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Abstract

As major progress in LLM-based long-form text generation enables paradigms such
as retrieval-augmented generation (RAG) and inference-time scaling, safely incor-
porating private information into the generation remains a critical open question.
We present INVISIBLEINK, a highly scalable long-form text generation framework
satisfying rigorous differential privacy guarantees with respect to the sensitive
reference texts. It interprets sampling from the LLM’s next-token-distribution as
the exponential mechanism over the LLM logits with two innovations. First, we
reduce the privacy cost by isolating and clipping only the sensitive information in
the model logits (relative to the public logits). Second, we improve text quality
by sampling without any privacy cost from a small superset of the top-k private
tokens. Empirical evaluations demonstrate a consistent 8× (or more) reduction
in computation cost over state-of-the-art baselines to generate long-form private
text of the same utility across privacy levels. INVISIBLEINK is able to generate,
for the first time, high-quality private long-form text at less than 4-8× times the
computation cost of non-private generation, paving the way for its practical use.

1 Introduction

Large Language Models (LLMs) have demonstrated remarkable inference-time capabilities, synthe-
sizing information from multiple sources into coherent responses via retrieval-augmented generation
(RAG), and generating increasingly long and sophisticated outputs via the recent “deep research” and
inference-time scaling paradigms [1–3]. Larger token budgets also allow these models to effectively
“think,” enabling self-reflection and correction of potential errors during generation [4–8].

The power of these models, however, often relies on their ability to process and reason over vast
amounts of information, including potentially sensitive data provided at inference time. This context
might come from user prompts containing private details or documents retrieved by RAG systems
from confidential knowledge bases. There is some risk that the model’s outputs, particularly in detailed
long-form generation [9], could inadvertently leak sensitive details from this private context [10].

Differential Privacy (DP) [11] can mitigate such risks by providing provable guarantees that the
output distribution is statistically indistinguishable whether or not any single piece of sensitive
information was included in the input context. This guarantee is not just desirable but often essential
in sensitive domains like healthcare and finance, where information leakage carries severe regulatory
(e.g., HIPAA, GDPR) and ethical consequences and merely anonymizing personally identifiable
information (PII) is not sufficient [12] Therefore, developing effective DP mechanisms for inference-
time generation is critical for the responsible application of LLMs in privacy-sensitive applications.
We tackle the challenge of achieving high-fidelity, long-form text generation under the rigorous DP
guarantees on sensitive source text(s) used as references for generation.

Despite the importance of this problem, existing approaches for DP text generation suffer from severe
practical limitations. Consider the prior state-of-the-art method of Amin et al. [13], which interprets
token sampling from the LLM as an instance of the canonical exponential mechanism [14] over the
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Figure 1: INVISIBLEINK interprets differentially private text generation as an iterative application of the
exponential mechanism over a subset of the LLM’s clipped logits. Our key innovations are: (a) DClip, an
improved clipping function to reduce the sensitivity, and hence, the privacy cost; and (b) Top-k+ sampling, a
truncated decoding algorithm to improve utility by selecting a subset of logits to sample each token from.

next-token logits. It requires a computational overhead of 100× that of non-private generation or
more, to produce non-degenerate text.1 This makes them intractable at scale for large models.

Moreover, from a quality perspective, these methods typically resort to high-temperature sampling
from the full vocabulary distribution. This decoding strategy is well known to produce degenerate
or low-quality text, falling significantly short of the fluency and coherence achieved by standard
non-private decoding algorithms, which rely on sampling from truncated distributions [16–18].

We bridge this gap with the following:

We propose INVISIBLEINK for DP synthetic text generation. It can produce hundreds of tokens at
8× lower computational cost at the same privacy/utility trade-offs compared to prior SoTA methods.

Our main contributions are as follows:

• INVISIBLEINK Framework: We propose INVISIBLEINK, an exponential mechanism-based [14]
sampling framework to allow LLM-based text generation with rigorous DP guarantees under the
replace-by-null adjacency. We make two key innovations: (a) DClip to isolate and clip only the
sensitive information in the model logits and avoid paying a privacy cost on prior information on
language; and (b) Top-k+ decoding: a truncated decoding algorithm that approximates sampling
from the top-k private tokens with a small superset of size k′ ≈ k, ensuring high utility without
losing out on private tokens that are unlikely under a public model.

• Privacy-Utility-Compute Tradeoffs: By empirically analyzing synthetic text generation on three
domains—medical, legal, and commercial—we demonstrate an 8-16× reduction in computation
cost across the board to achieve the same privacy and utility.2 Thus, INVISIBLEINK can produce
hundreds of tokens at significantly smaller compute budgets (such as < 10× the non-private cost),
including in settings where baselines extinguish their privacy budgets within a handful of tokens.

• User-friendly Accounting: Given a privacy budget and a compute budget, we give a non-
adaptive privacy accounting procedure and practical heuristics to tune hyperparameters. This
makes INVISIBLEINK usable off-the-shelf. In contrast, grid search is the only way to calibrate
the adaptive DP guarantees of top prior baselines [13, 19]. In addition to increased computational
cost, grid search adds to the privacy cost [20], which is neglected by past works.

We release our code at: https://github.com/cerai-iitm/InvisibleInk-Experiments.

1Generally, the drop in utility from DP can be offset by increasing data and computation, e.g., by averaging
over larger batches to reduce sensitivity; DP model training also admits a similar phenomenon [15]. Thus, we
compare methods by the computation cost necessary to attain given privacy and utility levels.

2We allow some baselines an advantage by (incorrectly) reducing their sensitivity by 2 or
√
2; see §5.
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2 Related Work

Generating synthetic data with DP has an extensive literature, particularly over categorical fea-
tures [21–25]. Many such approaches rely on the exponential mechanism [26–28]. Unfortunately, it
is cryptographically hard to generate DP synthetic data that preserves all 2-way marginals with poly-
nomial sample complexity [29]; see also [30, Thm. 6.12] and [31, Ch. 9]. Fortunately, public data can
provide strong priors over data distributions to partially circumvent these lower bounds. Public data
has long been used in private tabular data generation [32–35]. More recently, pretrained generative
foundation models provide strong priors, enabling the DP generation of complex image/text data
[36–41]. In this work, we focus on practical and scalable DP generation of text using LLMs.

We focus on practical and scalable DP text generation. DP text can be generated from DP fine-
tuned models [42–46] or via private inference.3 We focus on the latter as private fine-tuning can be
prohibitively expensive, especially with large models [15]. Private inference is possible with various
types of LLM access: via a text generation API [41, 46, 47], or white-box access to next-token
logits [13, 47, 48]; we focus on the latter. Other DP text manipulation tasks include paraphrasing [49,
50] and next-token prediction [19, 51–54]. We adapt [19] to text generation as a baseline in §5.

Most prior approaches to DP text generation suffer from one or more restrictions: (1) a small number
of generations, enough to serve as exemplars for in-context learning [48, 55, 56]; (2) short or highly
constrained generations in classification or directed text generation tasks such as summarization or
question-answering (as opposed to open-ended long-form generation) [13, 47]. Of these, only the
API-access method of [41] and the white-box method of [13, 57] apply to long-form generation.

Prior DP text generation approaches diverge significantly from successful decoding algorithms in the
NLP literature. Sampling from truncated next-token distributions [16, 58–62] is strongly backed by
qualitative [16], quantitative [17, 18, 63], and theoretical [64] evidence; see the survey [8] for further
details. INVISIBLEINK generates high-utility text by adapting truncated decoding to the DP setting.

The concurrent work of [57] extends the approach of Amin et al. [13] by clustering similar references
into a batch. This orthogonal approach can also be integrated with INVISIBLEINK for synthetic text
generation, though clustering may not be applicable to some tasks, such as RAG. [57] also replaces
mean aggregation of (clipped) logits with median aggregation, which has a smaller local sensitivity
and a tighter ex-post DP guarantee [65], i.e., the DP guarantee is evaluated after the algorithm’s
output is observed. In contrast, INVISIBLEINK provides a stronger standard (ex-ante) DP guarantee,
which can be evaluated before the algorithm is run. Similar to [13], the DP guarantee in [57] is
data-dependent and shares the same limitations (discussed at the end of §3).

3 Preliminaries: Differentially Private Text Generation

Language Models & Decoding. An auto-regressive language model P over a vocabulary V defines a
distribution P (xt|x<t) over the next token xt ∈ V in response to a prefix x<t := (x1, . . . , xt−1) ∈
V ∗; here, V ∗ denotes the set of all sequences of elements from V . These probabilities are typically
obtained as the softmax of the next-token logits ϕ(· |x<t) as P (xt|x<t) ∝ exp

(
ϕ(xt|x<t)

)
.

Given a query q ∈ V ∗ and a reference text r ∈ V ∗, we could iteratively sample a response
xt ∼ P ( · | q, r,x<t) from the LLM P with a concatenation of q, r,x<t as context, and x<1 = ∅.
Unfortunately, this approach tends to over-represent incorrect low-probability tokens (as |V | ∼
O(105) or larger), leading to degenerate text [16, 17]. A common strategy is to use decoding
algorithms that reshape P (· | ·) into another distribution Q(· | ·) from which we sample the next token.

Typical decoding algorithms promote more conservative outputs by suppressing the unreliable low-
probability tokens. For example, temperature rescaling [66] at a temperature τ > 0 rescales the
logits, while top-k sampling [58] only samples from the k largest logits. Mathematically,

Qτ (xt|x<t) ∝ exp
(
1
τ ϕ(xt|x<t)

)
, and Qtop-k(xt|x<t) ∝

{
P (xt|x<t) , if xt ∈ Vk,

0 , else ,
(1)

where Vk ⊂ V is the set of k tokens with highest logits ϕ( · |x<t). See Fig. 2 for an example.

3Private inference can be used on pretrained models prompted with private data (our setting) or non-DP
fine-tuned models. Both are conceptually identical as they privatize a set of non-private predictions.
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Figure 2: Left & Center: Illustration of how two common decoding algorithms—temperature rescaling and
top-k sampling—reshape the next-token probabilities for (non-private) LLM-based text generation. Right:
Heatmap of MAUVE scores [17, 18] of synthetic text generated for the MIMIC-IV-Notes dataset (without using
any sensitive references). The best generations (highest MAUVE scores) are obtained at τ ≈ 1.1 and k ≈ 100;
INVISIBLEINK exhibits similar behavior of decoding hyperparameters for private text generation.

The quality of non-DP long-form text generation is primarily determined by the decoding algorithm
and its hyperparameter (τ or k) [16, 17, 63]. Typically, these hyperparameters are tuned to balance
two competing objectives: reducing (or zeroing out) the probability of generating contextually
inappropriate or low-probability tokens, while allowing the selection of moderately probable but
contextually appropriate tokens to maintain diversity and coherence. In practice, this typically
translates to a temperature τ ≈ 1 or slightly smaller, and k ∈ [10, 100] (cf. Fig. 2).

In this work, we generate text with a set of privacy-sensitive references R = (r1, . . . , rB) ∈ (V ∗)B .
This setting arises in synthetic text generation, where we instruct an LLM to generate text similar
to given references, or in RAG systems where R contains retrieved information over confidential
knowledge bases. The model output may leak sensitive information from R in such cases.

Differential Privacy (DP). DP provides formal protections against such privacy leakage. At a
high level, a (randomized) text generation algorithm A satisfies DP at the example level, if for all
adjacent reference sets R,R′ (that differ in a single sensitive example), the probability distributions
A(q,R) and A(q,R′) over responses x ∈ V ∗ are “nearly indistinguishable”. A fully specified
example-level DP guarantee requires precise notions of adjacency and indistinguishability. We focus
on the replace-by-null adjacency, where an adjacent R′ is obtained by replacing one element of R
by the empty string (or vice versa); we denote it as R ≃ R′. This is functionally similar to adding or
removing a reference, but simplifies the theoretical technicalities; see [15] or §B for a comparison of
adjacency notions. We use the indistinguishability notion of zero-concentrated DP (zCDP) [67]. Let
Dα denote the α-Rényi divergence. Then, an algorithm A satisfies ρ-zCDP if

Dα

(
A(q,R)∥A(q,R′)

)
≤ ρα for all α > 1 and all adjacent R ≃ R′ .

Smaller values of ρ mean that A(q,R) and A(q,R′) are closer to each other (in terms of the Rényi
divergence) and the impact of the differing example between R,R′ on the output is low, indicating
higher privacy. The zCDP guarantee can be converted into other notions, e.g., (ε, δ)-DP [68–70]. Our
techniques also translate directly to other notions of adjacency and indistinguishability; see §C.

DP Text Generation via the Exponential Mechanism. Our goal is to design an algorithm A(q,R)
to generate text in response to a given query q and references R with a desired ρ-zCDP guarantee.
We assume the whitebox setting where model logits ϕ( · |x) can be queried for any x ∈ V ∗. An
increasing number of state-of-the-art general-purpose and reasoning open-weights models including
DeepSeek, LLaMA3, Mistral, GPT-OSS allow whitebox access to model logits. This is in contrast to
the more restrictive API-access setting, where one inference call returns an entire text sequence [41].

We describe the prior state-of-the-art approach of Amin et al. [13], which generates the next token
xt ∈ V via the canonical exponential mechanism [14] over the next-token logits of the given
LLM. Given a query q and sensitive references R, the first step is to obtain the next-token logits
ϕi = ϕ(· | q, ri,x<t) ∈ R|V | for each i ∈ [B] with an LLM inference call. Second, we clip and
aggregate the logits as ϕ̄ = (1/B)

∑B
i=1 clipC(ϕi), where clipC(ϕ) clips each coordinate of ϕi to

lie in [−C,C].4 We can then sample a ρ-zCDP token xt ∈ V by sampling [71] from the distribution

Q(xt | q,R,x<t) ∝ exp
( √

2ρ
sens(ϕ̄)

· ϕ̄(xt)
)

(2)

4The clipping in [13] re-centers the logits (which are invariant to additive shifts). While this is empirically
important, we omit the details in our exposition as the underlying mathematical properties do not change.
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Figure 3: Left two: Histograms of private logits ϕi and differences from public logits ϕi − ϕpub for a
synthetic data sample generated from the MIMIC dataset, with 5th and 95th percentiles shown by the dotted
lines. The spread of values for ϕi − ϕpub is significantly smaller (around 10×) than that of ϕi. Thus,
DClipC(ϕi,ϕpub)(y) = ϕi(y) for over 95% of all y ∈ V with C ≈ 1, while the naive clipping of Amin et al.
[13] requires C ≈ 8. This translates into an 8× gain in computational efficiency. Right two: A small clip norm
of C = 1 (using Amin et al. [13]’s method introduces significant bias resulting in a near-uniform distribution
over the vocabulary. In contrast, DClip (see §4) preserves probabilities with minimal distortion even at C = 1.

where the sensitivity sens(ϕ̄) measures the maximum change in ϕ̄(y), when we move to an adjacent
set R′ ≃ R of references for any y ∈ V . The clipping and aggregating steps control the sensitivity
as sens(ϕ̄) = O(C/B),5 so that Eq. (2) reduces to sampling with temperature τ = O(C/B

√
ρ).

