whisper (Shu et al., 2023). Raw 057

waveforms are converted into high-dimensional 058

embeddings and fed into large language models 059

(LLMs) through adapters. In this paradigm, the 060

key challenge lies in effectively bridging the repre- 061

sentation gap between continuous speech features 062

and the embedding space of LLMs. To address 063

this issue, (Yu et al., 2024a) and SALMONN (Tang 064

et al., 2024) proposed using a query transformer 065

(Q-Former) (Li et al., 2023) to convert whisper- 066

extracted speech features into fixed-length repre- 067

sentations suitable for models such as LLaMA 068

(Touvron et al., 2023) and Vicuna (Chiang et al., 069

2023). Furthermore, (Dong et al., 2024) introduces 070

a word boundary-sensitive compression method 071

combined with the optimal transport algorithm to 072

improve the alignment between speech characteris- 073

tics and LLM text embeddings. Despite the effec- 074

tiveness of these methods, the high dimensionality 075

and length of the continuous speech features in- 076

crease computational costs and memory demands. 077

Alternatively, recent studies (Yang et al., 2024a; 078

Wang et al., 2024; Mousavi et al., 2024; Chang 079

et al., 2024) have explored discrete speech units de- 080

rived from SSL representations. These approaches 081

typically employ K-means clustering to convert 082

1



continuous speech features into discrete tokens.083

Models such as AudioPalm (Rubenstein et al.,084

2023) and SpeechGPT (Zhang et al., 2023) lever-085

age these discretized speech tokens for SpeechLMs.086

Discrete speech tokens not only preserve the se-087

mantic content and temporal structure of speech088

but also align with the next-token prediction mech-089

anisms of large language models (LLMs), thereby090

eliminating the need for additional adapters and091

facilitating unified speech-text modeling. However,092

K-means-based discretization relies heavily on pre-093

defined cluster centroids and a fixed number of094

clusters, which may limit its adaptability to diverse095

speech signals. This could result in suboptimal096

clustering performance and unstable outcomes.097

In this paper, we address the aforementioned098

challenges from an information-theoretic perspec-099

tive. Drawing inspiration from graph-based clus-100

tering methods widely used in NLP tasks such as101

social event and community detection (Ren et al.,102

2022; Yang et al., 2024b; Yu et al., 2024b), we ex-103

plore the potential application to speech processing104

and propose SED, a novel Structural Entropy (SE)-105

based Speech Discretization method for discrete106

token-based ASR. Specifically, we model speech107

features extracted from SSL models as nodes in a108

graph, where edges represent similarity between109

speech features. Clustering is performed by mini-110

mizing 2D SE, which iteratively and incrementally111

partitions the graph while preserving structural co-112

herence and minimizing information loss. This113

process adaptively determines the optimal number114

of clusters. It captures robust correlations among115

speech units, ensuring that similar acoustic patterns116

are grouped more compactly, ultimately enhancing117

the performance of discrete token-based ASR. Our118

contributions are summarized as follows.119

• We propose a new speech discretization120

method based on 2D Structural Entropy mini-121

mization. Unlike K-means, this approach au-122

tomatically determines the number of clusters,123

offering a more adaptive and precise align-124

ment with acoustic units by effectively captur-125

ing correlations among speech features.126

• To mitigate the high computational cost of127

graph clustering for large-scale speech repre-128

sentations, we utilize an incremental structural129

entropy-based graph partitioning method, sig-130

nificantly improving clustering efficiency.131

• By integrating adaptive similarity regulariza-132

tion, our SED method further improves clus- 133

tering robustness and generalization, achiev- 134

ing superior performance over discrete token- 135

based ASR baselines. 136

2 Preliminary 137

Structural Entropy (SE) (Li and Pan, 2016) is de- 138

fined as the minimum number of bits required to 139

encode a vertex that can be reached in a single step 140

of a random walk on a graph G. Quantifies the 141

complexity of the intrinsic structure of the graph 142

and is closely associated with its encoding tree T . 143