Drawbacks of Prior Work. If the clip norm C is too small, the resulting distortions in the next-
token logits boost the probabilities of the unlikely tail tokens (see Fig. 3), and if C is too large,
the temperature τ ∝ C/B becomes too large. Both scenarios lead to degenerate text. Generating
non-degenerate text from this method requires taking C sufficiently large (e.g. [13] recommend
C ≈ 10), and B large enough to ensure a temperature of τ = O(C/B

√
ρ) ≈ 1.

That is, generating each private token requires a large number B of LLM next-token inference calls,
which can be prohibitive if the minimum admissible B is large. In practice, we can typically control
B, as this is the number of reference documents we use for one synthetic generation, or the number
of retrieved references in RAG systems. However, we find in §5 that [13] fails to produce coherent
text at a batch size B smaller than 50 or 100, making it prohibitively expensive at scale.

Finally, Amin et al. [13] adaptively use tokens generated from public logits ϕpub = ϕ( · | q,x<t)
using the sparse vector technique (SVT) [72] if they are close enough to the aggregated private logits
ϕ̄. While this improves the overall privacy-utility tradeoffs, it yields a data-dependent DP guarantee,
making it hard to calibrate the noise level to a desired privacy guarantee in advance.

This leaves grid search as the only option to calibrate the noise hyperparameters, i.e., run the algorithm
for different hyperparameters and return the output from the experiment whose data-dependent DP
guarantee is the closest to the target privacy level. This comes at a significantly increased computation
and privacy costs [20]. This important practical issue is neglected by prior works.

Next, we describe how INVISIBLEINK overcomes these drawbacks.

4 INVISIBLEINK: DP Text Generation under Strict Compute Budgets

INVISIBLEINK aims to improve the privacy loss with a surgical clipping function, and the utility with
approximating the top-k decoding over private logits at any given computation budget.

DClip: A Targeted Clipping Function. The private next-token logits ϕi := ϕ( · | q, ri,x<t) encode
not just the sensitive information in the reference ri, but also general information about language,
grammar and syntax, semantics, a degree of world knowledge and common sense, and style/tone of
the preceding tokens [e.g. 73–75]. Clipping the next-token logits involves paying a privacy cost for
this general non-private information, leading to wasted privacy budget.

This non-private prior information about language is already captured by a pretrained model, even
without access to the sensitive reference ri. We isolate and selectively clip only the extra information
conveyed by the private logits ϕi over and above the public logits ϕpub := ϕ( · | q,x<t) ∈ R|V |:

DClipC(ϕi,ϕpub) := ϕpub + clipC(ϕi − ϕpub) , (3)

5We have sens(ϕ̄) = 2C
B

(resp. C
B

) under replace-by-null (resp. zero-out) adjacency; cf. §B. In particular,
§B.3 corrects technical errors in the privacy analysis of Amin et al. [13] due to imprecise adjacency notions.
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Algorithm 1 INVISIBLEINK for DP Text Generation
Require: LLM logit API ϕ(· | ·), vocabulary V , query q, sensitive references R = {r1, . . . , rB}, max text

length T , clip norm C, temperature τ , top-k parameter, initial generation x = ∅
1: for t = 1, . . . , T do
2: For i ∈ [B], set ϕi = ϕ( · | q, ri,x<t) ∈ R|V | and ϕpub = ϕ( · | q,x<t) ∈ R|V | ▷ LLM calls
3: V +

k = EXPANDEDTOPVOCABULARY
(
ϕpub, k, C,B

)
▷ Vocabulary for Top-k+ sampling

4: Set ϕ̄ = ϕpub +
1
B

∑B
i=1 clipC(ϕi,ϕpub) ▷ Aggregated clipped logits

5: Sample xt ∼ softmax(ϕ̄[V +
k ]/τ) ▷ Exponential mechanism over V +

k
6: Yield next token xt, append it to x, and break if xt = <eos> ▷ Generated Token
7: procedure EXPANDEDTOPVOCABULARY(ϕpub, k, C,B)
8: Set ℓ to be the kth largest entry of ϕpub ▷ top-k threshold of ϕpub

9: Return {y ∈ V : ϕpub(y) ≥ ℓ− 2C/B} ▷ Expand top-k threshold of ϕpub by 2C/B

where C > 0 is a specified clip norm, and clipC(ϕ) projects each coordinate of ϕ onto the interval
[−C,C]. The clipped and aggregated logits ϕ̄ can then be a drop-in replacement in Eq. (2) is

ϕ̄ = 1
B

∑B
i=1 DClipC(ϕi,ϕpub) = ϕpub +

1
B

∑B
i=1 clipC(ϕi − ϕpub) . (4)

Its sensitivity is also conveniently bounded as follows (see §C for a proof):
Property 1. Fix a query q and prefix x<t, and denote ϕi = ϕ( · | q, ri,x<t). Then, the sensitivity of
the map (r1, . . . , rB) 7→ 1

B

∑B
i=1 DClipC(ϕi,ϕpub) under the replace-by-null adjacency is C/B.

Fig. 3 shows that the spread of ϕi−ϕpub is typically much smaller than that of ϕi, since ϕpub already
contains a strong prior on language. We utilize a smaller clip norm C without distorting the model
outputs, and hence a smaller compute cost B to maintain a temperature of τ ∝ C/B close to 1.

Truncated Top-k+ Sampling. As discussed in §3, the degeneracies of sampling long-form text with
temperature τ ≲ 1 can be fixed by truncated decoding [16]. We now adopt this to DP text generation.
Define Vk(ϕ) ⊂ V as the top-k vocabulary corresponding to logits ϕ ∈ R|V |:

Vk(ϕ) = {y1, . . . , yk} ⇐⇒ ϕ(y1) ≥ · · · ≥ ϕ(yk) ≥ maxy∈V \Vk(ϕ) ϕ(y) .

Vanilla (non-private) top-k sampling from one logit vector ϕi = ϕi( · |q, ri,x<t) would restrict
the vocabulary to Vk(ϕi). However, in our case, we have B such vectors ϕ1, . . . ,ϕB which have
to be combined to get the next token. Our goal is to extend the truncation to union of the top-k
contributions of these logit vectors in Eq. (4).

To get the contribution of the logit vector ϕi to Eq. (4), we plug in ϕj = ϕpub for j ̸= i, since ϕj

does not contain any private information about ϕi. Thus, we define its contribution as

ϕclip
i := ϕpub +

1

B
clipC(ϕi − ϕpub) .

Then, the top-k vocabulary for private generation is simply the union V̄k := ∪B
i=1Vk(ϕ

clip
i ).

Unfortunately, restricting our vocabulary to this privacy-sensitive top-k set V̄k fails to satisfy DP.
Changing the dataset from R to an adjacent R′, can cause a token y ∈ V to “jump out” of the top-k
set V̄k. Its probability of being generated then goes from a non-zero value to a zero value, leading to
a privacy loss of log(Q(y|q,R,x<t)/Q(y|q,R′,x<t)) = ∞ (see [e.g. 70, Def. 2] for definitions).

An alternative that has been explored in previous work is to simply sample from the top-k tokens
from the public logits ϕpub. This incurs no privacy cost as the restricted vocabulary is independent
of the private logits. However, this approach may fail to generate tokens that are rare in the public
(pretraining) data but common in the sensitive data R. Such tokens are likely to be relevant to the
data generation domain, and it is thus desirable to recover them.

Instead, we build a tight superset of V̄k = ∪B
i=1Vk(ϕ

clip
i ) based purely on the public logits ϕpub.

Observe that clipping ensures |ϕclip
i (y)−ϕpub(y)| ≤ C/B for each i. So, each y ∈ Vk(ϕpub) satisfies

ϕclip
i (y) + C/B ≥ ℓ, where ℓ is the top-k threshold of ϕpub. Thus, the top-k threshold ℓi of ϕclip

i is
bounded as ℓi ≥ ℓ− C/B. It thus follows that:

y ∈ Vk(ϕ
clip
i ) ⇐⇒ ϕclip

i (y) ≥ ℓi =⇒ ϕpub(y) +
C
B ≥ ℓ− C

B . (5)
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In other words, the private top-k vocabulary Vk(ϕ
clip
i ) always lies in the set V +

k := {y ∈ V :

ϕpub(y) ≥ ℓ − 2C/B}. Since this is true for each i ∈ [B], we have that V +
k is a superset of

V̄k = ∪B
i=1Vk(ϕ

clip
i ). We refer to sampling from the set V +

k as Top-k+ sampling.

Since V +
k is constructed without using the private logits, sampling from it does not incur any privacy

cost. We find in §5 that
∣∣V +

k − Vk(ϕpub)
∣∣ ≈ 10 ≪ |V |, i.e. V +

k is indeed a tight superset of V̄k.

INVISIBLEINK: Text Generation & Privacy Accounting. Our approach wraps the above two
components in an exponential mechanism-based outer loop; see Algorithm 1. Crucially, Algorithm 1
does not involve any data-dependent privacy mechanisms. This lets us give a zCDP bound, building
directly upon the zCDP analysis of the exponential mechanism [71] and adaptively composing [70]
the per-token zCDP guarantee over T tokens. Adaptive composition ensures that previously generated
tokens can be reused safely in future steps without additional privacy cost; see §C for proof.

Theorem 2. Algorithm 1 with a maximum token budget T , a clipping threshold C, a set R of
B = |R| references, and temperature τ satisfies ρseq-zCDP with ρseq = TC2/(2B2τ2).

When running the algorithm in practice, we assume that we are given the privacy budget ρseq, the
maximum sequence length T , and the number of references B (which fixes the compute budget).
We recommend a default temperature of τ ≈ 1. Then, Theorem 2 lets us set the clip norm C =
Bτ

√
2ρseq/T to get the desired privacy guarantee (independent of the top-k parameter).

Another advantage of our method is that generation gracefully falls back on that of the public model
if the compute or privacy budget is too small. In this case, we get a very small C and ϕ̄i ≈ ϕpub.
This nice property is not satisfied by existing baselines. For example, as the privacy or computation
budget gets smaller, [13] requires a small clip norm C, reducing their method to uniform sampling
over the full vocabulary (see Fig. 3). This leads to gibberish text.6 Similarly, AdaPMixED [19] has a
data-dependent privacy guarantee that depends on the number of tokens sampled per generation. As
the privacy or computation budget gets smaller, the length of synthetic generations falls sharply.

Finally, we note that it might be possible to improve the dependence of Theorem 2 on the token
budget T with regularization [e.g. 76, 77]; we leave this for future work.

5 Experiments

Setup. Given a reference dataset D = {r1, . . . , rN}, our task is to create n synthetic texts x1, . . . ,xn

that are statistically similar to D while satisfying a given ρseq-zCDP guarantee with respect to D. We
generate synthetic example xj based on a batch Rj = (rjB+1, . . . , r(j+1)B) of sensitive references
with a query q instructing a generation similar to the given references. By parallel composition, each
example xj must also satisfy ρseq-zCDP. Since the batch size B fixes the computation budget, we
allow (B+1) LLM next-token inference calls per generated token. This also limits us to n ≤ ⌊N/B⌋
synthetic examples. See §D for additional details on the task and experimental setup.

We report a central DP guarantee for a single hyperparameter setting to generate n synthetic text sam-
ples; the randomized mechanism here is a set of n autoregressive text generations from LLMs, which
output a sequence of tokens7 each. We propose heuristics for choosing optimal hyperparameters in
§5.3 in lieu of accounting for privacy lost in hyperparameter tuning. Throughout this work, we report
example-level (an example is a single text sample drawn from the reference dataset) ρ-zCDP guaran-
tees (converted to (ε, δ)-DP where necessary) under the replace-by-null adjacency; see §B for details.
We release our code at: https://github.com/cerai-iitm/InvisibleInk-Experiments.

Datasets. We experiment with three datasets in clinical, legal, and commercial domains, see Tab. 1.
MIMIC-IV-Note [78, 79] is a de-identified collection of medical text associated with ICU patients;
we use the discharge summaries, which contain sensitive diagnosis, treatment, and medication
information. Further, this dataset is legally unavailable for LLM pretraining, making it valuable in
modeling real-world distribution-shift sensitive domains. The Text Anonymization Benchmark (TAB)
[80] contains N = 1013 (training set) court case notes (in English) from the European Court of

6For example, the word “differential” might be made up of two tokens “differ” and “-ential”. Sampling
uniformly at random could yield the “-ential” token without an appropriate preceding token, producing gibberish.

7The token string ends in an <EOS> token unless the number of tokens generated reaches the limit T first.
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Dataset Domain Text Type Size Avg. Length # Generations Max. Length

MIMIC-IV-Note Medical Discharge Summaries 311K 298.4 1000 500
Yelp Commercial Reviews 1.9M 145.2 500 200
TAB Legal Court Case Texts 1013 387.7 100 500

Table 1: Dataset summaries. Lengths are measured in tokens and we use at most Bn ≤ 128K reference texts.

Human Rights (ECHR) with personal identifiers and other confidential attributes. This low-resource
dataset only admits extremely small batch sizes B (e.g., B = 127 gives us a maximum of 8 synthetic
texts). The Yelp Reviews dataset [81] contains user-generated reviews and ratings for businesses with
personal opinions and location references, and is a standard benchmark in DP text generation [13, 41].
We intentionally choose real privacy-sensitive datasets (e.g. MIMIC, TAB) datasets with long-form
text, rather than standard internet datasets (AGNews, IMDB, etc.) that are well-represented in the
pretraining data of most LLMs [82, 83]. See §D.2 for further discussion.

Models. We primarily use the TinyLLaMA 1.1B [84], a compact open-weights model with strong
performance in compute-constrained settings. We also use LLaMA3.2-1B [85] to study the effect of
large vocabularies (|V | = 128K vs. 32K for TinyLlama), and LLaMA3-8B [86] for scaling.

Baselines and Hyperparameters. We compare INVISIBLEINK (with and without Top-k+ sampling)
with the prior white-box SoTA methods Amin et al. [13] for DP text generation and AdaPMixED [19]
for DP next-token prediction. We iteratively sample from the predicted next-token distribution of
AdaPMixED to adapt it to DP text generation. For all methods, we fix the batch size B as it fixes the
computation budget. We select other hyperparameters, such as the clip norm C for INVISIBLEINK
and Amin et al. [13] to achieve a desired privacy guarantee. See §D.5 for further details.

The method of Amin et al. [13] has a sensitivity of C/B under the zero-out adjacency, compared
to 2C/B under the replace-by-null adjacency (see Property 9 of §B). Yet, we give it an advantage
by (incorrectly) taking the sensitivity to be C/B under the replace-by-null adjacency. AdaPMixED
originally gives a data-dependent DP guarantee under the add-or-remove adjacency in [19]. Since
we find that the utility trends under both adjacency notions are qualitatively similar (see §E.6), we
modify AdaPMixED directly and report the results for replace-by-null adjacency here.

The adaptive DP guarantees of Amin et al. [13] and AdaPMixED make precise privacy accounting
challenging; this is a drawback of these methods. We select hyperparameters that give the desired DP
guarantee “on average”. For example, we find that the adaptive SVT step in Amin et al. [13] selects
private tokens around 25% of the time, so we calibrate their method to produce ≈ T/4 private tokens
and generate until the privacy budget is exhausted. We find that the (privacy-sensitive) data-dependent
privacy loss reaches the maximum budget for at least one batch across all settings.

In addition to the baselines discussed above, we also compare INVISIBLEINK with the API-access
method of Augmented Private Evolution (AugPE) [41]. This more restrictive setting naturally makes
privatization harder. AugPE makes two types of LLM inference calls: generation and paraphrasing.
We cannot directly compare the computational cost of INVISIBLEINK to AugPE in an apples-to-
apples comparison based on the number of next-token inference calls per generated token, since
it is calibrated using the number of paraphrasing iterations made per generated sequence. Instead,
we directly use the wall-clock runtime of both methods as a measure of computation cost. We also
allow AugPE an advantage of

√
2 in the sensitivity under replace-by-null adjacency (see §B.3.3). For

additional results and detailed generation settings, see §E.1.

Metrics. We evaluate the statistical similarity between the generated text and reference distribution
with MAUVE scores [17, 18, 87], the gap between the average perplexities of generated and reference
texts (denoted ∆PPL), and average generation lengths to ensure that sufficient tokens are generated
before exhausting the privacy budgets. The MIMIC discharge notes also contain medical named-
entities such as names of medical conditions, procedures, and medicines. We plot the number of such
entities identified by a MedNER model [88], as a measure of the domain-relevance of generated text.

5.1 Experimental Results

We compare the privacy-utility-compute tradeoffs of INVISIBLEINK with the baselines at a target level
of (ε = 10, δ = 10−6)-DP in Fig. 4. See Tab. 2 for evaluations at other ε values (with δ = 10−6).
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Figure 4: Utility-compute tradeoffs at (ε = 10, δ = 10−6) DP on each dataset across varying compute budget
from B ∈ {2, . . . , 128}. Results reported over 3 runs with 95% confidence intervals (see §D.6) for MIMIC and
1 run for Yelp/TAB datasets. INVISIBLEINK can produce text that matches or exceeds the baselines at a fraction
of the compute. The baselines do not even work for the low-resource TAB dataset at a small batch size B = 7.

INVISIBLEINK (k = 100) INVISIBLEINK (k = |V |) Amin et al. [13] AdaPMixED [19]

B 3 7 15 31 3 7 15 31 63 127 7 31 127

ε = 1 68.3 0.1 66.9 1.1 67.9 1.5 69.2 1.3 67.3 0.9 67.6 0.9 68.2 1.4 INF INF INF 58.8 0.3 56.8 0.1 59.2 0.2
ε = 3 67.4 1.1 69.0 0.7 69.7 0.6 70.9 1.2 66.9 2.0 69.1 1.3 69.1 0.7 INF INF 55.2 0.0 58.8 0.1 58.9 0.3 64.7 1.0
ε = 5 67.7 0.1 70.3 1.0 69.7 0.9 73.5 1.0 68.6 0.5 68.9 0.7 69.0 0.7 INF INF 69.5 0.0 59.4 0.3 59.8 0.4 69.9 0.9
ε = 10 68.4 1.4 72.0 0.2 73.7 0.4 75.0 1.5 68.3 0.9 70.4 1.3 72.4 1.4 INF 68.9 0.5 70.1 1.3 59.2 0.5 58.9 0.5 TLE

Table 2: MAUVE (%) scores, reported with mean and 95% confidence intervals (see §D.6) over 3 runs, for
1000 synthetic generations of the MIMIC dataset using TinyLLaMA. Synthetic generation without any private
references (ε = 0) yields a MAUVE of 68.56% (best hyperparameters). INVISIBLEINK outperforms every
private baseline with ≈ 8× smaller batch size. The results for INVISIBLEINK with k = |V | are reported for
τ = 1.0 and for k = 100 are reported for τ = 1.1. AdaPMixED [19] sometimes exceeds a wall clock time of
36 hours (denoted TLE- Time Limit Exceeded); Amin et al. [13]’s method fails to generate any synthetic text for
small privacy/compute budgets (denoted INF- infeasible). The top two scores for every ε are highlighted.

We find that INVISIBLEINK with Top-k+ sampling consistently produces the highest quality text with
the longest generations (and the most medical named entities for MIMIC) at smaller compute budgets
across datasets. Consider the results on MIMIC, for example: INVISIBLEINK can achieve a MAUVE
score of ≈ 71-74% with 8-16 inference calls per token, while Amin et al. [13] achieves ≈ 70-72%
at with 64-128 inference calls: this is an 8× improvement in computation cost. INVISIBLEINK
also produces more medical named entities than Amin et al. [13] capturing the domain-specific
information in the sensitive references and producing qualitatively better text.

Tab. 2 shows that INVISIBLEINK exhibits graceful degradation in utility when operating under tight
privacy budgets or compute constraints, where baselines fail. Specifically, Amin et al. [13]’s method
uses up all its privacy budget for the SVT term and cannot produce any text at (a) B ≤ 31, (b)
ε ≤ 5 and B ≤ 63, and (c) ε = 1 and B ≤ 127; see §E. Meanwhile, AdaPMixED extinguishes
its data-dependent privacy budget after generating as few as 10 tokens for B = 8. Both baselines
require large batch sizes to operate meaningfully, rendering them impractical in compute-constrained
environments. We discuss the full sets of hyperparameters explored, in §D.5.

Comparison with API-Access Methods. We find that INVISIBLEINK completely outperforms
AugPE [41] across privacy budget settings and evaluation metrics in Fig. 5. We also found in our
preliminary experiments that AugPE showed competitive (with INVISIBLEINK) performance on
the Yelp dataset. This can likely be attributed to the LLM-based paraphrasing step working best
when the dataset of private references is well-represented in the pre-training data. The dominance of
INVISIBLEINK over AugPE is expected due to the more restrictive API-access setting of AugPE.
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Figure 5: INVISIBLEINK outperforms the API-access method of AugPE [41] across all settings: Utility vs
Compute plots (avg. over 3 runs with 95% confidence intervals) for INVISIBLEINK and AugPE for ε = 10 for
1000 synthetic texts generated for the MIMIC dataset. Wall-clock run time is used as a proxy for computational
cost. We report results for B + 1 = 4, 8, 16, 32 for INVISIBLEINK and and TAugPE = 1, 3, 5, 10 for AugPE.

5.2 Understanding INVISIBLEINK: Ablations, Scaling and Additional Experiments

We examine the importance of the two key components—DClip and the Top-k+ sampling—of
INVISIBLEINK. Fig. 3 shows that the smaller active range of ϕi − ϕpub allows us to use a smaller C,
when clipping using DClip, to maintain similar levels of distortion. Thus, we can use smaller batch
sizes B to keep τ ∝ C/B ≈ 1, translating into an ≈ 8× improvement (see Fig. 4) in computation
cost at the same privacy-utility levels. Fig. 6 shows us that Top-k+ decoding offers significant
improvements (in MAUVE scores) over using the full vocabulary (72% vs. 65% at ε = 10 for
TinyLlama). This distinction is more pronounced for the similar-sized Llama-3.2 1B model (76% vs.
62% at ε = 10), with a 4× larger vocabulary (128K vs. 32K).
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Figure 6: Truncated decoding offers significant benefits: MAUVE scores (avg. over 3 runs with 95% confi-
dence intervals) for DP synthetic text generation of 1000 samples from the MIMIC Dataset using TinyLLaMA-1B
and LLaMA3.2-1B models at a temperature τ = 1.1 and batch size B = 7.

Additional Experiments. We study the downstream utility of private synthetic data generated for the
Yelp Dataset by considering classification statistics of a RoBERTa model [89] finetuned for predicting
review scores and business categories from input texts. The results, presented in §E.2, show that
INVISIBLEINK outperforms all baselines significantly, across several evaluation metrics and at much
smaller batch sizes. We also present additional statistics of Top-k+ sampling from the expansion set
(V +

k \ Vk), in §E.3, and highlight the scalability of INVISIBLEINK to larger models by generating
synthetic text using a LLaMA3 8B model at low batch sizes (incompatible with baselines) in §E.4.
§E.5 gives additional ablations on the effect of the temperature, clip norm, and top-k parameters.

5.3 Practical Recommendations

We recommend tuning a temperature parameter τ ≈ 1 (generally in the range of 0.9 to 1.2), if
permitted by the computation budget. A reasonable heuristic to avoid tuning is to directly set τ = 1,
as it achieves competitive performance. Then, we set a clip norm C = Bτ/

√
2ρseq/T , where

the batch size B fixes the computation budget, ρseq-zCDP is the target privacy guarantee, and T
is the maximum token budget. Finally, we must tune a free parameter k for Top-k+ sampling.
We recommend tuning k following best practices for non-private decoding (e.g., k ∈ [50, 100] for
open-ended settings and smaller for more directed settings such as reasoning).

Conclusion. We introduce INVISIBLEINK, a scalable framework for long-form text generation that
provides rigorous differential privacy guarantees with respect to sensitive references. For a detailed
discussion of the limitations and broader impact of our work, see §F.
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A Notation

We summarize our main notation in Tab. 3.

Symbol Description

V LLM vocabulary, set of all allowed tokens

V ∗ set of all sequences of tokens (of any length)

x<t = (x1, . . . , xt−1) ∈ V t−1, all previously generated tokens before time-step t-token

ϕ LLM logit function, where ϕ(xt | x<t) ∈ R denotes the logit score of the next token
xt ∈ V given the prefix x<t

ϕ( · |x<t) the vector of next-token logits in R|V | indexed by the token y ∈ V

q query or prompt for generation (not privacy-sensitive)

r reference text (privacy sensitive)

R batch of sensitive references R = {r1, . . . , rB}
D dataset of sensitive references

N = |D|, dataset size

n number of generations

ϕpub Logit vector ϕ( · | q,x<t) ∈ R|V | generated without using any sensitive references
from R

ϕi Logit vector ϕ( · | q, ri,x<t) ∈ R|V | generated using sensitive reference ri

clipC(ϕ) clips its input vector ϕ component-wise to have ℓ∞ norm at most C

DClipC(ϕ,ϕpub) = ϕpub + clipC(ϕ− ϕpub), our proposed clipping function that clips the difference
with public logits

Vk set of k tokens with highest public logits ϕpub

V +
k expanded top-k set of tokens; see §4

B = |R|, batch size; controls the computational cost of INVISIBLEINK

C clipping norm

τ sampling temperature

T maximum number of tokens allowed per generation

Table 3: A summary of all important notation used throughout the paper.

B Adjacency Notions and DP Guarantees for LLM Inference

The goal of this section is to clarify the technicalities of the provided DP guarantees for LLM
inference and private text generation. In particular, we describe the adjacency notions used (implicitly
or explicitly) in prior work and how they differ from the ones used in this work. We also describe
how the advantage we give to the baselines in our experimental comparisons of §5.

A DP algorithm must satisfy the guarantee that changing the input dataset by one unit of data leads
to a nearly indistinguishable output. To fully specify this guarantee, we need to mention each of the
underlined quantities [15].

Adjacency notion. It describes what it means to change the input dataset (e.g., add/remove/replace
some data). We explain this in detail in §B.1.

Privacy unit. The unit of data that is protected under the DP definition is known as the privacy
unit. This quantity determines whether we protect individual examples (or documents; known as
example-level DP), or all examples contributed by a single “user” (known as user-level DP). In this
work, we only consider example-level DP.
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Indistinguishability Notion. This refers to the specific way we quantify how similar the output
distributions on two adjacent datasets are. We use zero-Concentrated DP (zCDP) throughout:

Definition 3 (Zero-concentrated DP). An algorithm A satisfies ρ-zCDP if

Dα

(
A(q,R)∥A(q,R′)

)
≤ ρα for all α > 1 and all adjacent R,R′ , (6)

where Dα denotes the α-Rényi divergence between probability distributions

Dα(P∥Q) =
1

α− 1
log

(
EX∼Q

[(
P (X)/Q(X)

)α])
.

Conversion formulae between various notions of indistinguishability are known [e.g. 90, Fig. 2]. For
example, a ρ-zCDP guarantee implies (ε, δ)-DP with [69, Thm. 21]

ε ≤ inf
α>1

{
αρ+

1

α− 1
log

1

αδ
+ log(1− α−1)

}
≤ ρ+ 2

√
ρ log(1/δ) .