In the following, we provide the definitions of the 144

encoding tree and structural entropy as presented 145

in (Li and Pan, 2016). 146

Given an undirected and weighted graph G = 147

(V,E) with n vertices and weights W , where V is 148

the vertex set and E is the edge set, we have the 149

following. 150

Definition 1) An encoding tree T of graph G is 151

a hierarchical clustering partition of G, which in- 152

cludes all nodes of G as leaf nodes. This encoding 153

tree represents a graph partition, making it applica- 154

ble to partition-based clustering. The root node λ 155

of T corresponds to the whole sets of the graph, i.e. 156

Tλ = V . Each tree node α ⊆ T corresponds to a 157

partitioning of the graph, i.e. Tα ⊆ V . For any tree 158

node α, its leaf nodes {γ1, ..., γn} form a partition 159

of Tα. 160

Definition 2) The height of each node α in T 161

is denoted as h(α). By definition, the leaf node γ 162

has a height of zero, i.e., h(γ) = 0. For any other 163

node α, its height is given by h(α) = h(α−) + 1, 164

where α− represents its parent node. The height 165

of the encoding tree T is defined as h(T ) = 166

maxα∈T {h(α)}. 167

Definition 3) The structural entropy of a graph 168

G with encoding tree T is defined as: 169

HT (G) =
∑

α∈T ,α ̸=λ

HT (G;α)

=
∑

α∈T ,α ̸=λ

− gα
vol(λ)

log2
vol(α)

vol(α−)

(1) 170

where gα represents the sum of the degrees of cut 171

edges in Tα, where cut edges are those in E that 172

have exactly one endpoint within Tα. The terms 173

vol(G), vol(α), and vol(α−) denote the total sum 174

of vertex degrees in G, Tα, and its parent node Tα− , 175

respectively. 176

Definition 4) The 2-Dimension (2D) SE is de- 177

fined using an encoding tree with a height of 2. A 178
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Figure 1: The framework and workflow of the proposed SED method.

2D encoding tree T corresponds to a graph parti-179

tioning P = {p1, p2, . . . , pL} over V , where each180

pj denotes a partition of the graph. The 2D SE is181

formally defined as:182

H(2)(G) = −
∑
pi∈P

∑
vj∈pi

gj
vol(G)

log2
dj

vol(pi)

−
∑
pi∈P

gpi
vol(G)

log2
vol(pi)

vol(G)
,

(2)

183

where dj represents the degree of vertex vj , while184

gj denotes the total weight of edges linking vj to185

other vertices. The terms vol(pi) and vol(G) cor-186

respond to the volumes, which are defined as the187

sum of degrees of the vertex within the partition pi188

and throughout the graph G, respectively. Further-189

more, gpi quantifies the total weight of the edges190

connecting vertices inside pi to those outside it.191

3 Methodology192

The entire framework of the proposed SED method193

is illustrated in Figure 1.194

3.1 Problem Formalization195

Given a series of waveform data, the196

high-dimensional feature matrix H =197

{h1, h2, . . . , hT } ∈ RT×D is extracted us-198

ing a speech SSL model (e.g., HuBERT (Hsu199

et al., 2021) or WavLM (Chen et al., 2022)), where 200

T represents the length of the feature sequence, 201

and D denotes the dimensionality of the speech 202

features. 203

By treating each hi as a node, we construct a 204

speech feature graph G = (V,E,W ), where V is 205

the set of vertices corresponding to speech features 206

H , E represents the edges connecting the vertices, 207

and W denotes the edge weights, which measure 208

the similarities of cosine between the vertices. Min- 209

imizing the structural entropy of the graph G results 210

in partitioning the nodes into unsupervised clusters. 211

Each speech feature is assigned to a cluster, which 212

discretizes the speech data into a token sequence 213

Z = {z1, z2, . . . , zT }. These tokens can be pro- 214

cessed as text symbols, allowing their direct input 215

into LLMs. 216

3.2 Graph Construction 217

A well-structured graph serves as the foundation 218

for effective graph partitioning. Unlike traditional 219

clustering methods that rely on predefined assump- 220

tions about the number of clusters (e.g., K-means), 221

a graph-based approach enables us to model the in- 222

trinsic relationships between speech features more 223

flexibly and adaptively. Using graph partitioning, 224

we aim to uncover the inherent structure of speech 225

and effectively capture dependencies within the 226

feature space. 227

Given an SSL-extracted speech feature sequence 228
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H = {h1, h2, . . . , hT }, we construct a speech fea-229