B.1 Adjacency Notions in LLM Inference

We explain the different adjacency notions that might arise when the DP definition is instantiated in
the context of LLM inference. Recall that we wish to generate text in response to a query q using
sensitive references R ⊂ V ∗.

We define various notions of adjacency between two sets of sensitive references R,R′. Arguably, the
most commonly used one in the literature is the add-remove adjacency, where the adjacent dataset is
obtained by adding or removing one datapoint.

Definition 4 (Add-or-Remove Adjacency). Two sets R,R′ ⊂ V ∗ are said to be add-or-remove
adjacent if R′ = R ∪ {r} or R = R′ ∪ {r} for some r ∈ V ∗.

This notion of adjacency is semantically meaningful and maps to intuitive expectations of a privacy
guarantee. Unfortunately, it can be technically challenging to develop rigorous algorithms in this
setting. In particular, we cannot assume the sensitive dataset size |R| to be fixed, as adjacent R,R′

are of different sizes. This makes the dataset size a privacy-sensitive quantity that needs to be
protected with privacy mechanisms; see [91, §E], [15, §2.1.1], and [92] for further discussions.

For example, the sensitivity of the mean operation (s1, . . . , sn) 7→ (1/n)
∑n

i=1 si is a function of
the dataset size n, meaning that we cannot directly use it in the add-or-remove paradigm. A common
workaround (used, for example, in private learning with DP-SGD) is to privatize the sum query
(s1, . . . , sn) 7→

∑n
i=1 si and post-process it to obtain an estimator of the mean. Unfortunately, this is

not possible in the setting of §3: the logit vector ϕ̄ in Eq. (2) is actually obtained by averaging, and
we cannot use the above trick here.

A common workaround to avoid these technical challenges with the add-or-remove adjacency is
to use the so-called replace-by-null adjacency, where the removal of an element is simulated by
swapping it with a special (problem-dependent) null element [e.g. 70, Sec. 6.2]. We instantiate the
replace-by-null adjacency in the context of LLM inference in this work by choosing the null element
as the empty string:

Definition 5 (Replace-by-Null Adjacency). Two sets R = {r1, . . . , rn} and R′ = {r′1, . . . , r′n} of
equal size n are said to be adjacent in the replace-by-null model of adjacency if there exists an index
j ∈ [n] such that ri = r′i for all i ̸= j and one of rj , r′j equal the empty string ∅.

Another common way to instantiate the null element leads to the so-called zero-out adjacency:

Definition 6 (Zero-Out Adjacency). Let ⊥ denote a special null element such that the logits
ϕ(y | q, r =⊥,x<t) = 0 are always equal to zero for any token y ∈ V , query q ∈ V ∗, and
prefix x<t.8 Two sets R = {r1, . . . , rn} and R′ = {r′1, . . . , r′n} of equal size n are said to be
adjacent in the zero-out notion of adjacency if there exists an index j ∈ [n] such that ri = r′i for all
i ̸= j and one of rj , r′j equal this null element ⊥.

8To be fully formal, the space of all possible reference sequences r should be enlarged to V ∗ ∪ {⊥} to
accommodate the null element ⊥.
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Note that a zero logit vector implies next-token probabilities that are uniform over the vocabulary. As
argued in §4, this is rather unrealistic as it could produce incomplete word pieces, while r = ∅ as
the empty string still gives reasonable next-token predictions using the pretrained model’s language
and world knowledge. Further, the empty string of Definition 5 is a semantically more meaningful
null element than an artificially created ⊥ element from Definition 6. Thus, we primarily adopt the
replace-by-null adjacency in this work.
Remark 7. The replace-one (or swap) notion of adjacency is also commonly studied. Here, one
element of R is replaced by any other arbitrary element to get R′. It provides an ≈ 2× stronger
privacy guarantee at the same ε (usually at the cost of a larger noise multiplier); see [15] for a
discussion.

B.2 Sensitivity for the Exponential Mechanism

Throughout this work, we consider the following notion of sensitivity in the context of the exponential
mechanism. Note that the sensitivity depends on the exact notion of adjacency considered (§B.1).
Definition 8 (Sensitivity). The ℓ∞-sensitivity, referred throughout as simply the sensitivity, of a
function f : S → Rd (for any set S and any output dimension d) under an adjacency relation “≃” is
defined as:

sens(f) := max
R≃R′

∥f(R)− f(R′)∥∞ = max
R≃R′

max
i=1,...,d

∣∣[f(R)]i − [f(R′)]i
∣∣ .

The exponential mechanism with a target privacy level of ρ-zCDP selects an item i ∈ {1, . . . , d}
with respective scores [f(R)]i with probability [71]

exp
( √

2ρ
sens(f) [f(R)]i

)
∑d

j=1 exp
( √

2ρ
sens(f) [f(R)]j

) . (7)

Recall that we wish to generate text in response to a query q using sensitive references R ⊂ V ∗. In
this context, Definition 8 is instantiated with f(R) = ϕ( · | q,R,x<t) ∈ R|V |, where we index an
element in R|V | with a corresponding token y ∈ V .

B.3 Technical Details of DP in Baselines

In this subsection, we clarify the notions of adjacency used in prior works and other technical
guarantees. In particular, we point out an error in the privacy analysis of Amin et al. [13] and how to
fix it.

B.3.1 Adjacency Notion of Amin et al. [13]

Amin et al. [13] claims to operate in the add-remove notion of adjacency (Definition 4), yet this is
technically incorrect as we describe next. Their analysis would be correct in zero-out adjacency
(Definition 6).

Error in the Analysis of [13]. Amin et al. [13, Lemma 3] claims the following (in our notation): If
R,R′ are adjacent in the add-or-remove. Then, the sensitivity of the operation

f(R) :=
1

|R|

|R|∑
i=1

clipC
(
ϕ( · | q,R,x<t)

)
∈ R|V | (8)

is C/|R|.
This is technically incorrect for two reasons:

• Suppose R = R′ ∪ {r}, as required by add-or-remove adjacency. They claim that the
sensitivity (Definition 8) of the function f from Eq. (8) is

sens(f) “ = ”
1

|R|
∥∥clipC(ϕ( · | q, r,x<t)

)∥∥
∞ =

C

|R| .

This is incorrect since |R| ≠ |R′|, so the denominator of f(R) and f(R′) have to be
different.
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• More subtly, the sensitive dataset size |R| in the add-or-remove adjacency is privacy sensitive
and should be privatized; see §B.1 for a discussion on this. Thus, the sensitivity is not
allowed to depend on the raw dataset size |R|.

Fix: Zero-Out or Replace-by-Null Adjacency. Both these issues are fixed by adopting zero-out
(Definition 6) or replace-by-null (Definition 5) notions of adjacency instead of the add-or-remove
adjacency. Indeed, we take |R| = |R′|, so the first issue is fixed. Second, the dataset size can be
assumed to be fixed and known in this setting (see also [15, §2.1.1]), so the sensitivity can freely
depend on |R| = |R′|.
We have the following bound on its sensitivity:
Property 9. Let the dataset set B = |R| be fixed. Then, the sensitivity of the function f defined in
Eq. (8) is:

sens(f) =

{
C
B , under zero-out adjacency ,
2C
B , under replace-by-null adjacency .

Proof. We start with zero-out adjacency. Let R ≃ R′ differ in their first element where r′1 =⊥.
Then, we have that

∥f(R)− f(R′)∥∞ =
1

B

∥∥clipC(ϕ( · | q, r1,x<t)
)
− clipC

(
ϕ( · | q,⊥,x<t)

)∥∥
∞

=
1

B

∥∥clipC(ϕ( · | q, r1,x<t)
)∥∥

∞

≤ C

B
.

Similarly, for replace-by-null adjacency, let R ≃ R′ differ in their first element where r′1 = ∅ is the
empty string.

∥f(R)− f(R′)∥∞ =
1

B

∥∥clipC(ϕ( · | q, r1,x<t)
)
− clipC

(
ϕ( · | q, ∅,x<t)

)∥∥
∞

≤ 1

B

(∥∥clipC(ϕ( · | q, r1,x<t)
)∥∥

∞ +
∥∥clipC(ϕ( · | q, ∅,x<t)

)∥∥
∞

)
≤ 2C

B
,

where we used the triangle inequality on the ℓ∞ norm for the first inequality.

Convention in our Experiments. While we use the more natural replace-by-null adjacency in our
experiments, we (incorrectly) use the sensitivity bound obtained for the zero-out adjacency from
Property 9. This gives Amin et al. [13] an advantage of a factor of 2 in the sensitivity. Yet, we find
that INVISIBLEINK far outperforms their method in privacy-utility-compute tradeoffs.

B.3.2 AdaPMixED: Adjacency and Data-Dependent DP Guarantees

AdaPMixED [19] uses the add-remove notion of adjacency, but it gives a data-dependent privacy
guarantee, while we give a data-independent privacy guarantee under the replace-by-null adjacency.

Strictly speaking, the privacy guarantees across different adjacency notions cannot be directly
compared. Thus, we modify AdaPMixED to use the replace-by-null adjacency and report these
results in the main paper.

We can also cautiously compare the add-or-remove adjacency of AdaPMixED and the replace-by-
null adjacency of INVISIBLEINK. This is because the semantics of these two notions of adjacency
are expected to be similar [15, 70]. Comparing (AdaPMixED, add-or-remove) and (AdaPMixED,
replace-by-null) reveals no significant difference in the qualitative trends; see §E.6 for details.

Furthermore, AdaPMixED gives data-dependent privacy guarantees. For example, the zCDP notion
(Definition 3) can be phrased in the data-dependent setting under the replace-by-null adjacency as
follows. An algorithm A(q,R) satisfies ρ(R)-zCDP if

Dsym
α

(
A(q,R),A(q,R′)

)
≤ ρ(R)α
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for all α > 1 and all datasets R′ that can be obtained from the given dataset R by replacing any one
of its elements with the empty string ∅; here

Dsym
α (P,Q) := max {Dα(P∥Q), Dα(Q∥P )}

is symmetrized Rényi divergence. This guarantee holds only for the given sensitive dataset R. In
contrast, Definition 3 must hold for all R ≃ R′.

Thus, our data-independent guarantees are strictly more general than the data-dependent guarantees
given by AdaPMixED. The latter are, in general, privacy-sensitive and need to be sanitized before
release. In contrast, our privacy guarantees are worst-case and hold independent of the dataset.

Finally, we have the advantage of straightforward privacy accounting. Given a desired privacy level,
compute budget, and maximum generation length (in terms of number of tokens), we give a recipe in
§4 to tune the other hyperparameters of our method. In contrast, data-dependent DP guarantees can
only be given by grid search on the actual sensitive dataset R. In practice, one must account for the
privacy cost of such hyperparameter tuning [20], making it potentially more costly in terms of both
computation budget and privacy budget.

B.3.3 Adjacency Notion of AugPE

AugPE [41] is a synthetic text generation algorithm in the API access model. Note that we focus on
the less restrictive whitebox model, where per-token model logits are assumed to be available.

AugPE assumes the add-remove notion of adjacency (Definition 4). Their key technical step is
to construct a nearest neighbor histogram. Given a set S = (x1, . . . ,xm) of candidate synthetic
generations and a set D = {r1, . . . , rN} of real data points, the idea is to compute the nearest
neighbor histogram

H(xi) =

N∑
j=1

I(NN(rj , S) = xi) where NN(rj , S) = argmin
x∈S

dist(x, rj) (9)

is the nearest neighbor of rj from the set S according to a given distance metric dist(· , ·) (with ties
resolved arbitrarily) and I(·) is the indicator function which takes the value 1 when its argument is
true and zero otherwise. Xie et al. [41] take dist as the Euclidean distance in some embedding space.
This histogram H(·) ∈ Rm is then privatized using the Gaussian mechanism. Its ℓ2-sensitivity is as
follows (with an elementary proof provided for completeness).
Property 10. For any fixed set of synthetic text S = {r1, . . . , rm}, the ℓ2-sensitivity of the map
{r1, . . . , rN} 7→ (H(x1), . . . ,H(xm)) is:

• 1 under the add-or-remove adjacency;

•
√
2 under the replace-by-null or zero-out adjacency.

Proof. Under the add-or-remove adjacency, moving from a dataset D to a neighboring D′ will
change at most one entry of the histogram H(·) by at most 1, leading to an ℓ2-sensitivity of at most
1. However, under the replace-by-null or zero-out adjacency notions, at most two entries of the
histogram H(·) will change by at most 1. This leads to an ℓ2 sensitivity of

√
2.

Convention in our Experiments. Similar to the case of Amin et al. [13], we give AugPE an
advantage by incorrectly using its best sensitivity from Property 10. In particular, we use the more
natural replace-by-null adjacency in our experiments but we (incorrectly) use the AugPE’s sensitivity
bound obtained for the add-or-remove adjacency from Property 10. This gives AugPE an advantage
of a factor of

√
2 in the sensitivity. Yet, we find that INVISIBLEINK far outperforms AugPE in

privacy-utility-compute tradeoffs.

C Full Proofs and Additional Details of INVISIBLEINK

Below, we give the proofs of Property 1 and Theorem 2. We also give the sensitivity of DClip under
different notions of adjacency below.
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Proof of Property 1. Let the dataset size B = |R| be fixed. For replace-by-null adjacency, consider
the adjacent dataset R = {r1, . . . , rB} and R′ = {r′1, . . . , r′B} that differ in their first element
where r′1 = ∅ is the empty string. We need to bound the sensitivity of the map

fDClip(r1, . . . , rB) =
1

B

B∑
i=1

DClipC
(
ϕ( · | q, ri,x<t), ϕ( · | q,x<t)

)
. (10)

Below, we use shorthand ϕpub := ϕ( · | q,x<t) and ϕi := ϕ( · | q, ri,x<t) are public and private
logits respectively for R and ϕ′

i := ϕ( · | q, r′i,x<t) are private logits for R′. Noting that (a) ϕi = ϕ′
i

for i ̸= 1 by assumption, and (b) ϕ′
1 = ϕpub under the replace-by-null adjacency, we upper bound

the sensitivity as

sens(fDClip) = ∥fDClip(R)− fDClip(R
′)∥∞

=

∥∥∥∥∥ 1

B

B∑
i=1

clipC
(
ϕi − ϕpub

)
− 1

B

B∑
i=1

clipC
(
ϕ′

i − ϕpub

)∥∥∥∥∥
∞

(a)
=

1

B

∥∥clipC(ϕ1 − ϕpub

)
− clipC

(
ϕ′

1 − ϕpub

)∥∥
∞

(b)
=

1

B

∥∥clipC(ϕ1 − ϕpub

)∥∥
∞

≤ C

B
,

where the last line follows because ℓ∞ norm of logits clipped using clipC(·) is bounded by C.