ture graph G = (V,E,W ), where V represents the230

set of feature nodes and E denotes the edges that231

capture the relationships between these nodes. This232

graph-based formulation explicitly models depen-233

dencies among frames, providing a more structured234

representation of speech dynamics. We establish235

edges based on the similarity between speech fea-236

tures to define the graph topology. The weight237

of each edge, represented by the weighted adja-238

cency matrix W , is calculated using cosine similar-239

ity: w(i, j) = CosSim(hi, hj), where hi and hj240

are vectors corresponding to nodes i and j. This241

weighted graph ensures that strongly correlated242

speech features remain closely connected.243

3.3 Speech Discretization via Incremental244

2D-SE Minimization245

Minimizing structural entropy (SE) effectively re-246

veals reliable node correlations in noisy raw graphs247

and has been applied in various fields. Although248

2D SE minimization is unsupervised and effective,249

it becomes computationally prohibitive for large-250

scale and complex graphs. Traditional bottom-251

up greedy merging method (Li and Pan, 2016)252

is costly, making them impractical for large and253

densely connected graphs. Hierarchical 2D SE254

minimization (Cao et al., 2024) improves efficiency255

to some extent, but the dense interconnections be-256

tween nodes make graph partitioning challenging,257

potentially leading to information loss.258

Optimization efficiency becomes critical in259

speech processing, where many speech frames260

must be clustered. To address this, we build upon261

the incremental 2D-SE minimization approach pro-262

posed by (Xian et al., 2025) and treat the clustering263

process as an incremental and dynamic procedure.264

Specifically, we introduce two key strategies to265

enhance efficiency while preserving essential struc-266

tural information: 1) Downsampling: a sampling267

factor s is defined to downsample the feature se-268

quence, reducing computational complexity while269

retaining critical structural correlations. 2) Block-270

wise Processing: the downsampled speech fea-271

ture sequence is then divided into N equal-length272

blocks: {B1, . . . , BN}, where N = ⌊T/L⌋, and L273

is the block length. Graph construction and 2D-SE274

minimization are performed block by block, en-275

suring incremental optimization while maintaining276

computational feasibility.277

Initially, 2D-SE minimization is applied to the278

first block B1 and the resulting clusters are retained.279

As new blocks arrive, the graph and cluster assign- 280

ments are dynamically updated. This update pro- 281

cess leads to one of three possible outcomes for 282

each node: 1) remaining in its current cluster, 283

2) leaving to form a new cluster, or 3) merging 284

into an existing cluster. Given a graph and its 285

corresponding partition is P = {p1, p2, . . . , pL}, 286

first, if a node x remains in its current cluster, the 287

set of partition P remains unchanged. As a result, 288

there is no variation in the graph’s 2D structural 289

entropy, which can be expressed as: ∆Keep = 0. 290

Second, if node x leaves its current cluster pi and 291

forms a new cluster, the partition set is updated to: 292

P ′ = {p1, . . . , p′i, . . . , pL, x}, where p′i = pi\{x}. 293

Consequently, the change in 2D structural entropy 294

is given by: 295

∆Leave = HT ′
(G)−HT (G)

=
∑
p∈P ′

H(2)(p′n)−
∑
p∈P

H(2)(pn)

= H(2)(p′i) +H(2)(x)−H(2)(pi)

=
gpi

vol(G)
log

vol(pi)

vol(G)
−

gp′i
vol(G)

log
vol(p′i)

vol(G)

+
vol(p′i)

vol(G)
log

vol(p′i)

vol(pi)
+

dx
vol(G)

log
vol(pi)

vol(G)
,

(3)

296

where ∆Leave denotes the variation in 2D SE when 297

a node x exits cluster pi to establish a new cluster. 298

The encoding tree associated with the updated par- 299

tition set P ′ is represented as T ′. The 2D SE values 300

of the graph under the partition sets P and P ′ are 301

given by HT (G) and HT ′
(G), respectively. The 302

term H(2)(pi) indicates the SE of cluster pi. The 303

total volume of the graph, as well as the volumes 304

of cluster pi and its newly formed counterpart p′i, 305

are denoted as vol(G), vol(pi), and vol(p′i), respec- 306

tively. Additionally, gpi and gp′i represent the cuts 307

associated with pi and p′i, respectively. Third, the 308

process of merging node x from cluster pi into clus- 309

ter pj can be decomposed into two sequential steps: 310

a) node x departs from pi and forms a new cluster. 311

b) Then, it transitions from this newly formed clus- 312

ter to pj . Notably, the change in the graph’s 2D SE 313

resulting from leaving the new cluster and joining 314

pj is exactly the inverse of the change caused by 315

leaving p′j (where p′j = pj ∪ x) and forming a new 316

cluster. Thus, the node merging strategy can be 317

formalized as follows: 318

∆Merge = ∆Leave(x, pi)−∆Leave(x, p
′
j), (4) 319
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where ∆Merge represents the variation in the320

graph’s 2D SE when node x moves from cluster pi321

to pj . The terms ∆Leave(x, pi) and ∆Leave(x, p
′
j)322

correspond to the changes in 2D SE when node x323

exits clusters pi and p′j , respectively, to form a new324

cluster.325

Based on the above analysis, the optimal strategy326

for updating the partition tree to minimize the 2D327

SE for a newly arrived node x is determined as:328

min{∆Keep,∆Leave,∆Merge}. (5)329

Finally, after determining the partition P , each330

speech feature in H is assigned a cluster label based331

on the maximum cosine similarity. The workflow332

of the proposed method is described in Algorithm333

1. The time complexity is analyzed in Appendix A.334

Algorithm 1 Incremental 2D-SE Minimization for
Speech Feature Clustering.
Input: Speech features: H = {h1, h2, . . . , hT }
Output: Cluster labels: Z = {z1, z2, . . . , zT }
Initialization: Define block size L,
sampling factor s, similarity threshold θ,
Initialize partition P = ∅

for n = 1 to N = ⌊T/L⌋ do
Extract block Bn = {h(n−1)L+1, . . . , hnL}

Down-sample Bn with factor s to obtain B′
n;

Construct graph Gn = (Vn, En,Wn) from
B′

n, keep edges that weight greater than θ;
if n == 1 then

Compute H(2)(G1),
obtain initial partition P

else
repeat

foreach node x ∈ B′
n do

Assign x to
argmin{∆Keep,∆Leave,∆Merge}

end
until |∆SE | < ϵ;
Update partition P accordingly

end
end
Finally: Dump cluster labels

foreach speech feature h ∈ H do
z = argmaxp∈P CosSim(h, p)

end
return final cluster labels Z

3.4 Adaptive Similarity Regularizatio335

We introduce an adaptive similarity regularization336

strategy that injects Gaussian noise into the simi-337

larity calculation to improve clustering robustness338

Figure 2: The framework of the discrete token-based,
decoder-only language model for ASR. Model is trained
to predict the next token using cross-entropy loss.