Proof of Theorem 2. Algorithm 1 consists of the application of the map fDClip, defined previously in
Eq. (10), followed by the application of the exponential mechanism with a temperature of τ (in the
form of softmax sampling). Note that the Top-k+ selection step in Algorithm 1 is agnostic to the
values of the private logits ϕ1, . . . ,ϕB and therefore does not incur any additional privacy cost.

Consider the generation of one token xt using Algorithm 1 given arbitrary x<t. Using the definition
of the exponential mechanism in §B.2 (cf. (7)), the ρ-zCDP guarantees for generating any one token
xt is given by

ρtok =
1

2
·
(
sens(fDClip)

τ

)2

=
1

2
·
(

C

Bτ

)2

=
C2

2B2τ2
, (11)

where sens(fDClip) is obtained from Property 1.

To generate sequences which may contain at most T tokens x1, . . . , xT , the zCDP guarantees
obtained for single-token generation in Eq. (11) may be adaptively composed sequentially over all
T tokens. Then, the entire sequence x = (x1, . . . , xT ′) with T ′ ≤ T satisfies ρseq-zCDP where (cf.
Lemma 13(a))

ρseq ≤ T · ρtok =
TC2

2B2τ2
.

This completes the proof of Theorem 2.

Note that this guarantee holds for the generation of multiple sequences using disjoint batches of
references from the full sensitive reference dataset by parallel composition of the ρ-zCDP guarantees.
Corollary 11. Consider partitioning a dataset D = {r1, . . . , rN} into n disjoint batches
R1, . . . ,Rn of size B = N/n (assumed an integer), i.e., Ri ∩ Rj = ∅ ∀ i ̸= j. Suppose fur-
ther that this partition is data-independent.9 Suppose we generate texts x1, . . . ,xn using Algorithm 1
such that xi only sees sensitive examples Ri and satisfies ρseq-zCDP individually. Then, the map
D 7→ (x1, . . . ,xn) also satisfies ρseq-zCDP.

Proof. This follows from Theorem 2, and from the parallel composition for ρ-zCDP guarantees in
Lemma 13.

9That is, a partitioning is performed using a process that is agnostic to the content of the data. This ensures
that the partition is not influenced by any patterns, information, or outcomes within the dataset. This precludes
partitioning based on clustering, for instance.
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Note that the privacy guarantee in Corollary 11 does not depend on the number of synthetic texts
generated. The number of possible generations using INVISIBLEINK for a fixed dataset size N is
thus limited only by the number of possible partitions n ≤ ⌊N/B⌋.

C.1 Adapting INVISIBLEINK for other Adjacency Notions

The notion of adjacency used is central to the interpretation of the obtained privacy guarantees, as
well as to the sensitivity analysis. We use replace-by-null adjacency to derive the privacy guarantees
for INVISIBLEINK in Property 1 and Theorem 2; refer to §B for a full discussion of other adjacency
notions and on how they have been used in previous work.

We also state the sensitivity of fDClip under zero-out adjacency in Property 12.

Property 12. Let the dataset set B = |R| be fixed. Then the sensitivity of the map fDClip :

(r1, . . . , rB) 7→ 1
B

∑B
i=1 DClipC(ϕi,ϕpub) defined in Property 1, under zero-out adjacency, is

sens(fDClip) =
2C

B
.

Proof. For zero-out adjacency, consider adjacent datasets R = {r1, . . . , rB} and R′ =
{r′1, . . . , r′B} that differ in their first element where r′1 =⊥ is the empty string. We need to bound
the sensitivity of the map fDClip from Eq. (10). As in the proof of Property 1, we use shorthand
ϕpub := ϕ( · | q,x<t) and ϕi := ϕ( · | q, ri,x<t) are public and private logits respectively for R and
ϕ′

i := ϕ( · | q, r′i,x<t) are private logits for R′. Noting that (a) ϕi = ϕ′
i for i ̸= 1 by assumption,

and (b) ϕ′
1 = 0 under the zero-out adjacency, we upper bound the sensitivity as

sens(fDClip) = ∥fDClip(R)− fDClip(R
′)∥∞

=

∥∥∥∥∥ 1

B

B∑
i=1

clipC
(
ϕi − ϕpub

)
− 1

B

B∑
i=1

clipC
(
ϕ′

i − ϕpub

)∥∥∥∥∥
∞

(a)
=

1

B

∥∥clipC(ϕ1 − ϕpub

)
− clipC

(
ϕ′

1 − ϕpub

)∥∥
∞

(b)

≤ 1

B

∥∥clipC(ϕ1 − ϕpub

)
− clipC

(
− ϕpub

)∥∥
∞

(c)

≤ 1

B

∥∥clipC(ϕ1 − ϕpub

)∥∥
∞ +

1

B

∥∥clipC(− ϕpub

)∥∥
∞

≤ 2C

B
,

where (c) follows from the triangle inequality on the ℓ∞ norm and the last line follows because the
ℓ∞ norm of any logits clipped using clipC(·) is upper bounded by C.

The 2× increase in the sensitivity of fDClip under zero-out adjacency causes a 4× increase in the
ρ-zCDP guarantee of Algorithm 1 for the same parameters and settings as under the replace-by-null
adjacency. This highlights the need for careful definition of adjacency notions in DP.

C.2 Technical Lemmas

We recall some technical results that are useful for other proofs.

Lemma 13 (Adaptive Composition of zCDP [67]). For any fixed sets X ,Y , let A1 : X ∗ → Y1 be
ρ1-zCDP, and A2 : X ∗ ×Y1 → Y2 be ρ2-zCDP mechanism with respect to its first argument for any
fixed second argument. Then, we have the following adaptive composition results:

(a) Sequential: the mechanism A(D) =
(
Y1,A2(D,Y1)

)
for Y1 = A1(D) is (ρ1+ ρ2)-zCDP.

(b) Parallel: the mechanism A(D) =
(
Y1,A2(D2, Y1)

)
for Y1 = A1(D1) and any fixed

data-independent partition D1, D2 of D is max{ρ1, ρ2}-zCDP.

This result can be extended to an arbitrary number of mechanisms by induction.
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D Experimental Setup

D.1 Task: Synthetic Text Generation

Our goal is to generate high-quality, long-form synthetic data from a given private dataset of refer-
ences, while under rigorous DP guarantees on the privacy of the references. We model the references
R = (r1, . . . , r|B|) as part of the context for next-token generation in the LLM. The query prompts
q, contain instructions for text generation including general details about the sensitive dataset such as
domain, type of text document, etc. The public and private (here, private prompts mean prompts with
sensitive references embedded in-context) query prompts used for the generation of synthetic text
samples for various datasets are listed in Tab. 4. Examples of the references for both Yelp and TAB
datasets are given in Tab. 5.

Algorithm 1 describes the generation of 1 text sample from a batch of sensitive references R of size
B. To generate multiple synthetic text samples, we partition the entirety of the sensitive reference
dataset into B-sized chunks. Since the dataset partitions are defined in a completely data-independent
manner, we may compose the DP guarantee parallely across batches; see Corollary 11. The theoretical
privacy guarantee for the generation of multiple text samples is thus the same as that of 1 text sample,
i.e., the overall privacy guarantees are independent of the number of synthetic samples generated and
only depend on the maximum number of BPE encoded tokens in each input.

D.2 Datasets

We use both publicly available open-access datasets and licensed datasets: MIMIC IV Clinical Notes
dataset [78, 79], Yelp Reviews dataset [81], and the Text Anonymization Benchmark (TAB) [80]
dataset. The respective license and data use agreements of the various assets we use have been duly
followed throughout this work.

MIMIC-IV Clinical Notes. This dataset is a large, de-identified collection of medical text associated
with ICU patients, including discharge summaries, radiology reports, and nursing notes. It is widely
used for clinical NLP tasks such as diagnosis classification, named entity recognition, and patient
cohort identification. The dataset poses significant privacy challenges due to the presence of sensitive
patient information, making it an ideal choice for evaluating privacy-preserving language models.
Further, the dataset is not available for open-access and cannot legally be used for pre-training
general-purpose LLMs such as those we use in our experiments. This dataset is released under the
PhysioNet Credentialed Health Data License 1.5.0, and may be accessed via the PhysioNet website
(https://physionet.org/content/mimic-iv-note/2.2/).

For our synthetic text generation task, we use the discharge summaries released as part of the dataset.
In particular, we extract the discharge instructions from within these files. These are selected as they
often contain succinct summaries of patient symptoms, diagnosis, treatment, as well as aftercare
instructions. Further, almost all discharge summaries contain a section on “Discharge Instruction”
allowing us to extract almost 311K valid private references from the dataset. In accordance with the
License and Data Use Agreement of the dataset, we do not release the original dataset, processed text
samples, or synthetically generated private samples.

Yelp Reviews. We use the processed Yelp Open dataset [81] from [44] released by [41]. This dataset
contains 1.9M of user-generated reviews and ratings for businesses (see Tab. 1 for a precise size),
labelled by business category (10 categories) and review scores (5 possible scores) to give a total of 50
sub-categories. Although not overtly sensitive, it contains personal opinions and location references
and has previously been used to design private synthetic text generation algorithms [41, 44].

The Yelp Open dataset is released under a data agreement and terms of use, which are present in
the downloadable .zip file hosted by Yelp. This is distinct from but similar to the (also publicly
available) Yelp Reviews dataset hosted by HuggingFace; in particular, they contain examples of
similar reviews, labelled by review scores across several (unlabelled) business categories.

The respective GitHub repositories of [41] (link) and [44] (link) are released under the Apache 2.0 and
MIT licenses. The license under which the processed dataset is released is not explicitly mentioned in
either repository. The dataset may be downloaded from this link by following the instructions given
by [41].
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Dataset Prompt
Type Prompt Text

MIMIC Private Here is the text of the discharge summary of a patient discharged
from a hospital
Text: “<private reference here>”
Please give me another text of a fake patient discharge summary
for discharge from a hospital. Include typical sections like admit-
ting diagnosis, major procedures (if any), discharge medications
(using fictional drug names and dosages), and general follow-up
instructions. Do not include any names, dates, or specific medical
record numbers. The output text must begin with the exact words
“Discharge Instructions:”.

Public Please give me text of a fake patient discharge summary for discharge
from a hospital. I only need fictional and representative examples
for a non-medical purpose. Include typical sections like admitting
diagnosis, major procedures (if any), discharge medications (using
fictional drug names and dosages), and general follow-up instruc-
tions. Do not include any names, dates, or specific medical record
numbers. The output text must begin with the exact words “Dis-
charge Instructions:”.

Yelp Private Here is a text with Business Category : “<business category>” and
Review Stars : “<review score>” out of 5.0.
Text: “<private reference here>”
Please output one more similar review of a fictional place with the
same score and of the same category of business. Poor reviews have
lower scores and good reviews have higher scores.

Public Please give me a fake Yelp customer review of a fictional business
with Business Category : “<business category>” and Review Stars
: “<review score>” out of 5.0. Poor reviews have lower scores and
good reviews have higher scores.

TAB Private Here is the text of a case transcript set before the European Court for
Human Rights.
Text: “<private reference here>”
Please output a similar transcript of a fictional case under European
Court for Human Rights. Begin with the phrase: ‘PROCEDURE:
The case originated in an application’.

Public Please output a transcript of a fictional case under European Court
for Human Rights. Begin with the phrase: ‘PROCEDURE: The case
originated in an application’.

Table 4: Public and private prompts for MIMIC, Yelp and TAB datasets; The private references are inserted in
the space denoted by “<private reference here>”. The system prompt across all settings is: “You are a chatbot”.
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Dataset Sensitive References (Exemplars)

Yelp I’ve been here a few times. The service has been very good all times. The food is hit or miss
on some entrees. Do not order the poutine fries. They have no sauce. It’s like eating fries with
cheese and meat on them. No gravy like poutine is supposed to have. Their salmon special
that they had one day was very good. It had an Asian flare. I also have had the Asian noodle
dish which was good. Their burgers are vet popular there and look tasty. There is something
on the menu for everyone! They Also have good cocktails.

TAB PROCEDURE The case originated in an application (no. 36244/06) against the Kingdom
of Denmark lodged with the Court under Article 34 of the Convention for the Protection
of Human Rights and Fundamental Freedoms (“the Convention”) by a Danish national, Mr
Henrik Hasslund (“the applicant”), on 31 August 2006. The applicant was represented by Mr
Tyge Trier, a lawyer practising in Copenhagen. The Danish Government (“the Government”)
were represented by their Agent, Ms Nina Holst-Christensen of the Ministry of Justice. On
5 September 2007 the Acting President of the Fifth Section decided to give notice of the
application to the Government. It was also decided to rule on the admissibility and merits of
the application at the same time (Article 29 §3).

Table 5: Examples from the Yelp and TAB datasets. We use these are privacy-sensitive references for synthetic
text generation. We do not provide examples of the MIMIC dataset (or even synthetic generations) to comply
with its license.

Text Anonymization Benchmark (TAB). This dataset [80] is a dedicated, open-source corpus
designed for evaluating text anonymization systems. It comprises 1268 English-language court cases
from the European Court of Human Rights (ECHR), manually annotated with semantic categories of
personal identifiers, masking decisions based on re-identification risk, confidential attributes, and
co-reference relations. TAB provides a high-quality benchmark for assessing the effectiveness of
anonymization models in legal and privacy-critical domains. We use the text released in this dataset
as a low-resource task for generating high-quality synthetic data when the batch size is constrained to
be small. Using a large batch size for this dataset results in a very small yield of synthetic data, for
example: B = 127 gives us a maximum of 8 synthetic examples — this constrains us to use a batch
size B ≤ 7 if we wish to generate at least 100 examples.