and reduce sensitivity to spurious correlations. This 339

strategy aims to simulate real-world speech vari- 340

ability caused by the environment or speakers. We 341

modify the cosine similarity by adding Gaussian 342

noise: 343

ŵ(i, j) = CosSim{hi, hj}+N (0, σ2) (6) 344

where N (0, σ2) represents zero-mean Gaussian 345

noise with variance σ. This perturbation encour- 346

ages the clustering to be more robust. 347

3.5 Speech Discrete Token based ASR Model 348

In line with discrete token-based ASR models, we 349

build an ASR model with a decoder-only language 350

model, incorporating discrete speech tokens ob- 351

tained through 2D SE minimization, as illustrated 352

in Figure 2. Given the speech token sequence 353

Z = {z1, z2, . . . , zT } and its corresponding tran- 354

scription Y = {y1, y2, . . . , ym}, the language 355

model is trained to generate the text sequence Y 356

based on the discrete speech tokens Z. To integrate 357

both speech and text within the model, the original 358

embedding matrix E of the language model, which 359

has dimensions t× d (where t represents the num- 360

ber of text tokens and d is the embedding size), is 361

expanded to (t+ s)× d to accommodate an addi- 362

tional set of s speech tokens. The cross-entropy 363

(CE) is utilized for training: 364

LCE = −
∑

log p(yt|Z, y<t;ϕ), (7) 365

where yt is the text token at time step t and y < t 366

is the text tokens earlier than time step t, Z is the 367

speech discrete token, and ϕ are trainable parame- 368

ters. 369

4 Experiments Setup 370

Dataset: Consistent with widely used benchmarks 371

for discrete token-based ASR models (Chen et al., 372
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Architecture Models dev-clean dev-other test-clean test-other
Encoder-Decoder Conformer 3.10 8.91 3.29 8.81

Whisper Large-v2 2.22 6.07 2.37 6.08
Decoder-Only HuBERT-Large + GPT2 3.05 6.63 3.11 7.12
Discretized via K-means WavLM-Large + GPT2 3.41 7.26 3.59 7.21

HuBERT-Large + QWen2-0.5B 5.02 9.1 5.56 9.39
WavLM-Large + QWen2-0.5B 4.65 8.51 5.01 8.58

Decoder-Only, HuBERT-Large + GPT2 2.83 5.71 2.94 6.02
Discretized via SE (ours) WavLM-Large + GPT2 3.10 6.52 3.21 6.58

HuBERT-Large + QWen2-0.5B 3.77 6.79 3.70 7.33
WavLM-Large + QWen2-0.5B 3.71 7.36 4.09 7.26

Discretized via SE (ours), HuBERT-Large + GPT2 2.68 5.45 2.71 5.89
+ Adaptive Regularization HuBERT-Large + QWen2-0.5B 3.60 6.32 3.61 7.06

Table 1: WER on the LibriSpeech dev and test sets for ASR models with different architectures. Results are
reported on dev-clean, dev-other, test-clean, and test-other sets. Lower WER indicates better performance.

2024; Wang et al., 2024), we evaluate the effec-373

tiveness of the proposed SED method on the Lib-374

riSpeech corpus (Panayotov et al., 2015), which375

consists of a 960-hour training set. Performance376

is evaluated regarding word error rates (WER)377

across the dev-clean, dev-other, test-clean, and test-378

other sets. Evaluation is also conducted on the379

GigaSpeech (Guoguo Chen, 2021) M-size datasets.380

Speech Token Discretization: For speech feature381

extraction, we use HuBERT-large1 and WavLM-382

Large2 pre-trained models, both composed of con-383

volutional layers and transformer encoder layers384

with a hidden size of 1024. To reduce the com-385

putational cost, the downsampling factor s is set386

to 0.001, resulting in approximately 177K ran-387

domly sampled speech frames for clustering. These388

frames are grouped into blocks of length 1000.389

For graph construction, we evaluate performance390

across different cosine similarity thresholds θ. Fol-391

lowing the baseline configuration, we employ Sen-392

tencePiece3 to tokenize speech tokens, yielding393

6000 subword units.394

Decoder-only LM: Due to limited GPU resources,395

we employ GPT2-medium4 (350M parameters)396

and Qwen2-0.5B5 as language models for decoder397

only for discrete token-based ASR. GPT2-medium398

consists of a 24 layers transformer, a hidden size399

of 1024, and a vocabulary of 50,257 text tokens,400

while Qwen2-0.5B has a 24 layers transformer, a401

hidden size of 896, and a vocabulary of 151,643402

1https://dl.fbaipublicfiles.com/hubert/hubert_large_ll60k.pt
2https://github.com/microsoft/unilm/tree/master/wavlm
3https://github.com/google/sentencepiece
4https://huggingface.co/gpt2-medium
5https://huggingface.co/Qwen/Qwen2-0.5B

text tokens. We expand the vocabulary with 6000 403

speech subword units to accommodate speech to- 404

kens. Additionally, we introduce two special end 405

tokens, <speech_end> and <text_end> for GPT2- 406

medium, while reuses <|endoftext|> and <|im_end|> 407

for Qwen2-0.5B as delimiters. 408

The models are trained using the Adam opti- 409

mizer, which has a learning rate 3e-4 for 10 epochs 410

on 8 A40 GPUs. Additionally, time masking is 411

applied to all input tokens, including speech and 412

text tokens, by replacing each token with a special 413

padding token with a probability of 0.3. 414

5 Results 415

5.1 Main Results 416

Table 1 presents the WER results in the Lib- 417

riSpeech dataset. The Whisper Large-v2 model 418

performs best, with WERs of 2.22% on dev-clean 419

and 6.07% on dev-other. However, this can be 420

attributed to its large model size (1.55B parame- 421

ters) and extensive weakly labeled training data 422

(680,000 hours). The Conformer model (consists 423

of 12-layers Conformer encoder and 6-layers Trans- 424

former decoder), achieving a WER of 3.10% on 425

dev-clean. 426

For discrete token-based ASR models, HuBERT- 427

Large + GPT2 trained on K-means clustered to- 428

kens achieves a WER of 3.05% on dev-clean and 429

6.63% on dev-other. WavLM-Large + GPT2 shows 430

slightly higher WERs while using Qwen2-0.5B, 431

as the language model results in a performance 432

drop, likely due to architectural and linguistic dif- 433

ferences. The proposed SE method significantly 434

improves WER compared to K-means. Specifi- 435
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cally, HuBERT-Large + GPT2 with SE reduces436

WER from 3.05% to 2.83% on dev-clean and from437

6.63% to 5.71% on dev-other. Similar trends are438

observed across the test sets, confirming that SE439

enhances speech token clustering quality, thereby440

improving ASR performance. Notably, SE sub-441

stantially improves dev-other and test-other, which442

contain more acoustically challenging and diverse443

data. This shows its robustness in handling noisy444

and complex speech scenarios. Furthermore, incor-445

porating adaptive regularization further refines clus-446

tering, leading to improved generalization. This447

enhancement achieves the best performance among448

all discrete token-based models, demonstrating the449

effectiveness of SE and adaptive regularization in450

handling speech variations.451

Table 2 presents the WER results for the Gi-452

gaSpeech M-size test set. The performance trend is453

consistent with the results on LibriSpeech. The SE454

method significantly outperforms the K-means in455

all evaluated models. For instance, HuBERT-Large456

+ GPT2 reduces WER from 17.74% (K-means) to457

13.35% (SE), while WavLM-Large + GPT2 im-458

proves from 15.48% to 13.89%. Similarly, the use459

of SE leads to notable improvements for models460

that incorporate Qwen2-0.5B. These results fur-461

ther confirm that SE provides more phonemically462

coherent discrete representations, which benefit463

downstream ASR performance.464

5.2 Discrete Token Quality465

We further assess the clustering performance of466

the proposed SED method compared to the tradi-467

tional K-means. The quality of the resulting dis-468

crete speech tokens is measured based on their469

correlation with phoneme boundaries and labels470

on the Librispeech set dev-clean and dev-other.471

Specifically, we employ three widely used met-472

rics: Cluster Purity (ClsPur), Phoneme Purity (Ph-473

nPur), and Phone-Normalized Mutual Informa-474

tion (PNMI). ClsPur quantifies the homogeneity475

of phoneme classes within each cluster. A higher476

ClsPur indicates that clusters are more consistent477

in representing specific phonemes. PhnPur mea-478

sures the consistency of cluster assignments for479

each phoneme. A higher PhnPur suggests that480

phonemes are predominantly aligned with specific481

clusters, indicating a stronger phoneme-to-cluster482

correspondence. Phone-Normalized Mutual Infor-483

mation (PNMI) evaluates the mutual dependency484

between discrete speech tokens and phoneme la-485

bels, normalized to account for phoneme frequency486

Method Models WER
Discretized HuBERT-L + GPT2 17.74
via K-means WavLM-L + GPT2 15.48