The dataset is released under the MIT License and is publicly available at this link.

Note on Choice of Dataset. We note that several common datasets used in prior work (such as
AGNews, TREC, DBPedia, WikiMovies, etc.) are incompatible with our setting of long-form text
generation due to their relatively shorter texts (≤ 200 tokens). Further, several of these datasets (like
IMDb, etc.) are well-represented in the pretraining data of most LLMs. Since publicly prompted
LLMs can generate high-quality synthetic text for such datasets, a high degree of overlap between
the pretraining and target data distributions skews the conclusions of private data analysis [82]. Thus,
we prefer using benchmarks that are sufficiently out-of-distribution relative to the pretraining data
and preferably contain real privacy-sensitive data.

Accordingly, we use the MIMIC IV Notes dataset as the primary dataset for experiments, since
it contains real patient discharge notes with sensitive medical data, and cannot legally be used
for pretraining LLMs as per its data use agreement. Similarly, the TAB dataset contains sensitive
identifying information (demographic traits, spatio-temporal markers, biographical details, etc.) from
European Court of Human Rights cases. We use the Yelp dataset as a representative dataset that
overlaps significantly with the pretraining data (similar to the other datasets discussed above).

D.3 Models

We use the following language models in our empirical evaluation: TinyLLaMA 1B [84], LLaMA3.2-
1B [85], and LLaMA3 8B [86]. All models were loaded in torch.bfloat16 precision.

TinyLLaMA is a compact, open-weight language model trained on 1 trillion tokens and with only
1.1B parameters. Despite a smaller size, it retains strong performance on basic language modeling
tasks and is ideal for fast experimentation in compute-constrained settings. For our experiments,
we used the instruction-tuned version TinyLlama-1.1B-Chat-v1.0 of this model. This model is
released under the Apache 2.0 License and may be accessed via HuggingFace at: TinyLLaMA 1B.

25

https://github.com/NorskRegnesentral/text-anonymization-benchmark
TinyLlama/TinyLlama-1.1B-Chat-v1.0


The LLaMA3.2 1B model is a smaller variant from the LLaMA3 family. Being a multilingual model
with a very large vocabulary (128K tokens) and context size, it is an ideal candidate to demonstrate
the improvements offered by Top-k+ sampling. Additionally, we also conduct one set of experiments
on a larger LLaMA3 8B model. For our experiments, we use instruction-tuned versions of both
models. The former is released under the Llama 3.2 Community License Agreement and may be
accessed via huggingface at: LLaMA3.2 1B. The latter is released under the Llama 3 Community
License Agreement and may be accessed via huggingface at: LLaMA3 8B.

D.4 Evaluation Metrics

For our empirical evaluation, we evaluate the generated text on several different metrics to highlight
the advantages of INVISIBLEINK compared to baselines.

MAUVE score. To evaluate the distributional similarity between synthetic and real text corpora,
we use the MAUVE score [17, 18, 87], which is designed to capture both quality and diversity in
text generation quality. Unlike traditional metrics (e.g., BLEU, ROUGE), MAUVE compares entire
distributions rather than individual samples. The result is a number between 0 and 1, with 1 denoting
that the two distributions are identical, and 0 denoting that the two distributions have no similarity.

We make the following choices to compute the MAUVE scores:

• Implementation: We use the open-source mauve-text package released by [17, 18].10

• Reference samples: Held-out samples used
• Number of generations and references: Varying between 100 and 1000, as described in

Tab. 1. We use an equal number of samples from both the generations and references.
• Embedding model: Sentence Transformer model [93], version all-mpnet-base-v2.11

• Number of bins: N/20 where both reference and generated distributions have N samples.
• Scaling factor: 0.9, across all settings throughout this work.

To compute all MAUVE scores in this paper, we use the SentenceTransformer embeddings of the
text sample [93]. We find these embeddings to be of higher quality, and corresponding to better and
more meaningful MAUVE scores. In particular, we use the all-mpnet-base-v2 model, which
returns 768-dimensional embeddings of input texts, truncated to 384 tokens. The final score is also
scaled appropriately to facilitate easy comparisons by setting the scaling factor to 0.9. It is crucial to
note that the value of the scaling factor and other hyperparameters used to calculate MAUVE scores
impact the obtained scores. MAUVE scores are thus best used for relative comparisons, such as in
this work, and the absolute values themselves are less meaningful.

Medical Named-Entity Recognition (MedNER). The original MIMIC discharge notes contain
details on various medically significant terms such as diseases, medications, treatments, etc. We found
in our early experiments that some generation methods can fail to generate such domain-specific
terms. Since we wish the synthetic generations to reflect all statistical properties of the original
dataset, it is desirable for generation algorithms to also generate relevant medical entities, at the same
rate as the original data.

In other words, we are interested in Medical Named Entity Recognition (Medical NER). This is a
common task that focuses on identifying clinically significant entities such as diseases, medications,
procedures, anatomical terms, and patient attributes from clinical notes, health records, or other
medically relevant text data. We use the counts of medical named-entities in the generated text as a
measure of the level of detail and specificity preserved in the synthetic text.

We use the DeBERTa-Med-NER-2 [88] model to label all medical named entities in the generated text.
The model recognizes 41 categories of named-entities of which the text subset of the MIMIC dataset
we extract, as described in §D.2, contains only 25 classes. We further select and count the presence of
the most relevant medical named entities; 13 classes like therapeutic procedure and disease/disorder
are included, but domain-agnostic classes like date and time are excluded. The exact details are
presented in Tab. 6.

10Available at https://github.com/krishnap25/mauve.
11Available at https://huggingface.co/sentence-transformers/all-mpnet-base-v2.
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MedNER Category Example(s) Counted

THERAPEUTIC_PROCEDURE “paracentesis”, “colonoscopy” ✓
DIAGNOSTIC_PROCEDURE “blood pressure”, “endoscopy” ✓
DETAILED_DESCRIPTION “IV”, “constipating” ✓
DISEASE_DISORDER “cirrhosis”, “pneumonia” ✓
SIGN_SYMPTOM “pain”, “fever” ✓
SEVERITY “worsening”, “severe” ✓
DISTANCE “1.5L”, “5 pounds” ✓
DOSAGE “40 mg”, “1 tablet every 6 hours” ✓
LAB_VALUE “high”, “improved” ✓
MEDICATION “Lasix”, “Tylenol” ✓
COREFERENCE “incision”, “splint” ✓
ADMINISTRATION “intravenous”, “oral” ✓
BIOLOGICAL_STRUCTURE “stomach”, “esophagus” ✓
NONBIOLOGICAL_LOCATION “hospital”, “emergency room” ×
FAMILY_HISTORY∗ “yourself” ×
CLINICAL_EVENT “admitted”, “discharged” ×
DURATION “1 day”, “several weeks” ×
HISTORY “alcohol”, “activities” ×
DATE “1 week”, “24 hours” ×
AGE∗ “up” ×
SEX “male”, “female” ×
TIME “:55pm”, “:20am” ×
AREA∗ “.” ×
VOLUME “7 x 6.7 x 7.6 cm”, “4.9 x 6.4 centimeter” ×
OTHER_ENTITY “2”, “day” ×

Table 6: Medical Named Entities: The various medical named entities captured by the DeBERTa-Med-NER
model [88] and some identified examples for each category. In our MedNER evaluations, we only count the
most medically relevant among these categories, as denoted by the rightmost column. Note that some of the
omitted columns are not reliably detected by the model (denoted by ∗).

Generation Perplexity. Perplexity is a standard metric used to evaluate the quality of generations
of probabilistic language models, including LLMs. Perplexity is defined as the exponent of the
average negative log-likelihood of generating every token of the observed sequence, conditioned on
the previously generated tokens. The perplexity of a sequence x = (x1, x2, . . .) is defined as

PPL(x) = exp

− 1

|x|

|x|∑
t=1

log P̂ (xt | x<t)


where log P̂ (xt | x<t) is the log-likelihood of the tth token conditioned on the preceding tokens x<t

(with x<1 = ∅), according to the language model P̂ . We take the model P̂ used to calculate the
perplexity of all text samples as GPT-2 small (with 117M parameters).

A low perplexity value indicates that the model assigns a higher likelihood to the observed sequence.
We wish the generated synthetic text to match the original text dataset in all statistical properties,
including perplexity under any given language model. Thus, achieving a small difference in the
average perplexities between the generated and original text distributions is desirable. This is
measured by the ∆PPL metric [16], defined as

∆PPL =

∣∣∣∣∣ 1

|X|
∑
x∈X

PPL(x)− 1

|R|
∑
r∈R

PPL(r)

∣∣∣∣∣ ,
where R is the original dataset of sensitive references and X is the synthetically generated dataset.

Length Distributions. The privacy budget of per-token privatization algorithms is composed over the
number of tokens generated. For methods that use data-dependent privacy accounting techniques, such
as Amin et al. [13] and AdaPMixED [19], the number of tokens generated is limited by the privacy
budget. In contrast, for our method, we set a predetermined maximum number of allowed tokens
and calculate other hyperparameters based on this number. Further, unlike previous methods that are
not well-suited for long-form text generation due to either computational or privacy constraints, we
aim to produce longer and higher-quality text. Since the length of generated text is another statistical
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property of the private reference dataset we wish to mimic, we use the number of tokens generated by
the model, referred to henceforth as the generation length, as an evaluation metric.

The set of all possible tokens, called the vocabulary, differs from model to model. A tokenizer is
used by language models to convert text strings into sequences of valid tokens (each denoted by an
integer). The LLaMA3 models use a byte-pair encoding (BPE) model based on tiktoken, whereas
TinyLLaMA uses a BPE model based on SentencePiece. A characteristic of BPE models, introduced
in [94], is sub-word tokenization, which splits up one word into one or more tokens depending on the
length of the word and the substrings in it. The number of words in a text sample is thus not equal to
the number of tokens in the same sample. The latter also depends on the exact tokenizer used.

To measure the generation length for generations corresponding to a given model, we use the number
of BPE tokens generated by the corresponding tokenizer. Generation lengths reported are thus not
directly comparable across families of models. The generation lengths of real texts are calculated
separately for every model and reported with the corresponding results (wherever applicable) for
comparison. We report the average generation length (in number of tokens) over all generations of x
(and its confidence intervals, as described in §D.6).

D.5 Hyperparameter Selection

We discuss the choices of hyperparameters, the range explored, and the settings for reported results
across all methods, INVISIBLEINK and other baselines, in this section. We also note that to allow
comparisons between methods, we convert all DP guarantees into (ε, δ) guarantees12.

INVISIBLEINK. INVISIBLEINK, described in Algorithm 1, has the following hyperparameters: the
clipping norm C, the batch size B, the sampling temperature τ and the top-k sampling parameter.
For a given ε, the heuristics for choosing optimal hyperparameters are given in §5. To arrive at this
heuristic, we conducted a thorough hyperparameter search for a full vocabulary k = |V | variant of
the model; the full range of hyperparameters explored for each dataset and model we use is given in
Tab. 7. We report results by tuning the sampling temperature for various values of ε and B.

Dataset Model Hyperparameter Range Explored

MIMIC

TinyLLaMA 1B B [4, 8, 16, 32]
τ [0.8, 0.9, 1.0, 1.1, 1.2]

LLaMA3.2 1B B 8
τ 1.1

LLaMA3 8B B 8
τ 1.2

Yelp TinyLLaMA 1B B [2, 4, 8, 16, 32]
τ [0.8, 1.0, 1.2]

TAB TinyLLaMA 1B B 8
τ [0.8, 1.0, 1.2]

Table 7: Hyperparameters for INVISIBLEINK variant with k = |V |.

Based on these results (presented in detail in §E) and on the exploration of non-private generation in
Fig. 2, we report results for INVISIBLEINK with a fixed sampling temperature τ = 1.1 for k < |V |
and τ = 1.0 for k = |V |. We explore a range of top-k parameters for various settings; see Tab. 8.
Our empirical results in §5 show that setting k = 50−100 shows superior performance to all existing
baselines, as well as the full-vocabulary (k = |V |) variant of INVISIBLEINK.

Amin et al. [13]. The algorithm proposed by [13] has similar hyperparameters: C clipping norm,
B batch size, τprv private sampling temperature, τpub public sampling temperature, θ threshold for
Sparse Vector Technique (SVT), σ noise parameter for SVT. Further, due to the data-dependent
privacy accounting proposed in [13, Thm 1], the privacy guarantees depend on the number of times a
token is sampled from the aggregated and clipped private logits. As mentioned in §5, preliminary
experimentation showed that the SVT step in [13]’s method selected private tokens ≈ 25% of the time.

12δ for all methods is chosen to be a sufficiently small value of 10−6.
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Dataset Model Hyperparameter Range Explored

MIMIC

TinyLLaMA 1B B [4, 8, 16, 32]
k [10, 50, 100, 500]
τ [1.0, 1.1., 1.2]

LLaMA3.2 1B B 8
k [10, 50, 100, 500]
τ 1.1

LLaMA3 8B B 8
k [10, 50, 100, 500, 1000, 5000]

Yelp TinyLLaMA 1B B [4, 8, 16, 32]
k [10, 50, 100]

TAB TinyLLaMA 1B B 8
k [10, 50, 100]

Table 8: Hyperparameters for INVISIBLEINK (k < |V |). We set τ = 1.2 wherever unspecified.

Dataset Model Hyperparameter Range Explored

MIMIC TinyLLaMA 1B B [32, 64, 128]
τ [0.8, 1.0, 1.2]

Yelp TinyLLaMA 1B B [32, 64, 128]
τ [0.8, 1.0, 1.2]

Table 9: Hyperparameters for Amin et al. [13]’s method.

We select a value of Tprv =100 for all datasets (where Tprv is the maximum number of private tokens
allowed) and maintain the total tokens generated at the same levels as the settings for INVISIBLEINK
described in Tab. 1. As seen in the plots in Fig. 4, this does not affect the average generation length
of synthetic samples generated by this method. As seen in §5, for a number of settings, this method
fails to yield any synthetic text (INF or infeasible in Tab. 2). All results available are reported tuned
on the sampling temperature τ .