HuBERT-L + QWen2-0.5B 19.56
WavLM-L + QWen2-0.5B 16.85

Discretized HuBERT-L + GPT2 13.35
via SE WavLM-L + GPT2 13.89

HuBERT-L + QWen2-0.5B 16.27
WavLM-L + QWen2-0.5B 14.71

Table 2: WER on the GigaSpeech M-size test set.

distribution. Higher PNMI values reflect a stronger 487

alignment between the discrete token and the un- 488

derlying phoneme. 489

As shown in Table 3, from the perspective of 490

WER, the clustering of K-means is highly sensitive 491

to the choice of K. In contrast, SE demonstrates 492

greater robustness to parameter variations, with 493

WER consistently decreasing as θ increases and 494

maintains a relatively stable range between 4.36% 495

and 5.04%. This indicates that SE is less sensi- 496

tive to hyperparameter choices and provides more 497

reliable performance across different settings. Re- 498

garding cluster quality, the ClsPur score for SE 499

is 21.68%, more than three times higher than the 500

best K-means result (7.00%). This shows that SE 501

forms more compact and well-structured clusters. 502

Furthermore, SE consistently achieves higher Phn- 503

Pur and PNMI scores, indicating that the discrete 504

tokens generated by SE exhibit better phonemic 505

coherence, contributing to improved ASR perfor- 506

mance. Furthermore, we observed that SE yields a 507

more compact and balanced token distribution than 508

K-means while reducing the token sequence length. 509

See Appendix B for details. 510

5.3 Clustering Visualization 511

We conduct clustering visualization using Ground 512

Truth labels, K-means (K=2000) clustering, and 513

SE (θ=0.7) clustering results on the LibriSpeech 514

dev-clean subset. High-dimensional speech fea- 515

tures were projected onto a 2D plane through PCA 516

for dimensionality reduction. For Ground Truth, 517

we directly utilize the provided phoneme labels, 518

while for K-means and SE Clustering, cluster as- 519

signments were derived from their respective algo- 520

rithms. It is important to note that the number of 521

clusters in K-means and SE clustering exceeds that 522

of the Ground Truth, meaning that multiple clusters 523

may correspond to a single phoneme in the Ground 524

7



Method #Clusters ClsPur(%) ↑ PhnPur(%) ↑ PNMI(%) ↑ AvgWER(%) ↓
K-means K = 1000 7.00 / 6.46 70.95 / 67.17 73.00 / 67.76 10.89

K = 2000 4.23 / 3.84 74.03 / 69.77 76.50 / 71.14 4.98
K = 3000 3.20 / 2.92 75.55 / 71.25 78.25 / 72.96 9.07

SE θ = 0.65, P = 1323 21.68 / 20.63 71.18 / 73.51 67.84 / 69.79 5.04
θ = 0.68, P = 2263 18.89 / 17.53 73.58 / 75.19 71.92 / 75.86 4.85
θ = 0.70, P = 3178 16.45 / 15.72 77.32 / 74.57 75.64 / 77.60 4.36

Table 3: Clustering performance of K-means and SE in terms of clustering purity (ClsPur), phoneme purity (PhnPur),
and PNMI, as well as average WER (AvgWER) on the Librispeech dev and test sets.

Figure 3: PCA-based 2D visualization of top-10 (upper) and top-20 (lower) clusters from Ground Truth, K-means,
and SE Clustering on the LibriSpeech dev-clean subset. Each point represents a sampled speech feature, with colors
indicating different clusters.

Truth. Each data point retained its original index,525

ensuring precise alignment with its corresponding526

label across different clustering methods.527

The upper panel of Figure 3 illustrates the top 10528

clusters for the ground truth, K-means, and SE clus-529

tering results, whereas the lower panel presents the530

top 20 clusters. We randomly sample 100 speech531

features from each cluster to ensure representative532

visualizations. The visualizations reveal that K-533

means, due to its centroid-based approach, form534

compact, well-defined clusters, whereas SE clus-535

tering captures more organic, flexible structures.536

Notably, SE Clustering outperforms K-means in537

preserving the intrinsic data distribution, particu-538

larly within complex clusters. As clusters increase,539

SE Clustering demonstrates superior adaptability,540

maintaining meaningful separations and reflecting541

the underlying data structure more effectively.542

6 Conclusion 543

In this paper, we proposes the SED, a new dis- 544

cretization method for speech token-based ASR 545

via 2D structure entropy minimization. Unlike tra- 546

ditional K-means clustering, this approach automat- 547

ically determines the number of clusters, offering a 548

more adaptive and precise alignment with acoustic 549

units by effectively capturing correlations among 550

speech features. Experimental results demonstrate 551

that the SED consistently outperforms K-means 552

across various ASR models, achieving notable re- 553

ductions in WER. Furthermore, clustering perfor- 554

mance metrics indicate that SED generates more 555

phonetically consistent speech tokens while reduc- 556

ing the average token length, leading significant 557

reduction in computational cost. These results vali- 558

date the effectiveness of SED in improving token 559

discretization and downstream ASR performance. 560
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7 Limitations561

Despite promising results, the proposed SED562

method has limitations. First, its performance563

depends on the quality of speech representations564

extracted from SSL models. Variations in pre-565

training data and model architectures may lead566

to inconsistent clustering quality, potentially af-567

fecting downstream ASR performance. Second,568

SED employs a random sampling strategy for fea-569

ture clustering, which may limit the representative-570

ness of the clustered speech tokens and overlook571

rare but important acoustic patterns in the entire572

dataset. Lastly, K-means and SED focus on cluster-573

ing high-dimensional speech features into discrete574

tokens, which may inadvertently neglect the fine-575

grained temporal dependencies inherent in contin-576

uous speech. Future work will explore more effi-577

cient clustering algorithms and robust adaptation578

techniques to address these challenges and further579

enhance the effectiveness of SED.580
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A Time Complexity 789

The main computational steps of the proposed SED 790

method involve 1) Graph Construction: Construct- 791

ing a similarity graph from speech features has a 792

complexity of O(V 2), where V is the number of 793

nodes (speech features); 2) Incremental 2D Struc- 794

tural Entropy minimization: The initialization step 795

requires O(L), where L is the block size of a 796

speech feature segment. During the incremental 797

minimization process, for each node, determining 798

the optimal action (staying in its current cluster, 799

forming a new cluster, or merging into an exist- 800

ing one) requires O(k) operations, where k is the 801

number of neighboring nodes considered. Given 802

I iterations, the overall complexity of this step is 803

O(IkV ). Thus, the total computational complexity 804

is O(V 2+IkV ). The graph construction being the 805

most computationally intensive step. 806

B Discrete Token Distribution 807

We analyzed the frequency distribution of discrete 808

speech tokens obtained using two clustering meth- 809

ods: K-means and SE clustering. Additionally, we 810

compared the distribution of BPE-applied discrete 811

tokens, as shown in Figure 4. The upper subfig- 812

ure illustrates the clustering and BPE results using 813

K-means, while the lower subfigure presents the 814

results using SE clustering. The red dashed line 815

represents the 95% cumulative frequency thresh- 816

old. 817

From the figures, we observed that K-means clus- 818

tering results in a more imbalanced token distribu- 819

tion, which can lead to inefficient representation 820

and potential noise during downstream LLM train- 821

ing. In contrast, SE clustering generates a more 822

compact token distribution, utilizing the codebook 823

space more effectively and reducing the impact of 824

underutilized tokens. Moreover, applying BPE en- 825

hances token granularity and significantly reduces 826

the sequence length (as shown in 4), which can 827

improve representation efficiency and downstream 828

performance. The average token length using SE 829

is about 60% of that of K-means, indicating a sig- 830

nificant reduction in computational cost. 831
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Figure 4: Frequency distribution of discrete tokens obtained via K-means (K = 2000) and SE (θ = 0.7) clustering
on Librispeech train set, as well as the BPE token distribution.

Method speech samples speech frames avgTokenLen (BEP applied)
K-means 281,241 172,812,419 414
SE 281,241 172,812,419 253

Table 4: Statistics of Librispeech train-set token length obtained via K-means and SE clustering.
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