AdaPMixED [19]. AdaPMixED [19] is a next-token prediction algorithm adapted to generate
synthetic text sequences sampling one token at a time under data-dependent privacy guarantees. The
approach described in [19] uses models fine-tuned (without privacy) on partitions of the private
references dataset. We focus on private inference methods and adapt AdaPMixED in a fashion similar
to [13], using the sensitive references as context for the synthetic text generation. Private inference
can be used on pretrained models prompted with private data (our setting) or non-DP fine-tuned
models. Both are conceptually identical as they privatize a set of non-private predictions.

We use a custom implementation of the method, modifying it to use the replace-by-null adjacency;
see §B.3 & §E.6. We note that AdaPMixED has significant (non-GPU) computational overhead
compared to other methods due to repeated calculation of optimal mixing parameters; see [19, Alg
1, Line 11]. We implement this using the brentq optimizer from the scipy Python package. For
generations, we use the same values of T (maximum allowed tokens per generation) as discussed
previously; see Tab. 1. We fix some hyperparameters across settings: sampling temperature at τ = 1,
noise multiplier at σ = 0.01 and mixing parameter for noisy screening λ = 10−4; for all other
hyperparameters, we use the recommended default values for the PubMed dataset in [19, Tab 4].

AugPE [41]. AugPE is a private text generation algorithm that relies on iterative LLM-based
paraphrasing and construction of privatized (noisy) nearest neighbour histograms at every step to
generate private text. See §E.1 for a full discussion on all the generation settings for this method.

D.6 Confidence Intervals

We report the mean of the evaluation metrics across all generated text samples for a given generation
setting, wherever applicable. In addition, we also report the (1 − α) × 100% = 99% confidence
intervals calculated using the standard error (standard deviation of the mean) as follows,

CI = x̄± Zα/2
s√
m

,
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where x̄ is the sample mean, s is the sample standard deviation and m is the number of samples. Here,
Zα/2 is the (1 − α/2) percentile of the standard normal distribution. These are Wald confidence
intervals, given under the assumption that error is unbiased and normally distributed. For a 99%
confidence interval, we have Zα/2 = 2.576 and for a 95% confidence interval, we have Zα/2 = 1.96.

D.7 Computational Resources

Software. We used Python 3.13.2, PyTorch 2.6 and HuggingFace Transformers 4.50.1.

Hardware. All experiments requiring a GPU (LLM inferences, ∆PPL calculation, MedNER count
calculation etc.) were conducted on one of two machines: (a) with 4 NVIDIA RTX L40S GPUs
(with 48G memory each), or (b) with 4 NVIDIA H100 GPUs (with 80GB memory each). Each task
used only one GPU at a time. All wall-clock time measurements, if any, are performed using the
L40S GPUs. The non-GPU jobs, such as computing MAUVE, were run on a machine with 240 AMD
EPYC 9554 CPUs (clock speed: 3.10 GHz) with 64 virtual cores each and total memory of 845GB.

Evaluation Time. The approximate wall clock runtimes for synthetic text generation using various
methods are given below. The runtime varies with the size of the model and batch size used, in
particular with the maximum number of parallel LLM inferences that may be run on the GPU. For
our experiments using TinyLLaMA, a maximum of min(B + 1, 16) inferences were run in parallel
on 1 GPU. The runtimes also scale (approximately) linearly with the length of individual generated
samples and the number of samples generated. All numbers reported below are for 1000 generations
of 500 token synthetic samples using MIMIC as the reference dataset.

• INVISIBLEINK: ≈ 4 hours for B = 15

• Amin et al. [13]: ≈ 12 hours for B = 127

• AdaPMixED [19]: ≈ 12 hours for B = 127 and ε = 1

• AugPE [41]: ≈ 18 hours for 7 variations per iteration and 10 iterations

The runtimes for AdaPMixED [19], in particular, have a very high variance with both B and ε as
a higher privacy budget corresponds to longer generations and higher runtimes. For B = 127 and
ε ≥ 5, the runtime exceeds 24 hours for 1000 generations, denoted by TLE in our experimental results.
The runtimes for AugPE [41] scale (approximately) linearly with both the number of iterations and
the number of variations generated per iteration.

E Additional Experimental Results

In this section, we present the following additional results:

• Additional results comparing INVISIBLEINK and AugPE [41] on the MIMIC dataset.
• Additional experiments on the downstream utility of data generated from the Yelp dataset.
• Additional statistics for the selection of tokens from the expanded vocabulary described by

the Top-k+ step in INVISIBLEINK.
• Additional results for synthetic generations for the MIMIC dataset using LLaMA3 8B.
• Additional experiments designed to highlight the effect of sampling temperature τ , clipping

norm C and top-k sampling parameter on the quality of generation.
• Experiments comparing the quality of private text generation for AdaPMixED with the

replace-by-null adjacency and add-or-remove notions of adjacency.

E.1 Comparison with AugPE

Fig. 7 gives additional experimental results comparing the utility vs computational cost of INVIS-
IBLEINK and AugPE for various privacy budgets. The trends agree with those in Fig. 5; see §5.

The number of variations of the candidate synthetic texts generated in every iteration of AugPE (the
parameter L in [41, Alg 1]) is fixed to be 7. We also limit the total number of sensitive references the
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Figure 7: Utility vs Compute plots (avg. over 3 runs) for INVISIBLEINK and AugPE for varying privacy budgets
ε for 1000 synthetic texts generated for the MIMIC dataset. We compare utility using a variety of metrics —
INVISIBLEINK outperforms AugPE across all settings and evaluation metrics. Wall-clock run time is used
to measure the computational cost. We report results for B + 1 = 4, 8, 16, 32 next-token inference calls per
generated token and TAugPE = 1, 3, 5 for INVISIBLEINK and AugPE, respectively.

Prompt Type Prompt Text

System Prompt Please act as a sentence generator for the medical domain. Generated sentences
should mimic the style of medical discharge summaries, using a variety of
sentence structures.

Generation Prompt Using a variety of sentence structures, write a patient discharge summary. Begin
the output with the phrase: “Discharge Instructions:”

Variation Prompt Please rephrase the following sentences “<insert candidate synthetic text>” as a
patient discharge summary: “<insert rephrase style>”
Begin the output with the phrase: “Discharge Instructions:”

Table 10: Random sample generation and Variation prompts for MIMIC adapted in the style of AugPE; The
candidate synthetic generations at the current iteration are inserted in the space denoted by “<insert candidate
synthetic text>” and information about the style in which the LLM should rephrase the text is inserted in the
space denoted by “<insert rephrase style>”.
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algorithm sees to 7× n (where n is the total number of synthetic texts generated). The total number
of full-sequence LLM generations per synthetic text is given by 8 × TAugPE, where TAugPE is the
number of iterations, and varies from 8− 80. In contrast, we disadvantage our model by limiting the
number of effective full-sequence LLM generations to B + 1, ie, 4− 32. Further, we use the official
implementation of AugPE released by Xie et al. [41]13 and adapt it for generating synthetic samples
from MIMIC with minimal changes. In particular, we preserve the same style of random sample
generation and text variation prompts used for other datasets; see Tab. 10.

E.2 Yelp Downstream Utility Experiments

We now run additional experiments to evaluate the synthetic data generated from the Yelp dataset on
a downstream task. We finetune a RoBERTa model [89] for sequence classification of the generated
synthetic text from the Yelp dataset into 50 classes, obtained as all combinations of 5 review score
labels and 10 business category labels. We note that since the synthetic data generation is conditioned
on these axes, the class label information is also available in the synthetic data.

The training set consists of 500 synthetically generated text samples. We finetune the RoBERTa
model [89] for 15 epochs with an AdamW optimizer [95] with a batch size of 20, a learning rate of
2× 10−5, a weight decay of 0.01 and 10% warmup steps. The trained model is then evaluated on the
Yelp test set. We use the following metrics to evaluate the utility of the synthetically generated data:

• Classification Accuracy: correct predicted class (as a %age) out of 50 classes
• Top-5 Accuracy: correct class, out of 50, in the top-5 predictions (as a %age)
• Category Accuracy: correct business category (as a %age) out of 10 classes
• Score Accuracy: correct review score (as a %age) out of 5 classes
• Score L1: Average L1 distance between the predicted and true review scores

The results presented in Tab. 11 compare the downstream utility metrics for text generated by various
methods with a fixed privacy budget of ε = 10. INVISIBLEINK outperforms all baseline methods
by a large margin at a significantly smaller computation cost, even when measured in terms of this
downstream task utility.

Method Accuracy (↑) Top-5 Acc. (↑) Cat. Acc. (↑) Score Acc. (↑) Score L1 (↓)

INVISIBLEINK (B = 8) 32.98 72.16 64.90 52.2 0.652
Amin et al. [13] (B = 128) 29.44 64.56 60.18 46.64 0.748
AdaPMixED [19] (B = 32) 7.44 34.72 56.82 15.44 1.858

Table 11: Comparison of the downstream utility of the synthetic text generated from the Yelp dataset on a
sequence classification task using a RoBERTa [89] model. INVISIBLEINK outperforms the baselines significantly.

We note that measuring utility in downstream tasks is not a reliable indicator of overall text quality,
coherence, or distributional similarity to the original dataset. Several prior works on DP text
generation [13, 19, 47, 48] rely heavily on such metrics to evaluate generated text. However, it is
possible for poor-quality synthetic text to “hack" these metrics, especially in the case of sequence
classification by relying on keywords related to the target category. This can be observed in the
case of AdaPMixED, where sequences with an average length of ≤ 30 tokens (see Fig. 4) perform
significantly better than random: ≈ 7% (vs. 2% at random) for overall classification accuracy, ≈ 56%
(vs. 10% at random) for category prediction accuracy, and ≈ 1.8 (vs. 2.0 at random) for average L1

distance (lower is better) between predicted and true scores.

We also note that in the case of open-ended text generation, such notions of downstream utility are
not directly applicable. It is therefore recommended to use a mix of such metrics to evaluate DP
synthetic text. From our experimental results in §5 and in additional results throughout §E, we see
that INVISIBLEINK handily outperforms all baselines at a much lower compute budget.

E.3 Top-k Selection Statistics

Some additional statistics of selection from the expanded vocabulary described by the Top-k+ step
of INVISIBLEINK are presented in Tab. 12. In particular, we show the following:

13Available at https://github.com/AI-secure/aug-pe
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• keff: Effective-k, which is the size of the vocabulary V +
k

• σk: standard deviation of keff = |V +
k |

• #toks: number of tokens generated from the expanded vocabulary V +
k \ Vk per generation

For each metric, we report the average over all generations or generated tokens for a setting. As the
privacy budget increases, the clipping norm C also increases. We observe that larger expansions of
the top-k threshold (2C/B), lead to larger effective-k (keff = |V +

k |) of Top-k+ sampling. Further, as
reported in §5, we also observe that the number of tokens sampled from the expanded set is very low
(typically ≤ 10), supporting the claim that V +

k is a very tight superset of Vk. Further, the standard
deviation of keff scales roughly with

√
keff − k, i.e., the square root of the size of the expansion.

The number of sampled tokens also decreases as k increases. Despite a larger increase in effective k
due to the expansion of the top-k vocabulary, the probability of selection of tokens decreases sharply
with rank since the increased expansion is offset by lower probabilities of selection.

k = 10 k = 50 k = 100 k = 500

ε C keff σk #toks keff σk #toks keff σk #toks keff σk #toks

1.0 0.08 10.17 0.43 6.14 50.69 0.97 1.50 101.07 1.28 0.91 506.43 3.95 0.73
3.0 0.23 10.52 0.76 7.71 52.57 1.77 2.62 104.98 2.54 2.04 524.04 7.11 1.81
5.0 0.36 10.52 0.77 7.77 53.09 2.00 2.89 106.80 3.02 2.51 534.82 9.31 2.60
10.0 0.66 11.25 1.25 11.15 56.57 3.04 5.04 113.35 4.55 4.45 568.28 16.33 4.77

Table 12: Statistics for Top-k+ sampling step of INVISIBLEINK for 1000 synthetic text samples generated for
the MIMIC dataset using a TinyLLaMA 1B model, batch size of B = 7, and sampling temperature τ = 1.2.
We report the size of V +

k (keff), the standard deviation in keff (σk), and the number of tokens sampled from the
expanded vocabulary V +

k \Vk (#toks); all metrics are reported averaged over all generations or generated tokens.

E.4 Scaling INVISIBLEINK to Larger Models: Results on LLaMA3 8B

The utility scores (MAUVE) for 1000 synthetic texts generated using a LLaMA3 8B model are
presented in Tab. 13. The results agree qualitatively with trends observed for smaller models:
intermediate values of k ≈ 100 to 1000 consistently perform better than very small or very large k.

ε k=10 k=50 k=100 k=500 k=1000 k=5000

1.0 58.90.4 61.60.5 62.90.9 62.40.6 63.00.0 61.80.6
3.0 59.20.6 60.00.5 60.51.8 62.10.5 62.20.5 62.20.5
5.0 59.90.6 60.70.5 62.21.1 62.80.2 63.00.3 62.60.3

10.0 59.40.4 61.30.8 62.90.9 63.60.3 63.00.0 63.20.7

Table 13: MAUVE (%) scores, reported with mean and 95% confidence intervals (see §D.6) over 3 runs, for
1000 synthetic text generations using LLaMA3 8B for the MIMIC dataset with varying ε and k for INVISIBLEINK
with τ = 1.2 and B = 7. The best scores for every privacy budget are highlighted.

We note that generation from the LLaMA3 8B at such small batch sizes (B = 7) is completely
infeasible for the other baselines we consider, such as AdaPMixED [19] and Amin et al. [13]’s
method. As we use larger (in terms of number of parameters) LLMs, the computational cost in
terms of both GPU memory and computational time increases sharply. Using batch sizes > 50, as
proposed by the baselines [13, 19] is unreasonable with large models. This highlights the scalability
of INVISIBLEINK to larger models, and by extension, its suitability for high-quality text generation.

However, we note that the overall MAUVE scores of the generated texts falls compared to generations
from smaller models like TinyLLaMA and LLaMA3.2 1B. We attribute this to the strong alignment of
the LLaMA3 8B model against generating (fake) medical records or divulging patient data. We further
note that despite our detailed prompts (see Tab. 4), the output private text generated by the model
contains text other than the synthetic text to be generated, usually in the form of disclaimers of the
form: “Here is a fake patient discharge summary”. Sanitizing the output private text, post-generation,
by removing this disclaimer leads to ≈ 1− 2% increase in MAUVE scores across all settings.

While our primary experiments (reported in Fig. 4 and Tab. 2) show that INVISIBLEINK performs well,
even when generating out-of-domain text, strong alignment of LLMs impacts generation adversely.
We leave a full investigation of this phenomenon to future work.
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E.5 Ablation Studies: Effect of Temperature, Clip Norm, and Top-k parameter

INVISIBLEINK has the following key hyperparameters: the batch size B (which is determined by the
compute budget), temperature τ , clip norm C, and top-k parameter. §5 shows the effect of varying
the batch size B (Fig. 4) the top-k parameter (Fig. 6).

As per the heuristics for hyperparameter selection proposed in §5, we tune across various temperatures
and calculate the clip norm C for the fixed privacy budget and sampling temperature τ . The effects
of varying the temperature and clip norm are thus coupled. We first report the performance of
INVISIBLEINK for various temperatures and top-k parameters. We observe from Fig. 8 & Fig. 9 that
the optimal choice of sampling temperature and top-k parameter is τ = 1.1 and k = 100.
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Figure 8: Variation of utility (measured using a variety of metrics) with sampling temperature, for the full-
vocabulary variant of INVISIBLEINK (k = |V |), reported for 1000 synthetic generations, averaged over 3 runs,
for the MIMIC dataset using a TinyLLaMA 1B model. Temperature is varied from 0.8 to 1.1 for a fixed privacy
budget ε = 5. We observe that selecting a temperature of τ ≈ 1.0− 1.1 consistently gives better performance.
When coupled with Top-k+ sampling for k ≈ 50− 100 (chosen based on empirical observations in Fig. 2), we
observe that the best performance is obtained for τ = 1.1. We report these results in the main paper; in Fig. 4.
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Figure 9: Variation of utility (measured using MAUVE scores) with sampling temperature, reported for 1000
synthetic generations, over one run, for the MIMIC dataset using a TinyLLaMA 1B model. Temperature is varied
from 1.0 to 1.2 for various privacy budgets. We observe that selecting a temperature of τ ≈ 1.1 consistently
gives the best performance when coupled with Top-k+ sampling for k ≈ 50− 100 (chosen based on empirical
observations in Fig. 2). We report these results in the main paper; in Fig. 4.

We now decouple the effect of clipping by removing the constraint on privacy budget and instead
varying C freely for a given fixed temperature (see Fig. 10). We also report the variation of calculated
clip norm for INVISIBLEINK and Amin et al. [13]’s method with batch size B for various privacy
budgets. As discussed in Fig. 3, the clipping norms required for high-utility generation using
INVISIBLEINK can be achieved with much lower batch sizes as compared to Amin et al. [13].

E.6 Comparison of Adjacency Notions for AdaPMixED

As discussed in §B.3, we use an implementation of AdaPMixED that employs the replace-by-null
notion of adjacency, as in INVISIBLEINK, in the main paper instead of the add-or-remove notion of
adjacency used by Flemings et al. [19] as it allows for an apples-to-apples comparison.

To do so, we modify the data-dependent privacy accounting step (defined in [19, Eqn. 3]), which
accounts for the maximum symmetric α-Rényi Divergence between probability distributions corre-
sponding to the reference set and all its possible neighbours under add-or-remove adjacency.
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Figure 10: Effect of clipping norm. Left two: Variation of calculated C for INVISIBLEINK and Amin et al.
[13]’s method with batch size B for various privacy budgets. The latter needs much larger batch sizes to give
comparable clip norms for a given privacy budget. Right two: Variation of utility with C for 1000 synthetic
generations for the MIMIC dataset using a TinyLLaMA 1B model using INVISIBLEINK (k = |V |). Temperature
(τ = 1.2) and batch size (B = 7) are fixed while we vary the clip norm. Each setting of the clip norm implies a
DP parameter as given by Theorem 2. In particular, it varies from ε = 1.3 for C = 0.1 to ε = 17.6 for C = 1.0.

We modify this step to instead account for the maximum α-Rényi Divergence between the probability
distribution corresponding to the current reference set and all possible neighbours using the replace-
by-null adjacency notion. In contrast to the add-or-remove notion, where removing a particular
reference zeroed out its contributing probabilities [19, Alg 1, Line 15], in our modified algorithm,
replacing a particular reference by “null" (empty string ∅; see Definition 5) means that the contributing
probabilities default to that of the public distribution. Mathematically, we modify [19, Alg 1, Line
15] to be (borrowing all notation from [19]):

p−i(x) =
1

N

∑
j ̸=i

p̄j(x) + ppub(x)


We note that this lends an advantage to the replace-by-null implementation of AdaPMixED, since the
per-token privacy accounted for must be slightly lesser. However, the quantitative results, presented
in Tab. 14, fail to reflect this meaningfully, since the generated sequences are very small. Regardless,
INVISIBLEINK outperforms AdaPMixED significantly irrespective of the notion of adjacency used.

Add-or-remove adjacency Replace-by-null adjacency
ε B = 8 B = 32 B = 128 B = 8 B = 32 B = 128

1.0 58.68 58.71 58.51 58.14 57.64 59.51
3.0 58.29 58.81 61.50 58.30 57.97 58.80
5.0 60.24 58.72 TLE 58.26 59.32 TLE
10.0 60.23 59.23 TLE 59.18 59.61 TLE

Table 14: MAUVE scores (%) for 1000 synthetic generations (over one run only) for the MIMIC dataset
using TinyLLaMA for different privacy budgets (ε) and batch sizes (B), comparing two adjacency notions:
Add-or-remove and Replace-by-null for AdaPMixED. TLE denotes runs where a wall-clock time limit of 24
hrs was exceeded. Top-performing configurations per ε tend to vary with adjacency notion and batch size;
highlighting the sensitivity of MAUVE scores to both.

F Limitations, Discussion, and Broader Impact

INVISIBLEINK casts next-token sampling as an instance of the exponential mechanism over LLM
logits and introduces two key innovations. First, it reduces privacy cost by isolating and clipping only
the sensitive portion of the logits, measured relative to public logits. Second, it improves utility by
sampling from a tight superset of the top-k private tokens. Empirical results demonstrate an 8× (or
more) reduction in compute cost compared to state-of-the-art baselines, while preserving utility, across
privacy levels. Notably, INVISIBLEINK enables private long-form generation at less than 4 − 8×
the cost of non-private decoding, offering a practical and efficient solution for privacy-preserving
language generation. While INVISIBLEINK significantly reduces the computational complexity of
generating DP text, it still has some limitations that we now discuss.
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Limitations. The trust model of INVISIBLEINK requires specific assumptions that could potentially
be restrictive. A direct implementation of INVISIBLEINK requires a trusted central aggregator who
has access to the raw sensitive references, whitebox access to the model weights (to query the
next-token logits), and the necessary computational resources to run INVISIBLEINK. Relaxing these
requirements is an interesting avenue for future work.

Second, INVISIBLEINK provably protects against privacy leakage through inference, but not in the
training or fine-tuning stage. Leakage could still be possible through data contamination or backdoor
adversarial attacks. Furthermore, even in the case of inference, we tackle example-level DP only.
However, user-level privacy leakage is also possible [e.g. 96], and extending INVISIBLEINK to
user-level DP is an interesting direction.

Finally, while INVISIBLEINK drastically improves the computational cost of private text generation,
the 8× overhead over non-private generation could still be restrictive with large frontier models under
extremely tight privacy budgets. Pushing the envelope of the privacy-utility-compute tradeoffs of text
generation is a fruitful avenue for future research.

Broader Impact. The development of computationally efficient DP text generation can allow safe
deployment of large language models (LLMs) in privacy-sensitive domains such as healthcare, law,
and finance. By addressing the steep privacy-utility-compute tradeoffs that currently hinder practical
use, our work could help unlock high-impact applications that require both strong privacy guarantees
and high-quality long-form generation.

In doing so, this research contributes to sustaining public trust in AI systems. As LLMs become
increasingly integrated into everyday decision-making processes, ensuring that user data is handled
with dignity and protected by rigorous guarantees is ethically and, in sensitive domains like healthcare,
legally warranted. We view computationally efficient and provably privacy-preserving techniques as
key to building ethical and trustworthy AI.

However, the existence of formal privacy guarantees may lead to overconfidence or misuse, particu-
larly if system integrators overlook practical limitations such as implementation errors, misconfigured
parameters, or unrealistic threat models [e.g., 82, 83]. Differential privacy is a powerful but narrow
tool—it provides provable anonymization but is only one component in an end-to-end system. The
practical use of such a system must be considered in a holistic manner, along with clear communica-
tion of failure modes.

G Example Generations

See Tab. 15 for some example generations from INVISIBLEINK.
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Dataset Examples of Generated Synthetic Text

Yelp "We chose a cozy restaurant that delivered impeccable service, excellent fare, and even
better music to our table." (ReviewStars: 4.8 out of 5.0) Naturally, we walked in to find a
spacious and serene lobby. Our server was welcoming, and she immediately recommended
a seasonal cocktail and the restaurant’s signature dish, Chicken Caesar. The servers were
friendly, knowledgeable, and efficient which contributed greatly to our experience. Tucking
into each other’s orders, we feasted our eyes on sophisticated appetizers like Caprese, Grilled
Salmon, and Grilled Caesar Wings, accompanied by the juiciest and most lip-smacking
chicken you’ll ever taste, alongside a delicate glass of Pinot Noir to top it off. The food
arrived quickly without forgetting the music

"Although the staff may not be able to befriend every customer, their attentiveness and
positive attitude really go a long way. Our recent visit to a new coffee shop led by a chatbot
could have gone further in helping patrons’ preferences, with many potential avenues to
cater the atmosphere. From a personal observation, however, I believe that adding more
personalities to the virtual assistants could cater to a wider-range of needs while engaging
customers. Nevertheless, the chatbot is smart and proficient in its tasks, and we enjoyed
getting tips about the local coffee culture from their knowledgeable baristas. Although we
were a bit inconveniently served at our preferred location for a quick lunchtime fix, we were
glad to taste some delicious homemade sushi on the go. Overall, our overall experience was
positive with a bit more effort and personalization in terms of addressing specific preferences
could lead to repeat vis

TAB PROCEDŽURE: The case originated in an Application for Judicial Review filed by Ms.
Smith, petitioner(s), against the Bulgarian State from January 8th of the year 2019. The
Respondent for this jurisdictional issue is the Ministry of the Interior of the Bulgarian
Republic and the Bulgarian National Antiterrorism Bureau. The alleged event occurred at
the intersection of a public place known as Sidi Boutha Crescent or Vezhub Khayri Crescent
in the city of Sofia, Bulgaria that caused or contributed significantly and directly to plaintiff
Smith’s physical injury causing death pursuant to Section 4, Article 3 of the Bulgarian
Medical Registration Act.
- The procedural steps involved in the application included the preparing of the written
petition as well as its formality submitted to the Court for review.
- Upon review of the documents, the Registrar of the Court sent the petition to the Bulgarian
Ministry of the Interior as a legal source and required from the said organization to verify
and respond in court about the availability of sufficient grounds for such judicial review
against the Bulgarian state.
- Following the review process, the request for verification made by plaintiff Smith’s attorney
was submitted before the Ministry of the Interior of the Bulgarian Republic.
- The Bulgarian Minister of the Interior received the request as per the requirement and
made a decision within one month from the submission date based on the relevant document
provisions as provided by law.
- After this, the Ministry communicated to the plaintiff regarding the reply received from the
National Antiterrorism Bureau, and the said communication stated that the respondent is
satisfied with having received the reply and that the Bulgarian state is willing to conduct a
judicial investigation of the event from the incident that caused or contributed significantly
to the death of the petitioning defendant Smith.
Respectfully, as per the international human rights instrument cited in the previous reference
to the jurisdiction as mentioned in the jurisdictional challenge brought in favor of Ms.
Smith, all facts and circumstances of the criminal matter that led to the loss of a life of a
Bulgarian citizen constitutes a violation of her right to physical integrity protected by Article
2 (Prohibition of T

Table 15: Randomly chosen examples of private text generated with ε = 10 from the Yelp and TAB datasets
using the TinyLLaMA 1B model, sampling temperature τ = 1.2, k = 50, and batch sizes B = 31 and B = 7
respectively; INVISIBLEINK provides high-quality text. We do not provide examples of synthetic generations for
the MIMIC dataset to comply with its license. Amin et al. [13]’s method is infeasible for text generation at the
same batch sizes.
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H NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction, as well as all contributions
listed are supported by experimental evidence and theoretical proofs. The main paper gives
a summary and the appendices give the full technical details including proofs.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: A detailed discussion of the limitations and scope of our work is given in the
appendix §F.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All theoretical claims, theorems, properties etc. made in our work are proved
in detail in the appendix; See §C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All details regarding the experimental settings, including models, metrics,
prompts etc. and any other information necessary to ensure full reproducibility is covered
between the relevant sections in the main paper and the appendix; See §D and E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All code and scripts required to reproduce the results in our work will be
available at: https://github.com/cerai-iitm/InvisibleInk-Experiments. All
datasets we use are public (MIMIC dataset is credentialed access only, and researchers can
apply for access to it).

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All details regarding the experimental settings, including models, metrics,
prompts etc. and any other information necessary to ensure full reproducibility is covered
between the relevant sections in the main paper and the appendix; See §D and §E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the mean and standard error for applicable metrics; See §D for
details.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Details about computational resources used are discussed in the appendix; See
§D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We adhere strictly to the NeurIPS code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: A discussion of the broader impact of our work is present in the appendix. See
§F.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release any sensitive data or models which pose a risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All licenses for use of data and models have been respected and due acknowl-
edgement has been made to every asset used in our work.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release any new assets (data, models etc.)

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our use of LLMs is limited to grammar, spellchecks and minor writing edits
only.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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